51
|
Rommelaere H, Waterschoot D, Neirynck K, Vandekerckhove J, Ampe C. A method for rapidly screening functionality of actin mutants and tagged actins. Biol Proced Online 2004; 6:235-249. [PMID: 15514698 PMCID: PMC524212 DOI: 10.1251/bpo94] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 09/23/2004] [Accepted: 10/01/2004] [Indexed: 11/26/2022] Open
Abstract
Recombinant production and biochemical analysis of actin mutants has been hampered by the fact that actin has an absolute requirement for the eukaryotic chaperone CCT to reach its native state. We therefore have developed a method to rapidly screen the folding capacity and functionality of actin variants, by combining in vitro expression of labelled actin with analysis on native gels, band shift assays or copolymerization tests. Additionally, we monitor, using immuno-fluorescence, incorporation of actin variants in cytoskeletal structures in transfected cells. We illustrate the method by two examples. In one we show that tagged versions of actin do not always behave native-like and in the other we study some of the molecular defects of three beta-actin mutants that have been associated with diseases.
Collapse
Affiliation(s)
- Heidi Rommelaere
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| | - Davy Waterschoot
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| | - Katrien Neirynck
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| | - Joël Vandekerckhove
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| | - Christophe Ampe
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| |
Collapse
|
52
|
Sekerková G, Zheng L, Loomis PA, Changyaleket B, Whitlon DS, Mugnaini E, Bartles JR. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells. J Neurosci 2004; 24:5445-56. [PMID: 15190118 PMCID: PMC2855134 DOI: 10.1523/jneurosci.1279-04.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Espins are associated with the parallel actin bundles of hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction in mice and humans. Here, we report that espins are also concentrated in the microvilli of a number of other sensory cells: vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells, and Merkel cells. Moreover, we show that hair cells and these other sensory cells contain novel espin isoforms that arise from a different transcriptional start site and differ significantly from other espin isoforms in their complement of ligand-binding activities and their effects on actin polymerization. The novel espin isoforms of sensory cells bundled actin filaments with high affinity in a Ca(2+)-resistant manner, bound actin monomer via a WASP (Wiskott-Aldrich syndrome protein) homology 2 domain, bound profilin via a single proline-rich peptide, and caused a dramatic elongation of microvillus-type parallel actin bundles in transfected epithelial cells. In addition, the novel espin isoforms of sensory cells differed from other espin isoforms in that they potently inhibited actin polymerization in vitro, did not bind the Src homology 3 domain of the adapter protein insulin receptor substrate p53, and did not bind the acidic, signaling phospholipid phosphatidylinositol 4,5-bisphosphate. Thus, the espins constitute a family of multifunctional actin cytoskeletal regulatory proteins with the potential to differentially influence the organization, dimensions, dynamics, and signaling capabilities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in various mechanosensory and chemosensory cells.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Drøbak BK, Franklin-Tong VE, Staiger CJ. The role of the actin cytoskeleton in plant cell signaling. THE NEW PHYTOLOGIST 2004; 163:13-30. [PMID: 33873778 DOI: 10.1111/j.1469-8137.2004.01076.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant actin cytoskeleton provides a dynamic cellular component which is involved in the maintenance of cell shape and structure. It has been demonstrated recently that the actin cytoskeleton and its associated elements provide a key target in many signaling events. In addition to acting as a target, the actin cytoskeleton can also act as a transducer of signal information. In this review we describe some newly discovered aspects of the roles of the actin cytoskeleton in plant cell signaling. In addition to a summary of the roles played by actin-binding proteins, we also briefly review the progress made in understanding how the actin cytoskeleton participates in the self-incompatibility response in pollen tubes. Finally, the emerging importance of the actin cytoskeleton in the perception and responses to stimuli such as gravity, touch and cold stress exposure are discussed. Contents I. Introduction - the actin cytoskeleton 13 II. Actin-binding proteins 14 III. The actin cytoskeleton as a target and mediator of plant cell signaling 20 IV. Summary and conclusion 25 References 25 Acknowledgements 25.
Collapse
Affiliation(s)
- B K Drøbak
- Cell Signaling Group, Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - V E Franklin-Tong
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - C J Staiger
- Purdue Motility Group, Department of Biological Sciences, Purdue University, 333 Hansen Life Sciences Building, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| |
Collapse
|
54
|
Lüscher B, Keller CA. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 2004; 102:195-221. [PMID: 15246246 DOI: 10.1016/j.pharmthera.2004.04.003] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural inhibition in the brain is mainly mediated by ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors. Different subtypes of these receptors, distinguished by their subunit composition, are either concentrated at postsynaptic sites where they mediate phasic inhibition or found at perisynaptic and extrasynaptic locations where they prolong phasic inhibition and mediate tonic inhibition, respectively. Of special interest are mechanisms that modulate the stability and function of postsynaptic GABA(A) receptor subtypes and that are implicated in functional plasticity of inhibitory transmission in the brain. We will summarize recent progress on the classification of synaptic versus extrasynaptic receptors, the molecular composition of the postsynaptic cytoskeleton, the function of receptor-associated proteins in trafficking of GABA(A) receptors to and from synapses, and their role in post-translational signaling mechanisms that modulate the stability, density, and function of GABA(A) receptors in the postsynaptic membrane.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
55
|
Hilpelä P, Vartiainen MK, Lappalainen P. Regulation of the Actin Cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol 2004; 282:117-63. [PMID: 14594216 DOI: 10.1007/978-3-642-18805-3_5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton is fundamental for various motile and morphogenetic processes in cells. The structure and dynamics of the actin cytoskeleton are regulated by a wide array of actin-binding proteins, whose activities are controlled by various signal transduction pathways. Recent studies have shown that certain membrane phospholipids, especially PI(4,5)P2 and PI(3,4,5)P3, regulate actin filament assembly in cells and in cell extracts. PI(4,5)P2 appears to be a general regulator of actin polymerization at the plasma membrane or at membrane microdomains, whereas PI(3,4,5)P3 promotes the assembly of specialized actin filament structures in response to some growth factors. Biochemical studies have demonstrated that the activities of many proteins promoting actin assembly are upregulated by PI(4,5)P2, whereas proteins that inhibit actin assembly or promote filament disassembly are down-regulated by PI(4,5)P2. PI(3,4,5)P3 promotes its effects on the actin cytoskeleton mainly through activation of the Rho family of small GTPases. In addition to their effects on actin dynamics, both PI(4,5)P2 and PI(3,4,5)P3 promote the formation of specific actin filament structures through activation/inactivation of actin filament cross-linking proteins and proteins that mediate cytoskeleton-plasma membrane interactions.
Collapse
Affiliation(s)
- P Hilpelä
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | | | | |
Collapse
|
56
|
Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG. RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. ACTA ACUST UNITED AC 2003; 162:1267-79. [PMID: 14517206 PMCID: PMC2173969 DOI: 10.1083/jcb.200304021] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud from the immediate postmitotic neuronal soma. Little is known about the mechanisms underlying the dramatic morphological changes that characterize this event. Here, we show that RhoA activity plays a decisive role during neuritogenesis of cultured hippocampal neurons by recruiting and activating its specific kinase ROCK, which, in turn, complexes with profilin IIa. We establish that this previously uncharacterized brain-specific actin-binding protein controls neurite sprouting by modifying actin stability, a function regulated by ROCK-mediated phosphorylation. Furthermore, we determine that this novel cascade is switched on or off by physiological stimuli. We propose that RhoA/ROCK/PIIa-mediated regulation of actin stability, shown to be essential for neuritogenesis, may constitute a central mechanism throughout neuronal differentiation.
Collapse
Affiliation(s)
- Jorge Santos Da Silva
- Cavalieri Ottolenghi Scientific Institute, University of Turin, 10043 Orbassano, Torino, Italy
| | | | | | | | | | | |
Collapse
|
57
|
Stüven T, Hartmann E, Görlich D. Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 2003; 22:5928-40. [PMID: 14592989 PMCID: PMC275422 DOI: 10.1093/emboj/cdg565] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 09/12/2003] [Accepted: 09/15/2003] [Indexed: 11/12/2022] Open
Abstract
Active macromolecular transport between the nucleus and cytoplasm proceeds through nuclear pore complexes and is mostly mediated by transport receptors of the importin beta-superfamily. Here we identify exportin 6 (Exp6) as a novel family member from higher eukaryotes and show that it mediates nuclear export of profilin.actin complexes. Exp6 appears to contact primarily actin, but the interaction is greatly enhanced by the presence of profilin. Profilin thus functions not only as the nucleotide exchange factor for actin, but can also be regarded as a cofactor of actin export and hence as a suppressor of actin polymerization in the nucleus. Even though human and Drosophila Exp6 share only approximately 20% identical amino acid residues, their function in profilin.actin export is conserved. A knock-down of Drosophila Exp6 by RNA interference abolishes nuclear exclusion of actin and results in the appearance of nuclear actin paracrystals. In contrast to a previous report, we found no indications of a major and direct role for CRM1 in actin export from mammalian or insect nuclei.
Collapse
Affiliation(s)
- Theis Stüven
- ZMBH, INF 282, D-69120 Heidelberg and Universität Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
58
|
Vartiainen MK, Sarkkinen EM, Matilainen T, Salminen M, Lappalainen P. Mammals have two twinfilin isoforms whose subcellular localizations and tissue distributions are differentially regulated. J Biol Chem 2003; 278:34347-55. [PMID: 12807912 DOI: 10.1074/jbc.m303642200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twinfilin is a highly conserved actin monomer-binding protein that regulates cytoskeletal dynamics in organisms from yeast to mammals. In addition to the previously characterized mammalian twinfilin-1, a second protein with approximately 65% sequence identity to twinfilin-1 exists in mouse and humans. However, previous studies failed to identify any actin binding activity in this protein (Rohwer, A., Kittstein, W., Marks, F., and Gschwendt, M. (1999) Eur. J. Biochem. 263, 518-525). Here we show that this protein, which we named twinfilin-2, is indeed an actin monomer-binding protein. Similar to twinfilin-1, mouse twinfilin-2 binds ADP-G-actin with a higher affinity (KD = 0.12 microM) than ATP-G-actin (KD = 1.96 microM) and efficiently inhibits actin filament assembly in vitro. Both mouse twinfilins inhibit the nucleotide exchange on actin monomers and directly interact with capping protein. Furthermore, the actin interactions of mouse twinfilin-1 and twinfilin-2 are inhibited by phosphatidylinositol (4,5)-bisphosphate. Although biochemically very similar, our Northern blots and in situ hybridizations show that these two proteins display distinct expression patterns. Twinfilin-1 is the major isoform in embryos and in most adult mouse non-muscle cell-types, whereas twinfilin-2 is the predominant isoform of adult heart and skeletal muscles. Studies with isoform-specific antibodies demonstrated that although the two proteins show similar localizations in unstimulated cells, they are regulated by different mechanisms. The small GTPases Rac1 and Cdc42 induce the redistribution of twinfilin-1 to membrane ruffles and cell-cell contacts, respectively, but do not affect the localization of twinfilin-2. Taken together, these data show that mammals have two twinfilin isoforms, which are differentially expressed and regulated through distinct cellular signaling pathways.
Collapse
MESH Headings
- 3T3 Cells
- Actins/chemistry
- Actins/metabolism
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Western
- Carrier Proteins
- Cell Communication
- Cells, Cultured
- Cytoskeleton/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation
- Glutathione Transferase/metabolism
- Humans
- In Situ Hybridization
- Kinetics
- Mice
- Microfilament Proteins/chemistry
- Microscopy, Fluorescence
- Molecular Sequence Data
- Phosphatidylinositol 4,5-Diphosphate/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases
- RNA/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Signal Transduction
- Time Factors
- Tissue Distribution
- Tumor Cells, Cultured
- cdc42 GTP-Binding Protein/chemistry
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Maria K Vartiainen
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
59
|
Tojo H, Kaieda I, Hattori H, Katayama N, Yoshimura K, Kakimoto S, Fujisawa Y, Presman E, Brooks CC, Pilch PF. The Formin family protein, formin homolog overexpressed in spleen, interacts with the insulin-responsive aminopeptidase and profilin IIa. Mol Endocrinol 2003; 17:1216-29. [PMID: 12677009 DOI: 10.1210/me.2003-0056] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insulin stimulates translocation of glucose transporter isoform type 4 (GLUT4) and the insulin-responsive aminopeptidase (IRAP) from an intracellular storage pool to the plasma membrane in muscle and fat cells. A role for the cytoskeleton in insulin action has been postulated, and the insulin signaling pathway has been well investigated; however, the molecular mechanism by which GLUT4/IRAP-containing vesicles move from an interior location to the cell surface in response to insulin is incompletely understood. Here, we have screened for IRAP-binding proteins using a yeast two-hybrid system and have found that the C-terminal domain of FHOS (formin homolog overexpressed in spleen) interacts with the N-terminal cytoplasmic domain of IRAP. FHOS is a member of the Formin/Diaphanous family of proteins that is expressed most abundantly in skeletal muscle. In addition, there are two novel types of FHOS transcripts generated by alternative mRNA splicing. FHOS78 has a 78-bp insertion and it is expressed mainly in skeletal muscle where it may be the most abundant isoform in humans. The ubiquitously expressed FHOS24 has a 24-bp insertion encoding an in-frame stop codon that results in a truncated polypeptide. It is known that some formin family proteins interact with the actin-binding profilin proteins. Both FHOS and FHOS78 bound to profilin IIa via their formin homology 1 domains, but neither bound profilin I or IIb. Overexpression of FHOS and FHOS78 resulted in enhanced insulin-stimulated glucose uptake in L6 cells to similar levels. However, overexpression of FHOS24, lacking the IRAP-binding domain, did not affect insulin-stimulated glucose uptake. These findings suggest that FHOS mediates an interaction between GLUT4/IRAP-containing vesicles and the cytoskeleton and may participate in exocytosis and/or retention of this membrane compartment.
Collapse
Affiliation(s)
- Hideaki Tojo
- Discovery Research Laboratories II, Pharmaceutical Research Division, Takeda Chemical Industries Co., Ltd., Tsukuba, Ibaraki 300-4293, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Skare P, Kreivi JP, Bergström A, Karlsson R. Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing. Exp Cell Res 2003; 286:12-21. [PMID: 12729790 DOI: 10.1016/s0014-4827(03)00102-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Profilin is one of the major components controlling actin polymerization. Here, profilin I was located in fibroblasts and HeLa cells by the use of two different sets of affinity-purified antibodies. Both antibody preparations labeled nuclei in a speckle-like pattern and displayed extensive colocalization with small nuclear ribonucleoprotein particle (snRNP)-core proteins and p80 coilin-containing Cajal bodies. Treatment with actinomycin D led to largely similar reorganizations of snRNPs and profilin, while profilin and Cajal bodies separated under these conditions. One of the profilin antibodies interfered with pre-mRNA splicing in vitro, further indicating a role for profilin during pre-mRNA processing.
Collapse
Affiliation(s)
- Petra Skare
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
61
|
Sechi AS, Buer J, Wehland J, Probst-Kepper M. Changes in actin dynamics at the T-cell/APC interface: implications for T-cell anergy? Immunol Rev 2002; 189:98-110. [PMID: 12445268 DOI: 10.1034/j.1600-065x.2002.18909.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Over the past 20 years the role of the actin cytoskeleton in the formation of the immunological synapse and in T-cell activation has been the subject of intense scrutiny. T-cell receptor (TCR) signaling leads to tyrosine phosphorylation of numerous adapter proteins whose function is to relay signals to downstream components of the TCR signaling pathway and, in particular, to molecules implicated in remodeling the actin cytoskeleton. Here, we discuss how signals from the TCR converge on two key regulators of the actin cytoskeleton, Ena/vasodilator-stimulated phosphoproteins (VASPs) and the actin-related protein (ARP2/3) complex. We also discuss the implications of TCR signaling in the process of T-cell anergy with particular emphasis on the actin remodeling and molecules involved in the control of T-cell proliferation.
Collapse
Affiliation(s)
- Antonio S Sechi
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
| | | | | | | |
Collapse
|
62
|
Xu Q, Modrek B, Lee C. Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res 2002; 30:3754-66. [PMID: 12202761 PMCID: PMC137414 DOI: 10.1093/nar/gkf492] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 07/08/2002] [Accepted: 07/08/2002] [Indexed: 11/13/2022] Open
Abstract
We have developed an automated method for discovering tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs). Using this approach, we have identified 667 tissue-specific alternative splice forms of human genes. We validated our muscle-specific and brain-specific splice forms for known genes. A high fraction (8/10) were reported to have a matching tissue specificity by independent studies in the published literature. The number of tissue-specific alternative splice forms is highest in brain, while eye-retina, muscle, skin, testis and lymph have the greatest enrichment of tissue-specific splicing. Overall, 10-30% of human alternatively spliced genes in our data show evidence of tissue-specific splice forms. Seventy-eight percent of our tissue-specific alternative splices appear to be novel discoveries. We present bioinformatics analysis of several tissue-specific splice forms, including automated protein isoform sequence and domain prediction, showing how our data can provide valuable insights into gene function in different tissues. For example, we have discovered a novel kidney-specific alternative splice form of the WNK1 gene, which appears to specifically disrupt its N-terminal kinase domain and may play a role in PHAII hypertension. Our database greatly expands knowledge of tissue-specific alternative splicing and provides a comprehensive dataset for investigating its functional roles and regulation in different human tissues.
Collapse
Affiliation(s)
- Qiang Xu
- Molecular Biology Institute and Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
63
|
da Silva JS, Dotti CG. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002; 3:694-704. [PMID: 12209118 DOI: 10.1038/nrn918] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sprouting of neurites, which will later become axons and dendrites, is an important event in early neuronal differentiation. Studies in living neurons indicate that neuritogenesis begins immediately after neuronal commitment, with the activation of membrane receptors by extracellular cues. These receptors activate intracellular cascades that trigger changes in the actin cytoskeleton, which promote the initial breakdown of symmetry. Then, through the regulation of gene transcription, and of microtubule and membrane dynamics, the newly formed neurite becomes stabilized. A key challenge is to define the molecular machinery that regulates the actin cytoskeleton during initial neurite sprouting. We propose that analysing the molecules involved in actin-dependent mechanisms in non-neuronal systems, such as budding yeast and migrating fibroblasts, could help to uncover the secrets of neuritogenesis.
Collapse
Affiliation(s)
- Jorge Santos da Silva
- Cavalieri Ottolenghi Scientific Institute, Universita Degli Studi di Torino, A.O. San Luigi Gonzaga, Regione Gonzole 10, 10024 Orbassano, Torino, Italy
| | | |
Collapse
|
64
|
Skare P, Karlsson R. Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian profilin I. FEBS Lett 2002; 522:119-24. [PMID: 12095630 DOI: 10.1016/s0014-5793(02)02913-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The binding of phosphatidylinositol(4,5)-bisphosphate (PI(4,5)P(2)) to profilin at a region distinct from the actin interaction surface is demonstrated by experiments with covalently cross-linked profilin:beta-actin. The result is in agreement with observations made with several mutant profilins and provides strong evidence for two regions on mammalian profilin mediating electrostatic interaction with phosphatidylinositol lipids; one close to the binding site for poly(L-proline), and one partially overlapping with the actin-binding surface. Congruent with this, two plant profilins, which have a reduced number of positive amino acids in one of these regions, displayed a dramatically lower binding to PI(4,5)P(2) compared to human profilin I.
Collapse
Affiliation(s)
- Petra Skare
- Department of Cell Biology, Wenner Gren Institute, Stockholm University, Sweden
| | | |
Collapse
|
65
|
Lambrechts A, Jonckheere V, Dewitte D, Vandekerckhove J, Ampe C. Mutational analysis of human profilin I reveals a second PI(4,5)-P2 binding site neighbouring the poly(L-proline) binding site. BMC BIOCHEMISTRY 2002; 3:12. [PMID: 12052260 PMCID: PMC116585 DOI: 10.1186/1471-2091-3-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Accepted: 05/28/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Profilin is a small cytoskeletal protein which interacts with actin, proline-rich proteins and phosphatidylinositol 4,5-bisphosphate (PI(4,5)-P2). Crystallography, NMR and mutagenesis of vertebrate profilins have revealed the amino acid residues that are responsible for the interactions with actin and poly(L-proline) peptides. Although Arg88 of human profilin I was shown to be involved in PI(4,5)-P2-binding, it was suggested that carboxy terminal basic residues may be involved as well. RESULTS Using site directed mutagenesis we have refined the PI(4,5)-P2 binding site of human profilin I. For each mutant we assessed the stability and studied the interactions with actin, a proline-rich peptide and PI(4,5)-P2 micelles. We identified at least two PI(4,5)-P2-binding regions in human profilin I. As expected, one region comprises Arg88 and overlaps with the actin binding site. The second region involves Arg136 in the carboxy terminal helix and neighbours the poly(L-proline) binding site. In addition, we show that adding a small protein tag to the carboxy terminus of profilin strongly reduces binding to poly(L-proline), suggesting local conformational changes of the carboxy terminal alpha-helix may have dramatic effects on ligand binding. CONCLUSIONS The involvement of the two terminal alpha-helices of profilin in ligand binding imposes important structural constraints upon the functions of this region. Our data suggest a model in which the competitive interactions between PI(4,5)-P2 and actin and PI(4,5)-P2 and poly(L-proline) regulate profilin functions.
Collapse
Affiliation(s)
- Anja Lambrechts
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Daisy Dewitte
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Joel Vandekerckhove
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christophe Ampe
- Department of Medical Protein Research (VIB09), Flanders Interuniversity Institute of Biotechnology and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
66
|
Braun A, Aszódi A, Hellebrand H, Berna A, Fässler R, Brandau O. Genomic organization of profilin-III and evidence for a transcript expressed exclusively in testis. Gene 2002; 283:219-25. [PMID: 11867228 DOI: 10.1016/s0378-1119(01)00855-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Profilins are small, widely expressed actin binding proteins, thought to be key regulators of actin dynamics in living cells. So far, three profilin-genes have been described: profilin-I (PFN1), profilin-II (PFN2) with two splice variants and the recently identified profilin-III (PFN3). Here we describe the genomic organization of the genes encoding human and mouse profilin-III. Both are single exon genes and lie in close vicinity to the renal sodium-phosphate transport gene 2 (SLC34A1, NPT2) which is highly expressed in kidney. Northern hybridization to rat tissues has previously demonstrated expression of an approximately 4.5 kb long profilin-III mRNA transcript in kidney and a mRNA transcript of approximately 1 kb in length in testis. Here we show that mouse profilin-III expression is restricted to testis and that the 4.2 kb profilin-III mRNA in kidney is the result of a slc34a1 transcript which includes the antisense profilin-III open reading frame in its 3'-untranslated region. Finally, we demonstrate by in situ hybridization that profilin-III mRNA is localized to cells in the late stage of spermatogenesis.
Collapse
Affiliation(s)
- Attila Braun
- Department of Experimental Pathology, Lund University, S-22185, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
The human blood platelet circulates in the blood as a non-adherent disk. Upon receiving signals of blood vessel damage, the platelet reorganizes its actin cytoskeleton which transforms it into a spiky dynamic adherent glue. This transformation involves a temporal sequence of four morphologically distinct steps which is reproducible in vitro. The actin dynamics underlying these shape changes depend on a large number of actin-binding proteins. Maintenance of the discoid shape requires actin-binding proteins that inhibit these reorganizations, whereas transformation involves other proteins, some to disassemble old filaments and others to polymerize new ones. F-Actin-affinity chromatography identified a large set of actin-binding proteins including VASP, Arp2 and 2E4/kaptin. Recent discoveries show that VASP inhibits filament disassembly and Arp2/3 is required to polymerize new filaments. Morphological analysis of the distribution of these actin-binding proteins in spread platelets together with biochemical measurements of their interactions with actin lead to a model of interactions with actin that mediate shape change.
Collapse
Affiliation(s)
- E L Bearer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
68
|
Kovar DR, Yang P, Sale WS, Drobak BK, Staiger CJ. Chlamydomonas reinhardtiiproduces a profilin with unusual biochemical properties. J Cell Sci 2001; 114:4293-305. [PMID: 11739661 DOI: 10.1242/jcs.114.23.4293] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the characterization of a profilin orthologue from Chlamydomonas reinhardtii. CrPRF, probably the only profilin isoform, is present in both the cell body and flagella. Examination of vegetative and gametic cells by immunofluorescence microscopy using multiple fixation procedures also revealed enrichment of CrPRF at the anterior of the cell near the base of flagella and near the base of the fertilization tubule in mating type plus gametes. Purified, recombinant CrPRF binds to actin with a Kd value ∼10–7 and displaces nuclei in a live cell ‘nuclear displacement’ assay, consistent with profilin’s ability to bind G-actin in vivo. However, when compared with other profilin isoforms, CrPRF has a relatively low affinity for poly-L-proline and for phosphatidylinositol (4,5) bisphosphate micelles. Furthermore, and surprisingly, CrPRF inhibits exchange of adenine nucleotide on G-actin in a manner similar to human ADF or DNase I. Thus, we postulate that a primary role for CrPRF is to sequester actin in Chlamydomonas. The unusual biochemical properties of CrPRF offer a new opportunity to distinguish specific functions for profilin isoforms.
Collapse
Affiliation(s)
- D R Kovar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | |
Collapse
|
69
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|