51
|
Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X, Tomar D, Woodruff MC, Simon Z, Bugrovsky R, Blalock EL, Scharer CD, Tipton CM, Wei C, Lim SS, Petri M, Niewold TB, Anolik JH, Gibson G, Lee FEH, Boss JM, Lund FE, Sanz I. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 2018; 49:725-739.e6. [PMID: 30314758 PMCID: PMC6217820 DOI: 10.1016/j.immuni.2018.08.015] [Citation(s) in RCA: 652] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/13/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.
Collapse
Affiliation(s)
- Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Kevin S Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Esther Zumaquero
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Urko M Marigorta
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aakash V Patel
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Xiaoqian Wang
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Deepak Tomar
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Zoe Simon
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Emily L Blalock
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | | | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Chungwen Wei
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - S Sam Lim
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Michelle Petri
- Hopkins Lupus Center, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, NYU School of Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Frances E Lund
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
52
|
Mechanisms and therapeutic targets for bone damage in rheumatoid arthritis, in particular the RANK-RANKL system. Curr Opin Pharmacol 2018; 40:110-119. [DOI: 10.1016/j.coph.2018.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
|
53
|
Rostamzadeh D, Kazemi T, Amirghofran Z, Shabani M. Update on Fc receptor-like (FCRL) family: new immunoregulatory players in health and diseases. Expert Opin Ther Targets 2018; 22:487-502. [PMID: 29737217 DOI: 10.1080/14728222.2018.1472768] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Fc receptor-like (FCRL) molecules, as recently identified members of the immunoglobulin superfamily (IgSF), are preferentially expressed by B-cells. They have variable number of extracellular immunoglobulin-like domains and cytoplasmic activating ITAMs and/or inhibitory ITIMs. FCRL1-5 are dominantly expressed in different stages of B-cells development. But, FCRL6 is preferentially expressed in different subsets of T-cells and NK cells. FCRL1-5 could regulate different features of B-cell evolution such as development, differentiation, activation, antibody secretion and isotype switching. Areas covered: Improved understanding of FCRL expression may grant B-cells and finally its signaling pathways, alone or in cooperation with other signaling molecules, as interesting new targets for diagnostic, monitoring and immunotherapeutic modalities; although further investigations remain to be defined. Recent investigations on different family members of FCRL proteins have substantiated their differential expression on different tissues, malignancies, immune related disease and infectious diseases. Expert opinion: FCRLs restricted expressions in normal B-cells and T-cell subsets accompanied with their overexpression in B-cell malignancies introduce them as logical candidates for the development of antibody- and cell-based immunotherapy approaches in B-cell malignancies, immune-mediated and infectious diseases. FCRLs would be applied as attractive and specific targets for immunodiagnostic approaches, clinical prognosis as well as disease monitoring of relevant patients.
Collapse
Affiliation(s)
- Davood Rostamzadeh
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tohid Kazemi
- b Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zahra Amirghofran
- c Department of Immunology, Medical School , Shiraz University of Medical Sciences , Shiraz , Iran.,d Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mahdi Shabani
- e Department of Immunology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,f Monoclonal Antibody Research Center , Avicenna Research Institute, ACECR , Tehran , Iran
| |
Collapse
|
54
|
De S, Zhang B, Shih T, Singh S, Winkler A, Donnelly R, Barnes BJ. B Cell-Intrinsic Role for IRF5 in TLR9/BCR-Induced Human B Cell Activation, Proliferation, and Plasmablast Differentiation. Front Immunol 2018; 8:1938. [PMID: 29367853 PMCID: PMC5768180 DOI: 10.3389/fimmu.2017.01938] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Upon recognition of antigen, B cells undergo rapid proliferation followed by differentiation to specialized antibody secreting cells (ASCs). During this transition, B cells are reliant upon a multilayer transcription factor network to achieve a dramatic remodeling of the B cell transcriptional landscape. Increased levels of ASCs are often seen in autoimmune diseases and it is believed that altered expression of regulatory transcription factors play a role in this imbalance. The transcription factor interferon regulatory factor 5 (IRF5) is one such candidate as polymorphisms in IRF5 associate with risk of numerous autoimmune diseases and correlate with elevated IRF5 expression. IRF5 genetic risk has been widely replicated in systemic lupus erythematosus (SLE), and loss of Irf5 ameliorates disease in murine lupus models, in part, through the lack of pathogenic autoantibody secretion. It remains unclear, however, whether IRF5 is contributing to autoantibody production through a B cell-intrinsic function. To date, IRF5 function in healthy human B cells has not been characterized. Using human primary naive B cells, we define a critical intrinsic role for IRF5 in B cell activation, proliferation, and plasmablast differentiation. Targeted IRF5 knockdown resulted in significant immunoglobulin (Ig) D retention, reduced proliferation, plasmablast differentiation, and IgG secretion. The observed decreases were due to impaired B cell activation and clonal expansion. Distinct from murine studies, we identify and confirm new IRF5 target genes, IRF4, ERK1, and MYC, and pathways that mediate IRF5 B cell-intrinsic function. Together, these results identify IRF5 as an early regulator of human B cell activation and provide the first dataset in human primary B cells to map IRF5 dysfunction in SLE.
Collapse
Affiliation(s)
- Saurav De
- Rutgers Graduate School of Biomedical Sciences, Newark, NJ, United States.,Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Baohong Zhang
- Clinical Genetics and Bioinformatics, Pfizer Inc., Cambridge, MA, United States
| | - Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| | - Aaron Winkler
- Department of Inflammation and Immunology, Pfizer Inc., Cambridge, MA, United States
| | - Robert Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ, United States
| |
Collapse
|
55
|
Fillatreau S. B cells and their cytokine activities implications in human diseases. Clin Immunol 2018; 186:26-31. [PMID: 28736271 PMCID: PMC5844600 DOI: 10.1016/j.clim.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
B cells are the only cell type that can give rise to antibody-producing cells, and the only cell type whose selective depletion can, today, lead to an improvement of a wide range of immune-mediated inflammatory diseases, including disorders not primarily driven by autoantibodies. Here, I discuss this paradoxical observation, and propose that the capacity of B cells to act as cytokine-producing cells explains how they can control monocyte activity and subsequently disease pathogenesis. Together with current data on the effect of anti-CD20 B cell-depleting reagents in the clinic, this novel knowledge on B cell heterogeneity opens the way for novel safer and more efficient strategies to target B cells. The forthcoming identification of disease-relevant B cell subsets is awaited to permit their monitoring and specific targeting in a personalized medicine approach.
Collapse
Affiliation(s)
- Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants Malades, Paris, France; Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz Institute, Berlin, Germany.
| |
Collapse
|
56
|
Titanji K. Beyond Antibodies: B Cells and the OPG/RANK-RANKL Pathway in Health, Non-HIV Disease and HIV-Induced Bone Loss. Front Immunol 2017; 8:1851. [PMID: 29312334 PMCID: PMC5743755 DOI: 10.3389/fimmu.2017.01851] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
HIV infection leads to severe B cell dysfunction, which manifests as impaired humoral immune response to infection and vaccinations and is not completely reversed by otherwise effective antiretroviral therapy (ART). Despite its inability to correct HIV-induced B cell dysfunction, ART has led to significantly increased lifespans in people living with HIV/AIDS. This has in turn led to escalating prevalence of non-AIDS complications in aging HIV-infected individuals, including malignancies, cardiovascular disease, bone disease, and other end-organ damage. These complications, typically associated with aging, are a significant cause of morbidity and mortality and occur significantly earlier in HIV-infected individuals. Understanding the pathophysiology of these comorbidities and delineating clinical management strategies and potential cures is gaining in importance. Bone loss and osteoporosis, which lead to increase in fragility fracture prevalence, have in recent years emerged as important non-AIDS comorbidities in patients with chronic HIV infection. Interestingly, ART exacerbates bone loss, particularly within the first couple of years following initiation. The mechanisms underlying HIV-induced bone loss are multifactorial and complicated by the fact that HIV infection is linked to multiple risk factors for osteoporosis and fracture, but a very interesting role for B cells in HIV-induced bone loss has recently emerged. Although best known for their important antibody-producing capabilities, B cells also produce two cytokines critical for bone metabolism: the key osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) and its physiological inhibitor osteoprotegerin (OPG). Dysregulated B cell production of OPG and RANKL was shown to be a major contributor to increased bone loss and fracture risk in animal models and HIV-infected humans. This review will summarize our current knowledge of the role of the OPG/RANK–RANKL pathway in B cells in health and disease, and the contribution of B cells to HIV-induced bone loss. Data from mouse studies indicate that RANKL and OPG may also play a role in B cell function and the implications of these findings for human B cell biology, as well as therapeutic strategies targeting the OPG/RANK–RANKL pathway, will be discussed.
Collapse
Affiliation(s)
- Kehmia Titanji
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
57
|
B1a cells play a pathogenic role in the development of autoimmune arthritis. Oncotarget 2017; 7:19299-311. [PMID: 27014914 PMCID: PMC4991384 DOI: 10.18632/oncotarget.8244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
Dysregulated functions of B1 cells have been implicated in the disease progression of various autoimmune disorders, but it remains largely unclear whether B1 cells are involved in the pathogenesis of autoimmune arthritis. In this study, we found that peritoneal B1a cells underwent proliferation and migrated to the inflamed joint tissue with upregulated RANKL expression during collagen-induced arthritis (CIA) development in mice. Adoptive transfer of B1a cells exacerbated arthritic severity and joint damage while intraperitoneal depletion of B1 cells ameliorated both arthritic symptoms and joint pathology in CIA mice. In culture, RANKL-expressing B1a cells significantly promoted the expansion of osteoclasts derived from bone marrow cells, which were in accord with the in vivo findings of increased osteoclastogenesis in CIA mice transferred with B1a cells. Together, these results have demonstrated a pathogenic role of B1a cells in the development of autoimmune arthritis through RANKL-mediated osteoclastogenesis.
Collapse
|
58
|
Siewe B, Nipper AJ, Sohn H, Stapleton JT, Landay A. FcRL4 Expression Identifies a Pro-inflammatory B Cell Subset in Viremic HIV-Infected Subjects. Front Immunol 2017; 8:1339. [PMID: 29104574 PMCID: PMC5655023 DOI: 10.3389/fimmu.2017.01339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023] Open
Abstract
In autoimmune diseases, toll-like receptor (TLR)-stimulated pro-inflammatory IL-6-secreting B cells exert pathogenic roles. Similarly, B cell Fc receptor-like 4 (FcRL4) expression amplifies TLR stimulation, and in rheumatoid arthritis patients, FcRL4 expression identifies a pro-inflammatory B cell subset. B cells from HIV-infected subjects also express heightened levels of FcRL4 and secrete high levels of IL-6: a critical mediator of HIV disease progression. In this study, we sought to determine if FcRL4 identifies a pro-inflammatory B cell subset in HIV-infected subjects and further elucidate the mechanisms underlying FcRL4 amplification of TLR stimulation. We determine that tissue-like memory B cells express the highest endogenous levels of FcRL4 positively correlating with IL-6 expression (p = 0.0022, r = 0.8667), but activated memory B cells exhibit the highest frequency of FcRL4hiIL-6hi cells. FcRL4hi B cells exhibit an activated TLR-signaling pathway identified by elevated phosphorylation levels of: pERK (p = 0.0373), p38 (p = 0.0337), p65 (p = 0.1097), and cJUN (p = 0.0239), concomitant with significantly elevated expression of the TLR-signaling modulator hematopoietic cell kinase (HcK, p = 0.0414). Compared to FcRL4neg B cells from healthy controls, TLR9-stimulated FcRL4pos B cells express significantly higher levels of lL-6 (p = 0.0179). Further, TLR9-stimulated B cells also upregulate the expression of FcRL4 (p = 0.0415) and HcK (p = 0.0386). In B-cell lines, siRNA-mediated HcK knockdown downmodulates TLR9-induced FcRL4-mediated activation quantified by CD23 upregulation (p = 0.0553). We present data suggesting that, in viremic HIV-infected individuals, FcRL4 expression identifies unique IL-6 producing pro-inflammatory B-cell subsets. Further, TLR stimulation likely modulates FcRL4 expression and FcRL4 expression is associated with Hck, potentially enhancing the activation of TLR-signaling associated transcription factors. Pathogenic B-cells have been identified in other disease settings, and this study represents a novel report describing a pro-inflammatory B cell subset in HIV-infected patients.
Collapse
Affiliation(s)
- Basile Siewe
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, United States
| | - Allison J Nipper
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, United States
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jack T Stapleton
- Iowa City Veterans Affairs Medical Center, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Iowa City Veterans Affairs Medical Center, Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Alan Landay
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
59
|
Haacke EA, Bootsma H, Spijkervet FK, Visser A, Vissink A, Kluin PM, Kroese FG. FcRL4 + B-cells in salivary glands of primary Sjögren's syndrome patients. J Autoimmun 2017; 81:90-98. [DOI: 10.1016/j.jaut.2017.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022]
|
60
|
Wehmeyer C, Pap T, Buckley CD, Naylor AJ. The role of stromal cells in inflammatory bone loss. Clin Exp Immunol 2017; 189:1-11. [PMID: 28419440 PMCID: PMC5461090 DOI: 10.1111/cei.12979] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation, local and systemic bone loss and a lack of compensatory bone repair. Fibroblast-like synoviocytes (FLS) are the most abundant cells of the stroma and a key population in autoimmune diseases such as RA. An increasing body of evidence suggests that these cells play not only an important role in chronic inflammation and synovial hyperplasia, but also impact bone remodelling. Under inflammatory conditions FLS release inflammatory cytokines, regulate bone destruction and formation and communicate with immune cells to control bone homeostasis. Other stromal cells, such as osteoblasts and terminally differentiated osteoblasts, termed osteocytes, are also involved in the regulation of bone homeostasis and are dysregulated during inflammation. This review highlights our current understanding of how stromal cells influence the balance between bone formation and bone destruction. Increasing our understanding of these processes is critical to enable the development of novel therapeutic strategies with which to treat bone loss in RA.
Collapse
Affiliation(s)
- C. Wehmeyer
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| | - T. Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital MuensterMuensterGermany
| | - C. D. Buckley
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| | - A. J. Naylor
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| |
Collapse
|
61
|
Jourdan M, Robert N, Cren M, Thibaut C, Duperray C, Kassambara A, Cogné M, Tarte K, Klein B, Moreaux J. Characterization of human FCRL4-positive B cells. PLoS One 2017. [PMID: 28636654 PMCID: PMC5479562 DOI: 10.1371/journal.pone.0179793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
FCRL4 is an immunoregulatory receptor that belongs to the Fc receptor-like (FCRL) family. In healthy individuals, FCRL4 is specifically expressed by memory B cells (MBCs) localized in sub-epithelial regions of lymphoid tissues. Expansion of FCRL4+ B cells has been observed in blood and other tissues in various infectious and autoimmune disorders. Currently, the mechanisms involved in pathological FCRL4+ B cell generation are actively studied, but they remain elusive. As in vivo FCRL4+ cells are difficult to access and to isolate, here we developed a culture system to generate in vitro FCRL4+ B cells from purified MBCs upon stimulation with soluble CD40 ligand and/or CpG DNA to mimic T-cell dependent and/or T-cell independent activation, respectively. After 4 days of stimulation, FCRL4+ B cells represented 17% of all generated cells. Transcriptomic and phenotypic analyses of in vitro generated FCRL4+ cells demonstrated that they were closely related to FCRL4+ tonsillar MBCs. They strongly expressed inhibitory receptor genes, as observed in exhausted FCRL4+ MBCs from blood samples of HIV-infected individuals with high viremia. In agreement, cell cycle genes were significantly downregulated and the number of cell divisions was two-fold lower in in vitro generated FCRL4+ than FCRL4- cells. Finally, due to their reduced proliferation and differentiation potential, FCRL4+ cells were less prone to differentiate into plasma cells, differently from FCRL4- cells. Our in vitro model could be of major interest for studying the biology of normal and pathological FCRL4+ cells.
Collapse
Affiliation(s)
- Michel Jourdan
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Nicolas Robert
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
| | | | - Coraline Thibaut
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | | | - Alboukadel Kassambara
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
| | - Michel Cogné
- CNRS UMR 7276, Université de Limoges, Limoges, France
| | - Karin Tarte
- Pôle Cellules et Tissus, CHU Rennes, Rennes, France
- INSERM, U917, Rennes, France
| | - Bernard Klein
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
- Université Montpellier 1, UFR Médecine, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
- Université Montpellier 1, UFR Médecine, Montpellier, France
- * E-mail:
| |
Collapse
|
62
|
Grönwall C, Amara K, Hardt U, Krishnamurthy A, Steen J, Engström M, Sun M, Ytterberg AJ, Zubarev RA, Scheel-Toellner D, Greenberg JD, Klareskog L, Catrina AI, Malmström V, Silverman GJ. Autoreactivity to malondialdehyde-modifications in rheumatoid arthritis is linked to disease activity and synovial pathogenesis. J Autoimmun 2017. [PMID: 28647488 DOI: 10.1016/j.jaut.2017.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxidation-associated malondialdehyde (MDA) modification of proteins can generate immunogenic neo-epitopes that are recognized by autoantibodies. In health, IgM antibodies to MDA-adducts are part of the natural antibody pool, while elevated levels of IgG anti-MDA antibodies are associated with inflammatory and autoimmune conditions. Yet, in human autoimmune disease IgG anti-MDA responses have not been well characterized and their potential contribution to disease pathogenesis is not known. Here, we investigate MDA-modifications and anti-MDA-modified protein autoreactivity in rheumatoid arthritis (RA). While RA is primarily associated with autoreactivity to citrullinated antigens, we also observed increases in serum IgG anti-MDA in RA patients compared to controls. IgG anti-MDA levels significantly correlated with disease activity by DAS28-ESR and serum TNF-alpha, IL-6, and CRP. Mass spectrometry analysis of RA synovial tissue identified MDA-modified proteins and revealed shared peptides between MDA-modified and citrullinated actin and vimentin. Furthermore, anti-MDA autoreactivity among synovial B cells was discovered when investigating recombinant monoclonal antibodies (mAbs) cloned from single B cells, and 3.5% of memory B cells and 2.3% of plasma cells were found to be anti-MDA positive. Several clones were highly specific for MDA-modification with no cross-reactivity to other antigen modifications such as citrullination, carbamylation or 4-HNE-carbonylation. The mAbs recognized MDA-adducts in a variety of proteins including albumin, histone 2B, fibrinogen and vimentin. Interestingly, the most reactive clone, originated from an IgG1-bearing memory B cell, was encoded by near germline variable genes, and showed similarity to previously reported natural IgM. Other anti-MDA clones display somatic hypermutations and lower reactivity. Importantly, these anti-MDA antibodies had significant in vitro functional properties and induced enhanced osteoclastogenesis, while the natural antibody related high-reactivity clone did not. We postulate that these may represent distinctly different facets of anti-MDA autoreactive responses.
Collapse
Affiliation(s)
- Caroline Grönwall
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, USA.
| | - Khaled Amara
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Uta Hardt
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Akilan Krishnamurthy
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Steen
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marianne Engström
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Meng Sun
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A Jimmy Ytterberg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeffrey D Greenberg
- Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gregg J Silverman
- Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
63
|
Amara K, Clay E, Yeo L, Ramsköld D, Spengler J, Sippl N, Cameron JA, Israelsson L, Titcombe PJ, Grönwall C, Sahbudin I, Filer A, Raza K, Malmström V, Scheel-Toellner D. B cells expressing the IgA receptor FcRL4 participate in the autoimmune response in patients with rheumatoid arthritis. J Autoimmun 2017; 81:34-43. [PMID: 28343748 PMCID: PMC5473332 DOI: 10.1016/j.jaut.2017.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022]
Abstract
The clinical efficacy of B cell targeting therapies highlights the pathogenic potential of B cells in inflammatory diseases. Expression of Fc Receptor like 4 (FcRL4) identifies a memory B cell subset, which is enriched in the joints of patients with rheumatoid arthritis (RA) and in mucosa-associated lymphoid tissue. The high level of RANKL production by this B cell subset indicates a unique pathogenic role. In addition, recent work has identified a role for FcRL4 as an IgA receptor, suggesting a potential function in mucosal immunity. Here, the contribution of FcRL4+ B cells to the specific autoimmune response in the joints of patients with RA was investigated. Single FcRL4+ and FcRL4- B cells were sorted from synovial fluid and tissue from RA patients and their immunoglobulin genes characterized. Levels of hypermutation in the variable regions in both populations were largely consistent with memory B cells selected by an antigen- and T cell-dependent process. Recombinant antibodies were generated based on the IgH and IgL variable region sequences and investigated for antigen specificity. A significantly larger proportion of the recombinant antibodies generated from individual synovial FcRL4+ B cells showed reactivity towards citrullinated autoantigens. Furthermore, both in analyses based on heavy chain sequences and flow cytometric detection, FcRL4+ B cells have significantly increased usage of the IgA isotype. Their low level of expression of immunoglobulin and plasma cell differentiation genes does not suggest current antibody secretion. We conclude that these activated B cells are a component of the local autoimmune response, and through their RANKL expression, can contribute to joint destruction. Furthermore, their expression of FcRL4 and their enrichment in the IgA isotype points towards a potential role for these cells in the link between mucosal and joint inflammation. Memory B cells expressing the IgA receptor FcRL4 are found in the joints of patients with RA. B cell receptors expressed on synovial FcRL4+ B cells more frequently belong to the IgA class. Among recombinant antibodies cloned from FcRL4+ B cells there is more reactivity with citrullinated proteins. The gene transcription profile of FcRL4+ B cells shows a low level of differentiation to plasma cells. These cells may be involved in the link between mucosal and joint autoimmunity.
Collapse
Affiliation(s)
- Khaled Amara
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Elizabeth Clay
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lorraine Yeo
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel Ramsköld
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Julia Spengler
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Natalie Sippl
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - James A Cameron
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lena Israelsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Philip J Titcombe
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Caroline Grönwall
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Ilfita Sahbudin
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew Filer
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Karim Raza
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Rheumatology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham UK
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Solna, Stockholm, Sweden
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, RACE AR UK Centre of Excellence in RA Pathogenesis, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
64
|
Hu F, Liu H, Liu X, Zhang X, Xu L, Zhu H, Li Y, Shi L, Ren L, Zhang J, Li Z, Jia Y. Pathogenic conversion of regulatory B10 cells into osteoclast-priming cells in rheumatoid arthritis. J Autoimmun 2017; 76:53-62. [DOI: 10.1016/j.jaut.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/25/2016] [Accepted: 09/04/2016] [Indexed: 10/20/2022]
|
65
|
Chiu YG, Ritchlin CT. Denosumab: targeting the RANKL pathway to treat rheumatoid arthritis. Expert Opin Biol Ther 2017; 17:119-128. [PMID: 27871200 PMCID: PMC5794005 DOI: 10.1080/14712598.2017.1263614] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/18/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by focal pathologic bone resorption due to excessive activity of osteoclasts (OC). Receptor activator of nuclear factor kappa B ligand (RANKL) is essential for the proliferation, differentiation, and survival of OC. Denosumab (DMab) is a humanized monoclonal antibody that binds to RANKL with high affinity and blocks its subsequent association with its receptor RANK on the surface of OC precursors. Area covered: The authors review the molecular and cellular mechanisms underlying therapeutic applications of DMab, provide recent highlights on pharmacology, efficacy and safety of DMab, and discuss the potential of DMab as a novel therapeutic option for the treatment of rheumatoid arthritis. Expert opinion: Clinical results suggest that DMab is efficient both in systemic and articular bone loss in RA with limited side effects. Diminished bone erosion activity was also noted in RA patients on corticosteroids and bisphosphonates. Combination of DMab with an anti-TNF agent was not associated with increased infection rates. Collectively, these data indicate that DMab, in combination with methotrexate and possibly other conventional synthetic Disease Modifying Anti-Rheumatic Drugs (csDMARDs), is an effective, safe and cost-effective option for the treatment of RA.
Collapse
Affiliation(s)
- Yahui Grace Chiu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester, Box 695, Room G6456, Rochester, NY 14642
| | - Christopher T. Ritchlin
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester, Box 695, Room G6456, Rochester, NY 14642
| |
Collapse
|
66
|
Lino AC, Dörner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev 2016; 269:130-44. [PMID: 26683150 DOI: 10.1111/imr.12374] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B-cell depletion therapy has beneficial effects in autoimmune diseases. This is only partly explained by an elimination of autoantibodies. How does B-cell depletion improve disease? Here, we review preclinical studies showing that B cells can propagate autoimmune disorders through cytokine production. We also highlight clinical observations indicating the relevance of these B-cell functions in human autoimmunity. Abnormalities in B-cell cytokine production have been observed in rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and systemic lupus erythematosus. In the first two diseases, B-cell depletion erases these abnormalities, and improves disease progression, suggesting a causative role for defective B-cell cytokine expression in disease pathogenesis. However, in the last two disorders, the pathogenic role of B cells and the effect of B-cell depletion on cytokine-producing B cells remain to be clarified. A better characterization of cytokine-expressing human B-cell subsets, and their modulation by B cell-targeted therapies might help understanding both the successes and failures of current B cell-targeted approaches. This may even lead to the development of novel strategies to deplete or amplify selectively pathogenic or protective subsets, respectively, which might be more effective than global depletion of the B-cell compartment.
Collapse
Affiliation(s)
- Andreia C Lino
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,CC12, Department of Medicine/Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, 3801 University, Montreal, QC, Canada
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
67
|
Catrina AI, Joshua V, Klareskog L, Malmström V. Mechanisms involved in triggering rheumatoid arthritis. Immunol Rev 2016; 269:162-74. [PMID: 26683152 DOI: 10.1111/imr.12379] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome with a strong autoimmune component. The autoantigens in RA are neither tissue nor organ-specific, but comprise a broad collection of post-translational modified proteins, such as citrullinated proteins. These modifications are likely to be triggered by innate stimuli. In genetically susceptible hosts, they can lead to a more substantiated secondary autoimmune reaction targeting the joints and precipitating the clinical onset of RA. Both innate and adaptive mechanisms will then closely interplay to promote chronic joint inflammation in the several absence of appropriate treatment. This scenario, is shared with other autoimmune diseases where potentially pathogenic immune responses are present already before disease onset. Better understanding of these processes will allow both earlier diagnosis of RA and identification of those healthy individuals that are at risk of developing disease, opening possibilities for disease prevention. In this review, we discuss the iterative processes of innate and adaptive immunity responsible for the (longitudinal) development of immune reactions that may contribute to the development of RA.
Collapse
Affiliation(s)
- Anca I Catrina
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vijay Joshua
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
68
|
Spencer J, Sollid LM. The human intestinal B-cell response. Mucosal Immunol 2016; 9:1113-24. [PMID: 27461177 DOI: 10.1038/mi.2016.59] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/10/2016] [Indexed: 02/04/2023]
Abstract
The intestinal immune system is chronically challenged by a huge plethora of antigens derived from the lumen. B-cell responses in organized gut-associated lymphoid tissues and regional lymph nodes that are driven chronically by gut antigens generate the largest population of antibody-producing cells in the body: the gut lamina propria plasma cells. Although animal studies have provided insights into mechanisms that underpin this dynamic process, some very fundamental differences in this system appear to exist between species. Importantly, this prevents extrapolation from mice to humans to inform translational research questions. Therefore, in this review we will describe the structures and mechanisms involved in the propagation, dissemination, and regulation of this immense plasma cell population in man. Uniquely, we will seek our evidence exclusively from studies of human cells and tissues.
Collapse
Affiliation(s)
- J Spencer
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - L M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
69
|
Meednu N, Zhang H, Owen T, Sun W, Wang V, Cistrone C, Rangel-Moreno J, Xing L, Anolik JH. Production of RANKL by Memory B Cells: A Link Between B Cells and Bone Erosion in Rheumatoid Arthritis. Arthritis Rheumatol 2016; 68:805-16. [PMID: 26554541 DOI: 10.1002/art.39489] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a systemic autoimmune disease that often leads to joint damage. The mechanisms of bone damage in RA are complex, involving activation of bone-resorbing osteoclasts (OCs) by synoviocytes and Th17 cells. This study was undertaken to investigate whether B cells play a direct role in osteoclastogenesis through the production of RANKL, the essential cytokine for OC development. METHODS RANKL production by total B cells or sorted B cell subpopulations in the peripheral blood and synovial tissue from healthy donors or anti-cyclic citrullinated peptide-positive patients with RA was examined by flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analysis. To define direct effects on osteoclastogenesis, B cells were cocultured with CD14+ monocytes, and OCs were enumerated by tartrate-resistant acid phosphatase staining. RESULTS Healthy donor peripheral blood B cells were capable of expressing RANKL upon stimulation, with switched memory B cells (CD27+IgD-) having the highest propensity for RANKL production. Notably, switched memory B cells in the peripheral blood from RA patients expressed significantly more RANKL compared to healthy controls. In RA synovial fluid and tissue, memory B cells were enriched and spontaneously expressed RANKL, with some of these cells visualized adjacent to RANK+ OC precursors. Critically, B cells supported OC differentiation in vitro in a RANKL-dependent manner, and the number of OCs was higher in cultures with RA B cells than in those derived from healthy controls. CONCLUSION These findings reveal the critical importance of B cells in bone homeostasis and their likely contribution to joint destruction in RA.
Collapse
Affiliation(s)
- Nida Meednu
- University of Rochester Medical Center, Rochester, New York
| | - Hengwei Zhang
- University of Rochester Medical Center, Rochester, New York
| | - Teresa Owen
- University of Rochester Medical Center, Rochester, New York
| | - Wen Sun
- University of Rochester Medical Center, Rochester, New York
| | - Victor Wang
- University of Rochester Medical Center, Rochester, New York
| | | | | | - Lianping Xing
- University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
70
|
Abstract
Members of the family of Fc receptor-like (FcRL) proteins, homologous to FcγRI, have been identified by multiple research groups. Consequently, they have been described using multiple nomenclatures including Fc receptor homologs (FcRH), immunoglobulin superfamily receptor translocation-associated genes (IRTA), immunoglobulin-Fc-gp42-related genes (IFGP), Src homology 2 domain-containing phosphatase anchor proteins (SPAP), and B cell cross-linked by anti-immunoglobulin M-activating sequences (BXMAS). They are now referred to under a unified nomenclature as FCRL. Eight different human FCRL genes have been identified, all of which appear to be related to the genes of the immunoglobulin superfamily (IgSF) of cellular adhesion molecules. These type 1 transmembrane glycoproteins are composed of different combinations of 5 types of immunoglobulin-like domains, with each protein consisting of 3 to 9 domains, and no individual domain type conserved throughout all of the FCRL proteins. Ligands for the majority of the FCRLs remain unknown. In general, FCRL expression is restricted to lymphocytes and is primarily expressed in B-lymphocytes, supporting FCRL’s involvement in a variety of immune disorders. Most FCRLs functionally repress B-cell activation; however, they might have dual roles in lymphocyte functions as these proteins often possess immunoreceptor tyrosine activation (ITAM) and inhibitory (ITIM) motif elements. The biological functions of these newly recognized FCRL proteins are just beginning to emerge, and might provide the insight necessary for understanding pathophysiology of lymphocyte disorders and treating different immune diseases.
Collapse
Affiliation(s)
- Mollie Capone
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, BSB-201, Charleston, SC 29425, USA
| | - John Matthew Bryant
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, BSB-201, Charleston, SC 29425, USA
| | - Natalie Sutkowski
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, BSB-201, Charleston, SC 29425, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, BSB-201, Charleston, SC 29425, USA
| |
Collapse
|
71
|
Investigation of the human FCRL1, 2, and 4 gene expressions in patients with rheumatoid arthritis. Rheumatol Int 2016; 36:1149-56. [DOI: 10.1007/s00296-016-3495-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
|
72
|
Li H, Borrego F, Nagata S, Tolnay M. Fc Receptor-like 5 Expression Distinguishes Two Distinct Subsets of Human Circulating Tissue-like Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:4064-74. [PMID: 27076679 DOI: 10.4049/jimmunol.1501027] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
Fc receptor-like (FCRL) 5 is a novel IgG binding protein expressed on B cells, with the capacity to regulate Ag receptor signaling. We assessed FCRL5 expression on circulating B cells from healthy donors and found that FCRL5(+) cells are most enriched among atypical CD21(-/lo)/CD27(-) tissue-like memory (TLM) B cells, which are abnormally expanded in several autoimmune and infectious diseases. Using multicolor flow cytometry, FCRL5(+) TLM cells were found to express more CD11c and several inhibitory receptors than did the FCRL5(-) TLM subset. The homing receptor profiles of the two TLM subsets shared features consistent with migration away from lymphoid tissues, but they also displayed distinct differences. Analysis of IgH V regions in single cells indicated that although both subsets are diverse, the FCRL5(+) subset accumulated significantly more somatic mutations. Furthermore, the FCRL5(+) subset had more switched isotype expression and more extensive proliferative history. Microarray analysis and quantitative RT-PCR demonstrated that the two TLM subsets possess distinct gene expression profiles, characterized by markedly different CD11c, SOX5, T-bet, and RTN4R expression, as well as differences in expression of inhibitory receptors. Functional analysis revealed that the FCRL5(+) TLM subset responds poorly to multiple stimuli compared with the FCRL5(-) subset, as reflected by reduced calcium mobilization and blunted cell proliferation. We propose that the FCRL5(+) TLM subset, but not the FCRL5(-) TLM subset, underwent Ag-driven development and is severely dysfunctional. The present study elucidates the heterogeneity of TLM B cells and provides the basis to dissect their roles in the pathogenesis of inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Huifang Li
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Francisco Borrego
- Immunopathology Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; and
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Mate Tolnay
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993;
| |
Collapse
|
73
|
Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 2016; 18:67. [PMID: 26980135 PMCID: PMC4793760 DOI: 10.1186/s13075-016-0957-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/12/2016] [Indexed: 11/13/2022] Open
Abstract
Background The efficacy of B cell-depleting therapies for rheumatoid arthritis underscores antibody-independent functions of effector B cells such as cognate T–B interactions and production of pro-inflammatory cytokines. Receptor activator of nuclear factor κB ligand (RANKL) is a key cytokine involved in bone destruction and is highly expressed in synovial fluid B cells in patients with rheumatoid arthritis. In this study we sought to clarify the generation mechanism of RANKL+ effector B cells and their impacts on osteoclast differentiation. Methods Peripheral blood and synovial fluid B cells from healthy controls and patients with rheumatoid arthritis were isolated using cell sorter. mRNA expression of RANKL, osteoprotegerin, tumor necrosis factor (TNF)-α, and Blimp-1 was analyzed by quantitative real-time polymerase chain reaction. Levels of RANKL, CD80, CD86, and CXCR3 were analyzed using flow cytometry. Functional analysis of osteoclastogenesis was carried out in the co-culture system using macrophage RAW264 reporter cells. Results RANKL expression was accentuated in CD80+CD86+ B cells, a highly activated B-cell subset more abundantly observed in patients with rheumatoid arthritis. Upon activation via B-cell receptor and CD40, switched-memory B cells predominantly expressed RANKL, which was further augmented by interferon-γ (IFN-γ) but suppressed by interleukin-21. Strikingly, IFN-γ also enhanced TNF-α expression, while it strongly suppressed osteoprotegerin expression in B cells. IFN-γ increased the generation of CXCR3+RANKL+ effector B cells, mimicking the synovial B cell phenotype in patients with rheumatoid arthritis. Finally, RANKL+ effector B cells in concert with TNF-α facilitated osteoclast differentiation in vitro. Conclusions Our current findings have shed light on the generation mechanism of pathogenic RANKL+ effector B cells that would be an ideal therapeutic target for rheumatoid arthritis in the future. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0957-6) contains supplementary material, which is available to authorized users.
Collapse
|
74
|
|
75
|
Thorarinsdottir K, Camponeschi A, Gjertsson I, Mårtensson IL. CD21 -/low B cells: A Snapshot of a Unique B Cell Subset in Health and Disease. Scand J Immunol 2015; 82:254-61. [PMID: 26119182 DOI: 10.1111/sji.12339] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/25/2015] [Indexed: 01/23/2023]
Abstract
B cells represent one of the cellular components of the immune system that protects the individual from invading pathogens. In response to the invader, these cells differentiate into plasma cells and produce large amounts of antibodies that bind to and eliminate the pathogen. A hallmark of autoimmune diseases is the production of autoantibodies i.e. antibodies that recognize self. Those that are considered pathogenic can damage tissues and organs, either by direct binding or when deposited as immune complexes. For decades, B cells have been considered to play a major role in autoimmune diseases by antibody production. However, as pathogenic autoantibodies appear to derive mainly from T cell dependent responses, T cells have been the focus for many years. The successful treatment of patients with autoimmune diseases with either B cell depletion therapy (rituximab) or inhibition of B cell survival (belimumab), suggested that not only the autoantibodies but also other B cell features are important. This has caused a surge of interest in B cells and their biology resulting in the identification of various subsets e.g. regulatory B cells, several memory B cell subsets etc. Also, in other conditions such as chronic viral infections and primary immunodeficiency, several B cell subsets with unique characteristics have been identified. In this review, we will discuss one of these subsets, a subset that is expanded in conditions characterized by chronic immune stimulation. This B cell subset lacks, or expresses low, surface levels of the complement receptor 2 (CD21) and has therefore been termed CD21(-/low) B cells.
Collapse
Affiliation(s)
- K Thorarinsdottir
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - A Camponeschi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - I Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - I-L Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
76
|
Focal bone involvement in inflammatory arthritis: the role of IL17. Rheumatol Int 2015; 36:469-82. [DOI: 10.1007/s00296-015-3387-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|
77
|
Jeffery LE, Raza K, Hewison M. Vitamin D in rheumatoid arthritis-towards clinical application. Nat Rev Rheumatol 2015; 12:201-10. [PMID: 26481434 DOI: 10.1038/nrrheum.2015.140] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In addition to its well-documented involvement in mineral homeostasis, vitamin D seems to have broad effects on human health that go beyond the skeletal system. Prominent among these so-called nonclassical effects of vitamin D are its immunomodulatory properties. In vitro studies have shown anti-inflammatory effects of 1,25-dihydroxyvitamin D (1,25(OH)2D), the active form of vitamin D. In addition, epidemiological analysis of patients with established inflammatory disease identified associations between vitamin D deficiency (low serum concentrations of inactive 25-hydroxyvitamin D, abbreviated to 25(OH)D) and inflammatory conditions, including rheumatoid arthritis (RA). The association of vitamin D deficiency with RA severity supports the hypothesis of a role for vitamin D in the initiation or progression of the disease, or possibly both. However, whether 25(OH)D status is a cause or consequence of RA is still incompletely understood and requires further analysis in prospective vitamin D supplementation trials. The characterization of factors that promote the transition from preclinical to clinical phases of RA has become a major focus of research, with the aim to facilitate earlier diagnosis and treatment, and improve therapeutic outcomes. In this Review, we aim to describe the current knowledge of vitamin D and the immune system specifically in RA, and discuss the potential benefits that vitamin D might have on slowing RA progression.
Collapse
Affiliation(s)
- Louisa E Jeffery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TH, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TH, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TH, UK
| |
Collapse
|
78
|
Hu Z, Luo Z, Wan Z, Wu H, Li W, Zhang T, Jiang W. HIV-associated memory B cell perturbations. Vaccine 2015; 33:2524-9. [PMID: 25887082 PMCID: PMC4420662 DOI: 10.1016/j.vaccine.2015.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/15/2022]
Abstract
Memory B-cell depletion, hyperimmunoglobulinemia, and impaired vaccine responses are the hallmark of B cell perturbations inhuman immunodeficiency virus (HIV) disease. Although B cells are not the targets for HIV infection, there is evidence for B cell, especially memory B cell dysfunction in HIV disease mediated by other cells or HIV itself. This review will focus on HIV-associated phenotypic and functional alterations in memory B cells. Additionally, we will discuss the mechanism underlying these perturbations and the effect of anti-retroviral therapy (ART) on these perturbations.
Collapse
Affiliation(s)
- Zhiliang Hu
- Department of Infectious Disease, the Second Affiliated Hospital of the Southeast University, Nanjing 210003, China; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhuang Wan
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University, No. 8 Xitoutiao, You'an men wai, Fengtai District, Beijing 100069, China
| | - Wei Li
- Beijing You'an Hospital, Capital Medical University, No. 8 Xitoutiao, You'an men wai, Fengtai District, Beijing 100069, China
| | - Tong Zhang
- Beijing You'an Hospital, Capital Medical University, No. 8 Xitoutiao, You'an men wai, Fengtai District, Beijing 100069, China.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
79
|
Liu Y, Bezverbnaya K, Zhao T, Parsons MJ, Shi M, Treanor B, Ehrhardt GRA. Involvement of the HCK and FGR src-family kinases in FCRL4-mediated immune regulation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5851-60. [PMID: 25972488 DOI: 10.4049/jimmunol.1401533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 04/18/2015] [Indexed: 12/26/2022]
Abstract
FCRL4 is an immunoregulatory receptor expressed by a subpopulation of memory B cells. These tissue-based cells express increased levels of the src-family kinases HCK and FGR. In this study, we investigate the roles of these src-family kinases in FCRL4-mediated immunoregulation of B cells in the context of previously unrecognized palmitoylation of the receptor. We observed enhanced phosphorylation of FCRL4 on tyrosine residues in the presence of the HCK p59 or FGR. This phosphorylation was markedly reduced in assays using a palmitoylation-defective mutant of FCRL4. In reporter gene studies, we observe that FCRL4 expression enhances CpG-mediated activation of NF-κB signaling. Surprisingly, using a reporter gene linked to activation of the MAPK substrate Elk-1 in response to Ag receptor ligation, we find that FCRL4 has inhibitory activity in cells coexpressing FGR but an activating function in cells coexpressing HCK p59. We provide evidence that in primary memory B cells, expression of FCRL4 leads to increased expression of IL-10 in the presence of FGR or HCK p59 in response to CpG, but increased levels of IFN-γ only in the context of coexpression of FGR. Our study supports the specific requirement of HCK p59 and FGR src-family kinases for FCRL4-mediated immunomodulatory activity and indicates that palmitoylation serves as an additional level of regulatory control of FCRL4.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Ksenia Bezverbnaya
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Tiantian Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Marion J Parsons
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mengyao Shi
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Bebhinn Treanor
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
80
|
Marrella V, Lo Iacono N, Fontana E, Sobacchi C, Sic H, Schena F, Sereni L, Castiello MC, Poliani PL, Vezzoni P, Cassani B, Traggiai E, Villa A. IL-10 Critically Modulates B Cell Responsiveness in Rankl−/− Mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:4144-53. [DOI: 10.4049/jimmunol.1401977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
|
81
|
Abstract
B cells are central players in multiple autoimmune rheumatic diseases as a result of the imbalance between pathogenic and protective B-cell functions, which are presumably mediated by distinct populations. Yet the functional role of different B-cell populations and the contribution of specific subsets to disease pathogenesis remain to be fully understood owing to a large extent to the use of pauci-color flow cytometry. Despite its limitations, this approach has been instrumental in providing a global picture of multiple B-cell abnormalities in multiple human rheumatic diseases, more prominently systemic lupus erythematosus, rheumatoid arthritis and Sjogren’s syndrome. Accordingly, these studies represent the focus of this review. In addition, we also discuss the added value of tapping into the potential of polychromatic flow cytometry to unravel a higher level of B-cell heterogeneity, provide a more nuanced view of B-cell abnormalities in disease and create the foundation for a precise understanding of functional division of labor among the different phenotypic subsets. State-of-the-art polychromatic flow cytometry and novel multidimensional analytical approaches hold tremendous promise for our understanding of disease pathogenesis, the generation of disease biomarkers, patient stratification and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Chungwen Wei
- Department of Medicine, Division of Rheumatology and Lowance Center for Human Immunology, Emory University, 615 Michael Street, Atlanta, GA, 30322, USA.
| | - Scott Jenks
- Department of Medicine, Division of Rheumatology and Lowance Center for Human Immunology, Emory University, 615 Michael Street, Atlanta, GA, 30322, USA.
| | - Iñaki Sanz
- Department of Medicine, Division of Rheumatology and Lowance Center for Human Immunology, Emory University, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
82
|
Requena P, Campo JJ, Umbers AJ, Ome M, Wangnapi R, Barrios D, Robinson LJ, Samol P, Rosanas-Urgell A, Ubillos I, Mayor A, López M, de Lazzari E, Arévalo-Herrera M, Fernández-Becerra C, del Portillo H, Chitnis CE, Siba PM, Bardají A, Mueller I, Rogerson S, Menéndez C, Dobaño C. Pregnancy and Malaria Exposure Are Associated with Changes in the B Cell Pool and in Plasma Eotaxin Levels. THE JOURNAL OF IMMUNOLOGY 2014; 193:2971-83. [DOI: 10.4049/jimmunol.1401037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|