51
|
Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: A Kinase to Remember. Front Mol Neurosci 2019; 11:480. [PMID: 30686999 PMCID: PMC6333748 DOI: 10.3389/fnmol.2018.00480] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Aging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two. A candidate to play a role in the process is protein kinase R (PKR), first identified as a cellular protector against viral infection and today known as a major regulator of central cellular processes including mRNA translation, transcriptional control, regulation of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both affected by biochemical and metabolic parameters and affects them in turn to create a feedforward loop. Here, we portray the central role of PKR in transferring metabolic information and regulating cellular function with a focus on cancer, inflammation, and brain function. Later, we integrate information from open data sources and discuss current knowledge and gaps in the literature about the signaling cascades upstream and downstream of PKR in different cell types and function. Finally, we summarize current major points and biological means to manipulate PKR expression and/or activation and propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady states.
Collapse
Affiliation(s)
- Shunit Gal-Ben-Ari
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Marcelo Ehrlich
- Laboratory of Intracellular Trafficking and Signaling, School of Molecular Cell Biology & Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kobi Rosenblum
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
52
|
Mangali S, Bhat A, Udumula MP, Dhar I, Sriram D, Dhar A. Inhibition of protein kinase R protects against palmitic acid-induced inflammation, oxidative stress, and apoptosis through the JNK/NF-kB/NLRP3 pathway in cultured H9C2 cardiomyocytes. J Cell Biochem 2018; 120:3651-3663. [PMID: 30259999 DOI: 10.1002/jcb.27643] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Double-stranded RNA-dependent protein kinase (PKR) is a critical regulator of apoptosis, oxidative stress, and inflammation under hyperlipidemic and insulin resistance conditions. Saturated free fatty acids, such as palmitic acid (PA), are known inducers of apoptosis in numerous cell types. However, the underlying molecular mechanism is not fully understood. The aim of the present study was to examine the effect of PA on cultured rat H9C2 cardiac myocytes cells and to investigate the PKR mediated harmful effects of PA in vitro in cultured cardiomyocytes. EXPERIMENTAL APPROACH PKR expression was determined by immunofluorescence and immunoblotting. Oxidative stress and apoptosis were determined by flow cytometry and assay kits. The expression of different gene markers of apoptosis, oxidative stress, and inflammation were measured by Western blot analysis and reverse transcription polymerase chain reaction. KEY RESULTS PKR expression, reactive oxygen species levels as well as apoptosis were increased in PA-treated cultured H9C2 cardiomyocytes. The harmful effects of PA were attenuated by a selective PKR inhibitor, C16. Moreover, we observed that upregulation of c-Jun N-terminal kinase (JNK), nuclear factor-kB (NF-kB) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) pathways is associated with increased expression of interleukin 6 and tumor necrosis factor-α in PA-treated cardiomyocytes and attenuation by a selective PKR inhibitor. CONCLUSION AND IMPLICATIONS Our study reports, for the first time, that PKR-mediated harmful effects of PA in cultured cardiomyocytes via activation of JNK, NF-kB, and NLRP3 pathways. Inhibition of PKR is one of the possible mechanistic approaches to inhibit inflammation, oxidative stress, and apoptosis in lipotoxicity-induced cardiomyocyte damage.
Collapse
Affiliation(s)
- Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Mary Priyanka Udumula
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Indu Dhar
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| |
Collapse
|
53
|
Régnier M, Polizzi A, Guillou H, Loiseau N. Sphingolipid metabolism in non-alcoholic fatty liver diseases. Biochimie 2018; 159:9-22. [PMID: 30071259 DOI: 10.1016/j.biochi.2018.07.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) involves a panel of pathologies starting with hepatic steatosis and continuing to irreversible and serious conditions like steatohepatitis (NASH) and hepatocarcinoma. NAFLD is multifactorial in origin and corresponds to abnormal fat deposition in liver. Even if triglycerides are mostly associated with these pathologies, other lipid moieties seem to be involved in the development and severity of NAFLD. That is the case with sphingolipids and more particularly ceramides. In this review, we explore the relationship between NAFLD and sphingolipid metabolism. After providing an analysis of complex sphingolipid metabolism, we focus on the potential involvement of sphingolipids in the different pathologies associated with NAFLD. An unbalanced ratio between ceramides and terminal metabolic products in the liver and plasma promotes weight gain, inflammation, and insulin resistance. In the etiology of NAFLD, some sphingolipid species such as ceramides may be potential biomarkers for NAFLD. We review the clinical relevance of sphingolipids in liver diseases.
Collapse
Affiliation(s)
- Marion Régnier
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Arnaud Polizzi
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Nicolas Loiseau
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France.
| |
Collapse
|
54
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
55
|
Xu H, Chen J, Si X, Chen M, Pei F, Qiu C, Wu J, Guan X. PKR inhibition mediates endotoxin tolerance in macrophages through inactivation of PI3K/AKT signaling. Mol Med Rep 2018; 17:8548-8556. [PMID: 29658572 DOI: 10.3892/mmr.2018.8869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/09/2018] [Indexed: 11/05/2022] Open
Abstract
Following long‑term exposure to endotoxins, macrophages enter an immunosuppressive state that renders them unable respond to subsequent exposures to endotoxin, a phenomenon that is termed 'endotoxin tolerance'. Endotoxin tolerance increases the risks of secondary infection and mortality in patients with sepsis. In endotoxin‑tolerant macrophages, the mixed variation of gene transcription is referred to as macrophage reprogramming. The mechanisms underlying macrophage reprogramming remain unclear at present. Interferon‑induced double‑stranded RNA‑dependent protein kinase (PKR) is a widely expressed serine/threonine protein kinase. In addition to antiviral effects, PKR regulates the transcription of inflammatory cytokines by affecting transcription factors. However, the role of PKR in macrophage reprogramming remains to be elucidated. In the present study, the expression of inflammatory cytokines differed in lipopolysaccharide (LPS)‑tolerant RAW264.7 macrophages compared with LPS‑activated macrophages. Specifically, reverse transcription‑quantitative polymerase chain reaction results demonstrated that the mRNA levels of tumor necrosis factor‑α, interleukin‑1β (IL‑1β), C‑X‑C motif chemokine ligand 11, C‑C motif chemokine ligand (CCL17), CCL22 and suppressor of cytokine signaling 3 were decreased, and mRNAs levels of arginase‑1 (Arg1) and nitric oxide synthase 2 (iNOS) were increased, in LPS‑tolerant macrophages compared with LPS‑activated macrophages. Furthermore, western blot analysis demonstrated that the protein levels of phosphorylated (p)‑PKR were significantly decreased in the LPS‑tolerant cells. PKR activation with rotenone (10 µM) abrogated endotoxin tolerance by increasing the levels of the IL‑1β, CCL17 and CCL22 mRNAs and decreasing the levels of the Arg1 and iNOS mRNAs. Furthermore, western blotting demonstrated that AKT was markedly inactivated in endotoxin‑tolerant cells, as indicated by reduced p‑AKT levels. However, levels of p‑AKT were markedly increased following rotenone‑induced PKR activation in endotoxin‑tolerant cells. Ly294002 (10 µM), a phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K)/AKT signaling inhibitor, partially reversed the rotenone‑induced alleviation of endotoxin tolerance. These results demonstrated that PKR inhibition mediated endotoxin tolerance in macrophages, and these effects were partially mediated by PI3K/AKT signaling. PKR may be a potential target for the treatment of endotoxin tolerance in patients with sepsis.
Collapse
Affiliation(s)
- Hailin Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Juan Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiang Si
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Minying Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fei Pei
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chunfang Qiu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
56
|
Watanabe T, Imamura T, Hiasa Y. Roles of protein kinase R in cancer: Potential as a therapeutic target. Cancer Sci 2018; 109:919-925. [PMID: 29478262 PMCID: PMC5891186 DOI: 10.1111/cas.13551] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 01/13/2023] Open
Abstract
Double‐stranded (ds) RNA‐dependent protein kinase (PKR) is a ubiquitously expressed serine/threonine protein kinase. It was initially identified as an innate immune antiviral protein induced by interferon (IFN) and activated by dsRNA. PKR is recognized as a key executor of antiviral host defense. Moreover, it contributes to inflammation and immune regulation through several signaling pathways. In addition to IFN and dsRNA, PKR is activated by multiple stimuli and regulates various signaling pathways including the mitogen‐activated protein kinase (MAPK) and nuclear factor kappa‐light‐chain‐enhancer of activated B cells pathways. PKR was initially thought to be a tumor suppressor as a result of its ability to suppress cell growth and interact with major tumor suppressor genes. However, in several types of malignant disease, such as colon and breast cancers, its role remains controversial. In hepatocellular carcinoma, hepatitis C virus (HCV) is the main cause of liver cancer, and PKR inhibits HCV replication, indicating its role as a tumor suppressor. However, PKR is overexpressed in cirrhotic patients, and acts as a tumor promoter through enhancement of cancer cell growth by mediating MAPK or signal transducer and activator of transcription pathways. Moreover, PKR is reportedly required for the activation of inflammasomes and influences metabolic disorders. In the present review, we introduce the multifaceted roles of PKR such as antiviral function, tumor cell growth, regulation of inflammatory immune responses, and maintaining metabolic homeostasis; and discuss future perspectives on PKR biology including its potential as a therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Toon, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
57
|
Hugon J, Mouton-Liger F, Dumurgier J, Paquet C. PKR involvement in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:83. [PMID: 28982375 PMCID: PMC5629792 DOI: 10.1186/s13195-017-0308-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Brain lesions in Alzheimer's disease (AD) are characterized by Aβ accumulation, neurofibrillary tangles, and synaptic and neuronal vanishing. According to the amyloid cascade hypothesis, Aβ1-42 oligomers could trigger a neurotoxic cascade with kinase activation that leads to tau phosphorylation and neurodegeneration. Detrimental pathways that are associated with kinase activation could also be linked to the triggering of direct neuronal death, the production of free radicals, and neuroinflammation. RESULTS Among these kinases, PKR (eukaryotic initiation factor 2α kinase 2) is a pro-apoptotic enzyme that inhibits translation and that has been implicated in several molecular pathways that lead to AD brain lesions and disturbed memory formation. PKR accumulates in degenerating neurons and is activated by Aβ1-42 neurotoxicity. It might modulate Aβ synthesis through BACE 1 induction. PKR is increased in cerebrospinal fluid from patients with AD and mild cognitive impairment and can induce the activation of pro-inflammatory pathways leading to TNFα and IL1-β production. In addition, experimentally, PKR seems to down-regulate the molecular processes of memory consolidation. This review highlights the major findings linking PKR and abnormal brain metabolism associated with AD lesions. CONCLUSIONS Studying the detrimental role of PKR signaling in AD could pave the way for a neuroprotective strategy in which PKR inhibition could reduce neuronal demise and alleviate cognitive decline as well as the cumbersome burden of AD for patients.
Collapse
Affiliation(s)
- Jacques Hugon
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France. .,Center of Cognitive Neurology, Lariboisière FW Hospital, 200 rue du Faubourg Saint Denis, 75010, Paris, France.
| | | | - Julien Dumurgier
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France
| | - Claire Paquet
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France
| |
Collapse
|
58
|
Li X, Wu Z, An X, Mei Q, Bai M, Hanski L, Li X, Ahola T, Han W. Blockade of the LRP16-PKR-NF-κB signaling axis sensitizes colorectal carcinoma cells to DNA-damaging cytotoxic therapy. eLife 2017; 6:27301. [PMID: 28820388 PMCID: PMC5562444 DOI: 10.7554/elife.27301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Acquired therapeutic resistance by tumors is a substantial impediment to reducing the morbidity and mortality that are attributable to human malignancies. The mechanisms responsible for the dramatic shift between chemosensitivity and chemoresistance in colorectal carcinoma have not been defined. Here, we report that LRP16 selectively interacts and activates double-stranded RNA-dependent kinase (PKR), and also acts as scaffolds to assist the formation of a ternary complex of PKR and IKKβ, prolonging the polymers of ADP-ribose (PAR)-dependent nuclear factor kappa B (NF-κB) transactivation caused by DNA-damaging agents and confers acquired chemoresistance. We also identified a small molecule, MRS2578, which strikingly abrogated the binding of LRP16 to PKR and IKKβ, converting LRP16 into a death molecule and forestalling colon tumorigenesis. Inclusion of MRS2578 with etoposide, versus each drug alone, exhibited synergistic antitumor cytotoxicity in xenografts. Our combinatorial approach introduces a strategy to enhance the efficacy of genotoxicity therapies for the treatment of tumors.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Molecular Biology, Immunological and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Wu
- Department of Molecular Biology, Immunological and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaojing An
- Department of Pathology, Chinese PLA General Hospital, Beijing, China.,Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Mei
- Department of Molecular Biology, Immunological and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Miaomiao Bai
- Department of Molecular Biology, Immunological and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Leena Hanski
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Xiang Li
- Department of Molecular Biology, Immunological and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Weidong Han
- Department of Molecular Biology, Immunological and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
59
|
Wang H, Xu Q, Xu X, Hu Y, Hou Q, Zhu Y, Hu C. Ctenopharyngodon idella IKKβ interacts with PKR and IκBα. Acta Biochim Biophys Sin (Shanghai) 2017; 49:729-736. [PMID: 28673044 DOI: 10.1093/abbs/gmx065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase β (IKKβ) is a subunit of the IKK complex. It can activate the NF-κB pathway through phosphorylating IκB in response to a wide range of stimuli. In the present study, an IKKβ gene from grass carp (Ctenopharyngodon idella; KT282114) was cloned and identified by homologous cloning and rapid-amplification of cDNA ends (RACE) technique. The complete CiIKKβ cDNA is 3428 bp in length, with the longest open reading frame (ORF) of 2337 bp encoding a polypeptide of 778 amino acids. The deduced amino acid sequence of CiIKKβ has similar domain distribution to those of mammalian. For example, CiIKKβ consists of a serine/threonine kinase domain at the N-terminal, a basic region leucin zipper (BRLZ) domain in the middle, a homeobox associated leucin zipper (HALZ) domain and an IKKβ NEMO (NF-κB essential modulator) binding domain at the C-terminal. Phylogenetic tree analysis also showed that CiIKKβ is highly homologous to zebrafish IKKβ (DrIKKβ) and clearly distinct from the mammalian and amphibian counterparts. The expression of CiIKKβ was ubiquitously found in the liver, intestine, kidney, gill, spleen, heart, and brain tissues of grass carp and significantly up-regulated in CIK cells under the stimulation with Poly I:C and UV-inactivated grass carp hemorrhagic virus. To investigate the activation mechanism of NF-κB pathway in fish and the role of CiIKKβ in the pathway, we explored the protein interactions of protein kinase R (PKR) with IKKβ and IKKβ with IκBα by co-immunoprecipitation and GST-pull down assays. The interaction between each pair was confirmed. The results suggest that CiIKKβ may be a primary member in the activation of NF-κB pathway in fish.
Collapse
Affiliation(s)
- Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Qun Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Yousheng Hu
- Medical College, Jinggangshan University, Ji'an 343009, China
| | - Qunhao Hou
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Youlin Zhu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| |
Collapse
|
60
|
Udumula MP, Babu MS, Bhat A, Dhar I, Sriram D, Dhar A. High glucose impairs insulin signaling via activation of PKR pathway in L6 muscle cells. Biochem Biophys Res Commun 2017; 486:645-651. [PMID: 28322789 DOI: 10.1016/j.bbrc.2017.03.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
|
61
|
Yoshida K, Okamura H, Hiroshima Y, Abe K, Kido JI, Shinohara Y, Ozaki K. PKR induces the expression of NLRP3 by regulating the NF-κB pathway in Porphyromonas gingivalis-infected osteoblasts. Exp Cell Res 2017; 354:57-64. [PMID: 28341446 DOI: 10.1016/j.yexcr.2017.03.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
The double-stranded RNA-dependent kinase (PKR), which is activated by double stranded RNA, induces inflammation by regulating NF-κB signaling. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome also modulates inflammation in response to infection. Porphyromonas gingivalis (P.gingivalis) is an oral bacterium which is implicated in the pathogenesis of periodontal diseases. We previously reported that PKR is a key modulator of bone metabolism and inflammation in the periodontal tissue. PKR was also reported to induce inflammation in response to microbes by regulating the NLRP3 inflammasome, suggesting that PKR could affect inflammation along with NLRP3 in periodontal diseases. In this study, we investigated the effects of PKR on NLRP3 expression and NF-κB activity in P. gingivalis infected osteoblasts. We first constructed a SNAP26b-tagged P.gingivalis (SNAP-P. g.) and traced its internalization into the cell. SNAP-P. g. increased the activity of PKR and NF-κB and also induced NLRP3 expression in osteoblasts. Inhibition of NF-κB attenuated SNAP-P. g.-induced NLRP3 expression. The knockdown of PKR using shRNA decreased both the activity of NF-κB and the expression of NLRP3 induced by SNAP-P.g.. We therefore concluded that in osteoblasts, P. gingivalis activated PKR, which in turn increased NLRP3 expression by activating NF-κB. Our results suggest that PKR modulates inflammation by regulating the expression of the NLRP3 inflammasome through the NF-κB pathway in periodontal diseases.
Collapse
Affiliation(s)
- Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 770-8525, Japan
| | - Yuka Hiroshima
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kaori Abe
- SHIBASAKI, Inc., 507 Horikiri, Chichibu 368-0066, Japan
| | - Jun-Ichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kazumi Ozaki
- Oral Healthcare Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
62
|
Dhar A. The Role of PKR as a Potential Target for Treating Cardiovascular Diseases. Curr Cardiol Rev 2017; 13:28-31. [PMID: 27225893 PMCID: PMC5324325 DOI: 10.2174/1573403x12666160526122600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death globally with limited treatment options. Despite improved pharmacological therapy, scientific understandings on the root mechanisms of cardiovascular diseases are still not fully understood. It is well known that inflammation plays a key role in the pathogenesis of cardiovascular diseases and controlling this inflammatory pathway may inhibit the progression of this chronic disease. Protein Kinase R (PKR), a serine threonine kinase is activated during various pathological conditions. Activation of PKR can induce apoptosis, inflammation and oxidative stress. Since PKR has multidimensional roles, thus PKR is an attractive target for treating cardiovascular and metabolic disorders. The goal of this review is to discuss potential role of PKR in cardiovascular diseases, pathways activated by it and association between pathways activated.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| |
Collapse
|
63
|
Osuka K, Watanabe Y, Usuda N, Aoyama M, Kawaguchi R, Takeuchi M, Takayasu M. Activation of Nuclear Factor-kappa B in Endothelial Cells of Chronic Subdural Hematoma Outer Membranes. Neurosurgery 2017; 80:571-578. [DOI: 10.1093/neuros/nyw100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/05/2016] [Indexed: 12/30/2022] Open
Affiliation(s)
- Koji Osuka
- Department of Neurological Surgery, Ai-chi Medical University, Nagakute, Ai-chi, Japan
| | - Yasuo Watanabe
- High Technology Research Center, Pharmacology, Showa Pharm-aceutical University, Machida, Tokyo, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Kutsukake, Toyoake, Aichi, Japan
| | - Masahiro Aoyama
- Department of Neurological Surgery, Ai-chi Medical University, Nagakute, Ai-chi, Japan
| | - Reo Kawaguchi
- Department of Neurological Surgery, Ai-chi Medical University, Nagakute, Ai-chi, Japan
| | - Mikinobu Takeuchi
- Department of Neurological Surgery, Ai-chi Medical University, Nagakute, Ai-chi, Japan
| | - Masakazu Takayasu
- Department of Neurological Surgery, Ai-chi Medical University, Nagakute, Ai-chi, Japan
| |
Collapse
|
64
|
Shinohara H, Teramachi J, Okamura H, Yang D, Nagata T, Haneji T. Double Stranded RNA-Dependent Protein Kinase is Necessary for TNF-α-Induced Osteoclast Formation In Vitro and In Vivo. J Cell Biochem 2016; 116:1957-67. [PMID: 25739386 DOI: 10.1002/jcb.25151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/27/2015] [Indexed: 12/12/2022]
Abstract
Double-stranded RNA-dependent protein kinase (PKR) is involved in cell cycle progression, cell proliferation, cell differentiation, tumorgenesis, and apoptosis. We previously reported that PKR is required for differentiation and calcification in osteoblasts. TNF-α plays a key role in osteoclast differentiation. However, it is unknown about the roles of PKR in the TNF-α-induced osteoclast differentiation. The expression of PKR in osteoclast precursor RAW264.7 cells increased during TNF-α-induced osteoclastogenesis. The TNF-α-induced osteoclast differentiation in bone marrow-derived macrophages and RAW264.7 cells was markedly suppressed by the pretreatment of PKR inhibitor, 2-aminopurine (2AP), as well as gene silencing of PKR. The expression of gene markers in the differentiated osteoclasts including TRAP, Calcitonin receptor, cathepsin K, and ATP6V0d2 was also suppressed by the 2AP treatment. Bone resorption activity of TNF-α-induced osteoclasts was also supressed by 2AP treatment. Inhibition of PKR supressed the TNF-α-induced activation of NF-κB and MAPK in RAW264.7 cells. 2AP inhibited both the nuclear translocation of NF-κB and its transcriptional activity in RAW264.7 cells. 2AP inhibited the TNF-α-induced expression of NFATc1 and c-fos, master transcription factors in osteoclastogenesis. TNF-α-induced nuclear translocation of NFATc1 in mature osteoclasts was clearly inhibited by the 2AP treatment. The PKR inhibitor C16 decreased the TNF-α-induced osteoclast formation and bone resorption in mouse calvaria. The present study indicates that PKR is necessary for the TNF-α-induced osteoclast differentiation in vitro and in vivo.
Collapse
Affiliation(s)
- Hiroki Shinohara
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.,Department of Periodontology and Endodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Di Yang
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
65
|
p58(IPK) suppresses NLRP3 inflammasome activation and IL-1β production via inhibition of PKR in macrophages. Sci Rep 2016; 6:25013. [PMID: 27113095 PMCID: PMC4845006 DOI: 10.1038/srep25013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome activation is a key signaling event for activation and secretion of pro-inflammatory cytokines such as IL-1β from macrophages. p58IPK is a molecular chaperone that regulates protein homeostasis through inhibiting eIF-2α kinases including double-stranded RNA–dependent protein kinase (PKR), which has been recently implicated in inflammasome activation. Herein we investigate the role of p58IPK in TLR4 signaling and inflammasome activation in macrophages. Primary bone marrow-derived macrophages (BMDM) was isolated from p58IPK knockout (KO) and wildtype (WT) mice and treated with lipopolysaccharide (LPS) and ATP to activate TLR4 signaling and stimulate inflammasome activation. Compared to WT macrophages, p58IPK deficient cells demonstrated significantly stronger activation of PKR, NF-κB, and JNK and higher expression of pro-inflammatory genes TNF-α and IL-1β. Coincidently, p58IPK deletion intensified NLRP3-inflammasome activation indicated by enhanced caspase 1 cleavage and increased IL-1β maturation and secretion. Pretreatment with specific PKR inhibitor or overexpression of p58IPK largely abolished the changes in inflammasome activation and IL-1β secretion in p58IPK null macrophages. Furthermore, immunoprecipitation assay confirmed the binding of p58IPK with PKR, but not other TLR4 downstream signaling molecules. Collectively, these results suggest a novel and crucial role of p58IPK in regulation of inflammasome activation and IL-1β secretion in macrophages.
Collapse
|
66
|
Abstract
RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principal types of cytoplasmic RNA granules are stress granules, which contain stalled translation initiation complexes, and processing bodies (P bodies), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts; thus, viruses repress RNA granule functions to favor replication. This article discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently, mechanisms for virus manipulation of RNA granules can be loosely grouped into three nonexclusive categories: (a) cleavage of key RNA granule factors, (b) regulation of PKR activation, and (c) co-opting of RNA granule factors for new roles in viral replication. Viral modulation of RNA granules supports productive infection by inhibiting their gene-silencing functions and counteracting their role in linking stress sensing with innate immune activation.
Collapse
Affiliation(s)
- Wei-Chih Tsai
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030;
| | - Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
67
|
The kinase activity of PKR represses inflammasome activity. Cell Res 2016; 26:367-79. [PMID: 26794869 DOI: 10.1038/cr.2016.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/24/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The protein kinase R (PKR) functions in the antiviral response by controlling protein translation and inflammatory cell signaling pathways. We generated a transgenic, knock-in mouse in which the endogenous PKR is expressed with a point mutation that ablates its kinase activity. This novel animal allows us to probe the kinase-dependent and -independent functions of PKR. We used this animal together with a previously generated transgenic mouse that is ablated for PKR expression to determine the role of PKR in regulating the activity of the cryopyrin inflammasome. Our data demonstrate that, in contradiction to earlier reports, PKR represses cryopyrin inflammasome activity. We demonstrate that this control is mediated through the established function of PKR to inhibit protein translation of constituents of the inflammasome to prevent initial priming during innate immune signaling. These findings identify an important role for PKR to dampen inflammation during the innate immune response and caution against the previously proposed therapeutic strategy to inhibit PKR to treat inflammation.
Collapse
|
68
|
Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer's Disease. Mediators Inflamm 2015; 2015:105828. [PMID: 26693205 PMCID: PMC4674598 DOI: 10.1155/2015/105828] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2DM), Alzheimer's disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer's disease (AD) is the most common subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-β (Aβ) protein accumulation, and mitochondrial dysfunction link T2DM and AD.
Collapse
|
69
|
Udumula MP, Medapi B, Dhar I, Bhat A, Desai K, Sriram D, Dhar A. The Small Molecule Indirubin-3'-Oxime Inhibits Protein Kinase R: Antiapoptotic and Antioxidant Effect in Rat Cardiac Myocytes. Pharmacology 2015; 97:25-30. [PMID: 26571010 DOI: 10.1159/000441727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/12/2015] [Indexed: 11/19/2022]
Abstract
Double-stranded, RNA-dependent protein kinase R (PKR) is a serine/threonine protein kinase activated by various stress signals. It plays an important role in inflammation, insulin sensitivity and glucose homeostasis. Increased PKR activity has been observed in obese humans as well as in obese diabetic mice. Indirubin-3'-oxime (I3O) is an effective inhibitor of cyclin-dependent kinases and glycogen synthase kinase 3-beta. However, the effects of I3O on PKR activity/expression in cultured rat cardiomyocytes have not been reported. We investigated whether I3O attenuates the effects of high glucose on PKR, oxidative stress and apoptotic gene markers. Quantitative PCR and western blotting were used to measure protein and mRNA, respectively. High glucose treatment caused significant increase in the PKR protein/mRNA expression, which was attenuated by co-treatment with I3O. High glucose-treated, cultured cardiomyocytes developed a significant increase in mRNA expression for c-Jun-N-terminal kinase, caspase-3 and NF-ĸB, which were all attenuated by pretreatment with I3O. There was also a significant increase in reactive oxygen species generation in high glucose-treated, cultured cardiomyocytes, which was attenuated by pretreatment with I3O. In conclusion, I3O may have a preventive role against the deleterious effects of high glucose in the heart.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Inflammasomes are high molecular weight complexes that sense and react to injury and infection. Their activation induces caspase-1 activation and release of interleukin-1β, a pro-inflammatory cytokine involved in both acute and chronic inflammatory responses. There is increasing evidence that inflammasomes, particularly the NLRP3 inflammasome, act as guardians against noninfectious material. Inappropriate activation of the NLRP3 inflammasome contributes to the progression of many noncommunicable diseases such as gout, type II diabetes, and Alzheimer's disease. Inhibiting the inflammasome may significantly reduce damaging inflammation and is therefore regarded as a therapeutic target. Currently approved inhibitors of interleukin-1β are rilonacept, canakinumab, and anakinra. However, these proteins do not possess ideal pharmacokinetic properties and are unlikely to easily cross the blood-brain barrier. Because inflammation can contribute to neurological disorders, this review focuses on the development of small-molecule inhibitors of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alex G Baldwin
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - David Brough
- Faculty of Life Sciences, The University of Manchester , AV Hill Building, Oxford Road, Manchester M13 9PT, U.K
| | - Sally Freeman
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
71
|
Regulation of PACT-Mediated Protein Kinase Activation by the OV20.0 Protein of Orf Virus. J Virol 2015; 89:11619-29. [PMID: 26355092 DOI: 10.1128/jvi.01739-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023] Open
Abstract
Double-stranded RNA (dsRNA)-activated protein kinase (PKR), a major component of the cellular antiviral system, is activated by the binding of either dsRNA or the cellular PKR activator, the PACT protein. The suppression of PKR activation is one of the main strategies that viruses employ to circumvent interferon signaling. Orf virus (ORFV), a parapoxvirus from the Poxviridae family, causes contagious pustular dermatitis in small ruminants. Previous studies have demonstrated that various OV20.0 isoforms, encoded by the OV20.0L gene, are able to inhibit PKR activation both by sequestering dsRNA and by physically interacting with PKR in vitro. Thus, this gene acts as a virulence factor of ORFV when tested using a mouse infection model. In the present study, the regions within OV20.0 that interact with dsRNA and with PKR have been mapped. Furthermore, this study demonstrates for the first time that OV20.0 is also able to interact with the dsRNA binding domain of PACT and that the presence of dsRNA strengthened the interaction of these two molecules. The presence of OV20.0 diminishes PKR phosphorylation when this is stimulated by PACT. Nevertheless, the association of OV20.0 with PKR, rather than with PACT, was found to be essential for reducing PACT-mediated PKR phosphorylation. These observations elucidate a new strategy whereby innate immunity can be evaded by ORFV.IMPORTANCE Our previous study indicated that ORFV's two OV20.0 isoforms act as a PKR antagonist via sequestering the PKR activator, dsRNA, and by interacting with PKR, leading to an inhibition of PKR activation (Y. Y. Tseng, F. Y. Lin, S. F. Cheng, D. Tscharke, S. Chulakasian, C. C. Chou, Y. F. Liu, W. S. Chang, M. L. Wong, and W. L. Hsu, J Virol 89:4966-4979, 2015, doi:10.1128/JVI.03714-14). In the current study, the possible mechanisms by which OV20.0 protein counteracts PKR activation were studied in depth. OV20.0 is able to bind PKR and its two activators, dsRNA and PACT. In addition, OV20.0 binds directly to the RNA binding domains (RBDs) of PKR, and this interaction does not require dsRNA. Moreover, OV20.0 interacts with or occupies the RBD2 and the kinase domain of PKR, which then prevents PACT binding to PKR. Finally, OV20.0 associates with PACT via the RBDs, which may reduce the ability of PACT to induce PKR activation. The findings in this study provide new concepts in relation to how ORFV modulates PKR activation.
Collapse
|
72
|
Bahal R, Lakhani P, Bhat A, Kondiparthi L, Dhar I, Desai K, Dhar A. Protein kinase R and the metabolic syndrome. ACTA ACUST UNITED AC 2015. [DOI: 10.3233/jcb-15006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Rishabh Bahal
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh, India
| | - Prit Lakhani
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh, India
| | - Audesh Bhat
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lavanya Kondiparthi
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh, India
| | - Indu Dhar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaushik Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
73
|
Quantitative Proteomic Analysis of BHK-21 Cells Infected with Foot-and-Mouth Disease Virus Serotype Asia 1. PLoS One 2015; 10:e0132384. [PMID: 26161868 PMCID: PMC4498813 DOI: 10.1371/journal.pone.0132384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2023] Open
Abstract
Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantitatively study the host cell gene expression profile, in order to achieve an unbiased overview of the protein expression changes in BHK-21 cells infected with FMDV serotype Asia 1. The SILAC-based approach identified overall 2,141 proteins, 153 of which showed significant alteration in the expression level 6 h post FMDV infection (57 up-regulated and 96 down-regulated). Among these proteins, six cellular proteins, including three down-regulated (VPS28, PKR, EVI5) and three up-regulated (LYPLA1, SEC62 and DARs), were selected according to the significance of the changes and/or the relationship with PKR. The expression level and pattern of the selected proteins were validated by immunoblotting and confocal microscopy. Furthermore, the functions of these cellular proteins were assessed by small interfering RNA-mediated depletion, and their functional importance in the replication of FMDV was demonstrated by western blot, reverse transcript PCR (RT-PCR) and 50% Tissue Culture Infective Dose (TCID50). The results suggest that FMDV infection may have effects on the expression of specific cellular proteins to create more favorable conditions for FMDV infection. This study provides novel data that can be utilized to understand the interactions between FMDV and the host cell.
Collapse
|
74
|
Potential role for snoRNAs in PKR activation during metabolic stress. Proc Natl Acad Sci U S A 2015; 112:5023-8. [PMID: 25848059 DOI: 10.1073/pnas.1424044112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein kinase RNA-activated (PKR) has long been known to be activated by viral double-stranded RNA (dsRNA) as part of the mammalian immune response. However, in mice PKR is also activated by metabolic stress in the absence of viral infection, and this requires a functional kinase domain, as well as a functional dsRNA-binding domain. The endogenous cellular RNA that potentially leads to PKR activation during metabolic stress is unknown. We investigated this question using mouse embryonic fibroblast cells expressing wild-type PKR (PKRWT) or PKR with a point mutation in each dsRNA-binding motif (PKRRM). Using this system, we identified endogenous RNA that interacts with PKR after induction of metabolic stress by palmitic acid (PA) treatment. Specifically, RIP-Seq analyses showed that the majority of enriched RNAs that interacted with WT PKR (≥twofold, false discovery rate ≤ 5%) were small nucleolar RNAs (snoRNAs). Immunoprecipitation of PKR in extracts of UV-cross-linked cells, followed by RT-qPCR, confirmed that snoRNAs were enriched in PKRWT samples after PA treatment, but not in the PKRRM samples. We also demonstrated that a subset of identified snoRNAs bind and activate PKR in vitro; the presence of a 5'-triphosphate enhanced PKR activity compared with the activity with a 5'-monophosphate, for some, but not all, snoRNAs. Finally, we demonstrated PKR activation in cells upon snoRNA transfection, supporting our hypothesis that endogenous snoRNAs can activate PKR. Our results suggest an unprecedented and unexpected model whereby snoRNAs play a role in the activation of PKR under metabolic stress.
Collapse
|
75
|
|
76
|
Reineke LC, Lloyd RE. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses. J Virol 2015; 89:2575-89. [PMID: 25520508 PMCID: PMC4325707 DOI: 10.1128/jvi.02791-14] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/08/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Stress granules (SGs) are cytoplasmic storage sites containing translationally silenced mRNPs that can be released to resume translation after stress subsides. We previously showed that poliovirus 3C proteinase cleaves the SG-nucleating protein G3BP1, blocking the ability of cells to form SGs late in infection. Many other viruses also target G3BP1 and inhibit SG formation, but the reasons why these functions evolved are unclear. Previously, we also showed a link between G3BP1-induced SGs and protein kinase R (PKR)-mediated translational control, but the mechanism of PKR interplay with SG and the antiviral consequences are unknown. Here, we show that G3BP1 exhibits antiviral activity against several enteroviruses, whereas truncated G3BP1 that cannot form SGs does not. G3BP1-induced SGs are linked to activation of innate immune transcriptional responses through NF-κB and JNK. The G3BP1-induced SGs also recruit PKR and other antiviral proteins. We show that the PXXP domain within G3BP1 is essential for the recruitment of PKR to SGs, for eIF2α phosphorylation driven by PKR, and for nucleating SGs of normal composition. We also show that deletion of the PXXP domain in G3BP1 compromises its antiviral activity. These findings tie PKR activation to its recruitment to SGs by G3BP1 and indicate that G3BP1 promotes innate immune responses at both the transcriptional and translational levels and integrates cellular stress responses and innate immunity. IMPORTANCE Stress granules appear during virus infection, and their importance is not well understood. Previously, it was assumed that they were nonfunctional artifacts associated with cellular stress. PKR is a well-known antiviral protein; however, its regulation in cells is not well understood. Our work links cellular stress granules with activation of PKR and other innate immune pathways through the activity of G3BP1, a critical stress granule component. The ability of stress granules and G3BP1 to activate PKR and other innate immune transcriptional responses indicates that G3BP1 is an antiviral protein. This work helps to refine a longstanding paradigm indicating stress granules are inert structures and explains why G3BP1 is subverted by many viruses to promote a productive infection.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
77
|
Gao L, Tang W, Ding Z, Wang D, Qi X, Wu H, Guo J. Protein-Binding Function of RNA-Dependent Protein Kinase Promotes Proliferation through TRAF2/RIP1/NF-κB/c-Myc Pathway in Pancreatic β cells. Mol Med 2015; 21:154-66. [PMID: 25715336 DOI: 10.2119/molmed.2014.00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/18/2015] [Indexed: 12/29/2022] Open
Abstract
Double-stranded RNA-dependent protein kinase (PKR), an intracellular pathogen recognition receptor, is involved both in insulin resistance in peripheral tissues and in downregulation of pancreatic β-cell function in a kinase-dependent manner, indicating PKR as a core component in the progression of type 2 diabetes. PKR also acts as an adaptor protein via its protein-binding domain. Here, the PKR protein-binding function promoted β-cell proliferation without its kinase activity, which is associated with enhanced physical interaction with tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. In addition, the transcription of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-dependent survival gene c-Myc was upregulated significantly and is necessary for proliferation. Upregulation of the PKR protein-binding function induced the NF-κB pathway, as observed by dose-dependent degradation of IκBα, induced nuclear translocation of p65 and elevated NF-κB-dependent reporter gene expression. NF-κB-dependent reporter activity and β-cell proliferation both were suppressed by TRAF2-siRNA, but not by TRAF6-siRNA. TRAF2-siRNA blocked the ubiquitination of receptor-interacting serine/threonine-protein kinase 1 (RIP1) induced by PKR protein binding. Furthermore, RIP1-siRNA inhibited β-cell proliferation. Proinflammatory cytokines (TNFα) and glucolipitoxicity also promoted the physical interaction of PKR with TRAF2. Collectively, these data indicate a pivotal role for PKR's protein-binding function on the proliferation of pancreatic β cells through TRAF2/RIP1/NF-κB/c-Myc pathways. Therapeutic opportunities for type 2 diabetes may arise when its kinase catalytic function, but not its protein-binding function, is downregulated.
Collapse
Affiliation(s)
- Lili Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Tang
- Department of Endocrinology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - ZhengZheng Ding
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - DingYu Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - XiaoQiang Qi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - HuiWen Wu
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Guo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
78
|
Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation. Sci Rep 2015; 5:8489. [PMID: 25687824 DOI: 10.1038/srep08489] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, marked by senile plaques composed of amyloid-β (Aβ) peptide, neurofibrillary tangles, neuronal loss and neuroinflammation. Previous works have suggested that systemic inflammation could contribute to neuroinflammation and enhanced Aβ cerebral concentrations. The molecular pathways leading to these events are not fully understood. PKR is a pro-apoptotic kinase that can trigger inflammation and accumulates in the brain and cerebrospinal fluid of AD patients. The goal of the present study was to assess if LPS-induced neuroinflammation and Aβ production could be altered by genetic PKR down regulation. The results show that, in the hippocampus of LPS-injected wild type mice, neuroinflammation, cytokine release and Aβ production are significantly increased and not in LPS-treated PKR knock-out mice. In addition BACE1 and activated STAT3 levels, a putative transcriptional regulator of BACE1, were not found increased in the brain of PKR knock-out mice as observed in wild type mice. Using PET imaging, the decrease of hippocampal metabolism induced by systemic LPS was not observed in LPS-treated PKR knock-out mice. Altogether, these findings demonstrate that PKR plays a major role in brain changes induced by LPS and could be a valid target to modulate neuroinflammation and Aβ production.
Collapse
|
79
|
Koromilas AE. Roles of the translation initiation factor eIF2α serine 51 phosphorylation in cancer formation and treatment. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:871-80. [PMID: 25497381 DOI: 10.1016/j.bbagrm.2014.12.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 01/12/2023]
Abstract
Cells respond to various forms of stress by activating anti-proliferative pathways, which allow them to correct the damage caused by stress before re-entering proliferation. If the damage, however, is beyond repair, stressed cells are eliminated from the host by undergoing death. The balance between cell survival and death is essential for cancer formation and is determined by several key pathways that impact on different stages of gene expression. In recent years, it has become evident that phosphorylation of the alpha (α) subunit of the translation initiation factor eIF2 at serine 51 (eIF2αS51P) is an important determinant of cell fate in response to stress. Induction of eIF2αS51P is mediated by a family of four kinases namely, HRI, PKR, PERK and GCN2, each of which responds to distinct forms of stress. Increased eIF2αS51P results in a global inhibition of protein synthesis but at the same time enhances the translation of select mRNAs encoding for proteins that control cell adaptation to stress. Short-term induction of eIF2αS51P has been associated with cell survival whereas long-term induction with cell death. Studies in mouse and human models of cancer have provided compelling evidence that eIF2αS51P plays an essential role in stress-induced tumorigenesis. Increased eIF2αS51P exhibits cell autonomous as well as immune regulatory effects, which can influence tumor growth and the efficacy of anti-tumor therapies. The findings suggest that eIF2αS51P may be of prognostic value and a suitable target for the design and implementation of effective anti-tumor therapies. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Antonis E Koromilas
- Lady Davis Institute for Medical Research-McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec H2W 1S6, Canada.
| |
Collapse
|
80
|
Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimers Dement 2014; 10:S76-83. [PMID: 24529528 DOI: 10.1016/j.jalz.2013.12.010] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
Abstract
A link between Alzheimer's disease (AD) and metabolic disorders has been established, with patients with type 2 diabetes at increased risk of developing AD and vice versa. The incidence of metabolic disorders, including insulin resistance and type 2 diabetes is increasing at alarming rates worldwide, primarily as a result of poor lifestyle habits. In parallel, as the world population ages, the prevalence of AD, the most common form of dementia in the elderly, also increases. In addition to their epidemiologic and clinical association, mounting recent evidence indicates shared mechanisms of pathogenesis between metabolic disorders and AD. We discuss the concept that peripheral and central nervous system inflammation link the pathogenesis of AD and metabolic diseases. We also explore the contribution of brain inflammation to defective insulin signaling and neuronal dysfunction. Last, we review recent evidence indicating that targeting neuroinflammation may provide novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Julia R Clarke
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Theresa R Bomfim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
81
|
Activation of stress response pathways promotes formation of antiviral granules and restricts virus replication. Mol Cell Biol 2014; 34:2003-16. [PMID: 24662051 DOI: 10.1128/mcb.01630-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The formation of protein-RNA granules is a part of both natural cellular function (P-bodies and nuclear HNRNPs) and the response to cellular stress (stress granules and ND10 bodies). To better understand the role of stress-induced granules in viral infection, we have studied the ability of cells to restrict poxvirus replication through the formation of antiviral granules (AVGs). Of cells infected with a wild-type poxvirus, a small number spontaneously formed AVGs. In these AVG-positive cells, viral gene expression was inhibited. The addition of compounds that altered RNA helicase activity, induced oxidative stress, or stimulated translation initiation factor phosphorylation significantly increased the number of AVG-positive cells. When AVGs formed, both viral translation and titers were decreased even when host translation persisted. Treatment with the antiviral compound isatin β-thiosemicarbazone (IBT), a compound that was used to treat smallpox infections, induced AVGs, suggesting a role for these structures in the pharmacological inhibition of poxvirus replication. These findings provide evidence that AVGs are an innate host response that can be exogenously stimulated to combat virus infection. Since small molecules are able to stimulate AVG formation, it is a potential target for new antiviral development.
Collapse
|
82
|
Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, Romero-Ramírez L. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation 2014; 11:50. [PMID: 24645669 PMCID: PMC4000131 DOI: 10.1186/1742-2094-11-50] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. Methods The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. Results TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. Conclusions We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii) reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic implications for inflammatory CNS diseases.
Collapse
Affiliation(s)
| | | | - Manuel Nieto-Sampedro
- Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | | |
Collapse
|
83
|
Boriushkin E, Wang JJ, Zhang SX. Role of p58IPK in Endoplasmic Reticulum Stress-associated Apoptosis and Inflammation. J Ophthalmic Vis Res 2014; 9:134-43. [PMID: 24982747 PMCID: PMC4074489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Evgenii Boriushkin
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA,SUNY Eye Institute, State University of New York, NY, USA
| | - Josh J. Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA,SUNY Eye Institute, State University of New York, NY, USA
| | - Sarah X. Zhang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA,Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY, USA,SUNY Eye Institute, State University of New York, NY, USA
| |
Collapse
|
84
|
Khaliq S, Latief N, Jahan S. Role of different regions of the hepatitis C virus genome in the therapeutic response to interferon-based treatment. Arch Virol 2013; 159:1-15. [PMID: 23851652 DOI: 10.1007/s00705-013-1780-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) is considered a significant risk factor in HCV-induced liver diseases and development of hepatocellular carcinoma (HCC). Nucleotide substitutions in the viral genome result in its diversification into quasispecies, subtypes and distinct genotypes. Different genotypes vary in their infectivity and immune response due to these nucleotide/amino acid variations. The current combination treatment for HCV infection is pegylated interferon α (PEG-IFN-α) with ribavirin, with a highly variable response rate mainly depending upon the HCV genotype. Genotypes 2 and 3 are found to respond better than genotypes 1 and 4, which are more resistant to IFN-based therapies. Different studies have been conducted worldwide to explore the basis of this difference in therapy response, which identified some putative regions in the HCV genome, especially in Core and NS5a, and to some extent in the E2 region, containing specific sequences in different genotypes that act differently with respect to the IFN response. In the review, we try to summarize the role of HCV proteins and their nucleotide sequences in association with treatment outcome in IFN-based therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Department of Immunology, University of Health Sciences, Lahore, Pakistan,
| | | | | |
Collapse
|
85
|
Bai H, Chen T, Ming J, Sun H, Cao P, Fusco DN, Chung RT, Chorev M, Jin Q, Aktas BH. Dual activators of protein kinase R (PKR) and protein kinase R-like kinase PERK identify common and divergent catalytic targets. Chembiochem 2013; 14:1255-62. [PMID: 23784735 PMCID: PMC3808843 DOI: 10.1002/cbic.201300177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 01/18/2023]
Abstract
Chemical genetics has evolved into a powerful tool for studying gene function in normal and pathobiology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2α) kinases, play critical roles in the maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and with recently identified inhibitors. In contrast, no activating probes for studying the catalytic activity of these kinases are available. We identified 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5,7-dihydroxy-4H-chromen-4-one (DHBDC) as a specific dual activator of PKR and PERK by screening a chemical library of 20 000 small molecules in a dual luciferase surrogate eIF2α phosphorylation assay. We present here extensive biological characterization and a preliminary structure-activity relationship of DHBDC, which phosphorylates eIF2α by activating PKR and PERK but no other eIF2α kinases. These agents also activate downstream effectors of eIF2α phosphorylation by inducing CEBP homologue protein, suppressing cyclin D1 expression, and inhibiting cancer cell proliferation, all in a manner dependent on PKR and PERK. Consistent with the role of eIF2α phosphorylation in viral infection, DHBDC inhibits the proliferation of human hepatitis C virus. Finally, DHBDC induces the phosphorylation of IκBα and activates the NF-κB pathway. Surprisingly, activation of the NF-κB pathway is dependent on PERK but independent of PKR activity. These data indicate that DHBDC is an invaluable probe for elucidating the role of PKR and PERK in normal and pathobiology.
Collapse
Affiliation(s)
- Huijun Bai
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 6 Rong Jing Jie, Beijing 100176, China
- Hematology Laboratory for Translational Research, Department of Medicine. Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, 240 Longwood Avenue, Boston MA 02115
| | - Ting Chen
- Hematology Laboratory for Translational Research, Department of Medicine. Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, 240 Longwood Avenue, Boston MA 02115
| | - Jie Ming
- Harvard Medical School, 240 Longwood Avenue, Boston MA 02115
| | - Hong Sun
- Harvard Medical School, 240 Longwood Avenue, Boston MA 02115
- Basic Medical College, Hebei United University, Tangshan, Hebei, 063000, China
| | - Peng Cao
- Harvard Medical School, 240 Longwood Avenue, Boston MA 02115
| | - Dahlene N. Fusco
- Gastrointestinal Unit, Massachusetts General Hospital Boston MA 02114
| | - Raymond T. Chung
- Gastrointestinal Unit, Massachusetts General Hospital Boston MA 02114
| | - Michael Chorev
- Hematology Laboratory for Translational Research, Department of Medicine. Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, 240 Longwood Avenue, Boston MA 02115
| | - Qi Jin
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 6 Rong Jing Jie, Beijing 100176, China
| | - Bertal H. Aktas
- Hematology Laboratory for Translational Research, Department of Medicine. Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
- Harvard Medical School, 240 Longwood Avenue, Boston MA 02115
| |
Collapse
|
86
|
|
87
|
Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat Chem Biol 2013; 9:398-405. [PMID: 23603659 DOI: 10.1038/nchembio.1236] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/21/2013] [Indexed: 12/15/2022]
Abstract
Formation of the inflammasome, a scaffolding complex that activates caspase-1, is important in numerous diseases. Pyroptotic cell death induced by anthrax lethal toxin (LT) is a model for inflammasome-mediated caspase-1 activation. We discovered 7-desacetoxy-6,7-dehydrogedunin (7DG) in a phenotypic screen as a small molecule that protects macrophages from LT-induced death. Using chemical proteomics, we identified protein kinase R (PKR) as the target of 7DG and show that RNAi knockdown of PKR phenocopies treatment with 7DG. Further, we show that PKR's role in ASC assembly and caspase-1 activation induced by several different inflammasome stimuli is independent of PKR's kinase activity, demonstrating that PKR has a previously uncharacterized role in caspase-1 activation and pyroptosis that is distinct from its reported kinase-dependent roles in apoptosis and inflammasome formation in lipopolysaccharide-primed cells. Remarkably, PKR has different roles in two distinct cell death pathways and has a broad role in inflammasome function relevant in other diseases.
Collapse
|
88
|
Haneji T, Hirashima K, Teramachi J, Morimoto H. Okadaic acid activates the PKR pathway and induces apoptosis through PKR stimulation in MG63 osteoblast-like cells. Int J Oncol 2013; 42:1904-10. [PMID: 23591640 PMCID: PMC3699595 DOI: 10.3892/ijo.2013.1911] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/27/2013] [Indexed: 12/04/2022] Open
Abstract
Double-stranded RNA-dependent protein kinase (PKR) is one of the players in the cellular antiviral responses and is involved in transcriptional stimulation through activation of NF-κB. Treatment of the human osteosarcoma cell line MG63 with the protein phosphatase inhibitor okadaic acid stimulated the expression and phosphorylation of IκBα, as judged from the results of real-time PCR and western blot analysis. We investigated the functional relationship between PKR and signal transduction of NF-κB by establishing PKR-K/R cells that produced a catalytically inactive mutant of PKR. Phosphorylation of eIF-2α, a substrate of PKR, was not stimulated by okadaic acid in the PKR-K/R cells, whereas okadaic acid induced phosphorylation of eIF-2α in MG63 cells. Phosphorylation of NF-κB in MG63 cells was stimulated by okadaic acid; however, okadaic acid did not induce phosphorylation of NF-κB in the PKR-K/R cells. Finally, okadaic acid-induced apoptosis was inhibited in the PKR-K/R cells. Our results suggest that okadaic acid-induced phosphorylation of IκBα was mediated by PKR kinase activity, thus, indicating the involvement of this kinase in the control mechanism governing the activation of NF-κB and induction of apoptosis.
Collapse
Affiliation(s)
- Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | |
Collapse
|
89
|
Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:317-31. [PMID: 23554219 PMCID: PMC3652661 DOI: 10.1002/wrna.1162] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA granules are structures within cells that play major roles in gene expression and homeostasis. Two principle kinds of RNA granules are conserved from yeast to mammals: stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P‐bodies, PBs), which are enriched with factors involved in RNA turnover. Since RNA granules are associated with silenced transcripts, viruses subvert RNA granule function for replicative advantages. This review, focusing on RNA viruses, discusses mechanisms that manipulate stress granules and P‐bodies to promote synthesis of viral proteins. Three main themes have emerged for how viruses manipulate RNA granules; (1) cleavage of key host factors, (2) control of protein kinase R (PKR) activation, and (3) redirecting RNA granule components for new or parallel roles in viral reproduction, at the same time disrupting RNA granules. Viruses utilize one or more of these routes to achieve robust and productive infection. WIREs RNA 2013, 4:317–331. doi: 10.1002/wrna.1162 This article is categorized under:
RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
90
|
MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. J Virol 2013; 87:6314-25. [PMID: 23536668 DOI: 10.1128/jvi.03213-12] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Virus infection can initiate a type I interferon (IFN-α/β) response via activation of the cytosolic RNA sensors retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Furthermore, it can activate kinases that phosphorylate eukaryotic translation initiation factor 2α (eIF2α), which leads to inhibition of (viral) protein translation and formation of stress granules (SG). Most viruses have evolved mechanisms to suppress these cellular responses. Here, we show that a mutant mengovirus expressing an inactive leader (L) protein, which we have previously shown to be unable to suppress IFN-α/β, triggered SG formation in a protein kinase R (PKR)-dependent manner. Furthermore, we show that infection of cells that are defective in SG formation yielded higher viral RNA levels, suggesting that SG formation acts as an antiviral defense mechanism. Since the induction of both IFN-α/β and SG is suppressed by mengovirus L, we set out to investigate a potential link between these pathways. We observed that MDA5, the intracellular RNA sensor that recognizes picornaviruses, localized to SG. However, activation of the MDA5 signaling pathway did not trigger and was not required for SG formation. Moreover, cells that were unable to form SG-by protein kinase R (PKR) depletion, using cells expressing a nonphosphorylatable eIF2α protein, or by drug treatment that inhibits SG formation-displayed a normal IFN-α/β response. Thus, although MDA5 localizes to SG, this localization seems to be dispensable for induction of the IFN-α/β pathway.
Collapse
|
91
|
Högner K, Wolff T, Pleschka S, Plog S, Gruber AD, Kalinke U, Walmrath HD, Bodner J, Gattenlöhner S, Lewe-Schlosser P, Matrosovich M, Seeger W, Lohmeyer J, Herold S. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 2013; 9:e1003188. [PMID: 23468627 PMCID: PMC3585175 DOI: 10.1371/journal.ppat.1003188] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022] Open
Abstract
Influenza viruses (IV) cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs) has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM)-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC) injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL). Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR-) and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.
Collapse
MESH Headings
- Acute Lung Injury/immunology
- Acute Lung Injury/metabolism
- Acute Lung Injury/pathology
- Adult
- Animals
- Apoptosis
- Disease Models, Animal
- Humans
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/pathology
- Interferon-beta/metabolism
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mosaicism
- Pneumonia, Viral/immunology
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/pathology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Respiratory Mucosa/pathology
- TNF-Related Apoptosis-Inducing Ligand/metabolism
Collapse
Affiliation(s)
- Katrin Högner
- Department of Internal Medicine II, University of Giessen Lung Center (UGLC) and German Center for Lung Research (DZL), Giessen, Germany
| | - Thorsten Wolff
- Division of Influenza/Respiratory Viruses, Robert Koch-Institute, Berlin, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus-Liebig-University, Giessen, Germany
| | - Stephanie Plog
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Hans-Dieter Walmrath
- Department of Internal Medicine II, University of Giessen Lung Center (UGLC) and German Center for Lung Research (DZL), Giessen, Germany
| | - Johannes Bodner
- Division of Thoracic Surgery, University of Giessen Lung Center (UGLC) and German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Gattenlöhner
- Department of Pathology, University of Giessen Lung Center (UGLC) and German Center for Lung Research (DZL), Giessen, Germany
| | - Peter Lewe-Schlosser
- Center for Radiation Therapy, University of Giessen Lung Center (UGLC) and German Center for Lung Research (DZL), Giessen, Germany
| | | | - Werner Seeger
- Department of Internal Medicine II, University of Giessen Lung Center (UGLC) and German Center for Lung Research (DZL), Giessen, Germany
| | - Juergen Lohmeyer
- Department of Internal Medicine II, University of Giessen Lung Center (UGLC) and German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University of Giessen Lung Center (UGLC) and German Center for Lung Research (DZL), Giessen, Germany
- * E-mail:
| |
Collapse
|
92
|
Li Y, Xie J, Wu S, Xia J, Zhang P, Liu C, Zhang P, Huang X. Protein kinase regulated by dsRNA downregulates the interferon production in dengue virus- and dsRNA-stimulated human lung epithelial cells. PLoS One 2013; 8:e55108. [PMID: 23372823 PMCID: PMC3555826 DOI: 10.1371/journal.pone.0055108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dengue virus (DENV) is found in the tropical and subtropical regions and affects millions of people annually. Currently, no specific vaccine or antiviral treatment against dengue virus is available. Innate immunity has been shown to be important for host resistance to DENV infection. Although protein kinase regulated by double-stranded RNA (PKR) has been found to promote the innate signaling in response to infection by several viruses, its role in the innate response to DENV infection is still unclear. Our study aimed to investigate the role of PKR in DENV-induced innate immune responses. METHODOLOGY/PRINCIPAL FINDINGS By RNAi, silencing of PKR significantly enhanced the expression of interferon (IFN)-β in DENV infected human lung epithelial A549 cells. Western blot and immunofluorescence microscopy data showed that PKR knockdown upregulated the activation of innate signaling cascades including p38 and JNK mitogen-activated protein kinases (MAPKs), interferon regulatory factor-3 and NF-κB, following DENV2 infection. Likewise, a negative regulatory effect of PKR on the IFN production was also observed in poly(IC) challenged cells. Moreover, the PKR knockdown-mediated IFN induction was attenuated by RIG-I or IPS-1 silencing. Finally, overexpression of a catalytically inactive PKR mutant (K296R), but not of a mutant lacking dsRNA binding activity (K64E) or the double mutant (K64EK296R), reversed the IFN induction mediated by PKR knockdown, suggesting that the dsRNA binding activity is required for PKR to downregulate IFN production. CONCLUSIONS/SIGNIFICANCE PKR acts as a negative regulator of IFN induction triggered by DENVs and poly(IC), and this regulation relies on its dsRNA binding activity. These findings reveal a novel regulatory role for PKR in innate immunity, suggesting that PKR might be a promising target for anti-DENV treatments.
Collapse
Affiliation(s)
- Yuye Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiong Xie
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyu Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jun Xia
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Peifen Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chao Liu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Ping Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xi Huang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
93
|
Reineke LC, Lloyd RE. Diversion of stress granules and P-bodies during viral infection. Virology 2013; 436:255-67. [PMID: 23290869 PMCID: PMC3611887 DOI: 10.1016/j.virol.2012.11.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 02/02/2023]
Abstract
RNA granules are structures within cells that impart key regulatory measures on gene expression. Two general types of RNA granules are conserved from yeast to mammals: stress granules (SGs), which contain many translation initiation factors, and processing bodies (P-bodies, PBs), which are enriched for proteins involved in RNA turnover. Because of the inverse relationship between appearance of RNA granules and persistence of translation, many viruses must subvert RNA granule function for replicative purposes. Here we discuss the viruses and mechanisms that manipulate stress granules and P-bodies to promote synthesis of viral proteins. Several themes have emerged for manipulation of RNA granules by viruses: (1) disruption of RNA granules at the mid-phase of infection, (2) prevention of RNA granule assembly throughout infection and (3) co-opting of RNA granule proteins for new or parallel roles in viral reproduction. Viruses must employ one or multiple of these routes for a robust and productive infection to occur. The possible role for RNA granules in promoting innate immune responses poses an additional reason why viruses must counteract the effects of RNA granules for efficient replication.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77035, USA
| | | |
Collapse
|
94
|
Carvalho-Filho MA, Carvalho BM, Oliveira AG, Guadagnini D, Ueno M, Dias MM, Tsukumo DM, Hirabara SM, Reis LF, Curi R, Carvalheira JBC, Saad MJA. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice. Endocrinology 2012; 153:5261-5274. [PMID: 22948222 DOI: 10.1210/en.2012-1400] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.
Collapse
Affiliation(s)
- M A Carvalho-Filho
- Department of Internal Medicine, State University of Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
The double-stranded RNA-dependent protein kinase PKR plays multiple roles in cells, in response to different stress situations. As a member of the interferon (IFN)‑Stimulated Genes, PKR was initially recognized as an actor in the antiviral action of IFN, due to its ability to control translation, through phosphorylation, of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). As such, PKR participates in the generation of stress granules, or autophagy and a number of viruses have designed strategies to inhibit its action. However, PKR deficient mice resist most viral infections, indicating that PKR may play other roles in the cell other than just acting as an antiviral agent. Indeed, PKR regulates several signaling pathways, either as an adapter protein and/or using its kinase activity. Here we review the role of PKR as an eIF2α kinase, its participation in the regulation of the NF-κB, p38MAPK and insulin pathways, and we focus on its role during infection with the hepatitis C virus (HCV). PKR binds the HCV IRES RNA, cooperates with some functions of the HCV core protein and may represent a target for NS5A or E2. Novel data points out for a role of PKR as a pro-HCV agent, both as an adapter protein and as an eIF2α-kinase, and in cooperation with the di-ubiquitin-like protein ISG15. Developing pharmaceutical inhibitors of PKR may help in resolving some viral infections as well as stress-related damages.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Unit Hepacivirus and Innate Immunity, Department Virology, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
96
|
Abstract
Double-stranded RNA-dependent protein kinase (PKR) is implicated in inflammation and immune dysfunction through its regulation of mitogen-activated protein kinases, interferon regulatory factor 3, nuclear factor κB, apoptosis, and autophagy pathways. A study shows that PKR is also required for the activation of inflammasomes and the subsequent release of high-mobility group box 1 (HMGB1) protein, a proinflammatory cytokine. Thus, the cell stress kinase PKR has multifaceted roles in the regulation of inflammatory immune responses, and PKR and HMGB1 are attractive targets for inflammasome-associated diseases.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
97
|
Increased expression of the dsRNA-activated protein kinase PKR in breast cancer promotes sensitivity to doxorubicin. PLoS One 2012; 7:e46040. [PMID: 23029376 PMCID: PMC3454339 DOI: 10.1371/journal.pone.0046040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
It has been reported that the expression and activity of the interferon-inducible, dsRNA-dependent protein kinase, PKR, is increased in mammary carcinoma cell lines and primary tumor samples. To extend these findings and determine how PKR signaling may affect breast cancer cell sensitivity to chemotherapy, we measured PKR expression by immunohistochemical staining of 538 cases of primary breast cancer and normal tissues. Significantly, PKR expression was elevated in ductal, lobular and squamous cell carcinomas or lymph node metastases but not in either benign tumor specimens or cases of inflammation compared to normal tissues. Furthermore, PKR expression was increased in precancerous stages of mammary cell hyperplasia and dysplasia compared to normal tissues, indicating that PKR expression may be upregulated by the process of tumorigenesis. To test the function of PKR in breast cancer, we generated MCF7, T-47D and MDA-MB-231 breast cancer cell lines with significantly reduced PKR expression by siRNA knockdown. Importantly, while knockdown of PKR expression had no effect on cell proliferation under normal growth conditions, MCF7, T-47D or MDA-MB-231 cells with reduced PKR expression or treated with a small molecule PKR inhibitor were significantly less sensitive to doxorubicin or H2O2-induced toxicity compared to control cells. In addition, the rate of eIF2α phosphorylation following treatment with doxorubicin was delayed in breast cancer cell lines with decreased PKR expression. Significantly, treatment of breast cancer lines with reduced PKR expression with either interferon-α, which increases PKR expression, or salubrinal, which increases eIF2α phosphorylation, restored doxorubicin sensitivity to normal levels. Taken together these results indicate that increased PKR expression in primary breast cancer tissues may serve as a biomarker for response to doxorubicin-containing chemotherapy and that future therapeutic approaches to promote PKR expression/activation and eIF2α phosphorylation may be beneficial for the treatment of breast cancer.
Collapse
|
98
|
Günel A. Modelling the interactions between TLR4 and IFNβ pathways. J Theor Biol 2012; 307:137-48. [PMID: 22575970 DOI: 10.1016/j.jtbi.2012.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/06/2023]
Abstract
Bacterial lipopolysaccharide (LPS) association with their connate receptor TLR4 triggers Type I interferon signaling cascade through its MyD88 independent downstream. Compared to plethora of reported empirical data on both TLR4 and Type I interferon pathways, there is no known model to decipher crosstalk mechanisms between these two crucial innate immune pathogen activated pathways regulating vital transcriptional factors such as nuclear factor-κB (NFκB), IFNβ, the interferon-stimulated gene factor-3 (ISGF3) and an important cancer drug target protein kinase-R (PKR). Innate immune system is based on a sensitive balance of intricate interactions. In elucidating these interactions, in silico integration of pathways has great potential. Attempts confined to single pathway may not be effective in truly addressing source of real systems behavior. This is the first report combining toll-like receptor-4 (TLR4) and interferon beta (IFNβ) pathways in a single in silico model, analyzing their interactions, pinpointing the source of delay in PKR late phase activity and limiting the transcription of IFN and PKR by using a method including an statistical physics technique in reaction equations. The model quite successfully recapitulates published interferon regulatory factor-3 (IRF3) and IFNβ data from mouse macrophages and PKR data from mouse embryonic fibroblast cell lines. The simulations end up with an estimate of IRF3, IFNβ, ISGF3 dose dependent profiles mimicking nonlinear dose response characteristic of the system. Involvement of concomitant PKR downstream can unravel elusive mechanisms in specific profiles like NFκB regulation.
Collapse
Affiliation(s)
- Aylin Günel
- Istanbul Technical University Informatics Institute, Maslak, 34469, Istanbul, Turkiye.
| |
Collapse
|
99
|
Abstract
Interferon cytokine family members shape the immune response to protect the host from both pathologic infections and tumorigenesis. To mediate their physiologic function, interferons evoke a robust and complex signal transduction pathway that leads to the induction of interferon-stimulated genes with both proinflammatory and antiviral functions. Numerous mechanisms exist to tightly regulate the extent and duration of these cellular responses. Among such mechanisms, the post-translational conjugation of ubiquitin polypeptides to protein mediators of interferon signaling has emerged as a crucially important mode of control. In this mini-review, we highlight recent advances in our understanding of these ubiquitin-mediated mechanisms, their exploitation by invading viruses, and their possible utilization for medical intervention.
Collapse
Affiliation(s)
- Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Comparative Oncology Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| |
Collapse
|
100
|
Bennett RL, Pan Y, Christian J, Hui T, May WS. The RAX/PACT-PKR stress response pathway promotes p53 sumoylation and activation, leading to G₁ arrest. Cell Cycle 2012; 11:407-17. [PMID: 22214662 DOI: 10.4161/cc.11.2.18999] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellular stresses, including growth factor deprivation, inflammatory cytokines or viral infection promote RAX/PACT-dependent activation of the double-stranded RNA-dependent protein kinase, PKR, to phosphorylate eIF2α, resulting in translation inhibition and apoptosis. In addition, PKR has been reported to regulate p53, STAT1 and NFκB. Here, we report that RAX/PACT interacts with the SUMO E2 ligase Ubc9 to stimulate p53-Ubc9 association and reversible p53 sumoylation on lysine 386. In addition, expression of RAX/PACT in a variety of cell lines promotes p53 stability and activity to increase p53 target gene expression. Significantly, while the expression of RAX/PACT, PKR or p53 alone has little effect on the cell cycle of p53-null H1299 cells, co-expression of p53 with either RAX/PACT or PKR promotes a 25-35% increase of cells in G₁. In contrast, co-expression of RAX/PACT with the sumoylation-deficient p53(K386R) mutant or with the desumoylase SENP1 fails to induce such a G₁ arrest. Furthermore, co-expression of p53, RAX/PACT and the dominantnegative PKR(K296R) mutant inhibits RAX/PACT-induced, p53-dependent G₁ growth arrest and expression of RAX/PACT in pkr(+/+) but not pkr(-/-) MEF cells promotes p53 and p21 expression following gamma irradiation. Significantly, p53 stability is decreased in cells with reduced RAX/PACT or PKR following doxorubicin treatment, and expression of exogenous RAX/ PACT promotes phosphorylation of wild-type but not p53(K386R) on serine 392. Collectively, results indicate that, in response to stress, the RAX/PACT-PKR signaling pathway may inhibit p53 protein turnover by a sumoylation-dependent mechanism with promotion of p53 phosphorylation and translational activation leading to G₁ cell cycle arrest.
Collapse
Affiliation(s)
- Richard L Bennett
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|