51
|
Ou XM, Chen K, Shih JC. Dual functions of transcription factors, transforming growth factor-beta-inducible early gene (TIEG)2 and Sp3, are mediated by CACCC element and Sp1 sites of human monoamine oxidase (MAO) B gene. J Biol Chem 2004; 279:21021-8. [PMID: 15024015 DOI: 10.1074/jbc.m312638200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Monoamine oxidases (MAO) A and B catalyze the oxidative deamination of many biogenic and dietary amines. Abnormal expression of MAO has been implicated in several psychiatric and neurodegenerative disorders. Human MAO B core promoter (-246 to -99 region) consists of CACCC element flanked by two clusters of overlapping Sp1 sites. Here, we show that cotransfection with transforming growth factor (TGF)-beta-inducible early gene (TIEG)2 increased MAO B gene expression at promoter, mRNA, protein, and catalytic activity levels in both SH-SY5Y and HepG2 cells. Mutation of the CACCC element increased the MAO B promoter activity, and cotransfection with TIEG2 further increased the promoter activity, suggesting that CACCC was a repressor element. This increase was reduced when the proximal Sp1 overlapping sites was mutated. Similar interactions were found with Sp3. These results showed that TIEG2 and Sp3 were repressors at the CACCC element but were activators at proximal Sp1 overlapping sites of MAO B. Gel-shift and chromatin immunoprecipitation assays showed that TIEG2 and Sp3 bound directly to CACCC element and the proximal Sp1 sites in both synthetic oligonucleotides and natural MAO B core promoter. TIEG2 had a higher affinity to Sp1 sites than CACCC element, whereas Sp3 had an equal affinity to both elements. Thus, TIEG2 was an activator, but Sp3 had no effect on MAO B gene expression. This study provides new insights into MAO B gene expression and illustrates the complexity of gene regulation.
Collapse
Affiliation(s)
- Xiao-Ming Ou
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
52
|
Nakade Y, Banno Y, T-Koizumi K, Hagiwara K, Sobue S, Koda M, Suzuki M, Kojima T, Takagi A, Asano H, Nozawa Y, Murate T. Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1635:104-16. [PMID: 14729073 DOI: 10.1016/j.bbalip.2003.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prolonged treatment with phorbol 12-myristate 13-acetate (PMA) of a human megakaryoblastic leukemia cell line, MEG-O1, induced increase of sphingosine kinase (SPHK) enzyme activity and SPHK1 protein expression as well as SPHK1 message. Protein kinase C (PKC) inhibitor prevented the PMA-induced SPHK1 gene expression. To elucidate the regulatory mechanism of this gene expression, we examined the promoter area (distal to the first exon) and its binding proteins. Luciferase analyses showed that the area of 300 bp from the first exon was sufficient for PMA-responsiveness, and that specificity protein 1 (Sp1)- and two activator protein 2 (AP-2)-binding motifs within this area were necessary for responsiveness. Inhibitors for PKC and MEK1 decreased this PMA-induced promoter activity. Electrophoresis mobility shift assay (EMSA) showed that Sp1 protein was originally bound to the Sp1 site and that two additional bands bound to the two AP-2 motifs were observed only when stimulated with PMA in MEG-O1 cells. The appearance of these bands resulted from binding to an unknown protein rather than AP-2. These results indicated that PMA up-regulates SPHK1 gene expression through PMA-responsive elements of the 5' promoter area of the gene, and suggested that PMA-mediated SPHK1 gene expression would be mediated via PKC- and ERK-dependent signal transduction pathway by binding the transcription factor to AP-2 motifs.
Collapse
Affiliation(s)
- Yusuke Nakade
- Nagoya University Graduate School of Medicine, Nagoya University School of Health Sciences, Higashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Haley JD, Smith DE, Schwedes J, Brennan R, Pearce C, Moore C, Wang F, Petti F, Grosveld F, Jane SM, Noguchi CT, Schechter AN. Identification and characterization of mechanistically distinct inducers of γ-globin transcription. Biochem Pharmacol 2003; 66:1755-68. [PMID: 14563486 PMCID: PMC1351252 DOI: 10.1016/s0006-2952(03)00542-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of HbS polymerization is a major target for therapeutic approaches in sickle cell anemia. Toward this goal, initial efforts at pharmacological elevation of fetal hemoglobin (HbF) has shown therapeutic efficacy. In order to identify well-tolerated, novel agents that induce HbF in patients, we developed a high-throughput screening approach based on induction of gamma-globin gene expression in erythroid cells. We measured gamma-globin transcription in K562 cells transfected with either gamma promoter elements fused with the locus control region hypersensitivity site 2 and luciferase reporter gene (HS2 gamma) or a beta-yeast artificial chromosome in which the luciferase reporter gene was recombined into the gamma-globin coding sequences (gamma YAC). Corresponding pharmacological increases in HbF protein were confirmed in both K562 cells and in human primary erythroid progenitor cells. Approximately 186,000 defined chemicals and fungal extracts were evaluated for their ability to increase gamma gene transcription in either HS2 gamma or gamma YAC models. Eleven distinct classes of compounds were identified, the majority of which were active within 24-48 hr. The short chain hydroxamate-containing class generally exhibited delayed maximal activity, which continued to increase transcription up to 120 hr. The cyclic tetrapeptide OSI-2040 and the hydroxamates were shown to have histone deacetylase inhibitory activity. In primary hematopoietic progenitor cell cultures, OSI-2040 increased HbF by 4.5-fold at a concentration of only 40 nM, comparable to the effects of hydroxyurea at 100 microM. This screening methodology successfully identifies active compounds for further mechanistic and preclinical evaluation as potential therapeutic agents for sickle cell anemia.
Collapse
Affiliation(s)
- John D Haley
- OSI Pharmaceuticals Inc., Farmingdale, NY 11735, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Chrisman HR, Tindall DJ. Identification and characterization of a consensus DNA binding element for the zinc finger transcription factor TIEG/EGRalpha. DNA Cell Biol 2003; 22:187-99. [PMID: 12804117 DOI: 10.1089/104454903321655819] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TGFbeta-Inducible Early Gene (TIEG) and the alternatively-transcribed Early Growth Response Gene alpha (EGRalpha) share a Cys(2)His(2) three-zinc finger region with high homology to Sp1 within its zinc finger region. Three-zinc finger transcription factors bind to GC-rich sequences, with small variations in consensus sequence between subfamilies. In this work, a consensus sequence was identified for TIEG/EGRalpha by expressing and purifying the zinc finger region of the protein, and using this to select a binding site from a random oligonucleotide library by iterative cycles of nitrocellulose filter binding and PCR. A fusion of the TIEG/EGRalpha with the VP16 activation domain supported transcription from this site when cloned in front of a heterologous promoter. Mutational analysis of the binding site identified a GT-rich core (5'-GGTGTG-3') that was necessary for binding, with mutations outside of this region causing only a small to moderate decrease in binding.
Collapse
Affiliation(s)
- Holly R Chrisman
- Department of Urology Research, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
55
|
Abstract
Sp1-like proteins and Krüppel-like factors (KLFs) are highly related zinc-finger proteins that are important components of the eukaryotic cellular transcriptional machinery. By regulating the expression of a large number of genes that have GC-rich promoters, Sp1-like/KLF transcription regulators may take part in virtually all facets of cellular function, including cell proliferation, apoptosis, differentiation, and neoplastic transformation. Individual members of the Sp1-like/KLF family can function as activators or repressors depending on which promoter they bind and the coregulators with which they interact. A long-standing research aim has been to define the mechanisms by which Sp1-like factors and KLFs regulate gene expression and cellular function in a cell- and promoter-specific manner. Most members of this family have been identified in mammals, with at least 21 Sp1-like/KLF proteins encoded in the human genome, and members are also found in frogs, worms and flies. Sp1-like/KLF proteins have highly conserved carboxy-terminal zinc-finger domains that function in DNA binding. The amino terminus, containing the transcription activation domain, can vary significantly between family members.
Collapse
Affiliation(s)
- Joanna Kaczynski
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, USA
- Tumor Biology Program, Mayo Clinic, Rochester, MN 55901, USA
| | - Tiffany Cook
- Department of Biology, New York University, New York, NY 10003, USA
| | - Raul Urrutia
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, USA
- Tumor Biology Program, Mayo Clinic, Rochester, MN 55901, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA
| |
Collapse
|
56
|
Harju S, McQueen KJ, Peterson KR. Chromatin structure and control of beta-like globin gene switching. Exp Biol Med (Maywood) 2002; 227:683-700. [PMID: 12324650 DOI: 10.1177/153537020222700902] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human beta-globin locus is a complex genetic system widely used for analysis of eukaryotic gene expression. The locus consists of five functional beta-like globin genes, epsilon, (G)gamma, (A)gamma, delta, and beta, arrayed on the chromosome in the order that they are expressed during ontogeny. Globin gene expression is regulated, in part, by the locus control region, which physically consists of five DNaseI-hypersensitive sites located 6-22 Kb upstream of the epsilon -globin gene. During ontogeny two switches occur in beta-globin gene expression that reflect the changing oxygen requirements of the fetus. The first switch from embryonic epsilon - to fetal gamma-globin occurs at six weeks of gestation. The second switch from gamma- to adult delta- and beta-globin occurs shortly after birth. Throughout the locus, cis-acting elements exist that are dynamically bound by trans-acting proteins, including transcription factors, co-activators, repressors, and chromatin modifiers. Discovery of novel erythroid-specific transcription factors and a role for chromatin structure in gene expression have enhanced our understanding of the mechanism of globin gene switching. However, the hierarchy of events regulating gene expression during development, from extracellular signaling to transcriptional activation or repression, is complex. In this review we attempt to unify the current knowledge regarding the interplay of cis-acting elements, transcription factors, and chromatin modifiers into a comprehensive overview of globin gene switching.
Collapse
Affiliation(s)
- Susanna Harju
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|
57
|
Perry C, Soreq H. Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3607-18. [PMID: 12153557 DOI: 10.1046/j.1432-1033.2002.02999.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haematopoiesis, the differentiation of haematopoietic stem cells and progenitors into various lineages, involves complex interactions of transcription factors that modulate the expression of downstream genes and mediate proliferation and differentiation signals. Commitment of pluripotent haematopoietic stem cells to the erythroid lineage induces erythropoiesis, the production of red blood cells. This process involves a concerted progression through an erythroid burst forming unit (BFU-E), an erythroid colony forming unit (CFU-E), proerythroblast and an erythroblast. The terminally differentiated erythrocytes, in mammals, lose their nucleus yet function several more months. A well-coordinated cohort of transcription factors regulates the formation, survival, proliferation and differentiation of multipotent progenitor into the erythroid lineage. Here, we discuss broad-spectrum factors essential for self-renewal and/or differentiation of multipotent cells as well as specific factors required for proper erythroid development. These factors may operate solely or as part of transcriptional complexes, and exert activation or repression. Sequence comparisons reveal evolutionarily conserved modular composition for these factors; X-ray crystallography demonstrates that they include multidomain elements (e.g. HLH or zinc finger motifs), consistent with their complex interactions with other proteins. Finally, transfections and genomic studies show that the timing of each factor's expression during the hematopoietic process, the cell lineages affected and the existing combination of other factors determine the erythroid cell fate.
Collapse
Affiliation(s)
- Chava Perry
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
58
|
Abstract
The a- and b-globin gene clusters are subject to several levels of regulation. They are expressed exclusively in the erythroid cells, only during defined periods of development and in a perfectly tuned way, assuring, at any stage of ontogeny, a correct balance in the availability of a- and b-globin chains for hemoglobin assembling. Such a tight control is dependent on regulatory regions of DNA located either in proximity or at great distances from the globin genes in a region characterized by the presence of several DNAse I hypersensitive sites and known as the Locus Control Region. All these sequences exert stimulatory, inhibitory or more complex activities by interacting with transcription factors that bridge these regions of DNA to the RNA polymerase machinery. Many of these factors have now been cloned and the corresponding mouse genes inactivated, shading new light on the metabolic pathways they control. It is increasingly recognized that such factors are organized into hierarchies according to the number of genes and circuits they regulate. Some genes such as GATA-1 and 2 are master regulators that act on large numbers of genes at early stage of differentiation whereas others, like EKLF, stand on the lowest step and control only single or limited number of genes at late stages of differentiation. We will review recent data gathered from expression studies in cell cultures, in transgenic or K.O. murine models as well as from a clinical settings. We will also discuss the development of novel theories on the regulation of the a- and b-globin genes and clusters.
Collapse
Affiliation(s)
- Antonio Cao
- Istituto di Clinica e Biologia dell'Età Evolutiva, Università di Cagliari, Cagliari, Italy.
| | | |
Collapse
|
59
|
Abstract
A detailed understanding of hemoglobin production in erythroid cells is of fundamental clinical importance for the treatment of hemoglobinopathies. Several hundred scientific reports and dozens of reviews describe this intriguing topic of research. Early studies demonstrated the temporal nature of a hemoglobin-switching phenomenon during development in the circulating erythrocytes of humans. The focus then shifted from descriptive to experimental analyses and model systems in an effort to define the switching mechanisms. The application of molecular biology in those experimental models has been a primary focus for the last two decades. Today, advances in the fields of stem cell biology and signal transduction are being integrated with those genetic studies. Genomic and proteomic approaches are also being developed to provide a more robust description of the biologic variables involved. This review highlights recent advances in erythroid genetics and cellular biology with an emphasis upon the modulation of fetal hemoglobin expression during the maturation of adult human erythrocytes.
Collapse
Affiliation(s)
- Jeffery L Miller
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
60
|
Abstract
The human beta-globin gene locus is the subject of intense study, and over the past two decades a wealth of information has accumulated on how tissue-specific and stage-specific expression of its genes is achieved. The data are extensive and it would be difficult, if not impossible, to formulate a comprehensive model integrating every aspect of what is currently known. In this review, we introduce the fundamental characteristics of globin locus regulation as well as questions on which much of the current research is predicated. We then outline a hypothesis that encompasses more recent results, focusing on the modification of higher-order chromatin structure and recruitment of transcription complexes to the globin locus. The essence of this hypothesis is that the locus control region (LCR) is a genetic entity highly accessible to and capable of recruiting, with great efficiency, chromatin-modifying, coactivator, and transcription complexes. These complexes are used to establish accessible chromatin domains, allowing basal factors to be loaded on to specific globin gene promoters in a developmental stage-specific manner. We conceptually divide this process into four steps: (a) generation of a highly accessible LCR holocomplex; (b) recruitment of transcription and chromatin-modifying complexes to the LCR; (c) establishment of chromatin domains permissive for transcription; (d) transfer of transcription complexes to globin gene promoters.
Collapse
Affiliation(s)
- Padraic P Levings
- Department of Biochemistry and Molecular Biology, Gene Therapy Center, Center for Mammalian Genetics, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
61
|
Sargent TG, Lloyd JA. The human gamma-globin TATA and CACCC elements have key, distinct roles in suppressing beta-globin gene expression in embryonic/fetal development. J Biol Chem 2001; 276:41817-24. [PMID: 11551906 DOI: 10.1074/jbc.m103073200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The competition model of globin gene regulation states that the gamma-globin gene precludes expression of the beta-globin gene in early development by competing for the enhancing activity of the locus control region. The gamma-globin gene with a -161 promoter is sufficient for suppressing beta-globin gene expression, and the gamma-globin TATA and CACCC elements are necessary for this effect. In this work, stable transfection and transgenic mouse assays have been performed with constructs containing HS3 and HS2 from the locus control region, the gamma-globin gene with promoter mutation(s), and the beta-globin gene. The data indicate that the gamma-globin TATA and CACCC elements together have at least an additive effect on the beta/gamma-globin mRNA ratio in early erythroid cells, suggesting that the elements work coordinately to suppress beta-globin gene expression. The TATA and CACCC are the major gamma-globin promoter elements responsible for this effect. Transgenic mouse experiments indicate that the gamma-globin TATA element plays a role in gamma-globin expression and beta-globin suppression in the embryo and fetus; in contrast, the CACCC element has a stage-specific effect in the fetus. The results suggest that, as is true for the erythroid Krüppel-like factor (EKLF) and the beta-globin promoter CACCC, a protein(s) binds to the gamma-globin CACCC element to coordinate stage-specific gene expression.
Collapse
Affiliation(s)
- T G Sargent
- Department of Human Genetics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0033, USA
| | | |
Collapse
|
62
|
Steinberg MH, Rodgers GP. Pathophysiology of sickle cell disease: role of cellular and genetic modifiers. Semin Hematol 2001; 38:299-306. [PMID: 11605164 DOI: 10.1016/s0037-1963(01)90023-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sickle hemoglobin (HbS), caused by a point mutation in the beta-globin gene of hemoglobin, polymerizes when deoxygenated. The pathophysiology of sickle cell disease results from cellular defects caused directly by the hemoglobin mutation interacting with the environment and many other gene products--a few known, but most yet unidentified--a typical example of epistasis. How normal tissue perfusion is interrupted is complex and why the phenotype of sickle cell disease differs from patient to patient is poorly understood. We review the "classic" aspects of the pathophysiology of sickle cell disease and focus on known and potential modulators of the phenotype of this disorder.
Collapse
Affiliation(s)
- M H Steinberg
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
63
|
Kaczynski J, Zhang JS, Ellenrieder V, Conley A, Duenes T, Kester H, van Der Burg B, Urrutia R. The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J Biol Chem 2001; 276:36749-56. [PMID: 11477107 DOI: 10.1074/jbc.m105831200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1-like proteins are characterized by three conserved C-terminal zinc finger motifs that bind GC-rich sequences found in promoters of numerous genes essential for mammalian cell homeostasis. These proteins behave as transcriptional activators or repressors. Although significant information has been reported on the molecular mechanisms by which Sp1-like activators function, relatively little is known about mechanisms for repressor proteins. Here we report the functional characterization of BTEB3, a ubiquitously expressed Sp1-like transcriptional repressor. GAL4 assays show that the N terminus of BTEB3 contains regions that can act as direct repressor domains. Immunoprecipitation assays reveal that BTEB3 interacts with the co-repressor mSin3A and the histone deacetylase protein HDAC-1. Gel shift assays demonstrate that BTEB3 specifically binds the BTE site, a well characterized GC-rich DNA element, with an affinity similar to that of Sp1. Reporter and gel shift assays in Chinese hamster ovary cells show that BTEB3 can also mediate repression by competing with Sp1 for BTE binding. Thus, the characterization of this protein expands the repertoire of BTEB-like members of the Sp1 family involved in transcriptional repression. Furthermore, our results suggest a mechanism of repression for BTEB3 involving direct repression by the N terminus via interaction with mSin3A and HDAC-1 and competition with Sp1 via the DNA-binding domain.
Collapse
Affiliation(s)
- J Kaczynski
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota 55901, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Huber TL, Perkins AC, Deconinck AE, Chan FY, Mead PE, Zon LI. neptune, a Krüppel-like transcription factor that participates in primitive erythropoiesis in Xenopus. Curr Biol 2001; 11:1456-61. [PMID: 11566106 DOI: 10.1016/s0960-9822(01)00427-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The specification of the erythroid lineage from hematopoietic stem cells requires the expression and activity of lineage-specific transcription factors. One transcription factor family that has several members involved in hematopoiesis is the Krüppel-like factor (KLF) family [1]. For example, erythroid KLF (EKLF) regulates beta-globin expression during erythroid differentiation [2-6]. KLFs share a highly conserved zinc finger-based DNA binding domain (DBD) that mediates binding to CACCC-box and GC-rich sites, both of which are frequently found in the promoters of hematopoietic genes. Here, we identified a novel Xenopus KLF gene, neptune, which is highly expressed in the ventral blood island (VBI), cranial ganglia, and hatching and cement glands. neptune expression is induced in response to components of the BMP-4 signaling pathway in injected animal cap explants. Similar to its family member, EKLF, Neptune can bind CACCC-box and GC-rich DNA elements. We show that Neptune cooperates with the hematopoietic transcription factor XGATA-1 to enhance globin induction in animal cap explants. A fusion protein comprised of Neptune's DBD and the Drosophila engrailed repressor domain suppresses the induction of globin in ventral marginal zones and in animal caps. These studies demonstrate that Neptune is a positive regulator of primitive erythropoiesis in Xenopus.
Collapse
Affiliation(s)
- T L Huber
- Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
65
|
Ristaldi MS, Drabek D, Gribnau J, Poddie D, Yannoutsous N, Cao A, Grosveld F, Imam A. The role of the -50 region of the human gamma-globin gene in switching. EMBO J 2001; 20:5242-9. [PMID: 11566887 PMCID: PMC125618 DOI: 10.1093/emboj/20.18.5242] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the switch from human gamma- (fetal) to beta- (adult) globin gene expression, the gamma and beta genes are expressed competitively by an alternating transcription mechanism. The -50 region of the gamma gene promoter has been proposed to be responsible for the early competitive advantage of the gamma genes and to act as a stage selector element (SSE) in hemoglobin switching. We analyzed the effect of mutating the -50 region of the gamma gene in the presence of a competing beta gene in transgenic mice. This shows that the -50 region does not affect silencing of the beta gene in early development and does not act as a stage selector. However, it affects the ratio of gamma versus beta gene expression in the early, but not later, stages of fetal development. Interestingly, both the wild-type and mutant minilocus constructs show a higher frequency of alternate transcription than observed in the complete locus, suggesting that sequences normally present between the gamma and beta genes facilitate the interaction of the locus control region (LCR) and beta-globin gene in the complete locus.
Collapse
Affiliation(s)
- Maria Serafina Ristaldi
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands and
Istituto di Ricerche sulle Talassemie e Anemie Mediteranee del Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy Present address: Istituto di Ricerche sulle Talassemie e Anemie Mediteranee del Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy Corresponding author e-mail:
| | | | | | - Daniela Poddie
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands and
Istituto di Ricerche sulle Talassemie e Anemie Mediteranee del Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy Present address: Istituto di Ricerche sulle Talassemie e Anemie Mediteranee del Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy Corresponding author e-mail:
| | | | - Antonio Cao
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands and
Istituto di Ricerche sulle Talassemie e Anemie Mediteranee del Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy Present address: Istituto di Ricerche sulle Talassemie e Anemie Mediteranee del Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy Corresponding author e-mail:
| | - Frank Grosveld
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands and
Istituto di Ricerche sulle Talassemie e Anemie Mediteranee del Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy Present address: Istituto di Ricerche sulle Talassemie e Anemie Mediteranee del Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy Corresponding author e-mail:
| | | |
Collapse
|
66
|
Oates AC, Pratt SJ, Vail B, Ho RK, Johnson SL, Postlethwait JH, Zon LI. The zebrafish klf gene family. Blood 2001; 98:1792-801. [PMID: 11535513 DOI: 10.1182/blood.v98.6.1792] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like factor (KLF) family of genes encodes transcriptional regulatory proteins that play roles in differentiation of a diverse set of cells in mammals. For instance, the founding member KLF1 (also known as EKLF) is required for normal globin production in mammals. Five new KLF genes have been isolated from the zebrafish, Danio rerio, and the structure of their products, their genetic map positions, and their expression during development of the zebrafish have been characterized. Three genes closely related to mammalian KLF2 and KLF4 were found, as was an ortholog of mammalian KLF12. A fifth gene, apparently missing from the genome of mammals and closely related to KLF1 and KLF2, was also identified. Analysis demonstrated the existence of novel conserved domains in the N-termini of these proteins. Developmental expression patterns suggest potential roles for these zebrafish genes in diverse processes, including hematopoiesis, blood vessel function, and fin and epidermal development. The studies imply a high degree of functional conservation of the zebrafish genes with their mammalian homologs. These findings further the understanding of the KLF genes in vertebrate development and indicate an ancient role in hematopoiesis for the Krüppel-like factor gene family.
Collapse
Affiliation(s)
- A C Oates
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
67
|
Affiliation(s)
- J J Bieker
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
68
|
Ofori-Acquah SF, Lalloz MR, Layton DM. Nucleotide variation regulates the level of enhancement by hypersensitive site 2 of the beta-globin locus control region. Blood Cells Mol Dis 2001; 27:803-11. [PMID: 11783943 DOI: 10.1006/bcmd.2001.0449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beta-globin locus control region hypersensitive site 2 (HS2) enhancer possesses a unique property for stimulating high-level globin gene expression. Although the deletion of cis-acting motifs influences the level of enhancement conferred by HS2, there is controversy on whether polymorphism of the same elements contributes to variation of the fetal hemoglobin (HbF) level among patients with sickle cell anemia. We analyzed reporter gene activity of constructs containing variant HS2 enhancers derived from beta(S) chromosomes to directly test the effect of polymorphism on enhancer activity. Constructs containing four enhancer variants linked to an identical gamma-globin promoter showed markedly different levels of reporter gene activity. Juxtaposition of HS2 derived from the Asian and Senegal chromosomes, which are associated with similarly high levels of HbF, to cognate sequence extending to -1500 of the (G)gamma globin gene showed significantly different levels of reporter gene activity. Our findings indicate that nucleotide variation regulates the level of enhancement conferred by HS2; however, the reporter activities showed no correlation with the level of Hb F associated with the common beta(S) chromosomes.
Collapse
Affiliation(s)
- S F Ofori-Acquah
- Department of Haematological Medicine, Guy's King's and St. Thomas' School of Medicine, Denmark Hill Campus, Denmark Hill, London, United Kingdom.
| | | | | |
Collapse
|
69
|
Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 2001; 188:143-60. [PMID: 11424081 DOI: 10.1002/jcp.1111] [Citation(s) in RCA: 844] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Sp/KLF family contains at least twenty identified members which include Sp1-4 and numerous krüppel-like factors. Members of the family bind with varying affinities to sequences designated as 'Sp1 sites' (e.g., GC-boxes, CACCC-boxes, and basic transcription elements). Family members have different transcriptional properties and can modulate each other's activity by a variety of mechanisms. Since cells can express multiple family members, Sp/KLF factors are likely to make up a transcriptional network through which gene expression can be fine-tuned. 'Sp1 site'-dependent transcription can be growth-regulated, and the activity, expression, and/or post-translational modification of multiple family members is altered with cell growth. Furthermore, Sp/KLF factors are involved in many growth-related signal transduction pathways and their overexpression can have positive or negative effects on proliferation. In addition to growth control, Sp/KLF factors have been implicated in apoptosis and angiogenesis; thus, the family is involved in several aspects of tumorigenesis. Consistent with a role in cancer, Sp/KLF factors interact with oncogenes and tumor suppressors, they can be oncogenic themselves, and altered expression of family members has been detected in tumors. Effects of changes in Sp/KLF factors are context-dependent and can appear contradictory. Since these factors act within a network, this diversity of effects may arise from differences in the expression profile of family members in various cells. Thus, it is likely that the properties of the overall network of Sp/KLF factors play a determining role in regulation of cell growth and tumor progression.
Collapse
Affiliation(s)
- A R Black
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
70
|
Mavrogiannis LA, Argyrokastritis A, Tzitzikas N, Dermitzakis E, Sarafidou T, Patsalis PC, Moschonas NK. ZNF232: structure and expression analysis of a novel human C(2)H(2) zinc finger gene, member of the SCAN/LeR domain subfamily. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1518:300-5. [PMID: 11311944 DOI: 10.1016/s0167-4781(01)00177-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have identified a novel zinc finger gene, ZNF232, mapped to human chromosome 17p12. The coding region of the gene is organized in three exons corresponding to a 417 amino acid long polypeptide containing a SCAN/LeR domain and five C(2)H(2)-type zinc fingers. ZNF232 is possibly a nuclear protein, as suggested by expression analysis of GFP/ZNF232 chimeric constructs. ZNF232 transcripts were detected in a wide collection of adult human tissues. The gene is possibly subjected to tissue-specific post-transcriptional regulation by means of alternative splicing.
Collapse
Affiliation(s)
- L A Mavrogiannis
- Department of Biology, University of Crete, P.O. Box 2208, 71409 Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
71
|
Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Proc Natl Acad Sci U S A 2001. [PMID: 11172039 PMCID: PMC29345 DOI: 10.1073/pnas.041599798] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite considerable concerns with pharmacological stimulation of fetal hemoglobin (Hb F) as a therapeutic option for the beta-globin disorders, the molecular basis of action of Hb F-inducing agents remains unclear. Here we show that an intracellular pathway including soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG) plays a role in induced expression of the gamma-globin gene. sGC, an obligate heterodimer of alpha- and beta-subunits, participates in a variety of physiological processes by converting GTP to cGMP. Northern blot analyses with erythroid cell lines expressing different beta-like globin genes showed that, whereas the beta-subunit is expressed at similar levels, high-level expression of the alpha-subunit is preferentially observed in erythroid cells expressing gamma-globin but not those expressing beta-globin. Also, the levels of expression of the gamma-globin gene correlate to those of the alpha-subunit. sGC activators or cGMP analogs increased expression of the gamma-globin gene in erythroleukemic cells as well as in primary erythroblasts from normal subjects and patients with beta-thalassemia. Nuclear run-off assays showed that the sGC activator protoporphyrin IX stimulates transcription of the gamma-globin gene. Furthermore, increased expression of the gamma-globin gene by well known Hb F-inducers such as hemin and butyrate was abolished by inhibiting sGC or PKG activity. Taken together, these results strongly suggest that the sGC-PKG pathway constitutes a mechanism that regulates expression of the gamma-globin gene. Further characterization of this pathway should permit us to develop new therapeutics for the beta-globin disorders.
Collapse
|
72
|
Ikuta T, Ausenda S, Cappellini MD. Mechanism for fetal globin gene expression: Role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Proc Natl Acad Sci U S A 2001; 98:1847-52. [PMID: 11172039 PMCID: PMC29345 DOI: 10.1073/pnas.98.4.1847] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite considerable concerns with pharmacological stimulation of fetal hemoglobin (Hb F) as a therapeutic option for the beta-globin disorders, the molecular basis of action of Hb F-inducing agents remains unclear. Here we show that an intracellular pathway including soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG) plays a role in induced expression of the gamma-globin gene. sGC, an obligate heterodimer of alpha- and beta-subunits, participates in a variety of physiological processes by converting GTP to cGMP. Northern blot analyses with erythroid cell lines expressing different beta-like globin genes showed that, whereas the beta-subunit is expressed at similar levels, high-level expression of the alpha-subunit is preferentially observed in erythroid cells expressing gamma-globin but not those expressing beta-globin. Also, the levels of expression of the gamma-globin gene correlate to those of the alpha-subunit. sGC activators or cGMP analogs increased expression of the gamma-globin gene in erythroleukemic cells as well as in primary erythroblasts from normal subjects and patients with beta-thalassemia. Nuclear run-off assays showed that the sGC activator protoporphyrin IX stimulates transcription of the gamma-globin gene. Furthermore, increased expression of the gamma-globin gene by well known Hb F-inducers such as hemin and butyrate was abolished by inhibiting sGC or PKG activity. Taken together, these results strongly suggest that the sGC-PKG pathway constitutes a mechanism that regulates expression of the gamma-globin gene. Further characterization of this pathway should permit us to develop new therapeutics for the beta-globin disorders.
Collapse
Affiliation(s)
- T Ikuta
- Center for Human Genetics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
73
|
Abstract
Patients who are homozygous for the sickle hemoglobin mutation can present with remarkably different clinical courses, varying from death in childhood, to recurrent painful vasoocclusive crises and multiple organ damage in adults, to being relatively well even until old age. Increasing numbers of genetic loci have now been identified that can modulate sickle cell disease phenotype, from nucleotide motifs within the beta-globin gene cluster, to genes located on different chromosomes. With recent success of the human genome project, it is anticipated that many more genetic modifiers of sickle cell disease will be discovered that can lead to the development of more effective therapeutic approaches. The multigenic origin of the variable phenotype in sickle cell disease will serve as a paradigm for the study of variation in phenotypes of all single gene disorders in man.
Collapse
Affiliation(s)
- D H Chui
- Department of Pathology and Molecular Medicine, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada.
| | | |
Collapse
|
74
|
Yang Y, Duan Z, Skarpidi E, Li Q, Papayannopoulou T, Stamatoyannopoulos G. Cloning and characterization of a potential transcriptional activator of human gamma-globin genes. Blood Cells Mol Dis 2001; 27:1-15. [PMID: 11162141 DOI: 10.1006/bcmd.2000.0344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hybrids produced by fusing human fetal erythroblasts (HFE) with mouse erythroleukemia (MEL) cells initially produce predominantly or exclusively human gamma-globin and switch to human beta globin expression as time in culture advances. One explanation for the initially predominant expression of gamma-globin gene in these hybrids is the presence of trans-acting factors that activate gamma-globin gene transcription. We used differential display of hybrids before and after the gamma to beta switch as well as fetal liver and adult erythroblasts to identify cDNAs that could be candidates for potential gamma gene activators. Identically sized amplicons which were present in fetal liver erythroblasts and in the hybrids expressing only gamma-globin but were absent in the adult erythroblasts and in the same hybrids after they had switched to beta globin expression were cloned and sequenced. Fifty pairs of cDNAs fitting these criteria were chosen for further analysis. The sequences of the two members of 48 pairs differed from each other, revealing the low efficiency of this experimental approach. One clone pair coded for human proteosome subunit X. The second pair coded for a protein containing an acidic domain in the N-terminus and three consecutive CDC10/SW16/ankyrin repeats in the C-terminus. Transactivation assays in the yeast hybrid system and transient transfection assays in COS cells showed that a potent trans-activating domain resides in the N-terminus of this protein. Northern blot and RT-PCR assays showed that this gene is expressed in several fetal tissues but not in adult tissues. Stable transfection assays provided evidence that the product of this gene may increase the level of gamma mRNA in HFE x MEL cell hybrids that undergo the gamma to beta switch, suggesting that this new gene encodes a protein that may function as gamma gene activator.
Collapse
Affiliation(s)
- Y Yang
- Division of Hematology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
75
|
Adam PJ, Regan CP, Hautmann MB, Owens GK. Positive- and negative-acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo. J Biol Chem 2000; 275:37798-806. [PMID: 10954723 DOI: 10.1074/jbc.m006323200] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) is implicated in the regulation of smooth muscle cell (SMC) differentiation. We previously identified a novel TGF-beta control element (TCE) in the promoters of SMC differentiation marker genes, including alpha-smooth muscle actin and SM22alpha. In this study, the importance of the TCE in regulation of SM22alpha gene expression in vivo was investigated by mutating it within the context of a mouse SM22alpha promoter-lacZ transgenic construct. Mutation of the TCE completely abolished SM22alpha promoter activity in arterial SMCs as well as in developing heart and skeletal muscle. To identify the transcription factor(s) binding to the TCE, we performed yeast one-hybrid cloning analysis and identified gut-enriched Krüppel-like factor (GKLF). However, cotransfection studies in cultured cells showed that GKLF repressed the TGF-beta-dependent increases in SM22alpha and alpha-smooth muscle actin promoter activities. Furthermore, GKLF was not highly expressed in differentiated SMCs in vivo, and TGF-beta down-regulated GKLF expression in dedifferentiated cultured SMCs. In contrast, overexpression of a related factor (BTEB2) transactivated SM22alpha promoter activity. Thus, our findings suggest a reciprocal role for related Krüppel-like transcription factors in the regulation of SMC differentiation through a TCE-dependent mechanism.
Collapse
Affiliation(s)
- P J Adam
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
76
|
Tanimoto K, Liu Q, Grosveld F, Bungert J, Engel JD. Context-dependent EKLF responsiveness defines the developmental specificity of the human epsilon-globin gene in erythroid cells of YAC transgenic mice. Genes Dev 2000; 14:2778-94. [PMID: 11069894 PMCID: PMC317038 DOI: 10.1101/gad.822500] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We explored the mechanism of definitive-stage epsilon-globin transcriptional inactivity within a human beta-globin YAC expressed in transgenic mice. We focused on the globin CAC and CAAT promoter motifs, as previous laboratory and clinical studies indicated a pivotal role for these elements in globin gene activation. A high-affinity CAC-binding site for the erythroid krüppel-like factor (EKLF) was placed in the epsilon-globin promoter at a position corresponding to that in the adult beta-globin promoter, thereby simultaneously ablating a direct repeat (DR) element. This mutation led to EKLF-independent epsilon-globin transcription during definitive erythropoiesis. A second 4-bp substitution in the epsilon-globin CAAT sequence, which simultaneously disrupts a second DR element, further enhanced ectopic definitive erythroid activation of epsilon-globin transcription, which surprisingly became EKLF dependent. We finally examined factors in nuclear extracts prepared from embryonic or adult erythroid cells that bound these elements in vitro, and we identified a novel DR-binding protein (DRED) whose properties are consistent with those expected for a definitive-stage epsilon-globin repressor. We conclude that the suppression of epsilon-globin transcription during definitive erythropoiesis is mediated by the binding of a repressor that prevents EKLF from activating the epsilon-globin gene.
Collapse
Affiliation(s)
- K Tanimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | |
Collapse
|
77
|
Zhou W, Clouston DR, Wang X, Cerruti L, Cunningham JM, Jane SM. Induction of human fetal globin gene expression by a novel erythroid factor, NF-E4. Mol Cell Biol 2000; 20:7662-72. [PMID: 11003662 PMCID: PMC86334 DOI: 10.1128/mcb.20.20.7662-7672.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stage selector protein (SSP) is a heteromeric complex involved in preferential expression of the human gamma-globin genes in fetal-erythroid cells. We have previously identified the ubiquitous transcription factor CP2 as a component of this complex. Using the protein dimerization domain of CP2 in a yeast two-hybrid screen, we have cloned a novel gene, NF-E4, encoding the tissue-restricted component of the SSP. NF-E4 and CP2 coimmunoprecipitate from extract derived from a fetal-erythroid cell line, and antiserum to NF-E4 ablates binding of the SSP to the gamma promoter. NF-E4 is expressed in fetal liver, cord blood, and bone marrow and in the K562 and HEL cell lines, which constitutively express the fetal globin genes. Enforced expression of NF-E4 in K562 cells and primary erythroid progenitors induces endogenous fetal globin gene expression, suggesting a possible strategy for therapeutic intervention in the hemoglobinopathies.
Collapse
Affiliation(s)
- W Zhou
- Rotary Bone Marrow Research Laboratory, Royal Melbourne Hospital Research Foundation, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
78
|
Ryan TM, Sun CW, Ren J, Townes TM. Human gamma-globin gene promoter element regulates human beta-globin gene developmental specificity. Nucleic Acids Res 2000; 28:2736-40. [PMID: 10908330 PMCID: PMC102642 DOI: 10.1093/nar/28.14.2736] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The persistence of fetal hemoglobin in many patients with deletion type beta thalassemias and the expression patterns of human globin genes in transgenic mice suggest that gamma- to beta-globin gene switching results primarily from competition of gamma- and beta-globin genes for interaction with the beta-globin locus control region (LCR). To define regulatory sequences that are essential for the competitive advantage of the gamma gene at early developmental stages, stable transgenic mouse lines were produced with LCR gamma-beta constructs containing deletions of gamma 5'-flanking DNA. All constructs contained the full 22 kb LCR, a 4.1 kb beta-globin gene and a gamma-globin gene with 1348, 383, 202, 130, 72 or 52 bp of 5'-flanking sequence. Primer extension analysis of yolk sac, fetal liver and blood RNA from these lines demonstrated that a region between -202 and -130 of the human gamma-globin gene promoter was required to suppress beta-globin gene expression at early developmental stages. Four transcription factor binding sites within this region [GATA(p), Oct1, GATA(d) and CACCC] were mutated independently in LCR gamma-beta constructs and transgenic mouse lines were produced. Only the gamma CACCC box mutation resulted in high levels of beta-globin gene expression in early embryos. These results demonstrate that the CACCC box of the human gamma-globin gene plays a critical role in human beta-globin gene developmental specificity. The data also suggest that gamma CACCC box binding factors mediate LCR-gamma interactions which normally enhance gamma-globin and suppress beta-globin gene expression in fetal erythroid cells.
Collapse
Affiliation(s)
- T M Ryan
- Department of Biochemistry and Molecular Genetics, School of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
79
|
FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood 2000. [DOI: 10.1182/blood.v95.11.3578] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
FKLF-2, a novel Krüppel-type zinc finger protein, was cloned from murine yolk sac. The deduced polypeptide sequence of 289 amino acids has 3 contiguous zinc fingers at the near carboxyl-terminal end, an amino-terminal domain characterized by its high content of alanine and proline residues and a carboxyl-terminal domain rich in serine residues. By Northern blot hybridization, the human homologue of FKLF-2 is expressed in the bone marrow and striated muscles and not in 12 other human tissues analyzed. FKLF-2 is constitutively expressed in established cell lines with an erythroid phenotype, but it is inconsistently expressed in cell lines with myeloid or lymphoid phenotypes. The expression of FKLF-2 messenger RNA (mRNA) is up-regulated after induction of mouse erythroleukemia cells. In luciferase assays, FKLF-2 activates predominantly the γ, and to a lesser degree, the ɛ and β globin gene promoters. The activation of γ gene promoter does not depend on the presence of an HS2 enhancer. FKLF-2 activates the γ promoter predominantly by interacting with the γ CACCC box, and to a lesser degree through interaction with the TATA box or its surrounding DNA sequences. FKLF-2 also activated all the other erythroid specific promoters we tested (GATA-1, glycophorin B, ferrochelatase, porphobilinogen deaminase, and 5-aminolevulinate synthase). These results suggest that in addition to globin, FKLF-2 may be involved in activation of transcription of a wide range of genes in the cells of the erythroid lineage.
Collapse
|
80
|
Abstract
FKLF-2, a novel Krüppel-type zinc finger protein, was cloned from murine yolk sac. The deduced polypeptide sequence of 289 amino acids has 3 contiguous zinc fingers at the near carboxyl-terminal end, an amino-terminal domain characterized by its high content of alanine and proline residues and a carboxyl-terminal domain rich in serine residues. By Northern blot hybridization, the human homologue of FKLF-2 is expressed in the bone marrow and striated muscles and not in 12 other human tissues analyzed. FKLF-2 is constitutively expressed in established cell lines with an erythroid phenotype, but it is inconsistently expressed in cell lines with myeloid or lymphoid phenotypes. The expression of FKLF-2 messenger RNA (mRNA) is up-regulated after induction of mouse erythroleukemia cells. In luciferase assays, FKLF-2 activates predominantly the γ, and to a lesser degree, the ɛ and β globin gene promoters. The activation of γ gene promoter does not depend on the presence of an HS2 enhancer. FKLF-2 activates the γ promoter predominantly by interacting with the γ CACCC box, and to a lesser degree through interaction with the TATA box or its surrounding DNA sequences. FKLF-2 also activated all the other erythroid specific promoters we tested (GATA-1, glycophorin B, ferrochelatase, porphobilinogen deaminase, and 5-aminolevulinate synthase). These results suggest that in addition to globin, FKLF-2 may be involved in activation of transcription of a wide range of genes in the cells of the erythroid lineage.
Collapse
|
81
|
Hemoglobin switching in unicellular erythroid culture of sibling erythroid burst-forming units: kit ligand induces a dose-dependent fetal hemoglobin reactivation potentiated by sodium butyrate. Blood 2000. [DOI: 10.1182/blood.v95.11.3555] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mechanisms underlying fetal hemoglobin (HbF) reactivation in adult life have not been elucidated; particularly, the role of growth factors (GFs) is controversial. Interestingly, histone deacetylase (HD) inhibitors (sodium butyrate, NaB, trichostatin A, TSA) reactivate HbF. We developed a novel model system to investigate HbF reactivation: (1) single hematopoietic progenitor cells (HPCs) were seeded in serum-free unilineage erythroid culture; (2) the 4 daughter cells (erythroid burst-forming units, [BFU-Es]), endowed with equivalent proliferation/differentiation and HbF synthesis potential, were seeded in 4 unicellular erythroid cultures differentially treated with graded dosages of GFs and/or HD inhibitors; and (3) HbF levels were evaluated in terminal erythroblasts by assay of F cells and γ-globin content (control levels, 2.4% and 1.8%, respectively, were close to physiologic values). HbF was moderately enhanced by interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor treatment (up to 5%-8% γ-globin content), while sharply reactivated in a dose-dependent fashion by c-kit ligand (KL) and NaB (20%-23%). The stimulatory effects of KL on HbF production and erythroid cell proliferation were strictly correlated. A striking increase of HbF was induced by combined addition of KL and NaB or TSA (40%-43%). This positive interaction is seemingly mediated via different mechanisms: NaB and TSA may modify the chromatin structure of the β-globin gene cluster; KL may activate the γ-globin promoter via up-modulation of tal-1 and possibly FLKF transcription factors. These studies indicate that KL plays a key role in HbF reactivation in adult life. Furthermore, combined KL and NaB administration may be considered for sickle cell anemia and β-thalassemia therapy.
Collapse
|
82
|
Hemoglobin switching in unicellular erythroid culture of sibling erythroid burst-forming units: kit ligand induces a dose-dependent fetal hemoglobin reactivation potentiated by sodium butyrate. Blood 2000. [DOI: 10.1182/blood.v95.11.3555.011k16_3555_3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanisms underlying fetal hemoglobin (HbF) reactivation in adult life have not been elucidated; particularly, the role of growth factors (GFs) is controversial. Interestingly, histone deacetylase (HD) inhibitors (sodium butyrate, NaB, trichostatin A, TSA) reactivate HbF. We developed a novel model system to investigate HbF reactivation: (1) single hematopoietic progenitor cells (HPCs) were seeded in serum-free unilineage erythroid culture; (2) the 4 daughter cells (erythroid burst-forming units, [BFU-Es]), endowed with equivalent proliferation/differentiation and HbF synthesis potential, were seeded in 4 unicellular erythroid cultures differentially treated with graded dosages of GFs and/or HD inhibitors; and (3) HbF levels were evaluated in terminal erythroblasts by assay of F cells and γ-globin content (control levels, 2.4% and 1.8%, respectively, were close to physiologic values). HbF was moderately enhanced by interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor treatment (up to 5%-8% γ-globin content), while sharply reactivated in a dose-dependent fashion by c-kit ligand (KL) and NaB (20%-23%). The stimulatory effects of KL on HbF production and erythroid cell proliferation were strictly correlated. A striking increase of HbF was induced by combined addition of KL and NaB or TSA (40%-43%). This positive interaction is seemingly mediated via different mechanisms: NaB and TSA may modify the chromatin structure of the β-globin gene cluster; KL may activate the γ-globin promoter via up-modulation of tal-1 and possibly FLKF transcription factors. These studies indicate that KL plays a key role in HbF reactivation in adult life. Furthermore, combined KL and NaB administration may be considered for sickle cell anemia and β-thalassemia therapy.
Collapse
|
83
|
van Vliet J, Turner J, Crossley M. Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 2000; 28:1955-62. [PMID: 10756197 PMCID: PMC103308 DOI: 10.1093/nar/28.9.1955] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CACCC-boxes are recognised by transcription factors of the Sp/Krüppel-like Factor (Sp1/KLF) family. Here we describe one member of this family, KLF8/ZNF741/BKLF3 (KLF8). KLF8 contains a characteristic C-terminal DNA-binding domain comprised of three Krüppel-like zinc fingers, but also has limited homology to another family member, KLF3/Basic Krüppel-like Factor (KLF3/BKLF), in its N-terminus. Most significantly, it shares with KLF3/BKLF a Pro-Val-Asp-Leu-Ser/Thr motif. In KLF3/BKLF this motif mediates contact with the co-repressor protein C-terminal Binding Protein (CtBP). We demonstrate that the KLF8 Pro-Val-Asp-Leu-Ser motif also contacts CtBP. We show that the N-terminus of KLF8 functions as a repression domain and that its activity relies on the integrity of the CtBP recognition motif. We demonstrate that the zinc fingers of KLF8 recognize CACCC elements in DNA and that full-length KLF8 can repress a CACCC-dependent promoter. Finally we determine that KLF8 is broadly expressed in human tissues. These results establish KLF8 as a CACCC-box binding protein that associates with CtBP and represses transcription.
Collapse
Affiliation(s)
- J van Vliet
- Department of Biochemistry, G08, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
84
|
Abstract
The erythroid Krüppel-like factor (EKLF) is a key regulatory protein in globin gene expression. This zinc finger transcription factor is required for expression of the adult β globin gene, and it has been suggested that it plays an important role in the developmental switch from fetal γ to adult β globin gene expression. We have previously described a sequence element in the distal promoter region of the mouse EKLF gene that is critical for the expression of this transcription factor. The element consists of an E box motif flanked by 2 GATA-1 binding sites. Here we demonstrate that mutation of the E box or the GATA-1 consensus sequences eliminates expression from the EKLF promoter in transgenic mice. These results confirm the importance of this activator element for in vivo expression of the EKLF gene.
Collapse
|
85
|
Guy LG, Delvoye N, Wall L. Expression of a human beta-globin transgene in mice with the CACC motif and upstream sequences deleted from the promoter still depends on erythroid Krüppel-like factor. J Biol Chem 2000; 275:3675-80. [PMID: 10652365 DOI: 10.1074/jbc.275.5.3675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice in which the erythroid Krüppel-like Factor (EKLF) gene is inactivated die in fetal life due to down-regulation of the beta-globin gene. Results have suggested that EKLF functions through the proximal CACC motif of the beta-globin promoter. For example, natural mutations of this element that fail to bind EKLF give reduced gene expression and the ability of EKLF to activate reporter genes in co-transfection assays is dependent on an intact CACC. Here, removal of the CACC motif and upstream promoter sequences from the beta-globin gene resulted in reduced expression in transgenic mice. However, breeding onto an EKLF-/- background demonstrated that a CACC-less beta-globin transgene remains highly dependent on EKLF. Hence, although the beta-globin gene partly depends on the proximal CACC motif for expression, it is unlikely that the major mechanism of gene activation by EKLF is through this element. We also show that a lacZ reporter gene linked to the beta-globin promoter, with or without the CACC box present, is actually expressed higher in EKLF-/- fetuses than in wild type animals, suggesting that EKLF may be able to act as an inhibitor of transcription with certain transgene configurations.
Collapse
Affiliation(s)
- L G Guy
- Centre Hospitalier de l'Université de Montréal/Institut du Cancer de Montréal, Université de Montréal, Montreal, Quebec H2L 4M1, Canada
| | | | | |
Collapse
|
86
|
Abstract
GC-boxes and related motifs are frequently occurring DNA-elements present in many promoters and enhancers. In contrast to other elements it was generally thought that the transcription factor Sp1 is the only factor acting through these motifs. The cloning of paralogous genes of the Sp1 factor uncovered the existence of a small protein family consisting of Sp1, Sp2, Sp3 and Sp4. All four proteins exhibit very similar structural features. They contain a highly conserved DNA-binding domain composed of three zinc fingers close the C-terminus and serine/threonine- and glutamine-rich domains in their N-terminal regions. The high degree of structural conservation between these four proteins suggested that they do exert similar functions. Molecular, genetic and biochemical analyses, however, demonstrated that Sp2, Sp3 and Sp4 are not simply functional equivalents of Sp1. Here, I will summarize and discuss recent advances which have been made towards understanding the mode of action and biological function of individual family members.
Collapse
Affiliation(s)
- G Suske
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany.
| |
Collapse
|
87
|
Philipsen S, Suske G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 1999; 27:2991-3000. [PMID: 10454592 PMCID: PMC148522 DOI: 10.1093/nar/27.15.2991] [Citation(s) in RCA: 485] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One of the most common regulatory elements is the GC box and the related GT/CACC box, which are widely distributed in promoters, enhancers and locus control regions of housekeeping as well as tissue-specific genes. For long it was generally thought that Sp1 is the major factor acting through these motifs. Recent discoveries have shown that Sp1 is only one of many transcription factors binding and acting through these elements. Sp1 simply represents the first identified and cloned protein of a family of transcription factors characterised by a highly conserved DNA-binding domain consisting of three zinc fingers. Currently this new family of transcription factors has at least 16 different mammalian members. Here, we will summarise and discuss recent advances that have been directed towards understanding the biological role of these proteins.
Collapse
Affiliation(s)
- S Philipsen
- Department of Cell Biology, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands and
| | | |
Collapse
|
88
|
Plonczynski M, Hardy CL, Safaya S, Harrell A, McCoy L, Brinson A, Agwarangbo L, Steinberg MH. Induction of globin synthesis in K562 cells is associated with differential expression of transcription factor genes. Blood Cells Mol Dis 1999; 25:156-65. [PMID: 10575541 DOI: 10.1006/bcmd.1999.0241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Globin gene switching may be mediated by proteins expressed during different stages of development. Their identification may clarify the mechanisms of the conversion from fetal to adult globin production and lead to new approaches to reversing or retarding the gamma- to beta-globin gene switch. To explore this hypothesis, K562 erythroleukemia cells were induced to differentiate with 1.25, 2.5, and 5 mM sodium butyrate and gene expression was studied after 24, 48, and 72 h. Erythroid differentiation was verified by benzidine staining and by measuring the activity of a transduced A gamma-globin gene promoter linked to a luciferase reporter gene. Using differential display polymerase chain reaction (PCR), total mRNA extracted from induced cells at each time point of induction was reverse transcribed in the presence of A, G, and C anchored primers and 16 arbitrary primers, calculated to amplify approximately 50% of expressed genes. Amplified mRNAs from induced and uninduced cells were separated in polyacrylamide gels and compared. More than 110 cDNA fragments which appeared to represent either up- or downregulated mRNA species in induced K562 cells were identified. Sixty-four of these fragments had more than 95% homology to known GenBank sequences. Seventeen fragments with characteristics of transcription factors were cloned. These include differentiation-related gene-1 (drg-1), PAX 3/forkhead transcription factor, HZF2 which is a Kruppel-related zinc finger protein, three helix-loop-helix proteins (heir-1, Id3, and GOS8), alpha-NAC transcriptional coactivator, LIM domain protein, and trophoblast hypoxia regulating factor. Differential expression of all 17 fragments over 72 h was confirmed by reverse Northern dot blot analysis, semiquantitative PCR using nested primers, and Northern analysis. Erythroid maturation in induced K562 cells is associated with differential expression of numerous genes. Some encode transcription factors that could effect the initiation of HbF synthesis. Almost half of the differentially expressed clones contained cDNAs of unidentified open reading frames and these are the object of continued study.
Collapse
MESH Headings
- Blotting, Northern
- DNA, Complementary/analysis
- DNA, Complementary/chemistry
- Fetal Hemoglobin/genetics
- Gene Expression Regulation
- Genes, Switch
- Globins/biosynthesis
- Globins/genetics
- Humans
- K562 Cells
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- Sequence Analysis, DNA
- Sequence Analysis, RNA
- Transcription Factors/genetics
Collapse
Affiliation(s)
- M Plonczynski
- G.V. (Sonny) Montgomery Department of Veterans Affairs Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|