51
|
Transcriptomic Analysis Reveals That Rho GTPases Regulate Trap Development and Lifestyle Transition of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0175921. [PMID: 35019695 PMCID: PMC8754127 DOI: 10.1128/spectrum.01759-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nematode-trapping (NT) fungi can form unique infection structures (traps) to capture and kill free-living nematodes and, thus, can play a potential role in the biocontrol of nematodes. Arthrobotrys oligospora is a representative species of NT fungi. Here, we performed a time course transcriptome sequencing (RNA-seq) analysis of transcriptomes to understand the global gene expression levels of A. oligospora during trap formation and predation. We identified 5,752 unique differentially expressed genes, among which the rac gene was significantly upregulated. Alternative splicing events occurred in 2,012 genes, including the rac and rho2 gene. Furthermore, we characterized three Rho GTPases (Rho2, Rac, and Cdc42) in A. oligospora using gene disruption and multiphenotypic analysis. Our analyses showed that AoRac and AoCdc42 play an important role in mycelium growth, lipid accumulation, DNA damage, sporulation, trap formation, pathogenicity, and stress response in A. oligospora. AoCdc42 and AoRac specifically interacted with components of the Nox complex, thus regulating the production of reactive oxygen species. Moreover, the transcript levels of several genes associated with protein kinase A, mitogen-activated protein kinase, and p21-activated kinase were also altered in the mutants, suggesting that Rho GTPases might function upstream from these kinases. This study highlights the important role of Rho GTPases in A. oligospora and provides insights into the regulatory mechanisms of signaling pathways in the trap morphogenesis and lifestyle transition of NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are widely distributed in terrestrial and aquatic ecosystems. Their broad adaptability and flexible lifestyles make them ideal agents for controlling pathogenic nematodes. Arthrobotrys oligospora is a model species employed for understanding the interaction between fungi and nematodes. Here, we revealed that alternative splicing events play a crucial role in the trap development and lifestyle transition in A. oligospora. Furthermore, Rho GTPases exert differential effects on the growth, development, and pathogenicity of A. oligospora. In particular, AoRac is required for sporulation and trap morphogenesis. In addition, our analysis showed that Rho GTPases regulate the production of reactive oxygen species and function upstream from several kinases. Collectively, these results expand our understanding of gene expression and alternative splicing events in A. oligospora and the important roles of Rho GTPases in NT fungi, thereby providing a foundation for exploring their potential application in the biocontrol of pathogenic nematodes.
Collapse
|
52
|
Wernet V, Wäckerle J, Fischer R. The STRIPAK component SipC is involved in morphology and cell-fate determination in the nematode-trapping fungus Duddingtonia flagrans. Genetics 2022; 220:iyab153. [PMID: 34849851 PMCID: PMC8733638 DOI: 10.1093/genetics/iyab153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is a highly conserved eukaryotic signaling hub involved in the regulation of many cellular processes. In filamentous fungi, STRIPAK controls multicellular development, hyphal fusion, septation, and pathogenicity. In this study, we analyzed the role of the STRIPAK complex in the nematode-trapping fungus Duddingtonia flagrans which forms three-dimensional, adhesive trapping networks to capture Caenorhabditis elegans. Trap networks consist of several hyphal loops which are morphologically and functionally different from vegetative hyphae. We show that lack of the STRIPAK component SipC (STRIP1/2/HAM-2/PRO22) results in incomplete loop formation and column-like trap structures with elongated compartments. The misshapen or incomplete traps lost their trap identity and continued growth as vegetative hyphae. The same effect was observed in the presence of the actin cytoskeleton drug cytochalasin A. These results could suggest a link between actin and STRIPAK complex functions.
Collapse
Affiliation(s)
- Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Jan Wäckerle
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| |
Collapse
|
53
|
Wernet N, Wernet V, Fischer R. The small-secreted cysteine-rich protein CyrA is a virulence factor participating in the attack of Caenorhabditis elegans by Duddingtonia flagrans. PLoS Pathog 2021; 17:e1010028. [PMID: 34735554 PMCID: PMC8568293 DOI: 10.1371/journal.ppat.1010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Nematode-trapping fungi (NTF) are a diverse and intriguing group of fungi that live saprotrophically but can switch to a predatory lifestyle when starving and in the presence of nematodes. NTF like Arthrobotrys oligospora or Duddingtonia flagrans produce adhesive trapping networks to catch and immobilize nematodes. After penetration of the cuticle, hyphae grow and develop inside the worm and secrete large amounts of hydrolytic enzymes for digestion. In many microbial pathogenic interactions small-secreted proteins (SSPs) are used to manipulate the host. The genome of D. flagrans encodes more than 100 of such putative SSPs one of which is the cysteine-rich protein CyrA. We have chosen this gene for further analysis because it is only found in NTF and appeared to be upregulated during the interaction. We show that the cyrA gene was transcriptionally induced in trap cells, and the protein accumulated at the inner rim of the hyphal ring before Caenorhabditis elegans capture. After worm penetration, the protein appeared at the fungal infection bulb, where it is likely to be secreted with the help of the exocyst complex. A cyrA-deletion strain was less virulent, and the time from worm capture to paralysis was extended. Heterologous expression of CyrA in C. elegans reduced its lifespan. CyrA accumulated in C. elegans in coelomocytes where the protein possibly is inactivated. This is the first example that SSPs may be important in predatory microbial interactions.
Collapse
Affiliation(s)
- Nicole Wernet
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Valentin Wernet
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| |
Collapse
|
54
|
Pérez G, Lopez-Moya F, Chuina E, Ibañez-Vea M, Garde E, López-Llorca LV, Pisabarro AG, Ramírez L. Strain Degeneration in Pleurotus ostreatus: A Genotype Dependent Oxidative Stress Process Which Triggers Oxidative Stress, Cellular Detoxifying and Cell Wall Reshaping Genes. J Fungi (Basel) 2021; 7:jof7100862. [PMID: 34682283 PMCID: PMC8537115 DOI: 10.3390/jof7100862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Strain degeneration has been defined as a decrease or loss in the yield of important commercial traits resulting from subsequent culture, which ultimately leads to Reactive Oxygen Species (ROS) production. Pleurotus ostreatus is a lignin-producing nematophagous edible mushroom. Mycelia for mushroom production are usually maintained in subsequent culture in solid media and frequently show symptoms of strain degeneration. The dikaryotic strain P. ostreatus (DkN001) has been used in our lab as a model organism for different purposes. Hence, different tools have been developed to uncover genetic and molecular aspects of this fungus. In this work, strain degeneration was studied in a full-sib monokaryotic progeny of the DkN001 strain with fast (F) and slow (S) growth rates by using different experimental approaches (light microscopy, malondialdehyde levels, whole-genome transcriptome analysis, and chitosan effect on monokaryotic mycelia). The results obtained showed that: (i) strain degeneration in P. ostreatus is linked to oxidative stress, (ii) the oxidative stress response in monokaryons is genotype dependent, (iii) stress and detoxifying genes are highly expressed in S monokaryons with symptoms of strain degeneration, (iv) chitosan addition to F and S monokaryons uncovered the constitutive expression of both oxidative stress and cellular detoxifying genes in S monokaryon strains which suggest their adaptation to oxidative stress, and (v) the overexpression of the cell wall genes, Uap1 and Cda1, in S monokaryons with strain degeneration phenotype indicates cell wall reshaping and the activation of High Osmolarity Glycerol (HOG) and Cell Wall Integrity (CWI) pathways. These results could constitute a hallmark for mushroom producers to distinguish strain degeneration in commercial mushrooms.
Collapse
Affiliation(s)
- Gumer Pérez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain; (F.L.-M.); (L.V.L.-L.)
| | - Emilia Chuina
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - María Ibañez-Vea
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Edurne Garde
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Luis V. López-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain; (F.L.-M.); (L.V.L.-L.)
| | - Antonio G. Pisabarro
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Lucía Ramírez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
- Correspondence:
| |
Collapse
|
55
|
Yu X, Hu X, Pop M, Wernet N, Kirschhöfer F, Brenner-Weiß G, Keller J, Bunzel M, Fischer R. Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid. Nat Commun 2021; 12:5462. [PMID: 34526503 PMCID: PMC8443565 DOI: 10.1038/s41467-021-25535-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Salicylic acid is a phenolic phytohormone which controls plant growth and development. A methyl ester (MSA) derivative thereof is volatile and involved in plant-insect or plant-plant communication. Here we show that the nematode-trapping fungus Duddingtonia flagrans uses a methyl-salicylic acid isomer, 6-MSA as morphogen for spatiotemporal control of trap formation and as chemoattractant to lure Caenorhabditis elegans into fungal colonies. 6-MSA is the product of a polyketide synthase and an intermediate in the biosynthesis of arthrosporols. The polyketide synthase (ArtA), produces 6-MSA in hyphal tips, and is uncoupled from other enzymes required for the conversion of 6-MSA to arthrosporols, which are produced in older hyphae. 6-MSA and arthrosporols both block trap formation. The presence of nematodes inhibits 6-MSA and arthrosporol biosyntheses and thereby enables trap formation. 6-MSA and arthrosporols are thus morphogens with some functions similar to quorum-sensing molecules. We show that 6-MSA is important in interkingdom communication between fungi and nematodes.
Collapse
Affiliation(s)
- Xi Yu
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xiaodi Hu
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Maria Pop
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Nicole Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Frank Kirschhöfer
- Karlsruhe Institute of Technology (KIT) - North Campus, Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Eggenstein Leopoldshafen, Germany
| | - Gerald Brenner-Weiß
- Karlsruhe Institute of Technology (KIT) - North Campus, Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Eggenstein Leopoldshafen, Germany
| | - Julia Keller
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Adenauerring 20 A, Karlsruhe, Germany
| | - Mirko Bunzel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Adenauerring 20 A, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
56
|
Zhou D, Xu J, Dong J, Li H, Wang D, Gu J, Zhang KQ, Zhang Y. Historical Differentiation and Recent Hybridization in Natural Populations of the Nematode-Trapping Fungus Arthrobotrys oligospora in China. Microorganisms 2021; 9:1919. [PMID: 34576814 PMCID: PMC8465350 DOI: 10.3390/microorganisms9091919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Maintaining the effects of nematode-trapping fungi (NTF) agents in order to control plant-parasitic nematodes (PPNs) in different ecological environments has been a major challenge in biological control applications. To achieve such an objective, it is important to understand how populations of the biocontrol agent NTF are geographically and ecologically structured. A previous study reported evidence for ecological adaptation in the model NTF species Arthrobotrys oligospora. However, their large-scale geographic structure, patterns of gene flow, their potential phenotypic diversification, and host specialization remain largely unknown. In this study, we developed a new panel of 20 polymorphic short tandem repeat (STR) markers and analyzed 239 isolates of A. oligospora from 19 geographic populations in China. In addition, DNA sequences at six nuclear gene loci and strain mating types (MAT) were obtained for these strains. Our analyses suggest historical divergence within the A. oligospora population in China. The genetically differentiated populations also showed phenotypic differences that may be related to their ecological adaptations. Interestingly, our analyses identified evidence for recent dispersion and hybridization among the historically subdivided geographic populations in nature. Together, our results indicate a changing population structure of A. oligospora in China and that care must be taken in selecting the appropriate strains as biocontrol agents that can effectively reproduce in agriculture soil while maintaining their nematode-trapping ability.
Collapse
Affiliation(s)
- Duanyong Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianyong Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Juan Gu
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
| |
Collapse
|
57
|
Chen SA, Lin HC, Schroeder FC, Hsueh YP. Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics 2021; 217:5995318. [PMID: 33724405 DOI: 10.1093/genetics/iyaa008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Detection of surrounding organisms in the environment plays a major role in the evolution of interspecies interactions, such as predator-prey relationships. Nematode-trapping fungi (NTF) are predators that develop specialized trap structures to capture, kill, and consume nematodes when food sources are limited. Despite the identification of various factors that induce trap morphogenesis, the mechanisms underlying the differentiation process have remained largely unclear. Here, we demonstrate that the highly conserved pheromone-response MAPK pathway is essential for sensing ascarosides, a conserved molecular signature of nemaotdes, and is required for the predatory lifestyle switch in the NTF Arthrobotrys oligospora. Gene deletion of STE7 (MAPKK) and FUS3 (MAPK) abolished nematode-induced trap morphogenesis and conidiation and impaired the growth of hyphae. The conserved transcription factor Ste12 acting downstream of the pheromone-response pathway also plays a vital role in the predation of A. oligospora. Transcriptional profiling of a ste12 mutant identified a small subset of genes with diverse functions that are Ste12 dependent and could trigger trap differentiation. Our work has revealed that A. oligospora perceives and interprets the ascarosides produced by nematodes via the conserved pheromone signaling pathway in fungi, providing molecular insights into the mechanisms of communication between a fungal predator and its nematode prey.
Collapse
Affiliation(s)
- Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
58
|
Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie van Leeuwenhoek 2021; 114:885-912. [PMID: 33893903 DOI: 10.1007/s10482-021-01577-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022]
Abstract
Plant parasitic nematodes (Root-knot nematodes, Meloidogyne spp.) are rounded worms, microscopic, and cause many agricultural economic losses. Their attacks have a direct impact on the productivity of cultivated crops by reducing their fruit quantity. Chemical control is widespread all over the world, but biological control is the most effective way to reduce the number of pests that infect crops, particularly by the use of microorganisms like fungi and bacteria. Biological control is rapidly evolving, and more products are being sold worldwide over time. They can be produced by fungi, bacteria, or actinomycetes that can destruct plant parasite nematodes and feed on them. Nematophagous microorganisms as the natural enemies of nematodes have a promising way of controlling nematodes. Some of them create net-like substances and traps to take the worms from outside and finally kill them. Other parasites serve as internal parasites in order to produce toxins and to produce virulence to kill nematodes. Comprehension of the molecular basis for microbial nematode interactions gives important insights into how successful biological nematode control agents can be created. We discuss recent advances in our understanding of nematodes and nematophagous microorganisms, with an emphasis on molecular mechanisms that infect nematodes with nematophagous microorganisms and on nematode safety from pathogenic attacks. Finally, we addressed numerous key areas for future research and development, including possible approaches to the application of our recent expertise in the development of successful biocontrol strategies.
Collapse
|
59
|
Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J. Fungi-Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. J Fungi (Basel) 2020; 6:E206. [PMID: 33020457 PMCID: PMC7711821 DOI: 10.3390/jof6040206] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi and nematodes are among the most abundant organisms in soil habitats. They provide essential ecosystem services and play crucial roles for maintaining the stability of food-webs and for facilitating nutrient cycling. As two of the very abundant groups of organisms, fungi and nematodes interact with each other in multiple ways. Here in this review, we provide a broad framework of interactions between fungi and nematodes with an emphasis on those that impact crops and agriculture ecosystems. We describe the diversity and evolution of fungi that closely interact with nematodes, including food fungi for nematodes as well as fungi that feed on nematodes. Among the nematophagous fungi, those that produce specialized nematode-trapping devices are especially interesting, and a great deal is known about their diversity, evolution, and molecular mechanisms of interactions with nematodes. Some of the fungi and nematodes are significant pathogens and pests to crops. We summarize the ecological and molecular mechanisms identified so far that impact, either directly or indirectly, the interactions among phytopathogenic fungi, phytopathogenic nematodes, and crop plants. The potential applications of our understanding to controlling phytophagous nematodes and soilborne fungal pathogens in agricultural fields are discussed.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Shuoshuo Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
60
|
Yang CT, Vidal-Diez de Ulzurrun G, Gonçalves AP, Lin HC, Chang CW, Huang TY, Chen SA, Lai CK, Tsai IJ, Schroeder FC, Stajich JE, Hsueh YP. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proc Natl Acad Sci U S A 2020; 117:6762-6770. [PMID: 32161129 PMCID: PMC7104180 DOI: 10.1073/pnas.1919726117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nematode-trapping fungi (NTF) are a group of specialized microbial predators that consume nematodes when food sources are limited. Predation is initiated when conserved nematode ascaroside pheromones are sensed, followed by the development of complex trapping devices. To gain insights into the coevolution of this interkingdom predator-prey relationship, we investigated natural populations of nematodes and NTF that we found to be ubiquitous in soils. Arthrobotrys species were sympatric with various nematode species and behaved as generalist predators. The ability to sense prey among wild isolates of Arthrobotrys oligospora varied greatly, as determined by the number of traps after exposure to Caenorhabditis elegans While some strains were highly sensitive to C. elegans and the nematode pheromone ascarosides, others responded only weakly. Furthermore, strains that were highly sensitive to the nematode prey also developed traps faster. The polymorphic nature of trap formation correlated with competency in prey killing, as well as with the phylogeny of A. oligospora natural strains, calculated after assembly and annotation of the genomes of 20 isolates. A chromosome-level genome assembly and annotation were established for one of the most sensitive wild isolates, and deletion of the only G-protein β-subunit-encoding gene of A. oligospora nearly abolished trap formation. In summary, our study establishes a highly responsive A. oligospora wild isolate as a model strain for the study of fungus-nematode interactions and demonstrates that trap formation is a fitness character in generalist predators of the nematode-trapping fungus family.
Collapse
Affiliation(s)
- Ching-Ting Yang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | | | - A Pedro Gonçalves
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | - Ching-Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Huang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan;
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
61
|
Ma Y, Yang X, Xie M, Zhang G, Yang L, Bai N, Zhao Y, Li D, Zhang KQ, Yang J. The Arf-GAP AoGlo3 regulates conidiation, endocytosis, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 2020; 138:103352. [PMID: 32087364 DOI: 10.1016/j.fgb.2020.103352] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Small GTPases of the ADP-ribosylation factor (Arf) family and their activating proteins (Arf-GAPs) regulate mycelial development and pathogenicity in yeast and filamentous fungi; however, little is known about their roles in nematode-trapping (NT) fungi. In this study, an ortholog of Arf-GAP Glo3 (AoGlo3) in Saccharomyces cerevisiae was characterized in the NT fungus Arthrobotrys oligospora. Deletion of the Aoglo3 gene resulted in growth defects and an increase in hyphal septum. Meanwhile, the sporulation capacity of the ΔAoglo3 mutant was decreased by 98%, and 67.1-71.2% spores became gourd or claviform in shape (from obovoid), which was accompanied by a significant decrease in the spore germination rate. This reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes including fluG, rodA, abaA, medA, and lreA. The ΔAoglo3 mutant was also sensitive to several chemical stressors such as Congo red, NaCl, and sorbitol. Additionally, AoGlo3 was found to be involved in endocytosis, and more myelin figures were observed in the ΔAoglo3 mutant than in the wild-type strain, which was consistent with the presence of more autophagosomes observed in the mutant. Importantly, AoGlo3 affected the production of mycelial traps and serine proteases for nematode predation. In summary, AoGlo3 is involved in the regulation of multiple cellular processes such as mycelial growth, conidiation, environmental adaption, endocytosis, and pathogenicity in A. oligospora.
Collapse
Affiliation(s)
- Yuxin Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Dongni Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
62
|
Kumar KK. Fungi: A Bio-resource for the Control of Plant Parasitic Nematodes. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
64
|
Youssar L, Wernet V, Hensel N, Yu X, Hildebrand HG, Schreckenberger B, Kriegler M, Hetzer B, Frankino P, Dillin A, Fischer R. Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genet 2019; 15:e1008029. [PMID: 30917129 PMCID: PMC6453484 DOI: 10.1371/journal.pgen.1008029] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/08/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
Nematode-trapping fungi (NTF) are a large and diverse group of fungi, which may switch from a saprotrophic to a predatory lifestyle if nematodes are present. Different fungi have developed different trapping devices, ranging from adhesive cells to constricting rings. After trapping, fungal hyphae penetrate the worm, secrete lytic enzymes and form a hyphal network inside the body. We sequenced the genome of Duddingtonia flagrans, a biotechnologically important NTF used to control nematode populations in fields. The 36.64 Mb genome encodes 9,927 putative proteins, among which are more than 638 predicted secreted proteins. Most secreted proteins are lytic enzymes, but more than 200 were classified as small secreted proteins (< 300 amino acids). 117 putative effector proteins were predicted, suggesting interkingdom communication during the colonization. As a first step to analyze the function of such proteins or other phenomena at the molecular level, we developed a transformation system, established the fluorescent proteins GFP and mCherry, adapted an assay to monitor protein secretion, and established gene-deletion protocols using homologous recombination or CRISPR/Cas9. One putative virulence effector protein, PefB, was transcriptionally induced during the interaction. We show that the mature protein is able to be imported into nuclei in Caenorhabditis elegans cells. In addition, we studied trap formation and show that cell-to-cell communication is required for ring closure. The availability of the genome sequence and the establishment of many molecular tools will open new avenues to studying this biotechnologically relevant nematode-trapping fungus. Nematode-trapping fungi are fascinating microorganisms, because they are able to switch from saprotrophic growth to a predatory lifestyle. Duddingtonia flagrans forms adhesive trap systems and conidia and resistant chlamydospores. Chlamydospores are ideal for dissemination in the environment to control nematode populations in the field. We show that D. flagrans is able to catch C. elegans but also the very large wine-pathogenic nematode Xiphinema index. We sequenced the D. flagrans genome and show that it encodes about 10,000 genes with a large proportion of secreted proteins. We hypothesize that virulence effector proteins are involved in the interkingdom organismic interaction and identified more than 100 candidates. In order to investigate the molecular biology of D. flagrans and its interaction with nematodes, we established a transformation system and several molecular tools. We show that cell-to-cell communication and hyphal fusion are required for trap formation. Finally, we show that one putative virulence effector protein targets nuclei when expressed in C. elegans.
Collapse
Affiliation(s)
- Loubna Youssar
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Valentin Wernet
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Nicole Hensel
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Xi Yu
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Heinz-Georg Hildebrand
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Birgit Schreckenberger
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Marius Kriegler
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | | | - Phillip Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of Berkeley, Berkeley, California, United States of America
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of Berkeley, Berkeley, California, United States of America
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
65
|
Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Appl Microbiol Biotechnol 2018. [PMID: 29523933 DOI: 10.1007/s00253-018-8897-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.
Collapse
|
66
|
Corsaro D, Köhsler M, Wylezich C, Venditti D, Walochnik J, Michel R. New insights from molecular phylogenetics of amoebophagous fungi (Zoopagomycota, Zoopagales). Parasitol Res 2017; 117:157-167. [PMID: 29170872 DOI: 10.1007/s00436-017-5685-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
Amoebophagous fungi are represented in all fungal groups: Basidiomycota, Ascomycota, Zygomycota, and Chytridiomycota. The amoebophagous fungi, within the zygomycota (Zoopagales, Zoopagomycota), mainly affect naked amoebae as ectoparasites or endoparasites. It is rather difficult to isolate members of the Zoopagales, because of their parasitic lifestyle, and to bring them into culture. Consequently, gene sequences of this group are undersampled, and its species composition and phylogeny are relatively unknown. In the present study, we were able to isolate amoebophagous fungi together with their amoeba hosts from various habitats (moss, pond, bark, and soil). Altogether, four fungal strains belonging to the genera Acaulopage and Stylopage plus one unidentified isolate were detected. Sequences of the 18S rDNA and the complete ITS region and partial 28S (LSU) rDNA were generated. Subsequent phylogenetic analyses showed that all new isolates diverge at one branch together with two environmental clonal sequences within the Zoopagomycota. Here, we provide the first molecular characterization of the genus Stylopage. Stylopage is closely related to the genus Acaulopage. In addition, taxonomy and phylogeny of amoebophagous fungi and their ecological importance are reviewed based on new sequence data, which includes environmental clonal sequences.
Collapse
Affiliation(s)
- Daniele Corsaro
- Chlamydia Research Association (CHLAREAS), 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.
| | - Martina Köhsler
- Molecular Parasitology, Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Danielle Venditti
- Chlamydia Research Association (CHLAREAS), 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.,TREDI Research Department, Faculty of Medicine, Technopôle de Nancy-Brabois, 9, Avenue de la Forêt de Haye, B.P. 184, 54505, Vandœuvre-lès-Nancy, France
| | - Julia Walochnik
- Molecular Parasitology, Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Rolf Michel
- Central Institute of the Federal Armed Forces Medical Services, P.O. Box 7340, D 56070, Koblenz, Germany
| |
Collapse
|
67
|
Dornburg A, Townsend JP, Wang Z. Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. ADVANCES IN GENETICS 2017; 100:1-47. [PMID: 29153398 DOI: 10.1016/bs.adgen.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its original inception over 150 years ago by Darwin, we have made tremendous progress toward the reconstruction of the Tree of Life. In particular, the transition from analyzing datasets comprised of small numbers of loci to those comprised of hundreds of loci, if not entire genomes, has aided in resolving some of the most vexing of evolutionary problems while giving us a new perspective on biodiversity. Correspondingly, phylogenetic trees have taken a central role in fields that span ecology, conservation, and medicine. However, the rise of big data has also presented phylogenomicists with a new set of challenges to experimental design, quantitative analyses, and computation. The sequencing of a number of very first genomes presented significant challenges to phylogenetic inference, leading fungal phylogenomicists to begin addressing pitfalls and postulating solutions to the issues that arise from genome-scale analyses relevant to any lineage across the Tree of Life. Here we highlight insights from fungal phylogenomics for topics including systematics and species delimitation, ecological and phenotypic diversification, and biogeography while providing an overview of progress made on the reconstruction of the fungal Tree of Life. Finally, we provide a review of considerations to phylogenomic experimental design for robust tree inference. We hope that this special issue of Advances in Genetics not only excites the continued progress of fungal evolutionary biology but also motivates the interdisciplinary development of new theory and methods designed to maximize the power of genomic scale data in phylogenetic analyses.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | | | - Zheng Wang
- Yale University, New Haven, CT, United States.
| |
Collapse
|