51
|
Light Y, Paterson H, Marais R. 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol Cell Biol 2002; 22:4984-96. [PMID: 12077328 PMCID: PMC139778 DOI: 10.1128/mcb.22.14.4984-4996.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Revised: 10/24/2001] [Accepted: 04/19/2002] [Indexed: 11/20/2022] Open
Abstract
We have investigated the role that S259 phosphorylation, S621 phosphorylation, and 14-3-3 binding play in regulating Raf-1 activity. We show that 14-3-3 binding, rather than Raf-1 phosphorylation, is required for the correct regulation of kinase activity. Phosphorylation of S621 is not required for activity, but 14-3-3 binding is essential. When 14-3-3 binding to conserved region 2 (CR2) was disrupted, Raf-1 basal kinase activity was elevated and it could be further activated by (V12,G37)Ras, (V23)TC21, and (V38)R-Ras. Disruption of 14-3-3 binding at CR2 did not recover binding of Raf-1 to (V12,G37)Ras but allowed more efficient recruitment of Raf-1 to the plasma membrane and stimulated its phosphorylation on S338. Finally, (V12)Ras, but not (V12,G37)Ras, displaced 14-3-3 from full-length Raf-1 and the Raf-1 bound to Ras. GTP was still phosphorylated on S259. Our data suggest that stable association of Raf-1 with the plasma membrane requires Ras-mediated displacement of 14-3-3 from CR2. Small G proteins that cannot displace 14-3-3 fail to recruit Raf-1 to the membrane efficiently and so fail to stimulate kinase activity.
Collapse
Affiliation(s)
- Yvonne Light
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
52
|
Dumaz N, Light Y, Marais R. Cyclic AMP blocks cell growth through Raf-1-dependent and Raf-1-independent mechanisms. Mol Cell Biol 2002; 22:3717-28. [PMID: 11997508 PMCID: PMC133826 DOI: 10.1128/mcb.22.11.3717-3728.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2001] [Revised: 12/13/2001] [Accepted: 03/02/2002] [Indexed: 11/20/2022] Open
Abstract
It is widely accepted that cyclic AMP (cAMP) can block cell growth by phosphorylating Raf-1 on serine 43 and inhibiting signaling to extracellular signal-regulated protein kinase. We show that the suppression of Raf-1 by cAMP is considerably more complex than previously reported. When cellular cAMP is elevated, Raf-1 is phosphorylated on three residues (S43, S233, and S259), which work independently to block Raf-1. Both Ras-dependent and Ras-independent processes are disrupted. However, when cAMP-insensitive versions of Raf-1 are expressed in NIH 3T3 cells, their growth is still strongly suppressed when cAMP is elevated. Thus, although Raf-1 appears to be an important cAMP target, other pathways are also targeted by cAMP, providing alternative mechanisms that lead to suppression of cell growth.
Collapse
Affiliation(s)
- Nicolas Dumaz
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | | |
Collapse
|
53
|
Stork PJS, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002; 12:258-66. [PMID: 12074885 DOI: 10.1016/s0962-8924(02)02294-8] [Citation(s) in RCA: 704] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hormonal stimulation of cyclic adenosine monophosphate (cAMP) and the cAMP-dependent protein kinase PKA regulates cell growth by multiple mechanisms. A hallmark of cAMP is its ability to stimulate cell growth in many cell types while inhibiting cell growth in others. In this review, the cell type-specific effects of cAMP on the mitogen-activated protein (MAP) kinase (also called extracellular signal-regulated kinase, or ERK) cascade and cell proliferation are examined. Two basic themes are discussed. First, the capacity of cAMP for either positive or negative regulation of the ERK cascade accounts for many of the cell type-specific actions of cAMP on cell proliferation. Second, there are several specific mechanisms involved in the inhibition or activation of ERKs by cAMP. Emerging new data suggest that one of these mechanisms might involve the activation of the GTPase Rap1, which can activate or inhibit ERK signaling in a cell-specific manner.
Collapse
Affiliation(s)
- Philip J S Stork
- Vollum Institute and the Dept of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97201, USA.
| | | |
Collapse
|
54
|
Chan EYW, Stang SL, Bottorff DA, Stone JC. Mutations in conserved regions 1, 2, and 3 of Raf-1 that activate transforming activity. Mol Carcinog 2002; 33:189-97. [PMID: 11933072 DOI: 10.1002/mc.10031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To investigate the role of Raf-1 in v-Ha-ras transformation, we have isolated and characterized a number of Raf-1 mutants that display increased transforming activity in Rat2 fibroblasts. A dipeptide deletion (Delta144-145) in the cysteine-rich domain (CRD) of conserved region (CR) 1 increased the interaction between Raf-1 and v-Ha-ras effector loop mutants in the yeast two-hybrid system, supporting the proposal that the CRD serves as a secondary ras-binding domain. Many activating mutations were located in CR2. Two representative CR2 mutants (Delta250-258 and S257L) displayed increased interaction with v-Ha-ras effector loop mutants and with mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) 1 in the two-hybrid system. One novel mutation in CR3 was recovered; G361S affected the third glycine of the GXGXXG protein kinase motif involved in ATP binding. Expression of G361S Raf-1 in Rat2 fibroblasts activated MEK and ERK. The CR1, CR2, and CR3 activating mutations, when combined in cis, cooperated in transforming Rat2 fibroblasts. Conversely, Raf-1 transforming activity was decreased when the S257L or G361S mutation was combined in cis with the R89E substitution, which disrupts ras-Raf interaction. This mutant analysis provides additional information about the distinct functions of individual Raf-1 regions and documents a novel genetic mechanism for activating an oncogenic kinase.
Collapse
Affiliation(s)
- Edmond Y W Chan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
55
|
Coles LC, Shaw PE. PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene 2002; 21:2236-44. [PMID: 11948406 DOI: 10.1038/sj.onc.1205302] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2001] [Revised: 01/02/2002] [Accepted: 01/08/2002] [Indexed: 11/08/2022]
Abstract
The serine/threonine kinase Raf-1 acts downstream of Ras in the MAPK pathway leading to ERK activation in response to mitogens. Raf-1 has oncogenic potential, but is normally controlled by a complex interplay of inhibitory and activating mechanisms. Although Raf-1 is phosphorylated in unstimulated cells, mitogens cause its membrane recruitment by Ras and subsequent phosphorylation on additional sites. Some of these events modulate Raf-1 kinase activity while others determine interactions with other proteins. These changes regulate the ability of Raf-1 to phosphorylate its downstream targets MEK1 and MEK2. Rho family small G proteins act synergistically with Raf-1 to stimulate the ERK pathway by a cross-cascade mechanism that enhances MEK phosphorylation by Raf-1. Here we show that both Raf-1 and MEK1 are phosphorylated by PAK1 and that mutations at PAK1 phosphorylation sites in either protein prevent cross-cascade activation. In contrast, MEK1 activation by constitutively-active Raf-1 is refractory to mutations at PAK1 phosphorylation sites. Phosphorylation of MEK1 on serine 298 does not appear to regulate the interaction between Raf-1 and MEK1, but rather the ability of Raf-1 to phosphorylate MEK1 with which it is complexed in vivo. Our findings indicate that PAK1 primes MEK1 for activation by Raf-1 and imply another level of regulation in the ERK cascade.
Collapse
Affiliation(s)
- Lucy C Coles
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
56
|
Zang M, Hayne C, Luo Z. Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. J Biol Chem 2002; 277:4395-405. [PMID: 11733498 DOI: 10.1074/jbc.m110000200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation of Raf-1 is a complex process in which phosphorylation of Ser(338)-Tyr(341) is a critical step. Previous studies have shown that Pak1/2 is implicated in both Ras-dependent and -independent activation of Raf-1 by phosphorylating Raf Ser(338). The present study explores the structural basis of Raf-1 phosphorylation by Pak1. We found that Pak directly associates with Raf-1 under both physiological and overexpressed conditions. The association is greatly stimulated by 4beta-12-O-tetradecanoylphorbol-13-acetate and nocodazole and by expression of the active mutants of Rac and Ras. The active forms of Pak generated by mutation of Thr(423) to Glu or truncation of the amino-terminal moiety exhibit a greater binding to Raf than the wild type, whereas the kinase-dead mutant Pak barely binds Raf. The extent of binding to Raf-1 is correlated with the ability of Pak to phosphorylate Raf and induce mitogen-activated protein kinase activation. Furthermore, the Raf-1 binding site is defined to the carboxyl terminus of the Pak catalytic domain. In addition, our results suggest that the amino-terminal regulatory region of Raf inhibits the interaction. Taken together, the results indicate that the interaction depends on the active conformations of Pak and Raf. They also argue that Pak1 is a physiological candidate for phosphorylation of Raf Ser(338) during the course of Raf activation.
Collapse
Affiliation(s)
- Mengwei Zang
- Diabetes and Metabolism Research Unit, Endocrinology Section, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
57
|
Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W. The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 2002; 80:239-56. [PMID: 11897507 DOI: 10.1016/s0960-0760(01)00189-3] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitogen-activated protein kinase (MAP kinase) cascades transmit and amplify signals involved in cell proliferation as well as cell death. These signal transduction pathways serve as an indicators of the intensity of trafficking induced by various growth factor, steroid hormone, and G protein receptor mediated ligands. Three major MAP kinase pathways exist in human tissues, but the one involving ERK-1 and -2 is most relevant to breast cancer. Peptide growth factors acting through tyrosine kinase containing receptors are the major regulators of ERK-1 and -2. Estradiol, progesterone, and testosterone can act non-genomically via membrane associated receptors to activate MAP kinase as can various other ligands acting through heterotrimeric G protein receptors. Recent studies demonstrate that breast cancers frequently contain an increased proportion of cells with the activated form of MAP kinase. In estrogen receptor positive breast tumors, MAP kinase pathways can exert "cross talk" effects at the level of ER induced transcription as well as at the level of the cell cycle. Estradiol stimulates cell proliferation by mechanisms which involve activation of MAP kinase, either through rapid, non-transcription effects or by increasing growth factor production and consequently MAP kinase. Progesterone and androgens also stimulate MAP kinase through both of these two mechanisms. Strategies used to treat hormone dependent breast cancer appear to result in upregulation of MAP kinase activation. Direct experimental data demonstrate that the pressure of estradiol deprivation results in the upregulation of MAP kinase in breast cancer cells growing in tissue culture and as xenografts. A number of investigators have now studied the expression of activated MAP kinase in human breast cancer tissues by enzymatic assay and by immunohistochemical techniques. Approximately half of breast tumors express more activated MAP kinase than does the surrounding benign tissue. Studies show a trend toward higher MAP kinase activity in primary tumors of node positive than in node negative patients. However, larger numbers of patients must be studied for these results to achieve statistical significance. The up-regulation of MAP kinase activity does not represent mutations of Ras, but appears to result from enhancement of growth factor pathway activation. No data are yet available on the relationship between MAP kinase activation and apoptosis. Additional studies are now needed to determine the precise relationship between MAP kinase activation and tumor proliferation, apoptosis, and degree of invasiveness as well as on disease free and overall survival.
Collapse
Affiliation(s)
- Richard J Santen
- Department of Medicine, Division of Endocrinology, University of Virginia Health System, P.O. Box 800379, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Llorens F, Garcia L, Itarte E, Gómez N. Apigenin and LY294002 prolong EGF-stimulated ERK1/2 activation in PC12 cells but are unable to induce full differentiation. FEBS Lett 2002; 510:149-53. [PMID: 11801244 DOI: 10.1016/s0014-5793(01)03252-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In rat pheochromocytoma cell line (PC12) cells, initial epidermal growth factor (EGF)-stimulated extracellular signal-regulated protein kinases 1/2 (ERK1/2) phosphorylation was similar to that promoted by nerve growth factor (NGF), but declined rapidly. Pre-treatment with apigenin or LY294002 sustained EGF-stimulated ERK1/2 phosphorylation whereas wortmannin partially blocked initial ERK1/2 phosphorylation. Changes in ERK1/2 phosphorylation correlated with alterations in p90 ribosomal S6 kinase activity. Wortmannin, LY294002 and apigenin totally blocked growth factor-induced protein kinase B phosphorylation. However, none of them potentiated Raf activation, which was in fact decreased by LY290042 and wortmannin. The sustained EGF-induced ERK1/2 activation promoted by apigenin was not sufficient to commit PC12 cells to differentiate, which was achieved by stimulation with NGF, either alone or in the presence of apigenin.
Collapse
Affiliation(s)
- Franc Llorens
- Departament de Bioquímica i Biologia Molecular, Unitats de Bioquímica de Ciències i de Veterinària, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
59
|
Dhillon AS, Meikle S, Yazici Z, Eulitz M, Kolch W. Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J 2002; 21:64-71. [PMID: 11782426 PMCID: PMC125807 DOI: 10.1093/emboj/21.1.64] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Raf-1 kinase is regulated by phosphorylation, and Ser259 has been identified as an inhibitory phosphorylation site. Here we show that the dephosphorylation of Ser259 is an essential part of the Raf-1 activation process, and further reveal the molecular role of Ser259. The fraction of Raf-1 that is phosphorylated on Ser259 is refractory to mitogenic stimulation. Mutating Ser259 elevates kinase activity because of enhanced binding to Ras and constitutive membrane recruitment. This facilitates the phosphorylation of an activating site, Ser338. The mutation of Ser259 also increases the functional coupling to MEK, augmenting the efficiency of MEK activation. Our results suggest that Ser259 regulates the coupling of Raf-1 to upstream activators as well as to its downstream substrate MEK, thus determining the pool of Raf-1 that is competent for signalling. They also suggest a new model for Raf-1 activation where the release of repression through Ser259 dephosphorylation is the pivotal step.
Collapse
Affiliation(s)
- Amardeep S. Dhillon
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Institute for Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK and GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistrasse 25, D-81377 München, Germany Corresponding author e-mail:
| | - Sharon Meikle
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Institute for Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK and GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistrasse 25, D-81377 München, Germany Corresponding author e-mail:
| | - Zihni Yazici
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Institute for Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK and GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistrasse 25, D-81377 München, Germany Corresponding author e-mail:
| | - Manfred Eulitz
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Institute for Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK and GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistrasse 25, D-81377 München, Germany Corresponding author e-mail:
| | - Walter Kolch
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Institute for Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK and GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistrasse 25, D-81377 München, Germany Corresponding author e-mail:
| |
Collapse
|
60
|
Kampfer S, Windegger M, Hochholdinger F, Schwaiger W, Pestell RG, Baier G, Grunicke HH, Uberall F. Protein kinase C isoforms involved in the transcriptional activation of cyclin D1 by transforming Ha-Ras. J Biol Chem 2001; 276:42834-42. [PMID: 11551901 DOI: 10.1074/jbc.m102047200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transcriptional activation of the cyclin D1 by oncogenic Ras appears to be mediated by several pathways leading to the activation of multiple transcription factors which interact with distinct elements of the cyclin D1 promoter. The present investigations revealed that cyclin D1 induction by transforming Ha-Ras is MEK- and Rac-dependent and requires the PKC isotypes epsilon, lambda, and zeta, but not cPKC-alpha. This conclusion is based on observations indicating that cyclin D1 induction by transforming Ha-Ras was depressed in a dose-dependent manner by PD98059, a selective inhibitor of the mitogen-activated kinase kinase MEK-1, demonstrating that Ha-Ras employs extracellular signal-regulated kinases (ERKs) for signal transmission to the cyclin D1 promoter. Evidence is presented that PKC isotypes epsilon and zeta, but not lambda are required for the Ras-mediated activation of ERKs. Expression of kinase-defective, dominant negative (DN) mutants of nPKC-epsilon or aPKC-zeta inhibit ERK activation by constitutively active Raf-1. Phosphorylation within the TEY motif and subsequent activation of ERKs by constitutively active MEK-1 was significantly inhibited by DN aPKC-zeta, indicating that aPKC-zeta functions downstream of MEK-1 in the pathway leading to cyclin D1 induction. In contrast, TEY phosphorylation induced by constitutively active MEK-1 was not effected by nPKC-epsilon, suggesting another position for this kinase within the cascade investigated. Transformation by oncogenic Ras requires activation of several Ras effector pathways which may be PKC-dependent and converge on the cyclin D1 promoter. Therefore, we investigated a role for PKC isotypes in the Ras-Rac-mediated transcriptional regulation of cyclin D1. We have been able to reveal that cyclin D1 induction by oncogenic Ha-Ras is Rac-dependent and requires the PKC isotypes epsilon, lambda, and zeta, but not cPKC-alpha. Evidence is presented that aPKC-lambda acts upstream of Rac, between Ras and Rac, whereas the PKC isotypes epsilon and zeta act downstream of Rac and are required for the activation of ERKs.
Collapse
Affiliation(s)
- S Kampfer
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Li W, Chong H, Guan KL. Function of the Rho family GTPases in Ras-stimulated Raf activation. J Biol Chem 2001; 276:34728-37. [PMID: 11457831 DOI: 10.1074/jbc.m103496200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras plays an essential role in activation of Raf kinase which is directly responsible for activation of the MEK-ERK kinase pathway. A direct protein-protein interaction between Ras and the N-terminal regulatory domain of Raf is critical for Raf activation. However, association with Ras is not sufficient to activate Raf in vitro, indicating that Ras must activate some other biochemical events leading to activation of Raf. We have observed that RasV12Y32F and RasV12T35S mutants fail to activate Raf, yet retain the ability to interact with Raf. In this report, we showed that RasV12Y32F and RasV12T35S can cooperate with members of the Rho family GTPases to activate Raf while alone the Rho family GTPase is not effective in Raf activation. A dominant negative mutant of Rac or RhoA can block Raf activation by Ras. The effect of Rac or Cdc42 can be substituted by the Pak kinase, which is a direct downstream target of Rac/Cdc42. Furthermore, expression of a kinase inactive mutant of Pak or the N-terminal inhibitory domain of Pak1 can block the effect of Rac or Cdc42. In contrast, Pak appears to play no direct role in relaying the signal from RhoA to Raf, indicating that RhoA utilizes a different mechanism than Rac/Cdc42. Membrane-associated but not cytoplasmic Raf can be activated by Rac or RhoA. Our data support a model by which the Rho family small GTPases play an important role to mediate the activation of Raf by Ras. Ras, at least, has two distinct functions in Raf activation, recruitment of Raf to the plasma membrane by direct binding and stimulation of Raf activating kinases via the Rho family GTPases.
Collapse
Affiliation(s)
- W Li
- Department of Biological Chemistry and The Institute of Gerontology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|