51
|
Zhong M, Kang H, Liu W, Ma L, Liu D. Alkaloid diversity expansion of a talent fungus Penicillium raistrichii through OSMAC-based cultivation. Front Microbiol 2023; 14:1279140. [PMID: 38029208 PMCID: PMC10665910 DOI: 10.3389/fmicb.2023.1279140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Alkaloidal natural products are attractive for their broad spectrum of pharmaceutical bioactivities. In the present work, the highly productive saline soil derived fungus, Penicillium raistrichii, was subjected to the strategy of OSMAC (one strain many compounds) with changes of cultivation status. Then, the work-flow led to the expansion of the alkaloid chemical diversity and subsequently induced the accumulation of four undescribed alkaloids, named raistrimides A-D (1-4), including three β-carbolines (1-3), one 2-quinolinone (4), and one new natural product, 2-quinolinone (5), along with five known alkaloid chemicals (6-10). Methods A set of NMR techniques including 1H, 13C, HSQC and HMBC, along with other spectroscopic data of UV-Vis, IR and HRESIMS, were introduced to assign the plain structures of compounds 1-10. The absolute configuration of 1-3 were elucidated by means of X-ray crystallography or spectroscopic analyses on optical rotation values and experimental electronic circular dichroism (ECD) data. In addition, it was the first report on the confirmation of structures of 6, 7 and 9 by X-ray crystallography data. The micro-broth dilution method was applied to evaluate antimicrobial effect of all compounds towards Staphylococcus aureus, Escherichia coli, and Candida albicans. Results and discussion The results indicated compounds 1, 3 and 4 to be bioactive, which may be potential for further development of anti-antimicrobial agents. The finding in this work implied that OSMAC strategy was a powerful and effective tool for promotion of new chemical entities from P. raistrichii.
Collapse
Affiliation(s)
| | | | | | - Liying Ma
- Laboratory of Natural Drug Discovery and Research, College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Desheng Liu
- Laboratory of Natural Drug Discovery and Research, College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
52
|
Bhat MP, Rudrappa M, Hugar A, Gunagambhire PV, Suresh Kumar R, Nayaka S, Almansour AI, Perumal K. In-vitro investigation on the biological activities of squalene derived from the soil fungus Talaromyces pinophilus. Heliyon 2023; 9:e21461. [PMID: 38027970 PMCID: PMC10654146 DOI: 10.1016/j.heliyon.2023.e21461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The consistent increase in multidrug resistance among pathogens and increased cancer incidence are serious public health concerns and threaten humans by killing countless lives. In the present study, Talaromyces pinophilus CJ15 was characterized and evaluated for its antibacterial, candidicidal and cytotoxic activities. The selected isolate Talaromyces pinophilus CJ15 with 18S rRNA gene sequence of 1021 base pairs exhibited antifungal activity on plant pathogens via dual culture. The GC-MS profiling of crude extract illustrated the existence of many bioactive macromolecules which include squalene belonging to the terpenoids family. The biological macromolecules in the bioactive fraction of CJ15 exhibited increasing antibacterial activity with an increase in concentration such that the highest activity was recorded against Shigella flexneri with 15, 18, 20, and 24 mm inhibition zones at 25, 50, 75 and 100 μl concentrations, respectively. The squalene, having a molecular weight of 410.718 g/mol, displayed candidicidal activity with a right-side shifted log phase in the growth curve of all the treated Candida species, indicating delayed exponential growth. In cytotoxic activity, the extracted squalene exhibited an IC50 concentration of 26.22 μg/ml against JURKAT cells and induced apoptosis-induced cell death. This study's outcomes encourage the researchers to explore further the development of new and improved bioactive macromolecules that could help to prevent infections and human blood cancer.
Collapse
Affiliation(s)
| | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | - Anil Hugar
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | | | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
53
|
Liu Z, Vinh LB, Tuan NQ, Lee H, Kim E, Kim YC, Sohn JH, Yim JH, Lee HJ, Lee DS, Oh H. Macrosphelides from Antarctic fungus Pseudogymnoascus sp. (strain SF-7351) and their neuroprotective effects on BV2 and HT22 cells. Chem Biol Interact 2023; 385:110718. [PMID: 37777167 DOI: 10.1016/j.cbi.2023.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Strategies for reducing inflammation in neurodegenerative diseases have attracted increasing attention. Herein, we discovered and evaluated the neuroprotective potential of fungal metabolites isolated from the Antarctic fungus Pseudogymnoascus sp. (strain SF-7351). The chemical investigation of the EtOAc extract of the fungal strain isolate revealed a novel naturally occurring epi-macrosphelide J (1), a novel secondary metabolite macrosphelide N (2), and three known compounds, namely macrosphelide A (3), macrosphelide B (4), and macrosphelide J (5). Their structures were established unambiguously using spectroscopic methods, such as one-dimensional and two-dimensional nuclear magnetic resonance (1D and 2D-NMR) spectroscopy, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and gauge-including atomic orbital (GIAO) NMR chemical shift calculations, with the support of the advanced statistical method DP4+. Among the isolated metabolites, the absolute configuration of epi-macrosphelide J (1) was further confirmed using single-crystal X-ray diffraction analysis. The neuroprotective effects of the isolated metabolites were evaluated in lipopolysaccharide (LPS)-induced BV2 and glutamate-stimulated HT22 cells. Only macrosphelide B (4) displayed substantial protective effects in both BV2 and HT22 cells. Molecular mechanisms underlying this activity were investigated using western blotting and molecular docking studies. Macrosphelide B (4) inhibited the inflammatory response by reducing the nuclear translocation of NF-κB (p65) in LPS-induced BV2 cells and induced the Nrf2/HO-1 signaling pathway in both BV2 and HT22 cells. The neuroprotective effect of macrosphelide B (4) is related to the interaction between Keap1 and p65. These results suggest that macrosphelide B (4), present in the fungus Pseudogymnoascus sp. (strain SF-7351), may serve as a candidate for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiming Liu
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| | - Le Ba Vinh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, South Korea.
| | - Nguyen Quoc Tuan
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, South Korea.
| | - Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| | - Eunae Kim
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, South Korea.
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan, 46958, South Korea.
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea.
| | - Ha-Jin Lee
- Division of Chemistry and Bio-Environmental Sciences, Seoul Women's University, Seoul, 01797, South Korea.
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, South Korea.
| |
Collapse
|
54
|
Shepherd RA, Earp CE, Cank KB, Raja HA, Burdette J, Maher SP, Marin AA, Ruberto AA, Mai SL, Darveaux BA, Kyle DE, Pearce CJ, Oberlies NH. Sheptide A: an antimalarial cyclic pentapeptide from a fungal strain in the Herpotrichiellaceae. J Antibiot (Tokyo) 2023; 76:642-649. [PMID: 37731043 PMCID: PMC10602849 DOI: 10.1038/s41429-023-00655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
As part of ongoing efforts to isolate biologically active fungal metabolites, a cyclic pentapeptide, sheptide A (1), was discovered from strain MSX53339 (Herpotrichiellaceae). The structure and sequence of 1 were determined primarily by analysis of 2D NMR and HRMS/MS data, while the absolute configuration was assigned using a modified version of Marfey's method. In an in vitro assay for antimalarial potency, 1 displayed a pEC50 value of 5.75 ± 0.49 against malaria-causing Plasmodium falciparum. Compound 1 was also tested in a counter screen for general cytotoxicity against human hepatocellular carcinoma (HepG2), yielding a pCC50 value of 5.01 ± 0.45 and indicating a selectivity factor of ~6. This makes 1 the third known cyclic pentapeptide biosynthesized by fungi with antimalarial activity.
Collapse
Affiliation(s)
- Robert A Shepherd
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Cody E Earp
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kristof B Cank
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Joanna Burdette
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Steven P Maher
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Adriana A Marin
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Anthony A Ruberto
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Sarah Lee Mai
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | | | - Dennis E Kyle
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
55
|
Zhang Z, Ge Y, In Y, Igarashi Y. Botryorhodines K and L, two new cytotoxic depsidones from a fungus of the genus Arcopilus. J Antibiot (Tokyo) 2023; 76:673-677. [PMID: 37670100 DOI: 10.1038/s41429-023-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Botryorhodines K (1) and L (2), two new depsidone derivatives, along with one known metabolite, 4-O-demethylbarbatic acid (3), were isolated from the culture extract of a fungus of the genus Arcopilus. The structures of 1‒3 were determined by the analysis of NMR and MS spectral data and the absolute configuration of 1 was established by single-crystal X-ray diffraction analysis. Compounds 1 and 2 showed antimicrobial activity against Gram-positive bacteria and cytotoxicity against murine leukemia P388 cells.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yiwei Ge
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuko In
- Department of Physical Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka, 569-1094, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
56
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
57
|
Mountessou BYG, Anoumedem ÉGM, Kemkuignou BM, Marin-Felix Y, Surup F, Stadler M, Kouam SF. Secondary metabolites of Diaporthe cameroonensis, isolated from the Cameroonian medicinal plant Trema guineensis. Beilstein J Org Chem 2023; 19:1555-1561. [PMID: 37915561 PMCID: PMC10616697 DOI: 10.3762/bjoc.19.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
From a fresh root of Trema guineensis (Ulmaceae), endophytic fungi were isolated, among which a taxon belonging to the new species Diaporthe cameroonensis. This strain was fermented in shake flask batch cultures and the broth was extracted with ethyl acetate. From the crude extract, a hemiketal polyketide 1, and an acetylated alternariol 2 were isolated, along with fifteen known secondary metabolites. Their structures were established by extensive NMR spectroscopy and mass spectrometry analyses, as well as by comparison with literature data of their analogs.
Collapse
Affiliation(s)
- Bel Youssouf G Mountessou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Élodie Gisèle M Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany,
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany,
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Frank Surup
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany,
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany,
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Simeon Fogue Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| |
Collapse
|
58
|
Basavarajappa DS, Niazi SK, Bepari A, Assiri RA, Hussain SA, Muzaheed, Nayaka S, Hiremath H, Rudrappa M, Chakraborty B, Hugar A. Efficacy of Penicillium limosum Strain AK-7 Derived Bioactive Metabolites on Antimicrobial, Antioxidant, and Anticancer Activity against Human Ovarian Teratocarcinoma (PA-1) Cell Line. Microorganisms 2023; 11:2480. [PMID: 37894138 PMCID: PMC10609037 DOI: 10.3390/microorganisms11102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Natural metabolites from beneficial fungi were recognized for their potential to inhibit multidrug-resistant human and plant fungal pathogens. The present study describes the isolation, metabolite profiling, antibacterial, and antifungal, antioxidant, and anticancer activities of soil fungi. Among the 17 isolates, the AK-7 isolate was selected based on the primary screening. Further, the identification of isolate AK-7 was performed by 18S rRNA sequencing and identified as Penicillium limosum (with 99.90% similarity). Additionally, the ethyl acetate extract of the Penicillium limosum strain AK-7 (AK-7 extract) was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and a Gas Chromatography-Mass Spectroscopy (GC-MS) analysis, and the results showed different functional groups and bioactive metabolites. Consequently, a secondary screening of antibacterial activity by the agar well diffusion method showed significant antibacterial activity against Gram-negative and Gram-positive bacterial pathogens. The AK-7 extract exhibited notable antifungal activity by a food poisoning method and showed maximum inhibition of 77.84 ± 1.62%, 56.42 ± 1.27%, and 37.96 ± 1.84% against Cercospora canescens, Fusarium sambucinum and Sclerotium rolfsii phytopathogens. Consequently, the AK-7 extract showed significant antioxidant activity against DPPH and ABTS•+ free radicals with IC50 values of 59.084 μg/mL and 73.36 μg/mL. Further, the anticancer activity of the AK-7 extract against the human ovarian teratocarcinoma (PA-1) cell line was tested by MTT and Annexin V flow cytometry. The results showed a dose-dependent reduction in cell viability and exhibited apoptosis with an IC50 value of 82.04 μg/mL. The study highlights the potential of the Penicillium limosum strain AK-7 as a source of active metabolites and natural antibacterial, antifungal, antioxidant, and anticancer agent, and it could be an excellent alternative for pharmaceutical and agricultural sectors.
Collapse
Affiliation(s)
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia
| | - Asmatanzeem Bepari
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.B.); (R.A.A.)
| | - Rasha Assad Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.B.); (R.A.A.)
| | - Syed Arif Hussain
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Riyadh 13713, Saudi Arabia;
| | - Muzaheed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Halaswamy Hiremath
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Anil Hugar
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| |
Collapse
|
59
|
Lei HM, Wang JT, Hu QY, Li CQ, Mo MH, Zhang KQ, Li GH, Zhao PJ. 2-Furoic acid associated with the infection of nematodes by Dactylellina haptotyla and its biocontrol potential on plant root-knot nematodes. Microbiol Spectr 2023; 11:e0189623. [PMID: 37754836 PMCID: PMC10580851 DOI: 10.1128/spectrum.01896-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/05/2023] [Indexed: 09/28/2023] Open
Abstract
Dactylellina haptotyla is a typical nematode-trapping fungus that has garnered the attention of many scholars for its highly effective lethal potential for nematodes. Secondary metabolites play an important role in D. haptotyla-nematode interactions, but which metabolites perform which function remains unclear. We report the metabolic functions based on high-quality, chromosome-level genome assembly of wild D. haptotyla YMF1.03409. The results indicate that a large variety of secondary metabolites and their biosynthetic genes were significantly upregulated during the nematode-trapping stage. In parallel, we identified that 2-furoic acid was specifically produced during nematode trapping by D. haptotyla YMF1.03409 and isolated it from fermentation production. 2-Furoic acid demonstrated strong nematicidal activity with an LD50 value of 55.05 µg/mL against Meloidogyne incognita at 48 h. Furthermore, the pot experiment showed that the number of galls of tomato root was significantly reduced in the experimental group treated with 2-furoic acid. The considerable increase in the 2-furoic acid content during the infection process and its virulent nematicidal activity revealed an essential synergistic effect during the process of nematode-trapping fungal infection. IMPORTANCE Dactylellina haptotyla have significant application potential in nematode biocontrol. In this study, we determined the chromosome-level genome sequence of D. haptotyla YMF1.03409 by long-read sequencing technology. Comparative genomic analysis identified a series of pathogenesis-related genes and revealed significant gene family contraction events during the evolution of D. haptotyla YMF1.03409. Combining transcriptomic and metabolomic data as well as in vitro activity test results, a compound with important application potential in nematode biocontrol, 2-furoic acid, was identified. Our result expanded the genetic resource of D. haptotyla and identified a previously unreported nematicidal small molecule, which provides new options for the development of plant biocontrol agents.
Collapse
Affiliation(s)
- Hong-Mei Lei
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Jun-Tao Wang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Qian-Yi Hu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Chun-Qiang Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ming-He Mo
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Guo-Hong Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Pei-Ji Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
60
|
Riedling O, Walker AS, Rokas A. Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557468. [PMID: 37745539 PMCID: PMC10515863 DOI: 10.1101/2023.09.12.557468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Fungal secondary metabolites (SMs) play a significant role in the diversity of ecological communities, niches, and lifestyles in the fungal kingdom. Many fungal SMs have medically and industrially important properties including antifungal, antibacterial, and antitumor activity, and a single metabolite can display multiple types of bioactivities. The genes necessary for fungal SM biosynthesis are typically found in a single genomic region forming biosynthetic gene clusters (BGCs). However, whether fungal SM bioactivity can be predicted from specific attributes of genes in BGCs remains an open question. We adapted previously used machine learning models for predicting SM bioactivity from bacterial BGC data to fungal BGC data. We trained our models to predict antibacterial, antifungal, and cytotoxic/antitumor bioactivity on two datasets: 1) fungal BGCs (dataset comprised of 314 BGCs), and 2) fungal (314 BGCs) and bacterial BGCs (1,003 BGCs); the second dataset was our control since a previous study using just the bacterial BGC data yielded prediction accuracies as high as 80%. We found that the models trained only on fungal BGCs had balanced accuracies between 51-68%, whereas training on bacterial and fungal BGCs yielded balanced accuracies between 61-74%. The lower accuracy of the predictions from fungal data likely stems from the small number of BGCs and SMs with known bioactivity; this lack of data currently limits the application of machine learning approaches in studying fungal secondary metabolism. However, our data also suggest that machine learning approaches trained on bacterial and fungal data can predict SM bioactivity with good accuracy. With more than 15,000 characterized fungal SMs, millions of putative BGCs present in fungal genomes, and increased demand for novel drugs, efforts that systematically link fungal SM bioactivity to BGCs are urgently needed.
Collapse
Affiliation(s)
- Olivia Riedling
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Allison S Walker
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
61
|
Liu L, Wang B, Duan G, Wang J, Pan Z, Ou M, Bai X, Wang P, Zhao D, Nan N, Li D, Sun W. Histone Deacetylase UvHST2 Is a Global Regulator of Secondary Metabolism in Ustilaginoidea virens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13124-13136. [PMID: 37615365 DOI: 10.1021/acs.jafc.3c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ustilaginoidea virens, the causal agent of rice false smut, produces a large amount of mycotoxins, including ustilaginoidins and sorbicillinoids. However, little is known about the regulatory mechanism of mycotoxin biosynthesis inU. virens. Here, we demonstrate that the NAD+-dependent histone deacetylase UvHST2 negatively regulates ustilaginoidin biosynthesis. UvHst2 knockout caused retarded hypha growth and reduced conidiation and pathogenicity inU. virens. Transcriptome analysis revealed that the transcription factor genes, transporter genes, and other tailoring genes in eight biosynthetic gene clusters (BGCs) including ustilaginoidin and sorbicillinoid BGCs were upregulated in ΔUvhst2. Interestingly, the UvHst2 deletion affects alternative splicing. Metabolomics revealed that UvHST2 negatively regulates the biosynthesis of various mycotoxins including ustilaginoidins, sorbicillin, ochratoxin B, zearalenone, and O-M-sterigmatocystin. Combined transcriptome and metabolome analyses uncover that UvHST2 positively regulates pathogenicity but negatively modulates the expression of BGCs involved in secondary metabolism. Collectively, UvHST2 functions as a global regulator of secondary metabolism inU. virens.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Bo Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Guohua Duan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Jing Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Zequn Pan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Mingming Ou
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Xiaolong Bai
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Peiying Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Dan Zhao
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Nan Nan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Dayong Li
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
62
|
Scaife K, Vo TD, Dommels Y, Leune E, Albermann K, Pařenicová L. In silico and in vitro safety assessment of a fungal biomass from Rhizomucor pusillus for use as a novel food ingredient. Food Chem Toxicol 2023; 179:113972. [PMID: 37532172 DOI: 10.1016/j.fct.2023.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
To address the growing world population and reduce the impact of environmental changes on the global food supply, ingredients are being produced using microorganisms to yield sustainable and innovative products. Food ingredients manufactured using modern biotechnology must be produced by non-toxigenic and nonpathogenic production organisms that do not harbor antimicrobial resistance (AMR). Several fungal species represent attractive targets as sources of alternative food products. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus strain CBS 143028. The whole genome sequence of this strain was annotated and subjected to sequence homology searches and in silico phenotype prediction tools to identify genetic elements encoding for protein toxins active via oral consumption, virulence factors associated with pathogenicity, and determinants of AMR. The in silico investigation revealed no genetic elements sharing significant sequence homology with putative virulence factors, protein toxins, or AMR determinants, including the absence of mucoricin, an essential toxin in the pathogenesis of mucormycosis. These in silico findings were corroborated in vitro based on the absence of clinically relevant mycotoxin or antibacterial secondary metabolites. Consequently, it is unlikely that R. pusillis strain CBS 143028 would pose a safety concern for use in food for human consumption.
Collapse
Affiliation(s)
- Kevin Scaife
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 21, Mississauga, ON, L5N 2X7, Canada.
| | - Trung D Vo
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 21, Mississauga, ON, L5N 2X7, Canada
| | - Yvonne Dommels
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands
| | - Elisa Leune
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands
| | - Kaj Albermann
- Labvantage - Biomax GmbH, Robert-Koch-Str. 2, 82152, Planegg, Germany
| | - Lucie Pařenicová
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands; BioXact, Böttgerwater 44, 2497, ZJ, Den Haag, Netherlands
| |
Collapse
|
63
|
Pishgouii F, Lotfi S, Sedaghati E. Anti-AChE and Anti-BuChE Screening of the Fermentation Broth Extracts from Twelve Aspergillus Isolates and GC-MS and Molecular Docking Studies of the Most Active Extracts. Appl Biochem Biotechnol 2023; 195:5199-5216. [PMID: 37129742 DOI: 10.1007/s12010-023-04548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nowadays, the administration of cholinesterase enzyme (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE) inhibitors is very common for the symptomatic treatment of Alzheimer's disease and the other forms of dementia and CNS disorders. In this paper, the anti-AChE and anti-BuChE activities of the fermentation broth ethyl acetate extracts from twelve Aspergillus isolates were evaluated by Ellman method. The results showed that A1 (Aspergillus flavus) and A5 (Aspergillus tubingensis, isolate 1) extracts with IC50 values of 46.77 μg/mL and 75.85 μg/mL possess the greatest ability to inhibit AChE and BuChE, respectively. GC-MS analysis of the extracts (A1 and A5) demonstrated that two alkaloids named 14-methyl-16-azabicyclo[10.3.1]hexadeca-1(15),12(16),13-triene (MAHT) and 6-chloro-2-methyl-7,8,9,10-tetrahydro-phenanthridine (CMTP) account for the highest percentage of A1 (26.95%) and A5 (25.5%) extracts, respectively. A 2-pyrazoline derivative, 5-hydroxy-3-(4-pyridinyl)-5-trifluoromethyl-1-(2,4,6-trimethylphenoxyacetyl)- (PHPTT), also constituted the high percentage (9.54%) of A5 extract. The anticholinesterase and neuroprotective effects of some 2-pyrazoline derivatives have been previously reported. The interaction study of MAHT with human AChE and CMTP and PHPTT with human BuChE using molecular docking indicated that these alkaloids bind to the active site gorge of the enzymes with high affinity. The best docking scores of MAHT, CMTP, and PHPTT were -7.1, -8.2, and -9.7 kcal/mol, respectively.
Collapse
Affiliation(s)
- Fatemeh Pishgouii
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Ebrahim Sedaghati
- Department of Plant Protection, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
64
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
65
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
66
|
Caesar LK, Butun FA, Robey MT, Ayon NJ, Gupta R, Dainko D, Bok JW, Nickles G, Stankey RJ, Johnson D, Mead D, Cank KB, Earp CE, Raja HA, Oberlies NH, Keller NP, Kelleher NL. Correlative metabologenomics of 110 fungi reveals metabolite-gene cluster pairs. Nat Chem Biol 2023; 19:846-854. [PMID: 36879060 PMCID: PMC10313767 DOI: 10.1038/s41589-023-01276-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023]
Abstract
Natural products research increasingly applies -omics technologies to guide molecular discovery. While the combined analysis of genomic and metabolomic datasets has proved valuable for identifying natural products and their biosynthetic gene clusters (BGCs) in bacteria, this integrated approach lacks application to fungi. Because fungi are hyper-diverse and underexplored for new chemistry and bioactivities, we created a linked genomics-metabolomics dataset for 110 Ascomycetes, and optimized both gene cluster family (GCF) networking parameters and correlation-based scoring for pairing fungal natural products with their BGCs. Using a network of 3,007 GCFs (organized from 7,020 BGCs), we examined 25 known natural products originating from 16 known BGCs and observed statistically significant associations between 21 of these compounds and their validated BGCs. Furthermore, the scalable platform identified the BGC for the pestalamides, demystifying its biogenesis, and revealed more than 200 high-scoring natural product-GCF linkages to direct future discovery.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Fatma A Butun
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Matthew T Robey
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Navid J Ayon
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Raveena Gupta
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - David Dainko
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Grant Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - Kristof B Cank
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Cody E Earp
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
67
|
Schilling M, Levasseur M, Barbier M, Oliveira-Correia L, Henry C, Touboul D, Farine S, Bertsch C, Gelhaye E. Wood Degradation by Fomitiporia mediterranea M. Fischer: Exploring Fungal Adaptation Using Metabolomic Networking. J Fungi (Basel) 2023; 9:jof9050536. [PMID: 37233247 DOI: 10.3390/jof9050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Fomitiporia mediterranea M. Fischer (Fmed) is a white-rot wood-decaying fungus associated with one of the most important and challenging diseases in vineyards: Esca. To relieve microbial degradation, woody plants, including Vitis vinifera, use structural and chemical weapons. Lignin is the most recalcitrant of the wood cell wall structural compounds and contributes to wood durability. Extractives are constitutive or de novo synthesized specialized metabolites that are not covalently bound to wood cell walls and are often associated with antimicrobial properties. Fmed is able to mineralize lignin and detoxify toxic wood extractives, thanks to enzymes such as laccases and peroxidases. Grapevine wood's chemical composition could be involved in Fmed's adaptation to its substrate. This study aimed at deciphering if Fmed uses specific mechanisms to degrade grapevine wood structure and extractives. Three different wood species, grapevine, beech, and oak. were exposed to fungal degradation by two Fmed strains. The well-studied white-rot fungus Trametes versicolor (Tver) was used as a comparison model. A simultaneous degradation pattern was shown for Fmed in the three degraded wood species. Wood mass loss after 7 months for the two fungal species was the highest with low-density oak wood. For the latter wood species, radical differences in initial wood density were observed. No differences between grapevine or beech wood degradation rates were observed after degradation by Fmed or by Tver. Contrary to the Tver secretome, one manganese peroxidase isoform (MnP2l, jgi protein ID 145801) was the most abundant in the Fmed secretome on grapevine wood only. Non-targeted metabolomic analysis was conducted on wood and mycelium samples, using metabolomic networking and public databases (GNPS, MS-DIAL) for metabolite annotations. Chemical differences between non-degraded and degraded woods, and between mycelia grown on different wood species, are discussed. This study highlights Fmed physiological, proteomic and metabolomic traits during wood degradation and thus contributes to a better understanding of its wood degradation mechanisms.
Collapse
Affiliation(s)
| | - Marceau Levasseur
- CNRS, Institut de Chimie des Substances Naturelles (ICSN), UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | - Lydie Oliveira-Correia
- INRAE, AgroParisTech, Micalis Institute, PAPPSO, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Céline Henry
- INRAE, AgroParisTech, Micalis Institute, PAPPSO, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - David Touboul
- CNRS, Institut de Chimie des Substances Naturelles (ICSN), UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
- CNRS, Laboratoire de Chimie Moléculaire (LCM), UMR 9168, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Sibylle Farine
- Laboratoire Vigne Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 Rue de Herrlisheim, 68000 Colmar, France
| | - Christophe Bertsch
- Laboratoire Vigne Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 Rue de Herrlisheim, 68000 Colmar, France
| | - Eric Gelhaye
- INRAE, IAM, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
68
|
Bhat MP, Chakraborty B, Nagaraja SK, Gunagambhire PV, Kumar RS, Nayaka S, Almansour AI, Perumal K. Aspergillus niger CJ6 extract with antimicrobial potential promotes in-vitro cytotoxicity and induced apoptosis against MIA PaCa-2 cell line. ENVIRONMENTAL RESEARCH 2023; 229:116008. [PMID: 37121347 DOI: 10.1016/j.envres.2023.116008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the increased number of multidrug-resistant strains among pathogens is a severe public health concern and cancer is posing a great threat for humans. These problems should be tackled with the development of novel and broad-spectrum antimicrobials from microbial origin. During the present study, the bioactive secondary metabolites from Aspergillus niger CJ6 were extracted, characterized; their biological properties were evaluated by subjecting them for antimicrobial, antifungal and anticancer activities. The potent isolate Aspergillus niger CJ6 with nucleotide sequence of 959 base pairs showed antagonistic activity against fungal pathogens in dual culture. The chemical profiling of crude ethyl acetate extract indicated the presence of various bioactive molecules belonging to phenolic, hydrocarbons, and phthalate derivative classes. In antimicrobial activity, the crude extract displayed increasing activity with increased concentration; the highest activity observed against Shigella flexneri with 15 ± 1.0, 19 ± 0.5, 20 ± 1.0 and 24 ± 1.0 mm zones of inhibition at 25, 50, 75 and 100 μl concentrations. The MTT assay illustrated deformed cells of MIA PaCa-2 cell line in in-vitro cytotoxic activity; outflow of cell matrix and membrane rupture; the IC50 of 90.78 μg/ml suggested moderate potential of extract to prevent cancer cell growth. The apoptosis/necrosis study by flow cytometer exhibited 8.98 ± 0.85% early and 73 ± 0.7% of late apoptotic population with 3.8 ± 1.1% necrotic cells; only 14.22 ± 0.6% of healthy cells suggested the increased apoptosis inducing capacity of Aspergillus niger CJ6 crude extract. The outcomes of this study persuade further exploration on the identification, purification and development of novel bioactive agents that could help battle fatal diseases in humans.
Collapse
Affiliation(s)
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| | | | | | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
69
|
Tiwari P, Dufossé L. Focus and Insights into the Synthetic Biology-Mediated Chassis of Economically Important Fungi for the Production of High-Value Metabolites. Microorganisms 2023; 11:1141. [PMID: 37317115 PMCID: PMC10222946 DOI: 10.3390/microorganisms11051141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Substantial progress has been achieved and knowledge gaps addressed in synthetic biology-mediated engineering of biological organisms to produce high-value metabolites. Bio-based products from fungi are extensively explored in the present era, attributed to their emerging importance in the industrial sector, healthcare, and food applications. The edible group of fungi and multiple fungal strains defines attractive biological resources for high-value metabolites comprising food additives, pigments, dyes, industrial chemicals, and antibiotics, including other compounds. In this direction, synthetic biology-mediated genetic chassis of fungal strains to enhance/add value to novel chemical entities of biological origin is opening new avenues in fungal biotechnology. While substantial success has been achieved in the genetic manipulation of economically viable fungi (including Saccharomyces cerevisiae) in the production of metabolites of socio-economic relevance, knowledge gaps/obstacles in fungal biology and engineering need to be remedied for complete exploitation of valuable fungal strains. Herein, the thematic article discusses the novel attributes of bio-based products from fungi and the creation of high-value engineered fungal strains to promote yield, bio-functionality, and value-addition of the metabolites of socio-economic value. Efforts have been made to discuss the existing limitations in fungal chassis and how the advances in synthetic biology provide a plausible solution.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, F-97490 Saint-Denis, France
| |
Collapse
|
70
|
Dutta M, Hazra A, Bhattacharya E, Bose R, Mandal Biswas S. Characterization and metabolomic profiling of two pigment producing fungi from infected fruits of Indian Gooseberry. Arch Microbiol 2023; 205:141. [PMID: 36964798 DOI: 10.1007/s00203-023-03483-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 03/26/2023]
Abstract
Two pigment producing fungi, Talaromyces atroroseus and Penicillium choerospondiatis, were isolated and identified from infected fruits of Phyllanthus emblica L. based on amplification and sequencing of internal transcribed spacer region and beta-tubulin gene. This is the first occurrence report of these two fungi from fruits of P. emblica. Culture extract containing metabolites of T. atroroseus and P. choerospondiatis contained phenolics of 26.35 mg and 30.89 mg GAE/g dry extract respectively; whereas no significant amount of flavonoids and tannins were detected. P. choerospondiatis metabolites extract showed higher DPPH and ABTS activity with IC50 values of 21.94 mg/ml and 27.03 mg/ml respectively than T. atroroseus. LC-HRMS analysis of metabolites extract of T. atroroseus revealed presence of trimethyl-isopropyl-butanamide, perlolyrine, N-hexadecanoylpyrrolidine etc. whereas P. choerospondiatis displayed presence of tangeraxanthin, ugaxanthone, daphniphylline, etc. Therefore, fungal metabolites are rich natural sources of diversified compounds that can be utilized in dyeing industries, cosmetics and novel drug development.
Collapse
Affiliation(s)
- Madhurima Dutta
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India.
| | - Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Ekta Bhattacharya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Rahul Bose
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Suparna Mandal Biswas
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India.
| |
Collapse
|
71
|
Al Subeh Z, Flores-Bocanegra L, Raja HA, Burdette JE, Pearce CJ, Oberlies NH. Embellicines C-E: Macrocyclic Alkaloids with a Cyclopenta[b]fluorene Ring System from the Fungus Sarocladium sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:596-603. [PMID: 36884371 PMCID: PMC10043936 DOI: 10.1021/acs.jnatprod.2c01048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Macrocyclic alkaloids with a cyclopenta[b]fluorene ring system are a relatively young structural class of fungal metabolites, with the first members reported in 2013. Bioassay-guided fractionation of a Sarocladium sp. (fungal strain MSX6737) led to a series of both known and new members of this structural class (1-5), including the known embellicine A (1), three new embellicine analogues (2, 4, and 5), and a semisynthetic acetylated analogue (3). The structures were identified by examining both high-resolution electrospray ionization mass spectrometry data and one-dimensional and two-dimensional NMR spectra. The relative configurations of these molecules were established via 1H-1H coupling constants and nuclear Overhauser effect spectroscopy, while comparisons of the experimental electronic circular dichroism (ECD) spectra with the time-dependent density functional theory ECD calculations were utilized to assign their absolute configurations, which were in good agreement with the literature. These alkaloids (1-5) showed cytotoxic activity against a human breast cancer cell line (MDA-MB-231) that ranged from 0.4 to 4.8 μM. Compounds 1 and 5 were also cytotoxic against human ovarian (OVCAR3) and melanoma (MDA-MB-435) cancer cell lines.
Collapse
Affiliation(s)
- Zeinab
Y. Al Subeh
- Department
of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro 27402, North Carolina, United States
| | - Laura Flores-Bocanegra
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro 27402, North Carolina, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro 27402, North Carolina, United States
| | - Joanna E. Burdette
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago 60612, Illinois, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., Hillsborough 27278, North Carolina, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro 27402, North Carolina, United States
| |
Collapse
|
72
|
Zhang Y, Xun H, Gao Q, Qi F, Sun J, Tang F. Chemical Constituents of the Mushroom Dictyophora indusiata and Their Anti-Inflammatory Activities. Molecules 2023; 28:molecules28062760. [PMID: 36985732 PMCID: PMC10052543 DOI: 10.3390/molecules28062760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
As an edible and medicinal fungus, Dictyophora indusiata is well-known for its morphological elegance, distinctive taste, high nutritional value, and therapeutic properties. In this study, eighteen compounds (1-18) were isolated and identified from the ethanolic extract of D. indusiata; four (1-4) were previously undescribed. Their molecular structures and absolute configurations were determined via a comprehensive analysis of spectroscopic data (1D/2D NMR, HRESIMS, ECD, and XRD). Seven isolated compounds were examined for their anti-inflammatory activities using an in vitro model of lipopolysaccharide (LPS)-simulated BV-2 microglial cells. Compound 3 displayed the strongest inhibitory effect on tumor necrosis factor-α (TNF-α) expression, with an IC50 value of 11.9 μM. Compound 16 exhibited the highest inhibitory activity on interleukin-6 (IL-6) production, with an IC50 value of 13.53 μM. Compound 17 showed the most potent anti-inflammatory capacity by inhibiting the LPS-induced generation of nitric oxide (NO) (IC50: 10.86 μM) and interleukin-1β (IL-1β) (IC50: 23.9 μM) and by significantly suppressing induced nitric oxide synthase (iNOS) and phosphorylated nuclear factor-kappa B inhibitor-α (p-IκB-α) expression at concentrations of 5 μM and 20 μM, respectively (p < 0.01). The modes of interactions between the isolated compounds and the target inflammation-related proteins were investigated in a preliminary molecular docking study. These results provided insight into the chemodiversity and potential anti-inflammatory activities of metabolites with small molecular weights in the mushroom D. indusiata.
Collapse
Affiliation(s)
- Yingfang Zhang
- Key Laboratory of National Forestry and Grassland Administration Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Hang Xun
- Key Laboratory of National Forestry and Grassland Administration Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Quan Gao
- Anhui Key Laboratory of Agricultural Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Feifei Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jia Sun
- Key Laboratory of National Forestry and Grassland Administration Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
- Eurofins Agroscience Services, Hercules, CA 94547, USA
| | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
73
|
Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. J Fungi (Basel) 2023; 9:jof9030362. [PMID: 36983530 PMCID: PMC10058990 DOI: 10.3390/jof9030362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Fungi represent an important source of bioactive secondary metabolites (SMs), which have wide applications in many fields, including medicine, agriculture, human health, and many other industries. The genes involved in SM biosynthesis are usually clustered adjacent to each other into a region known as a biosynthetic gene cluster (BGC). The recent advent of a diversity of genetic and genomic technologies has facilitated the identification of many cryptic or uncharacterized BGCs and their associated SMs. However, there are still many challenges that hamper the broader exploration of industrially important secondary metabolites. The recent advanced CRISPR/Cas system has revolutionized fungal genetic engineering and enabled the discovery of novel bioactive compounds. In this review, we firstly introduce fungal BGCs and their relationships with associated SMs, followed by a brief summary of the conventional strategies for fungal genetic engineering. Next, we introduce a range of state-of-the-art CRISPR/Cas-based tools that have been developed and review recent applications of these methods in fungi for research on the biosynthesis of SMs. Finally, the challenges and limitations of these CRISPR/Cas-based systems are discussed and directions for future research are proposed in order to expand their applications and improve efficiency for fungal genetic engineering.
Collapse
|
74
|
Mund NK, Čellárová E. Recent advances in the identification of biosynthetic genes and gene clusters of the polyketide-derived pathways for anthraquinone biosynthesis and biotechnological applications. Biotechnol Adv 2023; 63:108104. [PMID: 36716800 DOI: 10.1016/j.biotechadv.2023.108104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Natural anthraquinones are represented by a large group of compounds. Some of them are widespread across the kingdoms, especially in bacteria, fungi and plants, while the others are restricted to certain groups of organisms. Despite the significant pharmacological potential of several anthraquinones (hypericin, skyrin and emodin), their biosynthetic pathways and candidate genes coding for key enzymes have not been experimentally validated. Understanding the genetic and epigenetic regulation of the anthraquinone biosynthetic gene clusters in fungal endophytes would help not only understand their pathways in plants, which ensure their commercial availability, but also favor them as promising systems for prospective biotechnological production.
Collapse
Affiliation(s)
- Nitesh Kumar Mund
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia
| | - Eva Čellárová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia.
| |
Collapse
|
75
|
Zhao Y, Chen D, Duan H, Li P, Wu W, Wang X, Poapolathep A, Poapolathep S, Logrieco AF, Pascale M, Wang C, Zhang Z. Sample preparation and mass spectrometry for determining mycotoxins, hazardous fungi, and their metabolites in the environment, food, and healthcare. Trends Analyt Chem 2023; 160:116962. [DOI: 10.1016/j.trac.2023.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
76
|
Shen SJ, Feng ZY, Jiang SJ, Liu L, Fu SJ, Chen WH, Sun QY, Chen JJ. Azaphilones from the Fungus Penicillium multicolor LZUC-S2 and Their Antibacterial Activity. Chem Biodivers 2023; 20:e202201180. [PMID: 36785981 DOI: 10.1002/cbdv.202201180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Two new azaphilones, penimultiones A and B, together with seven known analogs were isolated from the culture of Penicillium multicolor LZUC-S2. Their structures were elucidated by detailed spectroscopic data analysis and chemical transformation. Penimultiones A and B belong to a rare class of azaphilones possessing a 1,3-dioxolane moiety. In addition, all compounds were evaluated for their antibacterial activity against five clinically bacterial strains in vitro, and three compounds showed potent antibacterial activity with minimum inhibitory concentration (MIC) values ranging from 12.5 to 50.0 μg/mL.
Collapse
Affiliation(s)
- Shi-Jin Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zi-Yun Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Song-Jie Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li Liu
- Center for Inspection of, Gansu Drug Administration, Lanzhou, 730070, P. R. China
| | - Shi-Jing Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wan-Hong Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qi-Yue Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
77
|
Effective production of kojic acid in engineered Aspergillus niger. Microb Cell Fact 2023; 22:40. [PMID: 36843006 PMCID: PMC9969635 DOI: 10.1186/s12934-023-02038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Kojic acid (KA) is a widely used compound in the cosmetic, medical, and food industries, and is typically produced by Aspergillus oryzae. To meet increasing market demand, it is important to optimize KA production through seeking alternatives that are more economic than current A. oryzae-based methods. RESULTS In this study, we achieved the first successful heterologous production of KA in Aspergillus niger, an industrially important fungus that does not naturally produce KA, through the expression of the kojA gene from A. oryzae. Using the resulting KA-producing A. niger strain as a platform, we identified four genes (nrkA, nrkB, nrkC, and nrkD) that negatively regulate KA production. Knocking down nrkA or deleting any of the other three genes resulted in a significant increase in KA production in shaking flask cultivation. The highest KA titer (25.71 g/L) was achieved in a pH controlled batch bioreactor using the kojA overexpression strain with a deletion of nrkC, which showed a 26.7% improvement compared to the KA titer (20.29 g/L) that was achieved in shaking flask cultivation. CONCLUSION Our study demonstrates the potential of using A. niger as a platform for studying KA biosynthesis and regulation, and for the cost-effective production of KA in industrial strain development.
Collapse
|
78
|
Kumar G, Kiran Tudu A. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorg Med Chem 2023; 80:117187. [PMID: 36731248 DOI: 10.1016/j.bmc.2023.117187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogen responsible for various community and hospital-acquired infections with life-threatening complications like bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. Antibiotics have been used to treat microbial infections since the introduction of penicillin in 1940. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi, including the treatment of non-microbial diseases, have led to the rapid emergence of multidrug-resistant pathogens with increased virulence. Bacteria have developed several complementary mechanisms to avoid the effects of antibiotics. These mechanisms include chemical transformations and enzymatic inactivation of antibiotics, modification of antibiotics' target site, and reduction of intracellular antibiotics concentration by changes in membrane permeability or by the overexpression of efflux pumps (EPs). The strategy to check antibiotic resistance includes synthesis of the antibiotic analogues, or antibiotics are given in combination with the adjuvant. The inhibitors of multidrug EPs are considered promising alternative therapeutic options with the potential to revive the effects of antibiotics and reduce bacterial virulence. Natural products played a vital role in drug discovery and significantly contributed to the area of infectious diseases. Also, natural products provide lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. This review discusses natural products and their derived compounds as NorA efflux pump inhibitors (EPIs).
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India.
| | - Asha Kiran Tudu
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India
| |
Collapse
|
79
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
80
|
Kalra R, Conlan XA, Goel M. Recent advances in research for potential utilization of unexplored lichen metabolites. Biotechnol Adv 2023; 62:108072. [PMID: 36464145 DOI: 10.1016/j.biotechadv.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Several research studies have shown that lichens are productive organisms for the synthesis of a broad range of secondary metabolites. Lichens are a self-sustainable stable microbial ecosystem comprising an exhabitant fungal partner (mycobiont) and at least one or more photosynthetic partners (photobiont). The successful symbiosis is responsible for their persistence throughout time and allows all the partners (holobionts) to thrive in many extreme habitats, where without the synergistic relationship they would be rare or non-existent. The ability to survive in harsh conditions can be directly correlated with the production of some unique metabolites. Despite the potential applications, these unique metabolites have been underutilised by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability and technical challenges involved in their artificial cultivation. However, recent development of biotechnological tools such as molecular phylogenetics, modern tissue culture techniques, metabolomics and molecular engineering are opening up a new opportunity to exploit these compounds within the lichen holobiome for industrial applications. This review also highlights the recent advances in culturing the symbionts and the computational and molecular genetics approaches of lichen gene regulation recognized for the enhanced production of target metabolites. The recent development of multi-omics novel biodiscovery strategies aided by synthetic biology in order to study the heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offers a promising means for a sustainable supply of specialized metabolites.
Collapse
Affiliation(s)
- Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India.
| |
Collapse
|
81
|
El-Khatib S, Lambert MG, Reed MN, Goncalves MB, Boynton PJ. Leaf decomposing fungi influence Saccharomyces paradoxus growth across carbon environments. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000739. [PMID: 36926040 PMCID: PMC10011917 DOI: 10.17912/micropub.biology.000739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Saccharomyces paradoxus is a model organism in ecology and evolution. However, its metabolism in its native habitat remains mysterious: it is frequently found growing on leaf litter, a habitat with few carbon sources that S. paradoxus can metabolize. We hypothesized that leaf-decomposing fungi from the same habitat break down the cellulose in leaf litter extracellularly and release glucose, supporting S. paradoxus growth. We found that facilitation by leaf-decomposing fungi was possible on cellulose and inhibition was common on glucose, suggesting diverse interactions between S. paradoxus and other fungi that have the potential to support S. paradoxus in nature.
Collapse
Affiliation(s)
- Samer El-Khatib
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States
| | - Madeleine G Lambert
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States.,Georgetown University Medical Center, Washington D.C., Washington, D.C., United States
| | - Meghan N Reed
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States.,Lonza (United States), Portsmouth, New Hampshire, United States
| | - Melane Brito Goncalves
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States.,Rhode Island College, Providence, Rhode Island, United States
| | - Primrose J Boynton
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States
| |
Collapse
|
82
|
Chen Q, Jin Y, Guo X, Xu M, Wei G, Lu X, Tang Z. Metabolomic responses to the mechanical wounding of Catharanthus roseus' upper leaves. PeerJ 2023; 11:e14539. [PMID: 36968002 PMCID: PMC10035419 DOI: 10.7717/peerj.14539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/17/2022] [Indexed: 03/29/2023] Open
Abstract
Purpose Plant secondary metabolites are used to treat various human diseases. However, it is difficult to produce a large number of specific metabolites, which largely limits their medicinal applications. Many methods, such as drought and nutrient application, have been used to induce the biosynthetic production of secondary metabolites. Among these secondary metabolite-inducing methods, mechanical wounding maintains the composition of secondary metabolites with little potential risk. However, the effects of mechanical stress have not been fully investigated, and thus this method remains widely unused. Methods In this study, we used metabolomics to investigate the metabolites produced in the upper and lower leaves of Catharanthus roseus in response to mechanical wounding. Results In the upper leaves, 13 different secondary metabolites (three terpenoid indole alkaloids and 10 phenolic compounds) were screened using an orthogonal partial least squares discriminant analysis (OPLS-DA) score plot. The mechanical wounding of different plant parts affected the production of secondary metabolites. Specifically, when lower leaves were mechanically wounded, the upper leaves became a strong source of resources. Conversely, when upper leaves were injured, the upper leaves themselves became a resource sink. Changes in the source-sink relationship reflected a new balance between resource tradeoff and the upregulation or downregulation of certain metabolic pathways. Conclusion Our findings suggest that mechanical wounding to specific plant parts is a novel approach to increase the biosynthetic production of specific secondary metabolites. These results indicate the need for a reevaluation of production practices for secondary metabolites from select commercial plants.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences, Nantong Univesity, Nantong, Jiangsu, China
| | - Yan Jin
- School of Life Sciences, Nantong Univesity, Nantong, Jiangsu, China
| | - Xiaorui Guo
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Mingyuan Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Guanyun Wei
- School of Life Sciences, Nantong Univesity, Nantong, Jiangsu, China
| | - Xueyan Lu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
83
|
Exploring Potential of Aspergillus sclerotiorum: Secondary Metabolites and Biotechnological Relevance. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
84
|
Serseg T, Benarous K, Serseg M, Rehman HM, El Bakri Y, Goumri-Said S. Discovery of inhibitors against SARS-CoV-2 associated fungal coinfections via virtual screening, ADMET evaluation, PASS, molecular docking, dynamics and pharmacophore studies. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1080/25765299.2022.2126588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Talia Serseg
- Natural Sciences department, Ecole Normale Supérieure Taleb Abderrahmane, Laghouat, Algeria
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
- Biology department, Amar Telidji University, Laghouat, Algeria
| | - Menaouar Serseg
- Laboratory of Hematology, Central Hospital of Army, Ain Naadja, Algiers, Algeria
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Alnoorians Group of Institutes 55-Elahi Bukhsh Park, Amir Road, Shad Bagh, Shad Bagh, Lahore, Pakistan
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
85
|
Vogt E, Sonderegger L, Chen YY, Segessemann T, Künzler M. Structural and Functional Analysis of Peptides Derived from KEX2-Processed Repeat Proteins in Agaricomycetes Using Reverse Genetics and Peptidomics. Microbiol Spectr 2022; 10:e0202122. [PMID: 36314921 PMCID: PMC9769878 DOI: 10.1128/spectrum.02021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Bioactivities of fungal peptides are of interest for basic research and therapeutic drug development. Some of these peptides are derived from "KEX2-processed repeat proteins" (KEPs), a recently defined class of precursor proteins that contain multiple peptide cores flanked by KEX2 protease cleavage sites. Genome mining has revealed that KEPs are widespread in the fungal kingdom. Their functions are largely unknown. Here, we present the first in-depth structural and functional analysis of KEPs in a basidiomycete. We bioinformatically identified KEP-encoding genes in the genome of the model agaricomycete Coprinopsis cinerea and established a detection protocol for the derived peptides by overexpressing the C. cinerea KEPs in the yeast Pichia pastoris. Using this protocol, which includes peptide extraction and mass spectrometry with data analysis using the search engine Mascot, we confirmed the presence of several KEP-derived peptides in C. cinerea, as well as in the edible mushrooms Lentinula edodes, Pleurotus ostreatus, and Pleurotus eryngii. While CRISPR-mediated knockout of C. cinerea kep genes did not result in any detectable phenotype, knockout of kex genes caused defects in mycelial growth and fruiting body formation. These results suggest that KEP-derived peptides may play a role in the interaction of C. cinerea with the biotic environment and that the KEP-processing KEX proteases target a variety of substrates in agaricomycetes, including some important for mycelial growth and differentiation. IMPORTANCE Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and studied so far. Here, we present a protocol for the extraction and structural characterization of KEP-derived peptides from fungal culture supernatants and tissues. The protocol was successfully used to detect several linear and minimally modified KEP-derived peptides in the agaricomycetes C. cinerea, L. edodes, P. ostreatus, and P. eryngii. Our study establishes a new protocol for the targeted search of KEP-derived peptides in fungi, which will hopefully lead to the discovery of more of these interesting fungal peptides and allow a further characterization of KEPs.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Lukas Sonderegger
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Ying-Yu Chen
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Tina Segessemann
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| |
Collapse
|
86
|
Hu QY, Pu XJ, Li GH, Li CQ, Lei HM, Zhang KQ, Zhao PJ. Identification and Mechanism of Action of the Global Secondary Metabolism Regulator SaraC in Stereum hirsutum. Microbiol Spectr 2022; 10:e0262422. [PMID: 36409127 PMCID: PMC9769804 DOI: 10.1128/spectrum.02624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is an important factor in the regulation of gene expression. In analyzing genomic data of Stereum hirsutum FP-91666, we found a hypothetical bifunctional transcription regulator/O6Meguanine-DNA methyltransferase (named SaraC), which is widely present in both bacteria and fungi, and confirmed that its function in bacteria is mainly for DNA reparation. In this paper, we confirmed that SaraC has the function of DNA binding and demethylation through surface plasma resonance and reaction experiments in vitro. Then, we achieved the overexpression of SaraC (OES) in S. hirsutum, sequenced the methylation and transcription levels of the whole-genome, and further conducted untargeted metabolomics analyses of the OES transformants and the wild type (WT). The results confirmed that the overall-methylation levels of the transformants were significantly downregulated, and various genes related to secondary metabolism were upregulated. Through comparative untargeted metabolomic analyses, it showed that OES SA6 transformant produced a greater number of hybrid polyketides, and we identified 2 novel hybrid polyketides from the fermentation products of SA6. Our results show that overexpression SaraC can effectively stimulate the expression of secondary-metabolism-related genes, which could be a broad-spectrum tool for discovery of metabolites due to its cross-species conservation. IMPORTANCE Fungi are one of the important sources of active compounds. However, in fungi, most of the secondary metabolic biosynthetic gene clusters are weakly expressed or silenced under conventional culture conditions. How to efficiently excavate potential new compounds contained in fungi is becoming a research hot spot in the world. In this study, we found a DNA demethylation protein (SaraC) and confirmed that it is a global secondary metabolism regulator in Stereum hirsutum FP-91666. In the past, SaraC-like proteins were mainly regarded as DNA repair proteins, but our findings proved that it will be a powerful tool for mining secondary metabolites for overexpression of SaraC, which can effectively stimulate the expression of genes related to secondary metabolism.
Collapse
Affiliation(s)
- Qian-Yi Hu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xue-Juan Pu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Guo-Hong Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Chun-Qiang Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Hong-Mei Lei
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Pei-Ji Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
87
|
Weng W, Jiang S, Sun C, Pan X, Xian L, Lu X, Zhang C. Cytotoxic secondary metabolites isolated from Penicillium sp. YT2019-3321, an endophytic fungus derived from Lonicera Japonica. Front Microbiol 2022; 13:1099592. [PMID: 36583050 PMCID: PMC9792606 DOI: 10.3389/fmicb.2022.1099592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Endophytic fungi associated with medicinal plants have proven to possess a high potential to produce structurally diverse metabolites, some of which are valuable for medicinal applications. In this study, Penicillium sp. YT2019-3321, an endophytic fungus derived from traditional Chinese medicine Lonicera japonica, was chemically studied. Methods The chemical structures of the isolated compounds were established by a correlative interpretation of HRESIMS and NMR spectroscopic data. The optical resolution of (±)-1 by chiral HPLC yielded individual enantiomers (+)-1 and (-)-1, and their stereochemistry were solved by X-ray diffraction crystallography, respectively. Results and discussion Eight structurally diversified secondary metabolites, including two previously unreported polyketides, named (±)-chrysoalide B (1) and penicidone E (2), were isolated and identified from Penicillium sp. YT2019-3321. Compound 2 possessed the γ-pyridone nucleus, which is rarely found in natural products. Cytotoxic assay revealed that the new compound 2 demonstrated a dose-dependent cytotoxicity against the human pancreatic tumor cells PATU8988T with the IC50 value of 11.4 μM. Further studies indicated that 2 significantly induced apoptosis of PATU8988T cell lines, characterized by the morphologies abnormity, the reduction of cell number, the upregulation of proportion of apoptotic cells, and the ratio of Bcl-2 to Bax. Our study demonstrates that fungal secondary metabolites may have important significance in the discovery of drug leads.
Collapse
Affiliation(s)
- Wenya Weng
- Department of Scientific Research, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China,Department of Endocrinology, Ruian People’s Hospital, Zhejiang, China
| | - Shicui Jiang
- Department of Scientific Research, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chuchu Sun
- Department of Scientific Research, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaofu Pan
- Department of Scientific Research, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Li Xian
- College of Life Sciences, Ludong University, Yantai, China
| | - Xuemian Lu
- Department of Scientific Research, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China,Department of Endocrinology, Ruian People’s Hospital, Zhejiang, China,*Correspondence: Xuemian Lu,
| | - Chi Zhang
- Department of Scientific Research, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China,Chi Zhang,
| |
Collapse
|
88
|
Secondary Metabolites Diversity of Aspergillus unguis and Their Bioactivities: A Potential Target to Be Explored. Biomolecules 2022; 12:biom12121820. [PMID: 36551248 PMCID: PMC9775040 DOI: 10.3390/biom12121820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Aspergillus unguis belongs to the Aspergillus section Nidulantes. This species is found in soils and organisms from marine environments, such as jellyfishes and sponges. The first chemical study reported in the literature dates from 1970, with depsidones nidulin (1), nornidulin (2), and unguinol (3) being the first isolated compounds. Fifty-two years since this first study, the isolation and characterization of ninety-seven (97) compounds have been reported. These compounds are from different classes, such as depsides, depsidones, phthalides, cyclopeptides, indanones, diarylethers, pyrones, benzoic acid derivatives, orcinol/orsenillate derivatives, and sesterpenoids. In terms of biological activities, the first studies on isolated compounds from A. unguis came only in the 1990s. Considering the tendency for antiparasitic and antibiotics to become ineffective against resistant microorganisms and larvae, A. unguis compounds have also been extensively investigated and some compounds are considered very promising. In addition to these larvicidal and antimicrobial activities, these compounds also show activity against cancer cell lines, animal growth promotion, antimalarial and antioxidant activities. Despite the diversity of these compounds and reported biological activities, A. unguis remains an interesting target for studies on metabolic induction to produce new compounds, the determination of new biological activities, medicinal chemistry, structural modification, biotechnological approaches, and molecular modeling, which have yet to be extensively explored.
Collapse
|
89
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
90
|
Maidana L, de Souza M, Bracarense APFRL. Lactobacillus plantarum and Deoxynivalenol Detoxification: A Concise Review. J Food Prot 2022; 85:1815-1823. [PMID: 36173895 DOI: 10.4315/jfp-22-077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mycotoxins are toxic secondary fungal metabolites that contaminate feeds, and their levels remain stable during feed processing. The economic impact of mycotoxins on animal production happens mainly due to losses related to direct effects on animal health and trade losses related to grain rejection. Deoxynivalenol (DON) is a trichothecene mycotoxin that has contaminated approximately 60% of the grains worldwide. Ingestion of DON induces many toxic effects on human and animal health. Detoxification strategies to decrease DON levels in food and feeds include physical and chemical methods; however, they are not very effective when incorporated into the industrial production process. A valuable alternative to achieve this aim is the use of lactic acid bacteria. These bacteria can control fungal growth and thus overcome DON production or can detoxify the mycotoxin through adsorption and biotransformation. Some Lactobacillus spp. strains, such as Lactobacillus plantarum, have demonstrated preventive effects against DON toxicity in poultry and swine. This beneficial effect is associated with a binding capacity of lactic acid bacteria cell wall peptidoglycan with mycotoxins. Moreover, several antifungal compounds have been isolated from L. plantarum supernatants, including lactic, acetic, caproic, phenyl lactic, 3-hydroxylated fatty, and cyclic dipeptide acids. Biotransformation of DON by L. plantarum into other products is also hypothesized, but the mechanism remains unknown. In this concise review, we highlight the use of L. plantarum as an alternative approach to reduce DON levels and toxicity. Although the action mechanism of L. plantarum is still not fully understood, these bacteria are a safe, efficient, and low-cost strategy to reduce economic losses from mycotoxin contamination cases. HIGHLIGHTS
Collapse
Affiliation(s)
- Leila Maidana
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil.,Department of Pathological Sciences, Veterinary Sciences Faculty, Universidad Nacional de Asunción, San Lorenzo, 111408, Paraguay
| | - Marielen de Souza
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| |
Collapse
|
91
|
Ton That Huu D, Phuong HT, Diem Tran PT, Souvannalath B, Trung HL, Ho DV, Viet CLC. Secondary Metabolites From the Grasshopper-Derived Entomopathogenic Fungus Aspergillus Tamarii NL3 and Their Biological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221141548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chromatographic purification of the ethyl acetate extract of the entomopathogenic fungus Aspergillus tamarii NL3 culture broth led to the isolation of griseofulvin (1), isogriseofulvin (2), cytochalasin J (3), solamargine (4), and solasonine (5). The chemical structures of these compounds were identified by HRESIMS and NMR spectra, as well as by comparison with literature data. This is the first report on the isolation of 1-4 from the Aspergillus genus and compound 5 from A tamarii. Compounds 1 and 2 exhibited antifungal activity against the reference fungi with MICs of 16 to 128 µg/mL. Compound 3 displayed weak antimicrobial activity against most of the tested microorganisms with MICs ≥ 128 µg/mL, except for Bacillus subtilis and Aspergillus niger with MICs of 64 µg/mL. Compounds 4 and 5 showed activity against a wide spectrum of the reference microorganisms with MICs of 16 to 128 µg/mL but showed stronger antifungal than antibacterial activity. Furthermore, all isolates exhibited weak ABTS and DPPH scavenging activities with scavenging rates of 18.92% to 32.64% and 24.62% to 31.06%, respectively, at the concentration of 100 µg/mL.
Collapse
Affiliation(s)
- Dat Ton That Huu
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Thua Thien Hue, Vietnam
| | - Ha Tran Phuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Thua Thien Hue, Vietnam
| | - Phan Thi Diem Tran
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Thua Thien Hue, Vietnam
| | - Bakeo Souvannalath
- Center for Biotechnology and Ecology, Ministry of Agriculture and Forestry - Laos, Vientiane, Laos
| | - Hieu Le Trung
- Hue University of Sciences, Hue University, Thua Thien Hue, Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Thua Thien Hue, Vietnam
| | - Cuong Le Canh Viet
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Thua Thien Hue, Vietnam
| |
Collapse
|
92
|
Chen KL, Sun SF, Cao HY, Yi C, Yang CY, Liu YB. Two sydowic acid derivatives and a sulfonyl metabolite from the endophytic fungus Aspergillus sydowii. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:1128-1133. [PMID: 36036174 DOI: 10.1080/10286020.2022.2114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Two new sydowic acid derivatives, a pair of enantiomers, involving (+)-sydowiccal (1a) and (-)-sydowiccal (1b), a new sulfonyl metabolite of 2-methoxy-5-methyl-3-(methylsulfonyl)phenol (2), as well as three known sydowic acid derivatives, were isolated from Aspergillus sydowii, an endophytic fungus of Rhododendron mole. The structures of these new compounds were elucidated by analyzing their NMR and HRESIMS data, and the absolute configurations of enantiomers were determined on the basis of the CD spectrum. Three new metabolites showed weak anti-inflammation on nitric oxide (NO) production in LPS-induced RAW 264.7 cells.
Collapse
Affiliation(s)
- Ke-Liang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sen-Feng Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Yan Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng Yi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chen-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
93
|
Zhang T, Cai G, Rong X, Xu J, Jiang B, Wang H, Li X, Wang L, Zhang R, He W, Yu L. Mining and characterization of the PKS-NRPS hybrid for epicoccamide A: a mannosylated tetramate derivative from Epicoccum sp. CPCC 400996. Microb Cell Fact 2022; 21:249. [PMID: 36419162 PMCID: PMC9685919 DOI: 10.1186/s12934-022-01975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Genomic analysis indicated that the genomes of ascomycetes might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained enigmatic. The ascomycete genus Epicoccum, belonging to the family Didymellaceae, is ubiquitous that colonizes different types of substrates and is associated with phyllosphere or decaying vegetation. Species of this genus are prolific producers of bioactive substances. The epicoccamides, as biosynthetically distinct mannosylated tetramate, were first isolated in 2003 from Epicoccum sp. In this study, using a combination of genome mining, chemical identification, genetic deletion, and bioinformatic analysis, we identified the required BGC epi responsible for epicoccamide A biosynthesis in Epicoccum sp. CPCC 400996. RESULTS The unconventional biosynthetic gene cluster epi was obtained from an endophyte Epicoccum sp. CPCC 400996 through AntiSMASH-based genome mining. The cluster epi includes six putative open reading frames (epiA-epiF) altogether, in which the epiA encodes a tetramate-forming polyketide synthase and nonribosomal peptide synthetases (PKS-NRPS hybrid). Sequence alignments and bioinformatic analysis to other metabolic pathways of fungal tetramates, we proposed that the gene cluster epi could be involved in generating epicoccamides. Genetic knockout of epiA completely abolished the biosynthesis of epicoccamide A (1), thereby establishing the correlation between the BGC epi and biosynthesis of epicoccamide A. Bioinformatic adenylation domain signature analysis of EpiA and other fungal PKS-NRPSs (NRPs) indicated that the EpiA is L-alanine incorporating tetramates megasynthase. Furthermore, based on the molecular structures of epicoccamide A and deduced gene functions of the cluster epi, a hypothetic metabolic pathway for biosynthesizing compound 1 was proposed. The corresponding tetramates releasing during epicoccamide A biosynthesis was catalyzed through Dieckmann-type cyclization, in which the reductive (R) domain residing in terminal module of EpiA accomplished the conversion. These results unveiled the underlying mechanism of epicoccamides biosynthesis and these findings might provide opportunities for derivatization of epicoccamides or generation of new chemical entities. CONCLUSION Genome mining and genetic inactivation experiments unveiled a previously uncharacterized PKS - NRPS hybrid-based BGC epi responsible for the generation of epicoccamide A (1) in endophyte Epicoccum sp. CPCC 400996. In addition, based on the gene cluster data, a hypothetical biosynthetic pathway of epicoccamide A was proposed.
Collapse
Affiliation(s)
- Tao Zhang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Guowei Cai
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China ,grid.452240.50000 0004 8342 6962Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Xiaoting Rong
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China ,grid.510447.30000 0000 9970 6820College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003 Jiangsu China
| | - Jingwen Xu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Bingya Jiang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Hao Wang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Xinxin Li
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Lu Wang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Ran Zhang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Wenni He
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Liyan Yu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
94
|
Shi H, Jiang J, Zhang H, Jiang H, Su Z, Liu D, Jie L, He F. Antibacterial spirooxindole alkaloids from Penicillium brefeldianum inhibit dimorphism of pathogenic smut fungi. Front Microbiol 2022; 13:1046099. [PMID: 36452922 PMCID: PMC9702524 DOI: 10.3389/fmicb.2022.1046099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 09/14/2024] Open
Abstract
Three new antibacterial spirooxindole alkaloids, spirobrefeldins A-C (1-3), together with four known analogs, spirotryprostatin M (4), spirotryprostatin G (5), 12β-hydroxyverruculogen TR-2 (6), and 12α-hydroxyverruculogen TR-2 (7), were isolated from terrestrial fungus Penicillium brefeldianum. All the new compounds were elucidated extensively by the interpretation of their NMR (1D and 2D) spectra and high-resolution mass data, and their absolute configurations were determined by computational chemistry and CD spectra. The absolute configurations of spiro carbon C-2 in spirotryprostatin G (5) and spirotryprostatin C in literature were reported as S, which were revised to R based on experimental and calculated CD spectra. All the compounds were evaluated for their antimicrobial activities toward Pseudomonas aeruginosa PAO1, Dickeya zeae EC1, Staphylococcus epidermidis, Escherichia coli, and Sporisorium scitamineum. Compound 7 displayed moderate inhibitory activity toward dimorphic switch of pathogenic smut fungi Sporisorium scitamineum at 25 μM. Compounds 3 and 6 showed weak antibacterial activities against phytopathogenic bacterial Dickeya zeae EC1 at 100 μM.
Collapse
Affiliation(s)
- Huajun Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinyan Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haimei Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zijie Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dandan Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ligang Jie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fei He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
95
|
Conrado R, Gomes TC, Roque GSC, De Souza AO. Overview of Bioactive Fungal Secondary Metabolites: Cytotoxic and Antimicrobial Compounds. Antibiotics (Basel) 2022; 11:1604. [PMID: 36421247 PMCID: PMC9687038 DOI: 10.3390/antibiotics11111604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Microorganisms are known as important sources of natural compounds that have been studied and applied for different purposes in distinct areas. Specifically, in the pharmaceutical area, fungi have been explored mainly as sources of antibiotics, antiviral, anti-inflammatory, enzyme inhibitors, hypercholesteremic, antineoplastic/antitumor, immunomodulators, and immunosuppressants agents. However, historically, the high demand for new antimicrobial and antitumor agents has not been sufficiently attended by the drug discovery process, highlighting the relevance of intensifying studies to reach sustainable employment of the huge world biodiversity, including the microorganisms. Therefore, this review describes the main approaches and tools applied in the search for bioactive secondary metabolites, as well as presents several examples of compounds produced by different fungi species with proven pharmacological effects and additional examples of fungal cytotoxic and antimicrobial molecules. The review does not cover all fungal secondary metabolites already described; however, it presents some reports that can be useful at any phase of the drug discovery process, mainly for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | - Ana Olívia De Souza
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
96
|
Mello TP, Barcellos IC, Aor AC, Branquinha MH, Santos ALS. Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. J Fungi (Basel) 2022; 8:1172. [PMID: 36354939 PMCID: PMC9693033 DOI: 10.3390/jof8111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
97
|
Yap A, Glarcher I, Misslinger M, Haas H. Characterization and engineering of the xylose-inducible xylP promoter for use in mold fungal species. Metab Eng Commun 2022; 15:e00214. [DOI: 10.1016/j.mec.2022.e00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
|
98
|
Chiang YM, Lin TS, Wang CCC. Total Heterologous Biosynthesis of Fungal Natural Products in Aspergillus nidulans. JOURNAL OF NATURAL PRODUCTS 2022; 85:2484-2518. [PMID: 36173392 PMCID: PMC9621686 DOI: 10.1021/acs.jnatprod.2c00487] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fungal natural products comprise a wide range of bioactive compounds including important drugs and agrochemicals. Intriguingly, bioinformatic analyses of fungal genomes have revealed that fungi have the potential to produce significantly more natural products than what have been discovered so far. It has thus become widely accepted that most biosynthesis pathways of fungal natural products are silent or expressed at very low levels under laboratory cultivation conditions. To tap into this vast chemical reservoir, the reconstitution of entire biosynthetic pathways in genetically tractable fungal hosts (total heterologous biosynthesis) has become increasingly employed in recent years. This review summarizes total heterologous biosynthesis of fungal natural products accomplished before 2020 using Aspergillus nidulans as heterologous hosts. We review here Aspergillus transformation, A. nidulans hosts, shuttle vectors for episomal expression, and chromosomal integration expression. These tools, collectively, not only facilitate the discovery of cryptic natural products but can also be used to generate high-yield strains with clean metabolite backgrounds. In comparison with total synthesis, total heterologous biosynthesis offers a simplified strategy to construct complex molecules and holds potential for commercial application.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
99
|
Weng W, Li R, Zhang Y, Pan X, Jiang S, Sun C, Zhang C, Lu X. Polyketides isolated from an endophyte Penicillium oxalicum 2021CDF-3 inhibit pancreatic tumor growth. Front Microbiol 2022; 13:1033823. [PMID: 36225350 PMCID: PMC9549284 DOI: 10.3389/fmicb.2022.1033823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Fungal secondary metabolites are inherently considered valuable resources for new drugs discovery. To search for novel fungal secondary metabolites with lead compounds potential, a fungal strain Penicillium oxalicum 2021CDF-3, an endophyte of the marine red algae Rhodomela confervoides, was chemically studied. Cultivation of this fungus on solid rice medium yielded 10 structurally diverse metabolites (1–10), including two new polyketides, namely oxalichroman A (1) and oxalihexane A (2). Their structures were determined by detailed analysis of NMR and HRESIMS spectroscopic data. Oxalihexane A (2) was elucidated as a novel polyketide formed by a cyclohexane and cyclohexanone moiety via an ether bond. The stereochemistry of 2 was successfully assigned by NMR and ECD calculations. In the cytotoxic assay, the new compound 2 showed remarkable inhibitory effect on the human pancreatic cancer PATU8988T cell line. Further pharmacological study demonstrated that the expression level of Cyclin D1 was down-regulated by the treatment with 2, which suggested that cell cyclin abnormity was involved in pancreatic tumor cell apoptosis. Moreover, the activation of Wnt5a/Cyclin D1 signaling pathway might be involved in the mechanism of panreatic tumor cell apoptosis induced by 2.
Collapse
Affiliation(s)
- Wenya Weng
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ruidian Li
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- Department of Endocrinology, Ruian People’s Hospital, Zhejiang, China
| | - Yanxia Zhang
- Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, China
| | - Xiaofu Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chuchu Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- *Correspondence: Chi Zhang, ; Xuemian Lu,
| | - Xuemian Lu
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- Department of Endocrinology, Ruian People’s Hospital, Zhejiang, China
- *Correspondence: Chi Zhang, ; Xuemian Lu,
| |
Collapse
|
100
|
He J, Yu WW, Isaka M, Cox RJ, Liu JK, Feng T. Antroxazole A, an oxazole-containing chamigrane dimer from the fungus Antrodiella albocinnamomea with immunosuppressive activity. Org Biomol Chem 2022; 20:7278-7283. [PMID: 36043515 DOI: 10.1039/d2ob01443b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antroxazole A (1), a chamigrane type sesquiterpene dimer containing an oxazole moiety, has been characterized from cultures of the fungus Antrodiella albocinnamomea. The structure with absolute configuration was determined by extensive spectroscopic methods and single crystal X-ray diffraction. A plausible biosynthetic pathway for 1 was proposed. Compound 1 exhibits inhibition specifically against the LPS-induced proliferation of B lymphocyte cells with an IC50 value of 16.3 μM.
Collapse
Affiliation(s)
- Juan He
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, P.R. China.
| | - Wei-Wei Yu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, P.R. China.
| | - Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Russell J Cox
- Institute for Organic Chemistry and Biomolekulares Wirkstoffzentrum (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, P.R. China.
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, P.R. China.
| |
Collapse
|