51
|
Kimura H, Tao Y, Roeder RG, Cook PR. Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol Cell Biol 1999; 19:5383-92. [PMID: 10409729 PMCID: PMC84381 DOI: 10.1128/mcb.19.8.5383] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Various complexes that contain the core subunits of RNA polymerase II associated with different transcription factors have been isolated from eukaryotes; their precise molecular constitution depends on the purification procedure. We estimated the numbers of various components of such complexes in an HeLa cell by quantitative immunoblotting. The cells were lysed with saponin in a physiological buffer; approximately 140,000 unengaged polymerases (mainly of form IIA) were released. Only approximately 4,000 of these soluble molecules sedimented in glycerol gradients as holoenzyme-sized complexes. About 180,000 molecules of polymerases (approximately 110,000 molecules of form IIO) and 10,000 to 30,000 molecules of each of TFIIB, TFIIEalpha, TFIIEbeta, TFIIF-RAP74, TFIIF-RAP30, and TFIIH-MAT1 remained tightly associated with the nuclear substructure. Most proteins and run-on activity were retained when approximately 50% of the chromatin was detached with a nuclease, but approximately 45,000 molecules of bound TATA binding protein (TBP) were detached. Similar results were obtained after cross-linking living cells with formaldehyde. The results provide little support for the existence of a large pool of soluble holoenzyme; they are consistent with TBP-promoter complexes in nuclease-sensitive chromatin being assembled into preinitiation complexes attached to the underlying structure.
Collapse
Affiliation(s)
- H Kimura
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
52
|
Martin J, Halenbeck R, Kaufmann J. Human transcription factor hTAF(II)150 (CIF150) is involved in transcriptional regulation of cell cycle progression. Mol Cell Biol 1999; 19:5548-56. [PMID: 10409744 PMCID: PMC84407 DOI: 10.1128/mcb.19.8.5548] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present evidence that CIF150 (hTAF(II)150), the human homolog of Drosophila TAF(II)150, plays an important and selective role in establishing gene expression patterns necessary for progression through the cell cycle. Gel filtration experiments demonstrate that CIF150 (hTAF(II)150) seems to be less tightly associated with human transcription factor IID than hTAF(II)130 is associated with hTAF(II)250. The transient functional knockout of CIF150 (hTAF(II)150) protein led to cell cycle arrest at the G(2)/M transition in mammalian cell lines. PCR display analysis with the RNA derived from CIF150-depleted cells indicated that CIF150 (hTAF(II)150) is required for the transcription of only a subset of RNA polymerase II genes. CIF150 (hTAF(II)150) directly stimulated cyclin B1 and cyclin A transcription in cotransfection assays and in vitro assays, suggesting that the expression of these genes is dependent on CIF150 (hTAF(II)150) function. We defined a CIF150 (hTAF(II)150) consensus binding site and demonstrated that a CIF150-responsive cis element is present in the cyclin B1 core promoter. These results suggest that one function of CIF150 (hTAF(II)150) is to select specific RNA polymerase II core promoter elements involved in cell cycle progression.
Collapse
Affiliation(s)
- J Martin
- Chiron Corporation, Chiron Technologies, Emeryville, California 94608, USA
| | | | | |
Collapse
|
53
|
Roeder RG. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:201-18. [PMID: 10384284 DOI: 10.1101/sqb.1998.63.201] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R G Roeder
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
54
|
Ranallo RT, Struhl K, Stargell LA. A TATA-binding protein mutant defective for TFIID complex formation in vivo. Mol Cell Biol 1999; 19:3951-7. [PMID: 10330135 PMCID: PMC104354 DOI: 10.1128/mcb.19.6.3951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Using an intragenic complementation screen, we have identified a temperature-sensitive TATA-binding protein (TBP) mutant (K151L, K156Y) that is defective for interaction with certain yeast TBP-associated factors (TAFs) at the restrictive temperature. The K151L,K156Y mutant appears to be functional for RNA polymerase I (Pol I) and Pol III transcription, and it is capable of supporting Gal4-activated and Gcn4-activated transcription by Pol II. However, transcription from certain TATA-containing and TATA-less Pol II promoters is reduced at the restrictive temperature. Immunoprecipitation analysis of extracts prepared after culturing cells at the restrictive temperature for 1 h indicates that the K151L,K156Y derivative is severely compromised in its ability to interact with TAF130, TAF90, TAF68/61, and TAF25 while remaining functional for interaction with TAF60 and TAF30. Thus, a TBP mutant that is compromised in its ability to form TFIID can support the response to Gcn4 but is defective for transcription from specific promoters in vivo.
Collapse
Affiliation(s)
- R T Ranallo
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
55
|
Perletti L, Dantonel JC, Davidson I. The TATA-binding protein and its associated factors are differentially expressed in adult mouse tissues. J Biol Chem 1999; 274:15301-4. [PMID: 10336414 DOI: 10.1074/jbc.274.22.15301] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the expression levels of the TATA-binding protein (TBP) and several TBP-associated factors (TAFIIs) in differentiated adult mouse tissues. Immunoblots performed using monoclonal antibodies show that there are considerable variations in the levels of TBP and many TAFII proteins present in various tissues. Consequently, the relative levels of TAFIIs and TBP vary significantly from one tissue to another. TBP and several TAFIIs are overexpressed in both testis and small intestine, while in marked contrast, many of these proteins, including TBP itself, were substantially down-regulated in nervous tissues and in the heart. These tissues do, however, show a high expression level of the TBP-like factor, which thus may represent an alternative factor for the specialized transcription program in some differentiated tissues. While there are significant variations in the levels of TAFII28 protein, reverse transcription-coupled polymerase chain reaction shows similar expression of the TAFII28 mRNA in different tissues. The variations in TAFII28 protein levels therefore result from post-transcriptional regulatory events.
Collapse
Affiliation(s)
- L Perletti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, B. P. 163-67404 Illkirch Cédex, Communauté Urbaine de Strasbourg, France
| | | | | |
Collapse
|
56
|
Lukac DM, Alwine JC. Effects of human cytomegalovirus major immediate-early proteins in controlling the cell cycle and inhibiting apoptosis: studies with ts13 cells. J Virol 1999; 73:2825-31. [PMID: 10074130 PMCID: PMC104040 DOI: 10.1128/jvi.73.4.2825-2831.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The major immediate-early (MIE) gene of human cytomegalovirus (HCMV) encodes several MIE proteins (MIEPs) produced as a result of alternative splicing and polyadenylation of the primary transcript. Previously we demonstrated that the HCMV MIEPs expressed from the entire MIE gene could rescue the temperature-sensitive (ts) transcriptional defect in the ts13 cell line. This defect is caused by a ts mutation in TAFII250, the 250-kDa TATA binding protein-associated factor (TAF). These and other data suggested that the MIEPs perform a TAF-like function in complex with the basal transcription factor TFIID. In addition to the transcriptional defect, the ts mutation in ts13 cells results in a defect in cell cycle progression which ultimately leads to apoptosis. Since all of these defects can be rescued by wild-type TAFII250, we asked whether the MIEPs could rescue the cell cycle defect and/or affect the progression to apoptosis. We have found that the MIEPs, expressed from the entire MIE gene, do not rescue the cell cycle block in ts13 cells grown at the nonpermissive temperature. However, despite the maintenance of the cell cycle block, the ts13 cells which express the MIEPs are resistant to apoptosis. MIEP mutants, which have previously been shown to be defective in rescuing the ts transcriptional defect, maintained the ability to inhibit apoptosis. Hence, the MIEP functions which affect transcription appear to be separable from the functions which inhibit apoptosis. We discuss these data in the light of the HCMV life cycle and the possibility that the MIEPs promote cellular transformation by a "hit-and-run" mechanism.
Collapse
Affiliation(s)
- D M Lukac
- Department of Microbiology, Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | |
Collapse
|
57
|
Sekiguchi T, Nishimoto T, Hunter T. Overexpression of D-type cyclins, E2F-1, SV40 large T antigen and HPV16 E7 rescue cell cycle arrest of tsBN462 cells caused by the CCG1/TAF(II)250 mutation. Oncogene 1999; 18:1797-806. [PMID: 10086334 DOI: 10.1038/sj.onc.1202508] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
tsBN462 cells, which have a point mutation in CCG1/TAF(II)250, a component of TFIID complex, arrest in G1 at the nonpermissive temperature of 39.5 degrees C. Overexpression of D-type cyclins rescued the cell cycle arrest of tsBN462 cells, suggesting that the cell cycle arrest was through Rb. Consistent with this, overexpression of E2F-1, whose function is repressed by the hypophosphorylated form of Rb, also rescued the cell cycle arrest. Moreover, expression of the viral oncoproteins SV40 large T antigen and HPV16 E7, which both bind Rb and inactivate its function, rescued the cell cycle arrest, whereas HPV16 E6 did not. Mutation of the Rb-binding motif in E7 abrogated its ability to rescue the cell cycle arrest. Expression of exogenous cyclin D1, SV40 large T antigen or CCG1/TAF(II)250 increased cyclin A expression at 39.5 degrees C. Coexpression of HPV16 E7 and adenovirus E1b19K, which blocks apoptosis, rescued the proliferation of tsBN462 cells at 38.5 degrees C. To investigate the mechanism underlying the lack of cyclin D1 expression, deletion analysis of cyclin D1 promoter was performed. The 0.15 kbp cyclin D1 core promoter region, which lacks any transcription factor binding motifs, still exhibited a temperature-sensitive phenotype in tsBN462 cells suggesting that CCG1/TAF(II)250 is critical for the function of the cyclin D1 core promoter.
Collapse
Affiliation(s)
- T Sekiguchi
- Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
58
|
Saadane N, Alpert L, Chalifour LE. TAFII250, Egr-1, and D-type cyclin expression in mice and neonatal rat cardiomyocytes treated with doxorubicin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H803-14. [PMID: 10070062 DOI: 10.1152/ajpheart.1999.276.3.h803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differential display identified that gene fragment HA220 homologous to the transcriptional activator factor II 250 (TAFII250) gene, or CCG1, was increased in hypertrophied rodent heart. To determine whether TAFII250 gene expression is modified after cardiac damage, we measured TAFII250 expression in vivo in mouse hearts after injection of the cardiotoxic agent doxorubicin (DXR) and in vitro in DXR-treated isolated rat neonatal cardiomyocytes. In vivo atrial natriuretic factor (ANF), beta-myosin heavy chain (beta-MHC), Egr-1, and TAFII250 expression increased with dose and time after a single DXR injection, but only ANF and beta-MHC expression were increased after multiple injections. After DXR treatment of neonatal cardiomyocytes we found decreased ANF, alpha-MHC, Egr-1, and TAFII250 expression. Expression of the TAFII250-regulated genes, the D-type cyclins, was increased after a single injection in adult mice and was decreased in DXR-treated cardiomyocytes. Thus expression of Erg-1, TAFII250, and the D-type cyclins is modulated after cardiotoxic damage in adult and neonatal heart.
Collapse
Affiliation(s)
- N Saadane
- Lady Davis Institute for Medical Research, Montreal H3T 1E2, Montreal, Quebec, Canada H3A 1A3
| | | | | |
Collapse
|
59
|
Abstract
There are several enzymes, acetylases and deacetylases, that can regulate transcription by modifying the acetylation state of histones or other promoter-bound transcription factors. Some of these enzymes are present in multisubunit complexes. Recent efforts to understand the biological role of these enzymes reveals their involvement in cell-cycle regulation and differentiation. Furthermore, accumulating evidence suggests that deregulation of acetylase and deacetylase activity plays a causative role in the generation of cancer.
Collapse
Affiliation(s)
- T Kouzarides
- Wellcome/CRC Institute, Department of Pathology, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
60
|
Bell B, Tora L. Regulation of gene expression by multiple forms of TFIID and other novel TAFII-containing complexes. Exp Cell Res 1999; 246:11-9. [PMID: 9882510 DOI: 10.1006/excr.1998.4294] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B Bell
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, C. U. de Strasbourg, F-67404, France
| | | |
Collapse
|
61
|
Adnane J, Shao Z, Robbins PD. Cyclin D1 associates with the TBP-associated factor TAF(II)250 to regulate Sp1-mediated transcription. Oncogene 1999; 18:239-47. [PMID: 9926939 DOI: 10.1038/sj.onc.1202297] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously shown that Sp1-mediated transcription is stimulated by Rb and repressed by cyclin D1. The stimulation of Sp1 transcriptional activity by Rb is conferred, in part, through a direct interaction with the TBP-associated factor TAF(II)250. Here we investigated the mechanism(s) through which cyclin D1 represses Sp1. We examined the ability of cyclin D1 to regulate transcription mediated by Gal4-Sp1 fusion proteins, which contain the Gal4 DNA-binding domain and Sp1 trans-activation domain(s). The domain of Sp1 sufficient to confer repression by cyclin D1 was mapped to a region important for interaction with TAF(II)110. We further demonstrate that TAF(II)250-cyclin D1 complexes can be immunoprecipitated from mammalian and baculovirus-infected insect cells and that recombinant GST-TAF(II)250 (amino acids 1-434) associates with cyclin D1 in vitro. Moreover, the overexpression of Rb or CDK4 reduced the level of TAF(II)250-cyclin D1 complex. The amino terminus of cyclin D1 (amino acids 1-100) was sufficient for association with TAF(II)250 and for repressing Sp1-mediated transcription. Taken together, the results suggest that cyclin D1 may regulate transcription by interacting directly or indirectly with TAF(II)250.
Collapse
Affiliation(s)
- J Adnane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
62
|
Siegert JL, Robbins PD. Rb inhibits the intrinsic kinase activity of TATA-binding protein-associated factor TAFII250. Mol Cell Biol 1999; 19:846-54. [PMID: 9858607 PMCID: PMC83941 DOI: 10.1128/mcb.19.1.846] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The retinoblastoma tumor suppressor protein, Rb, interacts directly with the largest TATA-binding protein-associated factor, TAFII250, through multiple regions in each protein. To define the potential role(s) of this interaction, we examined whether Rb could regulate the intrinsic, bipartite kinase activity of TAFII250. Here, we report that Rb is able to inhibit the kinase activity of immunopurified and gel-purified recombinant TAFII250. Rb inhibits the autophosphorylation of TAFII250 as well as its phosphorylation of the RAP74 subunit of TFIIF in a dose-responsive manner. Inhibition of TAFII250 kinase activity involves the Rb pocket (amino acids 379 to 928) but not its amino terminus. In addition, Rb appears to specifically inhibit the amino-terminal kinase domain of TAFII250 through a direct protein-protein interaction. We further demonstrate that two different tumor-derived Rb pocket mutants, C706F and Deltaex22, are functionally defective for kinase inhibition, even though they are able to bind the amino terminus of TAFII250. Our results suggest a novel mechanism of transcriptional regulation by Rb, involving direct interaction with TAFII250 and inhibition of its ability to phosphorylate itself, RAP74, and possibly other targets.
Collapse
Affiliation(s)
- J L Siegert
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
63
|
Abstract
In yeast cells, independent depletion of TAFs (130, 67, 40, and 19) found specifically in TFIID results in selective effects on transcription, including a common effect on his3 core promoter function. In contrast, depletion of TAF17, which is also present in the SAGA histone acetylase complex, causes a decrease in transcription of most genes. However, TAF17-depleted cells maintain Ace1-dependent activation, and they induce de novo activation by heat shock factor in a manner predominantly associated with the activator, not the core promoter. Thus, TAF17 is broadly, but not universally, required for transcription in yeast, TAF17 depletion and TAF130 depletion each disrupt TFIID integrity yet cause different transcriptional consequences, suggesting that the widespread influence of TAF17 might not be due solely to its function in TFIID.
Collapse
Affiliation(s)
- Z Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
64
|
Martinez E, Ge H, Tao Y, Yuan CX, Palhan V, Roeder RG. Novel cofactors and TFIIA mediate functional core promoter selectivity by the human TAFII150-containing TFIID complex. Mol Cell Biol 1998; 18:6571-83. [PMID: 9774672 PMCID: PMC109242 DOI: 10.1128/mcb.18.11.6571] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1998] [Accepted: 07/31/1998] [Indexed: 12/17/2022] Open
Abstract
TATA-binding protein-associated factors (TAFIIs) within TFIID control differential gene transcription through interactions with both activators and core promoter elements. In particular, TAFII150 contributes to initiator-dependent transcription through an unknown mechanism. Here, we address whether TAFIIs within TFIID are sufficient, in conjunction with highly purified general transcription factors (GTFs), for differential core promoter-dependent transcription by RNA polymerase II and whether additional cofactors are required. We identify the human homologue of Drosophila TAFII150 through cognate cDNA cloning and show that it is a tightly associated component of human TFIID. More importantly, we demonstrate that the human TAFII150-containing TFIID complex is not sufficient, in the context of all purified GTFs and RNA polymerase II, to mediate transcription synergism between TATA and initiator elements and initiator-directed transcription from a TAFII-dependent TATA-less promoter. Therefore, TAFII-promoter interactions are not sufficient for the productive core promoter-selective functions of TFIID. Consistent with this finding, we have partially purified novel cofactor activities (TICs) that potentiate the TAFII-mediated synergism between TATA and initiator elements (TIC-1) and TAFII-dependent transcription from TATA-less promoters (TIC-2 and -3). Furthermore, we demonstrate an essential function for TFIIA in TIC- and TAFII-dependent basal transcription from a TATA-less promoter. Our results reveal a parallel between the basal transcription activity of TAFIIs through core promoter elements and TAFII-dependent activator function.
Collapse
Affiliation(s)
- E Martinez
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
65
|
Weissman JD, Brown JA, Howcroft TK, Hwang J, Chawla A, Roche PA, Schiltz L, Nakatani Y, Singer DS. HIV-1 tat binds TAFII250 and represses TAFII250-dependent transcription of major histocompatibility class I genes. Proc Natl Acad Sci U S A 1998; 95:11601-6. [PMID: 9751712 PMCID: PMC21687 DOI: 10.1073/pnas.95.20.11601] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIV Tat, a transactivator of viral transcription, represses transcription of major histocompatibility (MHC) class I genes. Repression depends exclusively on the C-terminal domain of Tat, although the mechanism of this repression has not been known. We now show that repression results from the interaction of Tat with the TAFII250 component of the general transcription factor, TFIID. The C-terminal domain of Tat binds to a site on TAFII250 that overlaps the histone acetyl transferase domain, inhibiting TAFII250 histone acetyl transferase activity. Furthermore, promoters repressed by Tat, including the MHC class I promoter, are dependent on TAFII250 whereas those that are not repressed by Tat, such as SV40 and MuLV promoters, are independent of functional TAFII250. Thus, Tat repression of MHC class I transcription would be one mechanism by which HIV avoids immune surveillance.
Collapse
Affiliation(s)
- J D Weissman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The transcription factor NF-kappaB is important for expression of genes involved in immune responses, viral infections, cytokine signaling and stress. In addition NF-kappaB plays a crucial role in protecting cells from TNF-alpha-induced apoptotic stimuli, presumably by activating anti-apoptotic genes. Here we report that the sub-stoichiometric TFIID subunit TAFII105 is essential for activation of anti-apoptotic genes in response to TNF-alpha, serving as a transcriptional coactivator for NF-kappaB. The putative coactivator domain of TAFII105 interacts with the activation domain of the p65/RelA member of the NF-kappaB family, and further stimulates p65-induced transcription in human 293 cells. Moreover, inhibition of TAFII105 activity by overexpression of a dominant negative mutant of TAFII105 decreased NF-kappaB transcriptional activity and severely reduced cell survival in response to TNF-alpha. Similarly, expression of anti-sense TAFII105 RNA sensitized the cells to TNF-alpha cytotoxicity. These results suggest that TAFII105 is involved in activation of anti-apoptotic genes by NF-kappaB.
Collapse
Affiliation(s)
- A Yamit-Hezi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
67
|
Wu SY, Kershnar E, Chiang CM. TAFII-independent activation mediated by human TBP in the presence of the positive cofactor PC4. EMBO J 1998; 17:4478-90. [PMID: 9687514 PMCID: PMC1170779 DOI: 10.1093/emboj/17.15.4478] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TFIID is a multiprotein complex comprised of the TATA-binding protein (TBP) and an array of TBP-associated factors (TAFIIs). Whereas TBP is sufficient for basal transcription in conjunction with other general transcription factors and RNA polymerase II, TAFIIs are additionally required for activator-dependent transcription in mammalian cell-free transcription systems. However, recent in vivo studies carried out in yeast suggest that TAFIIs are not globally required for activator function. The discrepancy between in vivo yeast studies and in vitro mammalian cell-free systems remains to be resolved. In this study, we describe a mammalian cell-free transcription system reconstituted with only recombinant proteins and epitope-tagged multiprotein complexes. Transcriptional activation can be recapitulated in this highly purified in vitro transcription system in the absence of TAFIIs. This TBP-mediated activation is not induced by human mediator, another transcriptional coactivator complex potentially implicated in activator response. In contrast, general transcription factors TFIIH and TFIIA play a significant role in TBP-mediated activation, which can be detected in vitro with Gal4 fusion proteins containing various transcriptional activation domains. Our data, therefore, suggest that TFIIH and TFIIA can mediate activator function in the absence of TAFIIs.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
68
|
Yamamoto T, Horikoshi M. Defect in cytokinesis of fission yeast induced by mutation in the WD40 repeat motif of a TFIID subunit. Genes Cells 1998; 3:347-55. [PMID: 9734781 DOI: 10.1046/j.1365-2443.1998.00195.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND TBP-associated factors contain a variety of structural motifs and their related in vivo significance has remained unclear. We have attempted to identify specific biological phenomena linked to a particular domain of a TAF by analysing domain-exchanged chimeric mutants between Schizosaccharomyces pombe (Sp) and Saccharomyces cerevisiae (Sc) counterparts. RESULTS Contrary to the case of TBP, Sp TAF containing the WD40 repeat cannot be exchanged for its Sc counterpart, despite their highly conserved primary structures. This 'species-specific' function locates in the N-terminal region. The C-terminal region, largely consisting of the WD40 repeat, is exchangeable for the corresponding region of its Sc counterpart. Growth of the strain harbouring this C-terminal chimeric mutant is temperature-sensitive. The chimeric gene product did not disappear at a restrictive temperature, a finding which strongly suggests that the growth defect is caused by an aberration in the interactions through the WD40 repeat structural motif. With temperature elevation, the chimeric mutants underwent drastic morphological changes due to a defect in cytokinesis. CONCLUSIONS The WD40 repeat of TAF is primarily involved in reactions which might regulate cytokinesis in Sp.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Cellular Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | |
Collapse
|
69
|
Affiliation(s)
- T I Lee
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
70
|
Abstract
The largest subunit of the human transcription factor TFIID, TAFII250, was previously reported to contain serine/threonine kinase domains that can autophosphorylate and transphosphorylate the large subunit of the basal factor TFIIF. Here, we identify the regions of the N-terminal kinase domain (amino acids 1-414) necessary for kinase activity and examine its function in vivo. Point mutations within two patches of amino acids in the kinase domain decrease both autophosphorylation and transphosphorylation activities. Importantly, we find that TAFII250-bearing mutations within the N-terminal kinase domain exhibit a significantly reduced ability to rescue ts13 cells that express a temperature-sensitive TAFII250. Moreover, transcription from the cyclin A and cdc2 promoters becomes impaired when cotransfected with hTAFII250 containing inactive forms of the N-terminal kinase domain. Our results suggest that the TAFII250 kinase activity is required to direct transcription of at least some genes in vivo.
Collapse
Affiliation(s)
- T O'Brien
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley 94720, USA
| | | |
Collapse
|
71
|
Chang M, Jaehning JA. A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res 1997; 25:4861-5. [PMID: 9396788 PMCID: PMC147162 DOI: 10.1093/nar/25.24.4861] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The already complex process of transcription by RNA polymerase II has become even more complicated in the last few years with the identification of auxiliary factors in addition to the essential general initiation factors. In many cases these factors, which have been termed mediators or co-activators, are only required for activated or repressed transcription. In some cases the effects are specific for certain activators and repressors. Recently some of these auxiliary factors have been found in large complexes with either TBP, as TBP-associated factors (TAFs) in the general factor TFIID, or with pol II and a subset of the general factors, referred to as the 'holoenzyme'. Although the exact composition of these huge assemblies is still a matter of some debate, it is becoming clear that the complexes themselves come in more than one form. In particular, at least four forms of TFIID have been described, including one that contains a tissue-specific TAF and another with a cell type-specific form of TBP. In addition, in yeast there are at least two forms of the 'holoenzyme' distinguished by their mediator composition and by the spectrum of transcripts whose expression they affect. Genetic and biochemical analyses have begun to identify the interactions between the components of these complexes and the ever increasing family of DNA binding regulatory factors. These studies are complicated by the fact that individual regulatory factors often appear to have redundant interactions with multiple mediators. The existence of these different forms of transcription complexes defines a new target for regulation of subsets of eukaryotic genes.
Collapse
Affiliation(s)
- M Chang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
72
|
Hansen SK, Takada S, Jacobson RH, Lis JT, Tjian R. Transcription properties of a cell type-specific TATA-binding protein, TRF. Cell 1997; 91:71-83. [PMID: 9335336 DOI: 10.1016/s0092-8674(01)80010-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic cells are thought to contain a single TATA-binding protein (TBP) that directs transcription by cellular RNA polymerases. Here we report a cell type-specific TBP-related factor (TRF) that can form a stable TRF/IIA/IIB TATA DNA complex and substitute for TBP in directing RNA polymerase II transcription in vitro. Transfection studies reveal that TRF can differentially mediate activation by some enhancer proteins but not others. Like TBP, TRF forms a stable complex containing multiple novel subunits, nTAFs. Antibody staining of embryos and polytene chromosomes reveals cell type-specific expression and gene-selective properties consistent with the shaker/male sterile phenotype of trf mutants. These findings suggest TRF is a homolog of TBP that functions to direct tissue- and gene-specific transcription.
Collapse
Affiliation(s)
- S K Hansen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley 94720-3204, USA
| | | | | | | | | |
Collapse
|
73
|
Hoffmann A, Oelgeschläger T, Roeder RG. Considerations of transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions? Proc Natl Acad Sci U S A 1997; 94:8928-35. [PMID: 9256411 PMCID: PMC33761 DOI: 10.1073/pnas.94.17.8928] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The general transcription initiation factor TFIID was originally identified, purified, and characterized with a biochemical assay in which accurate transcription initiation is reconstituted with multiple, chromatographically separable activities. Biochemical analyses have demonstrated that TFIID is a multiprotein complex that directs preinitiation complex assembly on both TATA box-containing and TATA-less promoters, and some TFIID subunits have been shown to be molecular targets for activation domains in DNA-binding regulatory proteins. These findings have most commonly been interpreted to support the view that transcriptional activation by upstream factors is the result of enhanced TFIID recruitment to the core promoter. Recent insights into the architecture and cell-cycle regulation of the multiprotein TFIID complex prompt both a reassessment of the functional role of TFIID in gene activation and a review of some of the less well-appreciated literature on TFIID. We present a speculative model for diverse functional roles of TFIID in the cell, explore the merits of the model in the context of published data, and suggest experimental approaches to resolve unanswered questions. Finally, we point out how the proposed functional roles of TFIID in eukaryotic class II transcription fit into a model for promoter recognition and activation that applies to both eubacteria and eukaryotes.
Collapse
Affiliation(s)
- A Hoffmann
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|