51
|
Iribarren C, Maasfeh L, Öhman L, Simrén M. Modulating the gut microenvironment as a treatment strategy for irritable bowel syndrome: a narrative review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e7. [PMID: 39295774 PMCID: PMC11406401 DOI: 10.1017/gmb.2022.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 09/21/2024]
Abstract
Irritable bowel syndrome (IBS) is a disorder of gut-brain interaction with a complex pathophysiology. Growing evidence suggests that alterations of the gut microenvironment, including microbiota composition and function, may be involved in symptom generation. Therefore, attempts to modulate the gut microenvironment have provided promising results as an indirect approach for IBS management. Antibiotics, probiotics, prebiotics, food and faecal microbiota transplantation are the main strategies for alleviating IBS symptom severity by modulating gut microbiota composition and function (eg. metabolism), gut barrier integrity and immune activity, although with varying efficacy. In this narrative review, we aim to provide an overview of the current approaches targeting the gut microenvironment in order to indirectly manage IBS symptoms.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lujain Maasfeh
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
52
|
Biazzo M, Deidda G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med 2022; 11:jcm11144119. [PMID: 35887883 PMCID: PMC9320118 DOI: 10.3390/jcm11144119] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The human body is home to a variety of micro-organisms. Most of these microbial communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling evidence showed that a number of human pathologies are associated with microbiota dysbiosis, thereby suggesting that the reinstatement of physiological microflora balance and composition might ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics supplementations were shown to provide effective results, but the main limitation remains in the limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition aiming to confer a health benefit. Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic potential for a number of other conditions ranging from gastrointestinal to liver diseases, from cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic syndrome. In this review, we will summarize the commonly used preparation and delivery methods, comprehensively review the evidence obtained in clinical trials in different human conditions and discuss the variability in the results and the pivotal importance of donor selection. The final aim is to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies to be used to ameliorate a number of human conditions.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, Triq San Giljan, SGN 3000 San Gwann, Malta;
- SienabioACTIVE, University of Siena, Via Aldo Moro 1, 53100 Siena, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-6125
| |
Collapse
|
53
|
Gut Microbiota Manipulation in Irritable Bowel Syndrome. Microorganisms 2022; 10:microorganisms10071332. [PMID: 35889051 PMCID: PMC9319495 DOI: 10.3390/microorganisms10071332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Increased knowledge suggests that disturbed gut microbiota, termed dysbiosis, might promote the development of irritable bowel syndrome (IBS) symptoms. Accordingly, gut microbiota manipulation has evolved in the last decade as a novel treatment strategy in order to improve IBS symptoms. In using different approaches, dietary management stands first in line, including dietary fiber supplements, prebiotics, and probiotics that are shown to change the composition of gut microbiota, fecal short-chain fatty acids and enteroendocrine cells densities and improve IBS symptoms. However, the exact mixture of beneficial bacteria for each individual remains to be identified. Prescribing nonabsorbable antibiotics still needs confirmation, although using rifaximin has been approved for diarrhea-predominant IBS. Fecal microbiota transplantation (FMT) has recently gained a lot of attention, and five out of seven placebo-controlled trials investigating FMT in IBS obtain promising results regarding symptom reduction and gut microbiota manipulation. However, more data, including larger cohorts and studying long-term effects, are needed before FMT can be regarded as a treatment for IBS in clinical practice.
Collapse
|
54
|
Zhang T, Ma X, Tian W, Zhang J, Wei Y, Zhang B, Wang F, Tang X. Global Research Trends in Irritable Bowel Syndrome: A Bibliometric and Visualized Study. Front Med (Lausanne) 2022; 9:922063. [PMID: 35833106 PMCID: PMC9271748 DOI: 10.3389/fmed.2022.922063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background There are about 10–23% of adults worldwide suffering from irritable bowel syndrome (IBS). Over the past few decades, there are many aspects of uncertainty regarding IBS leading to an ongoing interest in the topic as reflected by a vast number of publications, whose heterogeneity and variable quality may challenge researchers to measure their scientific impact, to identify collaborative networks, and to grasp actively researched themes. Accordingly, with help from bibliometric approaches, our goal is to assess the structure, evolution, and trends of IBS research between 2007 and 2022. Methods The documents exclusively focusing on IBS from 2007 to 2022 were retrieved from the Science Citation Index Expanded of the Web of Science Core Collection. The annual productivity of IBS research, and the most prolific countries or regions, authors, journals and resource-, intellectual- and knowledge-sharing in IBS research, as well as co-citation analysis of references and keywords were analyzed through Microsoft Office Excel 2019, CiteSpace, and VOSviewer. Results In total, 4,092 publications were reviewed. The USA led the list of countries with the most publications (1,226, 29.96%). Mayo Clinic contributed more publications than any other institution (193, 4.71%). MAGNUS SIMREN stood out as the most active and impactful scholar with the highest number of publications and the greatest betweenness centrality value. The most high-yield journal in this field was Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society (275, 6.72%). Gastroenterology had the most co-citations (3,721, 3.60%). Keywords with the ongoing strong citation bursts were chromogranin A, rat model, peptide YY, gut microbiota, and low-FODMAP diet, etc. Conclusion Through bibliometric analysis, we gleaned deep insight into the current status of literature investigating IBS for the first time. These findings will be useful to scholars interested in understanding the key information in the field, as well as identifying possible research frontiers.
Collapse
Affiliation(s)
- Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
- *Correspondence: Beihua Zhang,
| | - Fengyun Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
- Fengyun Wang,
| | - Xudong Tang
- Xiyuan Hospital, Traditional Chinese Medicine Research Institute of Spleen and Stomach Diseases, China Academy of Chinese Medical Sciences, Beijing, China
- Xudong Tang,
| |
Collapse
|
55
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
56
|
Fatahi S, Hosseini A, Sohouli MH, Sayyari A, Khatami K, Farsani ZF, Amiri H, Dara N, de Souza IGO, Santos HO. Effects of probiotic supplementation on abdominal pain severity in pediatric patients with irritable bowel syndrome: a systematic review and meta-analysis of randomized clinical trials. World J Pediatr 2022; 18:320-332. [PMID: 35106700 DOI: 10.1007/s12519-022-00516-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Probiotic supplementation has been used to alleviate abdominal pain in children and adolescents with irritable bowel syndrome (IBS), but the evidence is not compelling. Thus, a systematic review and meta-analysis of randomized clinical trials (RCTs) were performed to investigate the effects of probiotic supplementation on abdominal pain in pediatric patients with IBS. METHODS PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library, and Embase were the available databases searched to find relevant randomized clinical trials up to April 2021. The effect size was expressed as weighted mean difference (WMD) and 95% confidence interval (CI). RESULTS Seven RCTs with 441 participants were included, from which the meta-analysis demonstrated that probiotic supplementation has a significant effect on reducing abdominal pain in pediatric patients with IBS (WMD = - 2.36; 95% CI - 4.12 to - 0.60; P = 0.009). Although our study involved children and adolescents (≤ 18 years), the effects of probiotic supplementation seem to be more potent in patients under 10 years old (WMD = - 2.55; 95% CI - 2.84 to - 2.27) compared to patients aged 10-18 years (WMD = - 1.70; 95% CI - 2.18 to - 1.22). The length of supplementation longer than four weeks was more effective (WMD = - 2.43; 95% CI - 2.76 to - 2.09). CONCLUSION Probiotic supplementation can reduce abdominal pain in pediatric patients with IBS.
Collapse
Affiliation(s)
- Somayeh Fatahi
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aliakbar Sayyari
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Khatami
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli Farsani
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamzeh Amiri
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghi Dara
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ivan G O de Souza
- School of Health Sciences, Universidade Salvador (UNIFACS), Salvador, Bahia, Brazil
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
57
|
Edwinson AL, Yang L, Peters S, Hanning N, Jeraldo P, Jagtap P, Simpson JB, Yang TY, Kumar P, Mehta S, Nair A, Breen-Lyles M, Chikkamenahalli L, Graham RP, De Winter B, Patel R, Dasari S, Kashyap P, Griffin T, Chen J, Farrugia G, Redinbo MR, Grover M. Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat Microbiol 2022; 7:680-694. [PMID: 35484230 PMCID: PMC9081267 DOI: 10.1038/s41564-022-01103-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Intestinal proteases mediate digestion and immune signalling, while increased gut proteolytic activity disrupts the intestinal barrier and generates visceral hypersensitivity, which is common in irritable bowel syndrome (IBS). However, the mechanisms controlling protease function are unclear. Here we show that members of the gut microbiota suppress intestinal proteolytic activity through production of unconjugated bilirubin. This occurs via microbial β-glucuronidase-mediated conversion of bilirubin conjugates. Metagenomic analysis of faecal samples from patients with post-infection IBS (n = 52) revealed an altered gut microbiota composition, in particular a reduction in Alistipes taxa, and high gut proteolytic activity driven by specific host serine proteases compared with controls. Germ-free mice showed 10-fold higher proteolytic activity compared with conventional mice. Colonization with microbiota samples from high proteolytic activity IBS patients failed to suppress proteolytic activity in germ-free mice, but suppression of proteolytic activity was achieved with colonization using microbiota from healthy donors. High proteolytic activity mice had higher intestinal permeability, a higher relative abundance of Bacteroides and a reduction in Alistipes taxa compared with low proteolytic activity mice. High proteolytic activity IBS patients had lower fecal β-glucuronidase activity and end-products of bilirubin deconjugation. Mice treated with unconjugated bilirubin and β-glucuronidase-overexpressing E. coli significantly reduced proteolytic activity, while inhibitors of microbial β-glucuronidases increased proteolytic activity. Together, these data define a disease-relevant mechanism of host-microbial interaction that maintains protease homoeostasis in the gut.
Collapse
Affiliation(s)
- Adam L Edwinson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lu Yang
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Stephanie Peters
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nikita Hanning
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med, research center of excellence, University of Antwerp, Antwerp, Belgium
| | | | - Pratik Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Praveen Kumar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Asha Nair
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med, research center of excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Purna Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Timothy Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jun Chen
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biochemistry and Biophysics, and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
58
|
Ghaffari P, Shoaie S, Nielsen LK. Irritable bowel syndrome and microbiome; Switching from conventional diagnosis and therapies to personalized interventions. J Transl Med 2022; 20:173. [PMID: 35410233 PMCID: PMC9004034 DOI: 10.1186/s12967-022-03365-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/26/2022] [Indexed: 02/08/2023] Open
Abstract
AbstractThe human microbiome has been linked to several diseases. Gastrointestinal diseases are still one of the most prominent area of study in host-microbiome interactions however the underlying microbial mechanisms in these disorders are not fully established. Irritable bowel syndrome (IBS) remains as one of the prominent disorders with significant changes in the gut microbiome composition and without definitive treatment. IBS has a severe impact on socio-economic and patient’s lifestyle. The association studies between the IBS and microbiome have shed a light on relevance of microbial composition, and hence microbiome-based trials were designed. However, there are no clear evidence of potential treatment for IBS. This review summarizes the epidemiology and socioeconomic impact of IBS and then focus on microbiome observational and clinical trials. At the end, we propose a new perspective on using data-driven approach and applying computational modelling and machine learning to design microbiome-aware personalized treatment for IBS.
Collapse
|
59
|
Kamphuis JBJ, Reber LL, Eutamène H, Theodorou V. Increased fermentable carbohydrate intake alters colonic mucus barrier function through glycation processes and increased mast cell counts. FASEB J 2022; 36:e22297. [PMID: 35394686 DOI: 10.1096/fj.202100494rrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder for which dietary interventions can be a useful treatment. In recent years, the low-FODMAP approach is gaining traction in this regard. The fermentation of these non-absorbed carbohydrates by the gut microbiota can generate toxic glycating metabolites, such as methylglyoxal. These metabolites can have harmful effects by their role in the generation of advanced glycation end products (AGEs), which activates Receptor for AGEs (AGER). Mast cells can be stimulated by AGEs and play a role in IBS. We have treated mice with lactose or fructo-oligosaccharides (FOS), with or without co-administration of pyridoxamine and investigated the colonic mucus barrier. We have found that an increased intake of lactose and fructo-oligosaccharides induces a dysregulation of the colonic mucus barrier, increasing mucus discharge in empty colon, while increasing variability and decreasing average thickness mucus layer covering the fecal pellet. Changes were correlated with increased mast cell counts, pointing to a role for the crosstalk between these and goblet cells. Additionally, AGE levels in colonic epithelium were increased by treatment with the selected fermentable carbohydrates. Observed effects were prevented by co-treatment with anti-glycation agent pyridoxamine, implicating glycation processes in the negative impact of fermentable carbohydrate ingestion. This study shows that excessive intake of fermentable carbohydrates can cause colonic mucus barrier dysregulation in mice, by a process that involves glycating agents and increased mucosal mast cell counts.
Collapse
Affiliation(s)
- J B J Kamphuis
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France.,Institut national de la santé et de la recherche médicale (INSERM), Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université de Toulouse III, Toulouse, France
| | - L L Reber
- Institut national de la santé et de la recherche médicale (INSERM), Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université de Toulouse III, Toulouse, France
| | - H Eutamène
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France
| | - V Theodorou
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France
| |
Collapse
|
60
|
Burns GL, Talley NJ, Keely S. Immune responses in the irritable bowel syndromes: time to consider the small intestine. BMC Med 2022; 20:115. [PMID: 35354471 PMCID: PMC8969236 DOI: 10.1186/s12916-022-02301-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is considered a disorder of gut-brain interaction (DGBI), presenting as chronic abdominal pain and altered defaecation. Symptoms are often food related. Much work in the field has focused on identifying physiological, immune and microbial abnormalities in the colon of patients; however, evidence of small intestinal immune activation and microbial imbalance has been reported in small studies. The significance of such findings has been largely underappreciated despite a growing body of work implicating small intestinal homeostatic imbalance in the pathogenesis of DGBIs. MAIN TEXT Small intestinal mechanosensation is a characteristic feature of IBS. Furthermore, altered small intestinal barrier functions have been demonstrated in IBS patients with the diarrhoea-predominant subtype. Small intestinal bacterial overgrowth and increased populations of small intestinal mast cells are frequently associated with IBS, implicating microbial imbalance and low-grade inflammation in the pathogenesis of IBS. Furthermore, reports of localised food hypersensitivity responses in IBS patients implicate the small intestine as the site of immune-microbial-food interactions. CONCLUSIONS Given the association of IBS symptoms with food intake in a large proportion of patients and the emerging evidence of immune activation in these patients, the current literature suggests the pathogenesis of IBS is not limited to the colon but rather may involve dysfunction of the entire intestinal tract. It remains unclear if regional variation in IBS pathology explains the various symptom phenotypes and further work should consider the intestinal tract as a whole to answer this question.
Collapse
Affiliation(s)
- Grace L Burns
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia.,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia.,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nicholas J Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia.,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia.,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia. .,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia. .,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| |
Collapse
|
61
|
Spisni E, Turroni S, Alvisi P, Spigarelli R, Azzinnari D, Ayala D, Imbesi V, Valerii MC. Nutraceuticals in the Modulation of the Intestinal Microbiota: Current Status and Future Directions. Front Pharmacol 2022; 13:841782. [PMID: 35370685 PMCID: PMC8971809 DOI: 10.3389/fphar.2022.841782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Pharmaceutical interest in the human intestinal microbiota has increased considerably, because of the increasing number of studies linking the human intestinal microbial ecology to an increasing number of non-communicable diseases. Many efforts at modulating the gut microbiota have been made using probiotics, prebiotics and recently postbiotics. However, there are other, still little-explored opportunities from a pharmaceutical point of view, which appear promising to obtain modifications of the microbiota structure and functions. This review summarizes all in vitro, in vivo and clinical studies demonstrating the possibility to positively modulate the intestinal microbiota by using probiotics, prebiotics, postbiotics, essential oils, fungus and officinal plants. For the future, clinical studies investigating the ability to impact the intestinal microbiota especially by using fungus, officinal and aromatic plants or their extracts are required. This knowledge could lead to effective microbiome modulations that might support the pharmacological therapy of most non-communicable diseases in a near future.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Enzo Spisni,
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Alvisi
- Pediatric Gastroenterology Unit, Maggiore Hospital, Bologna, Italy
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Demetrio Azzinnari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Veronica Imbesi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
62
|
Kumar S, Singh P, Kumar A. Targeted therapy of irritable bowel syndrome with anti-inflammatory cytokines. Clin J Gastroenterol 2022; 15:1-10. [PMID: 34862947 PMCID: PMC8858303 DOI: 10.1007/s12328-021-01555-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a multifactorial disease of which infection, as well as inflammation, has recently been considered as an important cause. Inflammation works as a potential pathway for the pathogenesis of IBS. In this review, we have discussed the targeted therapy of IBS. We used the search term "inflammation in IBS" and "proinflammatory" and "antiinflammatory cytokines and IBS" using PubMed, MEDLINE, and Google Scholar. The literature search included only articles written in the English language. We have also reviewed currently available anti-inflammatory treatment and future perspectives. Cytokine imbalance in the systematic circulation and the intestinal mucosa may also characterize IBS presentation. Imbalances of pro-and anti-inflammatory cytokines and polymorphisms in cytokine genes have been reported in IBS. The story of targeted therapy of IBS with anti-inflammatory cytokines is far from complete and it seems that it has only just begun. This review describes the key issues related to pro-inflammatory cytokines associated with IBS, molecular regulation of immune response in IBS, inhibitors of pro-inflammatory cytokines in IBS, and clinical perspectives of pro- and anti-inflammatory cytokines in IBS.
Collapse
Affiliation(s)
- Sunil Kumar
- Faculty of Bio-Sciences, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, 225003, Uttar Pradesh, India.
| | - Priyanka Singh
- Faculty of Bio-Sciences, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
63
|
Tikunov AY, Shvalov AN, Morozov VV, Babkin IV, Seledtsova GV, Voloshina IO, Ivanova IP, Bardasheva AV, Morozova VV, Vlasov VV, Tikunova NV. Taxonomic composition and biodiversity of the gut microbiome from patients with irritable bowel syndrome, ulcerative colitis, and asthma. Vavilovskii Zhurnal Genet Selektsii 2022; 25:864-873. [PMID: 35083405 PMCID: PMC8753531 DOI: 10.18699/vj21.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/19/2021] [Accepted: 03/17/2021] [Indexed: 11/19/2022] Open
Abstract
To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.
Collapse
Affiliation(s)
- A. Y. Tikunov
- Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - A. N. Shvalov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
| | - V. V. Morozov
- Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - I. V. Babkin
- Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | | | - I. O. Voloshina
- Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | | | - A. V. Bardasheva
- Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - V. V. Morozova
- Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - V. V. Vlasov
- Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - N. V. Tikunova
- Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
64
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
65
|
Hou JJ, Wang X, Wang YM, Wang BM. Interplay between gut microbiota and bile acids in diarrhoea-predominant irritable bowel syndrome: a review. Crit Rev Microbiol 2021; 48:696-713. [PMID: 34936854 DOI: 10.1080/1040841x.2021.2018401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease that disturbs the physiology and psychology of patients and increases the burden on families, the healthcare system, society, and economic development, affecting more and more people around the world. Despite the multiple factors that account for IBS remaining incompletely studied, emerging evidence demonstrated the abnormal changes in gut microbiota and bile acids (BAs) metabolism closely associated with IBS. Moreover, microbiota drives significant modifications for BAs, consisting of deconjugation, 7α-dehydroxylation, oxidation, epimerization, desulfation, esterification, and so on, while BAs, in turn, affect the microbiota directly or indirectly. In light of the complex connection among gut microbiota, BAs, and IBS, it is urgent to review the latest research progress in this field. In this review, we described the disorders of intestinal microecology and BAs profiles in IBS-D and also highlighted the cross-talk between gut microbiota and BAs in the context of IBS-D. Integrating these, we suggest that new therapeutic strategies targeting the microbiota-BAs axis for IBS-D, even for other related diseases caused by bacteria-bile acid dysbiosis should be expected.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
66
|
Loosen SH, Jördens MS, Luedde M, Modest DP, Labuhn S, Luedde T, Kostev K, Roderburg C. Incidence of Cancer in Patients with Irritable Bowl Syndrome. J Clin Med 2021; 10:jcm10245911. [PMID: 34945206 PMCID: PMC8703949 DOI: 10.3390/jcm10245911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Irritable bowel syndrome (IBS) represents one of the most common disorders of gut–brain interaction (DGBI). As recent data has suggested an increased cancer incidence for IBS patients, there is an ongoing debate whether IBS might be associated with a risk of cancer development. In the present study, we evaluated and compared incidence rates of different malignancies including gastrointestinal cancer in a large cohort of outpatients, with or without IBS, treated in general practices in Germany. (2) Methods: We matched a cohort of 21,731 IBS patients from the IQVIA Disease Analyzer database documented between 2000 and 2019 in 1284 general practices to a cohort of equal size without IBS. Incidence of cancer diagnoses were evaluated using Cox regression models during a 10-year follow-up period. (3) Results: In 11.9% of patients with IBS compared to 8.0% without IBS, cancer of any type was diagnosed within 10 years following the index date (p < 0.001). In a regression analysis, this association was confirmed in female (HR: 1.68, p < 0.001) and male (HR = 1.57, p < 0.001) patients as well as in patients of all age groups. In terms of cancer entity, 1.9% of patients with and 1.3% of patients without IBS were newly diagnosed with cancer of digestive organs (p < 0.001). Among non-digestive cancer entities, the strongest association was observed for skin cancer (HR = 1.87, p < 0.001), followed by prostate cancer in men (HR = 1.81, p < 0.001) and breast cancer in female patients (HR = 1.80, p < 0.001). (4) Conclusion: Our data suggest that IBS might be associated with cancer of the digestive organs as well as with non-digestive cancer entities. However, our findings do not prove causality and further research is warranted as the association could be attributed to life style factors that were not documented in the database.
Collapse
Affiliation(s)
- Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
- Correspondence: (S.H.L.); (T.L.); Tel.: +49-211-81-04488 (S.H.L.)
| | - Markus S. Jördens
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
| | - Mark Luedde
- KGP Bremerhaven, 27574 Bremerhaven, Germany;
| | - Dominik P. Modest
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Simon Labuhn
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
- Correspondence: (S.H.L.); (T.L.); Tel.: +49-211-81-04488 (S.H.L.)
| | | | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
| |
Collapse
|
67
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Vasapolli R, Schulz C, Schweden M, Casèn C, Kirubakaran GT, Kirste KH, Macke L, Link A, Schütte K, Malfertheiner P. Gut microbiota profiles and the role of anti-CdtB and anti-vinculin antibodies in patients with functional gastrointestinal disorders (FGID). Eur J Clin Invest 2021; 51:e13666. [PMID: 34390492 DOI: 10.1111/eci.13666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Distinct faecal microbiota profiles are reported to be associated with various subtypes of IBS. Circulating antibodies to cytolethal distending toxin B (CdtB) and vinculin are proposed as biomarkers to identify post-infectious IBS. The aim of our study was to analyse serum levels of anti-CdtB and anti-vinculin antibodies in patients with different functional gastrointestinal disorders (FGID) and their correlation with the composition of faecal microbiome. METHODS The study cohort comprised 65 prospectively recruited individuals: 15 with diarrhoea-type-IBS (IBS-D), 13 with constipation-type-IBS (IBS-C), 15 with functional dyspepsia (FD) and 22 healthy controls. FGID subgroups were defined according to Rome III criteria. Serum levels of anti-CdtB and anti-vinculin antibodies were measured by ELISA. Faecal microbiome composition analysis and assessment of dysbiosis were performed by GA-map® Dysbiosis Test. RESULTS Positivity rate either for anti-CdtB or anti-vinculin antibodies was higher in the IBS-C group (76.9%) compared to IBS-D (40.0%), FD (60%) and healthy (63.6%) groups. Dysbiosis was more frequent in subjects positive for anti-CdtB antibodies and in IBS-C patients, who showed an increased amount of opportunistic/pro-inflammatory bacteria and reduced gut protective bacteria. IBS-C patients showed a high inter-individual variation of bacterial communities compared to other FGID subgroups and healthy individuals, whereas microbial profiles of patients with IBS-D and FD were overlapping with those of healthy controls. No bacteria markers showed significant differences between FGID subgroups and healthy controls. CONCLUSION Neither anti-CdtB/anti-vinculin antibodies nor faecal microbial profiles allowed to discriminate between specific FGID subgroups. Dysbiosis was more frequent in patients presenting with anti-CdtB antibodies and in IBS-C patients.
Collapse
Affiliation(s)
- Riccardo Vasapolli
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine II, Hospital of the Ludwig Maximilians University of Munich, Munich, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine II, Hospital of the Ludwig Maximilians University of Munich, Munich, Germany
| | - Melanie Schweden
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | | | | | - Lukas Macke
- Department of Internal Medicine II, Hospital of the Ludwig Maximilians University of Munich, Munich, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken, Marienhospital, Osnabrück, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine II, Hospital of the Ludwig Maximilians University of Munich, Munich, Germany
| |
Collapse
|
69
|
Wollny T, Daniluk T, Piktel E, Wnorowska U, Bukłaha A, Głuszek K, Durnaś B, Bucki R. Targeting the Gut Microbiota to Relieve the Symptoms of Irritable Bowel Syndrome. Pathogens 2021; 10:1545. [PMID: 34959500 PMCID: PMC8705654 DOI: 10.3390/pathogens10121545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common, chronic, functional disorder with a large impact on world population. Its pathophysiology is not completely revealed; however, it is certain that dysregulation of the bidirectional communications between the central nervous system (CNS) and the gut leads to motility disturbances, visceral hypersensitivity, and altered CNS processing characterized by differences in brain structure, connectivity and functional responsiveness. Emerging evidence suggests that gut microbiota exerts a marked influence on the host during health and disease. Gut microbiome disturbances can be also important for development of IBS symptoms and its modulation efficiently contributes to the therapy. In this work, we review the current knowledge about the IBS therapy, the role of gut microbiota in pathogenesis of IBS, and we discuss that its targeting may have significant impact on the effectiveness of IBS therapy.
Collapse
Affiliation(s)
- Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (T.D.); (E.P.); (U.W.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (T.D.); (E.P.); (U.W.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (T.D.); (E.P.); (U.W.)
| | - Anna Bukłaha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Waszyngtona 15a, 15-269 Białystok, Poland;
| | - Katarzyna Głuszek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, 25-734 Kielce, Poland; (K.G.); (B.D.)
| | - Bonita Durnaś
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, 25-734 Kielce, Poland; (K.G.); (B.D.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (T.D.); (E.P.); (U.W.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, 25-734 Kielce, Poland; (K.G.); (B.D.)
| |
Collapse
|
70
|
Abstract
Following acute gastroenteritis (AGE) due to bacteria, viruses, or protozoa, a subset of patients develop new onset Rome criteria positive irritable bowel syndrome (IBS), called postinfection IBS (PI-IBS). The pooled prevalence of PI-IBS following AGE was 11.5%. PI-IBS is the best natural model that suggests that a subset of patients with IBS may have an organic basis. Several factors are associated with a greater risk of development of PI-IBS following AGE including female sex, younger age, smoking, severity of AGE, abdominal pain, bleeding per rectum, treatment with antibiotics, anxiety, depression, somatization, neuroticism, recent adverse life events, hypochondriasis, extroversion, negative illness beliefs, history of stress, sleep disturbance, and family history of functional gastrointestinal disorders (FGIDs), currently called disorder of gut-brain interaction. Most patients with PI-IBS present with either diarrhea-predominant IBS or the mixed subtype of IBS, and overlap with other FGIDs, such as functional dyspepsia is common. The drugs used to treat non-constipation IBS may also be useful in PI-IBS treatment. Since randomized controlled trials on the efficacy of drugs to treat PI-IBS are rare, more studies are needed on this issue.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
71
|
Mitselou A, Grammeniatis V, Varouktsi A, Papadatos SS, Klaroudas A, Katsanos K, Galani V. Immunohistochemical Study of Adhesion Molecules in Irritable Bowel Syndrome: A Comparison to Inflammatory Bowel Diseases. Adv Biomed Res 2021; 10:21. [PMID: 34703800 PMCID: PMC8495298 DOI: 10.4103/abr.abr_2_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 08/12/2020] [Accepted: 04/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background: The surface of endothelial cells is covered with cell adhesion molecules including E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) that mediate the adhesion and extravasation of leukocytes and play a pivotal role in inflammatory response. The aim of this study was to investigate the role of expression of adhesion molecules in inflammatory bowel disease (IBD) patients, irritable bowel syndrome (IBS) patients, and normal colonic mucosa. Materials and Methods: IBS and IBD patients along with normal colonic mucosa were recruited in the study. In all groups, two biopsies were taken from each of the three anatomical sites (terminal ileum, cecum, and rectum). Three monoclonal antibodies, E-selectin mAb, VCAM-1 mAb, and ICAM-1 mAb, were applied for immunohistochemical analysis. Results: In IBD patients, the expression of intensity of E-selectin, VCAM-1, and ICAM-1 was found decreased, at least in cecum and rectum, in comparison with IBS patients and controls (P < 0.001, P < 0.005, and P < 0.007, respectively). Comparison of the expression of intensity of the aforementioned molecules in IBS patients and controls revealed significant augmentation at the cecum and rectum of IBS patients. Conclusions: The expression of adhesion molecules appeared lower in IBD patients compared to IBS patients and controls. In addition, the expression of adhesion molecules appeared higher in IBS compared to the control group. Therefore, it could be hypothesized that the expression of adhesion molecules could be considered as an early event in the process of proinflammatory IBS group and may be other factors play a crucial role in the process of intestinal inflammation in IBD patients.
Collapse
Affiliation(s)
- Antigony Mitselou
- Department of Forensic Pathology, Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Anna Varouktsi
- Department of Internal Medicine, Ippokratio Hospital, Thessaloníki, Greece
| | - Stamatis S Papadatos
- 3rd Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Sotiria General Hospital, Athens, Greece
| | - Antonios Klaroudas
- Department of Anatomy, Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Konstantinos Katsanos
- 1st Department of Internal Medicine and Hepato-Gastroenterology Unit, Medical School, University of Ioannina, Ioannina, Greece
| | - Vasiliki Galani
- 3rd Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
72
|
Edwinson A, Yang L, Chen J, Grover M. Colonic expression of Ace2, the SARS-CoV-2 entry receptor, is suppressed by commensal human microbiota. Gut Microbes 2021; 13:1984105. [PMID: 34632957 PMCID: PMC8510562 DOI: 10.1080/19490976.2021.1984105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Angiotensin-converting enzyme 2 (Ace2) is expressed in the gastrointestinal (GI) tract and a receptor for SARS-CoV-2, making the GI tract a potential infection site. This study investigated the effects of commensal intestinal microbiota on colonic Ace2 expression using a humanized mouse model. We found that colonic Ace2 expression decreased significantly upon microbial colonization. Humanization with healthy volunteer or dysbiotic microbiota from irritable bowel syndrome (IBS) patients resulted in similar Ace2 expression. Despite the differences in microbiota, no associations between α-diversity, β-diversity or individual taxa, and Ace2 were noted post-humanization. These results highlight that commensal microbiota play a key role in regulating intestinal Ace2 expression and the need to further examine the underlying mechanisms of this regulation.
Collapse
Affiliation(s)
- Adam Edwinson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lu Yang
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jun Chen
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA,CONTACT Madhusudan Grover Medicine, Physiology & Biomedical Engineering, Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, 200 First St SW, Rochester, MN55905, USA
| |
Collapse
|
73
|
Deidda G, Biazzo M. Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front Neurosci 2021; 15:753915. [PMID: 34712115 PMCID: PMC8545893 DOI: 10.3389/fnins.2021.753915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain physiological functions or pathological dysfunctions do surely depend on the activity of both neuronal and non-neuronal populations. Nevertheless, over the last decades, compelling and fast accumulating evidence showed that the brain is not alone. Indeed, the so-called "gut brain," composed of the microbial populations living in the gut, forms a symbiotic superorganism weighing as the human brain and strongly communicating with the latter via the gut-brain axis. The gut brain does exert a control on brain (dys)functions and it will eventually become a promising valuable therapeutic target for a number of brain pathologies. In the present review, we will first describe the role of gut microbiota in normal brain physiology from neurodevelopment till adulthood, and thereafter we will discuss evidence from the literature showing how gut microbiota alterations are a signature in a number of brain pathologies ranging from neurodevelopmental to neurodegenerative disorders, and how pre/probiotic supplement interventions aimed to correct the altered dysbiosis in pathological conditions may represent a valuable future therapeutic strategy.
Collapse
Affiliation(s)
- Gabriele Deidda
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| |
Collapse
|
74
|
Wauters L, Ceulemans M, Vanuytsel T. Duodenum at a crossroads: Key integrator of overlapping and psychological symptoms in functional dyspepsia? Neurogastroenterol Motil 2021; 33:e14262. [PMID: 34561921 DOI: 10.1111/nmo.14262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
The study of the interaction between gastrointestinal (GI) function and psychological features is a complex and developing field. The bidirectional communication between the gut and the brain or gut-brain axis is considered as a pivotal player in the pathogenesis of the highly prevalent functional GI disorders, including irritable bowel syndrome and functional dyspepsia (FD), which have been redefined as disorders of gut-brain interaction. However, the mechanisms through which changes in the gut alter brain functioning, feelings, and behavior remain unclear. Based on the presence of duodenal pathology in adult FD patients, Ronkainen et al. provide the first prospective evidence for duodenal eosinophils potentially driving anxiety. Also in this edition, associations between gastroduodenal pathology and rumination syndrome, which may coexist with FD, have now been confirmed in children by Friesen et al. Together these findings confirm not only the potential role of duodenal alterations in determining overlapping upper GI but also psychological symptoms, which result from bidirectional and complex interactions. In this review, we provide an overview of the recent advances in this field and highlight the novel contributions of the original studies of Ronkainen et al. and Friesen et al. to this topic.
Collapse
Affiliation(s)
- Lucas Wauters
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.,Translational Research in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Matthias Ceulemans
- Translational Research in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.,Translational Research in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
75
|
Yang F, Wu J, Ye NY, Miu J, Yan J, Liu LN, Ye B. Association of Fecal Microbiota with Irritable Bowel Syndrome-Diarrhea and Effect of Traditional Chinese Medicine for Its Management. Gastroenterol Res Pract 2021; 2021:7035557. [PMID: 34691175 PMCID: PMC8529176 DOI: 10.1155/2021/7035557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in intestinal microbiota have been linked to the development of diarrhea predominant irritable bowel syndrome (IBS-D). In order to better elucidate the relationship between intestinal microbiota changes and IBS-D, we compared fecal microbiota of IBS-D rats and healthy control using pyrosequencing of bacterial 16S rRNA gene targeted. Furthermore, we explored the effects of different traditional Chinese medicine (TCM) on intestinal microbiota of IBS-D in dose-dependent manner. Our results showed that there was no significant difference in fecal microbial community diversity among the healthy control group, IBS-D rats and IBS-D rats treated with traditional Chinese medicine, but the fecal microbial composition at different taxonomic levels have changed among these groups. Interestingly, the weight of IBS-D rats treated with moderate doses (13.4 g/kg) of TCM increased significantly, and the diarrhea-related symptoms improved significantly, which may be related to the enrichment in Deferribacteres, Proteobacteria, Tenericutes, Lachnospiraceae, and Ruminococcaceae and the reduction in Lactobacillus in fecal samples.
Collapse
Affiliation(s)
- Fang Yang
- Department of Stomach (Gastroenterology) Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong 226000, China
| | - Jiaqi Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Ning-Yuan Ye
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Jing Miu
- Nantong University, Nantong 226000, China
| | - Jing Yan
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Li-Na Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Bai Ye
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
76
|
Benjak Horvat I, Gobin I, Kresović A, Hauser G. How can probiotic improve irritable bowel syndrome symptoms? World J Gastrointest Surg 2021; 13:923-940. [PMID: 34621470 PMCID: PMC8462084 DOI: 10.4240/wjgs.v13.i9.923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
The onset and manifestations of irritable bowel syndrome (IBS) is associated with several factors, and the pathophysiology involves various central and peripheral mechanisms. Most studies indicate that the management of gut microbiota could significantly affect the improvement of subjective disorders in patients with IBS. Numerous clinical trials have assessed the efficacy of probiotics for IBS with controversial conclusions. Several clinical trials have suggested that probiotics can improve global IBS symptoms, while others only improve individual IBS symptoms, such as bloating scores and abdominal pain scores. Only a few clinical trials have found no apparent effect of probiotics on IBS symptoms. Generally, probiotics appear to be safe for patients with IBS. However, the question of which probiotics should be used for certain IBS subtypes remains unresolved. In everyday practice, the dose of the recommended probiotic remains questionable, as well as how long the probiotic should be used in therapy. The use of probiotics in the M subtype and non-classified IBS is particularly problematic, in which combination therapy should be recommended due to the change in symptoms. Therefore, new approaches are needed in the design of clinical studies that should address certain subtypes of IBS.
Collapse
Affiliation(s)
- Indira Benjak Horvat
- Department of Gastroenterology, Varaždin General Hospital, Varažin 42000, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Andrea Kresović
- Department of Gastroenterology, Clinical Hospital Center Rijeka, Rijeka 51000, Croatia
| | - Goran Hauser
- Department of Gastroenterology, Faculty of Medicine, Clinical Hospital Center Rijeka, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
77
|
Abstract
Advances in bioinformatics have facilitated investigation of the role of gut microbiota in patients with irritable bowel syndrome (IBS). This article describes the evidence from epidemiologic and clinical observational studies highlighting the link between IBS and gut microbiome by investigating postinfection IBS, small intestinal bacterial overgrowth, and microbial dysbiosis. It highlights the effects of gut microbiota on mechanisms implicated in the pathophysiology of IBS, including gut-brain axis, visceral hypersensitivity, motility, epithelial barrier, and immune activation. In addition, it summarizes the current evidence on microbiome-guided therapies in IBS, including probiotics, antibiotics, diet, and fecal microbiota transplant.
Collapse
Affiliation(s)
- Prashant Singh
- Division of Gastroenterology and Hepatology, University of Michigan, MSBR1, Room 6520 B, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Anthony Lembo
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Rabb/Rose 1, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
78
|
Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X, Edwinson A, Veerabadhran-Gurunathan S, Jawahir S, Calland JK, Mourkas E, Patel R, Wiens T, Decuir M, Boxrud D, Smith K, Parker CT, Farrugia G, Zhang Q, Sheppard SK, Grover M. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol 2021; 4:1015. [PMID: 34462533 PMCID: PMC8405632 DOI: 10.1038/s42003-021-02554-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Campylobacter enterocolitis may lead to post-infection irritable bowel syndrome (PI-IBS) and while some C. jejuni strains are more likely than others to cause human disease, genomic and virulence characteristics promoting PI-IBS development remain uncharacterized. We combined pangenome-wide association studies and phenotypic assays to compare C. jejuni isolates from patients who developed PI-IBS with those who did not. We show that variation in bacterial stress response (Cj0145_phoX), adhesion protein (Cj0628_CapA), and core biosynthetic pathway genes (biotin: Cj0308_bioD; purine: Cj0514_purQ; isoprenoid: Cj0894c_ispH) were associated with PI-IBS development. In vitro assays demonstrated greater adhesion, invasion, IL-8 and TNFα secretion on colonocytes with PI-IBS compared to PI-no-IBS strains. A risk-score for PI-IBS development was generated using 22 genomic markers, four of which were from Cj1631c, a putative heme oxidase gene linked to virulence. Our finding that specific Campylobacter genotypes confer greater in vitro virulence and increased risk of PI-IBS has potential to improve understanding of the complex host-pathogen interactions underlying this condition. Stephanie Peters, Ben Pascoe, et al. use whole-genome sequencing and phenotypic analysis of clinical strains from patients to identify potential genetic factors involved in irritable bowel syndrome resulting from Campylobacter jejuni infection. Their data suggest that genes involved in the bacterial stress response and biosynthetic pathways may contribute toward irritable bowel syndrome, providing further insight into links between Campylobacter genotypes and risk of disease.
Collapse
Affiliation(s)
- Stephanie Peters
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Ximin Zeng
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adam Edwinson
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Terra Wiens
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marijke Decuir
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Boxrud
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kirk Smith
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Craig T Parker
- United States Department of Agriculture, Albany, CA, USA
| | - Gianrico Farrugia
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
| | - Madhusudan Grover
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
79
|
Naseri K, Dabiri H, Rostami-Nejad M, Yadegar A, Houri H, Olfatifar M, Sadeghi A, Saadati S, Ciacci C, Iovino P, Zali MR. Influence of low FODMAP-gluten free diet on gut microbiota alterations and symptom severity in Iranian patients with irritable bowel syndrome. BMC Gastroenterol 2021. [PMID: 34261437 DOI: 10.1186/s12876-021-01868-5.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Recently, dietary restriction of fermentable carbohydrates (a low-FODMAP diet) in combination with a gluten-free diet (GFD) has been proposed to reduce the symptoms in irritable bowel syndrome (IBS) patients. Different studies reported that IBS has been associated with dysbiosis in the gut microbiota. Additionally, a few studies have reported inflammation in the gastrointestinal (GI) system of adults with IBS. In this study, we aimed to investigate the effects of low FODMAP-gluten free diet (LF-GFD) on clinical symptoms, intestinal microbiota diversity, and fecal calprotectin (FC) level in Iranian patients with IBS. DESIGN In this clinical trial study, 42 patients with IBS (Rome IV criteria) underwent LF-GFD intervention for 6 weeks. Symptoms were assessed using the IBS symptom severity scoring (IBS-SSS), and fecal samples were collected at baseline and after intervention and analyzed by quantitative 16 S rRNA PCR assay. The diversity of gut microbiota compared before and after 6 weeks of dietary intervention. FC was also analyzed by the ELISA method. RESULTS Thirty patients (mean age 37.8 ± 10.7 years) completed the 6-week diet. The IBS-SSS was significantly (P = 0.001) reduced after LF-GFD intervention compared to the baseline. Significant microbial differences before and after intervention were noticed in fecal samples. A significant increase was found in Bacteroidetes, and the Firmicutes to Bacteroidetes (F/B) ratio was significantly (P = 0.001) decreased after the dietary intervention. The value of FC was significantly decreased after 6 weeks of dietary intervention (P = 0.001). CONCLUSIONS Our study suggests that patients with IBS under an LF-GFD had a significant improvement in IBS symptoms severity, with reduced FC level following normalization of their gut microbiota composition. Further rigorous trials are needed to establish a long-term efficacy and safety of this dietary intervention for personalized nutrition in IBS. Clinical Trial Registry Number: IRCT20100524004010N26.
Collapse
Affiliation(s)
- Kaveh Naseri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran
| | - Meysam Olfatifar
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carolina Ciacci
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081, Salerno, Italy
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081, Salerno, Italy
| | - Mohammad Reza Zali
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
80
|
Naseri K, Dabiri H, Rostami-Nejad M, Yadegar A, Houri H, Olfatifar M, Sadeghi A, Saadati S, Ciacci C, Iovino P, Zali MR. Influence of low FODMAP-gluten free diet on gut microbiota alterations and symptom severity in Iranian patients with irritable bowel syndrome. BMC Gastroenterol 2021; 21:292. [PMID: 34261437 PMCID: PMC8278734 DOI: 10.1186/s12876-021-01868-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Recently, dietary restriction of fermentable carbohydrates (a low-FODMAP diet) in combination with a gluten-free diet (GFD) has been proposed to reduce the symptoms in irritable bowel syndrome (IBS) patients. Different studies reported that IBS has been associated with dysbiosis in the gut microbiota. Additionally, a few studies have reported inflammation in the gastrointestinal (GI) system of adults with IBS. In this study, we aimed to investigate the effects of low FODMAP-gluten free diet (LF-GFD) on clinical symptoms, intestinal microbiota diversity, and fecal calprotectin (FC) level in Iranian patients with IBS. DESIGN In this clinical trial study, 42 patients with IBS (Rome IV criteria) underwent LF-GFD intervention for 6 weeks. Symptoms were assessed using the IBS symptom severity scoring (IBS-SSS), and fecal samples were collected at baseline and after intervention and analyzed by quantitative 16 S rRNA PCR assay. The diversity of gut microbiota compared before and after 6 weeks of dietary intervention. FC was also analyzed by the ELISA method. RESULTS Thirty patients (mean age 37.8 ± 10.7 years) completed the 6-week diet. The IBS-SSS was significantly (P = 0.001) reduced after LF-GFD intervention compared to the baseline. Significant microbial differences before and after intervention were noticed in fecal samples. A significant increase was found in Bacteroidetes, and the Firmicutes to Bacteroidetes (F/B) ratio was significantly (P = 0.001) decreased after the dietary intervention. The value of FC was significantly decreased after 6 weeks of dietary intervention (P = 0.001). CONCLUSIONS Our study suggests that patients with IBS under an LF-GFD had a significant improvement in IBS symptoms severity, with reduced FC level following normalization of their gut microbiota composition. Further rigorous trials are needed to establish a long-term efficacy and safety of this dietary intervention for personalized nutrition in IBS. Clinical Trial Registry Number: IRCT20100524004010N26.
Collapse
Affiliation(s)
- Kaveh Naseri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran
| | - Meysam Olfatifar
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carolina Ciacci
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081, Salerno, Italy
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081, Salerno, Italy
| | - Mohammad Reza Zali
- Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Abstract
Epidemiologic data support that acute gastrointestinal infection is one of the strongest risk factors for development of irritable bowel syndrome (IBS). Risk of post-infection IBS (PI-IBS) seems to be greater with bacterial and protozoal than viral enterocolitis. Younger individuals, women, and those with severe enterocolitis are more likely to develop PI-IBS. Disease mechanisms in animal models and humans involve chronic perturbation of intestinal microbiome, epithelial and neuronal remodeling, and immune activation. These mechanisms can lead to luminal (increased proteolytic activity, altered bile acid composition) and physiologic (increased permeability, transit changes, and visceral hypersensitivity) alterations that can mediate PI-IBS symptoms.
Collapse
Affiliation(s)
- Antonio Berumen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Adam L Edwinson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Medicine and Physiology, Enteric NeuroScience Program, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
82
|
Hou JJ, Wang X, Li Y, Su S, Wang YM, Wang BM. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome. Microb Pathog 2021; 157:104995. [PMID: 34048892 DOI: 10.1016/j.micpath.2021.104995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease that affects 3.8-9.2% of the world population. It affects the physiology and psychology of patients and increases the burden on families, the healthcare system, society, and economic development. Presently, a large number of studies have shown that compared to healthy individuals, the composition and diversity of gut microbiota in IBS patients have changed, and the proteolytic activity (PA) in fecal supernatant and colonic mucosa of IBS patients has also increased. These findings indicate that the imbalance of intestinal microecology and intestinal protein hydrolysis is closely related to IBS. Furthermore, the intestinal flora is a key substance that regulates the PA and is associated with IBS. The current review described the intestinal microecology and intestinal proteolytic activity of patients with IBS and also discussed the effect of intestinal flora on PA. In summary, this study proposed a pivotal role of gut microbiota and PA in IBS, respectively, and provided an in-depth insight into the diagnosis and treatment targets of IBS as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Ying Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
83
|
Matthews C, Cotter PD, O’ Mahony J. MAP, Johne's disease and the microbiome; current knowledge and future considerations. Anim Microbiome 2021; 3:34. [PMID: 33962690 PMCID: PMC8105914 DOI: 10.1186/s42523-021-00089-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease in ruminants. As an infectious disease that causes reduced milk yields, effects fertility and, eventually, the loss of the animal, it is a huge financial burden for associated industries. Efforts to control MAP infection and Johne's disease are complicated due to difficulties of diagnosis in the early stages of infection and challenges relating to the specificity and sensitivity of current testing methods. The methods that are available contribute to widely used test and cull strategies, vaccination programmes also in place in some countries. Next generation sequencing technologies have opened up new avenues for the discovery of novel biomarkers for disease prediction within MAP genomes and within ruminant microbiomes. Controlling Johne's disease in herds can lead to improved animal health and welfare, in turn leading to increased productivity. With current climate change bills, such as the European Green Deal, targeting livestock production systems for more sustainable practices, managing animal health is now more important than ever before. This review provides an overview of the current knowledge on genomics and detection of MAP as it pertains to Johne's disease.
Collapse
Affiliation(s)
- Chloe Matthews
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Jim O’ Mahony
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
| |
Collapse
|
84
|
Wang C, Fang X. Inflammation and Overlap of Irritable Bowel Syndrome and Functional Dyspepsia. J Neurogastroenterol Motil 2021; 27:153-164. [PMID: 33795538 PMCID: PMC8026374 DOI: 10.5056/jnm20175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) and functional dyspepsia (FD) are common functional gastrointestinal disorders (FGIDs) and account for a large proportion of consulting patients. These 2 disorders overlap with each other frequently. The pathogenesis of IBS or FD is complicated and multi-factors related, in which infectious or non-infectious inflammation and local or systemic immune response play significant roles. There are few studies focusing on the mechanism of inflammation in patients with overlap syndrome of irritable bowel syndrome and functional dyspepsia (IBS-FD). This review focuses on current advances about the role of inflammation in the pathogenesis of IBS and FD and the possible mechanism of inflammation in IBS-FD.
Collapse
Affiliation(s)
- Congzhen Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiucai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
85
|
Ma M, Lu H, Yang Z, Chen L, Li Y, Zhang X. Differences in microbiota between acute and chronic perianal eczema. Medicine (Baltimore) 2021; 100:e25623. [PMID: 33879734 PMCID: PMC8078401 DOI: 10.1097/md.0000000000025623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/02/2021] [Indexed: 01/04/2023] Open
Abstract
Microbiota has been suggested to play a role in patients with intestinal and cutaneous diseases. However, the profiling of perianal eczema microbiota has not been described. We have explored the general profile and possible differences between acute and chronic perianal eczema. A total of 101 acute perianal eczema (APE) and 156 chronic perianal eczema (CPE) patients were enrolled in this study and the perianal microbiota was profiled via Illumina sequencing of the 16S rRNA V4 region.The microbial α-diversity and structure are similar in APE and CPE patients; however, the perianal microbiota of the APE patients had a higher content of Staphylococcus (22.2%, P < .01) than that of CPE patients. Top10 genera accounting for more than 60% (68.81% for APE and 65.47% for CPE) of the whole microbiota, including Prevotella, Streptococcus, and Bifidobacterium, show an upregulation trend in the case of APE without reaching statistically significant differences. This study compared the microbiota profiles of acute and chronic perianal eczema. Our results suggest that the microbiota of acute perianal eczema patients is enriched in Staphylococcus compared with that in the chronic group. Our findings provide data for further studies.
Collapse
Affiliation(s)
- Ming Ma
- Department of Dermatology, Beijing Coloproctological Hospital, Beijing Erlonglu Hospital, Beijing
| | - Hongmei Lu
- Department of Dermatology, Beijing Coloproctological Hospital, Beijing Erlonglu Hospital, Beijing
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang
- Cipher Gene LLC
| | - Li Chen
- Department of Dermatology, Beijing Coloproctological Hospital, Beijing Erlonglu Hospital, Beijing
| | | | - Xiu Zhang
- Department of Internal Medicine, Beijing Coloproctological Hospital, Beijing Erlonglu Hospital, Beijing, China
| |
Collapse
|
86
|
|
87
|
Vo D, Singh SC, Safa S, Sahoo D. Boolean implication analysis unveils candidate universal relationships in microbiome data. BMC Bioinformatics 2021; 22:49. [PMID: 33546590 PMCID: PMC7863539 DOI: 10.1186/s12859-020-03941-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microbiomes consist of bacteria, viruses, and other microorganisms, and are responsible for many different functions in both organisms and the environment. Past analyses of microbiomes focused on using correlation to determine linear relationships between microbes and diseases. Weak correlations due to nonlinearity between microbe pairs may cause researchers to overlook critical components of the data. With the abundance of available microbiome, we need a method that comprehensively studies microbiomes and how they are related to each other. RESULTS We collected publicly available datasets from human, environment, and animal samples to determine both symmetric and asymmetric Boolean implication relationships between a pair of microbes. We then found relationships that are potentially invariants, meaning they will hold in any microbe community. In other words, if we determine there is a relationship between two microbes, we expect the relationship to hold in almost all contexts. We discovered that around 330,000 pairs of microbes universally exhibit the same relationship in almost all the datasets we studied, thus making them good candidates for invariants. Our results also confirm known biological properties and seem promising in terms of disease diagnosis. CONCLUSIONS Since the relationships are likely universal, we expect them to hold in clinical settings, as well as general populations. If these strong invariants are present in disease settings, it may provide insight into prognostic, predictive, or therapeutic properties of clinically relevant diseases. For example, our results indicate that there is a difference in the microbe distributions between patients who have or do not have IBD, eczema and psoriasis. These new analyses may improve disease diagnosis and drug development in terms of accuracy and efficiency.
Collapse
Affiliation(s)
- Daniella Vo
- Department of Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, 92093-083, USA
| | - Shayal Charisma Singh
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, 92093-083, USA
| | - Sara Safa
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, 92093-083, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, 92093-083, USA.
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0730, Leichtag Building 132, La Jolla, CA, 92093-083, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093-083, USA.
| |
Collapse
|
88
|
Mars RAT, Frith M, Kashyap PC. Functional Gastrointestinal Disorders and the Microbiome-What Is the Best Strategy for Moving Microbiome-based Therapies for Functional Gastrointestinal Disorders into the Clinic? Gastroenterology 2021; 160:538-555. [PMID: 33253687 PMCID: PMC8575137 DOI: 10.1053/j.gastro.2020.10.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
There have been numerous human studies reporting associations between the intestinal microbiome and functional gastrointestinal disorders (FGIDs), and independently animal studies have explored microbiome-driven mechanisms underlying FGIDs. However, there is often a disconnect between human and animal studies, which hampers translation of microbiome findings to the clinic. Changes in the microbiota composition of patients with FGIDs are generally subtle, whereas changes in microbial function, reflected in the fecal metabolome, appear to be more precise indicators of disease subtype-specific mechanisms. Although we have made significant progress in characterizing the microbiome, to effectively translate microbiome science in a timely manner, we need concurrent and iterative longitudinal studies in humans and animals to determine the precise microbial functions that can be targeted to address specific pathophysiological processes in FGIDs. A systems approach integrating multiple data layers rather than evaluating individual data layers of symptoms, physiological changes, or -omics data in isolation will allow for validation of mechanistic insights from animal studies while also allowing new discovery. Patient stratification for clinical trials based on functional microbiome alterations and/or pathophysiological measurements may allow for more accurate determination of efficacy of individual microbiome-targeted interventions designed to correct an underlying abnormality. In this review, we outline current approaches and knowledge, and identify gaps, to provide a potential roadmap for accelerating translation of microbiome science toward microbiome-targeted personalized treatments for FGIDs.
Collapse
Affiliation(s)
- Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mary Frith
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
89
|
Szałwińska P, Włodarczyk J, Spinelli A, Fichna J, Włodarczyk M. IBS-Symptoms in IBD Patients-Manifestation of Concomitant or Different Entities. J Clin Med 2020; 10:jcm10010031. [PMID: 33374388 PMCID: PMC7794700 DOI: 10.3390/jcm10010031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional heterogenous disease with a multifactorial pathogenesis. It is characterized by abdominal pain, discomfort, and alteration in gut motility. The occurrence of similar symptoms was observed in patients in clinical remission of inflammatory bowel diseases (IBD) that is Crohn's disease (CD) and ulcerative colitis (UC), which pathogenesis is also not fully understood. Hence, arose the question if these symptoms are "true IBS" imposed on IBD, or is it a subclinical form of IBD or even pre-IBD? In this article, based on a narrative overview of the literature, we try to find an answer to this query by discussing the pathogenesis and overlaps between these conditions.
Collapse
Affiliation(s)
- Patrycja Szałwińska
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (J.W.); (J.F.)
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (J.W.); (J.F.)
- Department of General and Colorectal Surgery, Medical University of Lodz, Haller Square 1, 90-624 Lodz, Poland
| | - Antonino Spinelli
- Colon and Rectal Surgery Division, Humanitas Clinical and Research Center IRCCS, Rozzano, 20089 Milano, Italy;
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milano, Italy
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (J.W.); (J.F.)
| | - Marcin Włodarczyk
- Department of General and Colorectal Surgery, Medical University of Lodz, Haller Square 1, 90-624 Lodz, Poland
- Correspondence:
| |
Collapse
|
90
|
Wang B, Zhu S, Liu Z, Wei H, Zhang L, He M, Pei F, Zhang J, Sun Q, Duan L. Increased Expression of Colonic Mucosal Melatonin in Patients with Irritable Bowel Syndrome Correlated with Gut Dysbiosis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:708-720. [PMID: 33607299 PMCID: PMC8377021 DOI: 10.1016/j.gpb.2020.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/16/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Dysregulation of the gut microbiota/gut hormone axis contributes to the pathogenesis of irritable bowel syndrome (IBS). Melatonin plays a beneficial role in gut motility and immunity. However, altered expression of local mucosal melatonin in IBS and its relationship with the gut microbiota remain unclear. Therefore, we aimed to detect the colonic melatonin levels and microbiota profiles in patients with diarrhea-predominant IBS (IBS-D) and explore their relationship in germ-free (GF) rats and BON-1 cells. Thirty-two IBS-D patients and twenty-eight healthy controls (HCs) were recruited. Fecal specimens from IBS-D patients and HCs were separately transplanted into GF rats by gavage. The levels of colon mucosal melatonin were assessed by immunohistochemical methods, and fecal microbiota communities were analyzed using 16S rDNA sequencing. The effect of butyrate on melatonin synthesis in BON-1 cells was evaluated by ELISA. Melatonin levels were significantly increased and negatively correlated with visceral hypersensitivity in IBS-D patients. GF rats inoculated with fecal microbiota from IBS-D patients had high colonic melatonin levels. Butyrate-producing Clostridium cluster XIVa species, such as Roseburia species and Lachnospira species, were positively related to colonic mucosal melatonin expression. Butyrate significantly increased melatonin secretion in BON-1 cells. Increased melatonin expression may be an adaptive protective mechanism in the development of IBS-D. Moreover, some Clostridium cluster XIVa species could increase melatonin expression via butyrate production. Modulation of the gut hormone/gut microbiota axis offers a promising target of interest for IBS in the future.
Collapse
Affiliation(s)
- Ben Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Zuojing Liu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Wei
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Lu Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Meibo He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fei Pei
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
91
|
Ford AC, Sperber AD, Corsetti M, Camilleri M. Irritable bowel syndrome. Lancet 2020; 396:1675-1688. [PMID: 33049223 DOI: 10.1016/s0140-6736(20)31548-8] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome is a functional gastrointestinal disorder with symptoms including abdominal pain associated with a change in stool form or frequency. The condition affects between 5% and 10% of otherwise healthy individuals at any one point in time and, in most people, runs a relapsing and remitting course. The best described risk factor is acute enteric infection, but irritable bowel syndrome is also more common in people with psychological comorbidity and in young adult women than in the rest of the general population. The pathophysiology of irritable bowel syndrome is incompletely understood, but it is well established that there is disordered communication between the gut and the brain, leading to motility disturbances, visceral hypersensitivity, and altered CNS processing. Other less reproducible mechanisms might include genetic associations, alterations in gastrointestinal microbiota, and disturbances in mucosal and immune function. In most people, diagnosis can be made on the basis of clinical history with limited and judicious use of investigations, unless alarm symptoms such as weight loss or rectal bleeding are present, or there is a family history of inflammatory bowel disease or coeliac disease. Once the diagnosis is made, an empathetic approach is key and can improve quality of life and symptoms, and reduce health-care expenditure. The mainstays of treatment include patient education about the condition, dietary changes, soluble fibre, and antispasmodic drugs. Other treatments tend to be reserved for people with severe symptoms and include central neuromodulators, intestinal secretagogues, drugs acting on opioid or 5-HT receptors, or minimally absorbed antibiotics (all of which are selected according to predominant bowel habit), as well as psychological therapies. Increased understanding of the pathophysiology of irritable bowel syndrome in the past 10 years has led to a healthy pipeline of novel drugs in development.
Collapse
Affiliation(s)
- Alexander C Ford
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Gastroenterology Institute, St James's University Hospital, Leeds, UK.
| | - Ami D Sperber
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maura Corsetti
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
92
|
Mishima Y, Ishihara S. Molecular Mechanisms of Microbiota-Mediated Pathology in Irritable Bowel Syndrome. Int J Mol Sci 2020; 21:ijms21228664. [PMID: 33212919 PMCID: PMC7698457 DOI: 10.3390/ijms21228664] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gastrointestinal disorders, and accumulating evidence gained in both preclinical and clinical studies indicate the involvement of enteric microbiota in its pathogenesis. Gut resident microbiota appear to influence brain activity through the enteric nervous system, while their composition and function are affected by the central nervous system. Based on these results, the term “brain–gut–microbiome axis” has been proposed and enteric microbiota have become a potential therapeutic target in IBS cases. However, details regarding the microbe-related pathophysiology of IBS remain elusive. This review summarizes the existing knowledge of molecular mechanisms in the pathogenesis of IBS as well as recent progress related to microbiome-derived neurotransmitters, compounds, metabolites, neuroendocrine factors, and enzymes.
Collapse
|
93
|
Yang M, Hong G, Jin Y, Li Y, Li G, Hou X. Mucosal-Associated Microbiota Other Than Luminal Microbiota Has a Close Relationship With Diarrhea-Predominant Irritable Bowel Syndrome. Front Cell Infect Microbiol 2020; 10:515614. [PMID: 33224895 PMCID: PMC7667041 DOI: 10.3389/fcimb.2020.515614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Studies have linked dysbiosis of gut microbiota to irritable bowel syndrome (IBS). However, dysbiosis only referring to structural changes without functional alteration or focusing on luminal microbiota are incomplete. To fully investigate the relationship between gut microbiota and clinical symptoms of Irritable Bowel Syndrome with Diarrhea (IBS-D), fecal samples, and rectal mucosal biopsies were collected from 69 IBS-D patients and 20 healthy controls (HCs) before and during endoscopy without bowel preparation. 16S rRNA genes were amplified and sequenced, and QIIME pipeline was used to process the composition of microbial communities. PICRUSt was used to predict and categorize microbial function. The composition of mucosa-associated microbiota (MAM) was significantly different in IBS-D patients compared to HCs; while no difference in luminal microbiota (LM). MAM, but not LM, was significantly positively correlated with abdominal pain and bloating. A greater number of MAM functional genes changed in IBS-D patients than that of LM compared with HCs. Metabolic alteration in MAM not in LM was related to abdominal pain and bloating. There was a close relationship between the composition and function of MAM and clinical symptoms in IBS-D patients which suggests the important role of MAM in pathogenesis and therapies in IBS-D and it should be highlighted in the future.
Collapse
Affiliation(s)
| | | | | | | | - Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
94
|
Yin B, Liu H, Tan B, Dong X, Chi S, Yang Q, Zhang S. Preliminary study of mechanisms of intestinal inflammation induced by plant proteins in juvenile hybrid groupers (♀Epinephelus fuscoguttatus×♂E. lanceolatu). FISH & SHELLFISH IMMUNOLOGY 2020; 106:341-356. [PMID: 32739533 DOI: 10.1016/j.fsi.2020.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Fish fed a high plant protein diet exhibit intestinal inflammation, the mechanism of which needs to be clarified. We preliminarily elucidate the mechanism of the TLRs/MyD88-PI3K/Akt signalling pathway in intestinal inflammation induced by plant proteins. The diets contained 60% fish meal (FM, controls), or had 45% of the fish meal protein replaced by soybean meal (SBM), peanut meal (PM), cottonseed meal (CSM) or cottonseed protein concentrate (CPC). After an 8-week feeding trial, fish were challenged by injection of Vibrio parahaemolyticus bacteria for 7 days until the fish stabilized. The results showed that the specific growth rate (SGR) of the FM group was higher than other groups. The SGR of the CPC group was higher than those of the SBM, PM and CSM groups. The catalase (CAT) contents in the serum of fish fed a plant protein diet were higher than in FM fish. The abundances of Rhodobacteraceae and Microbacteriaceae in the MI (mid intestine) were higher in the CPC group. The TLR-2 expressions in the MI and DI of plant protein-fed fish were up-regulated. The expressions of IL-6 in the PI and MI, of hepcidin and TLR-3 in the MI, and of TLR-3 in the DI, were all lower than those of fish fed FM. In the PI, MI and DI, the protein expressions of P-PI3K/T-PI3K in the SBM and PM groups were higher than in the FM group. After the challenge, the cumulative mortalities in the FM and CPC groups were lower than those of the SBM, PM and CSM groups. These results suggested that plant protein diets reduced antioxidant capacity and glycolipid metabolism, hindered the development of the intestine and reduced intestinal flora diversity. TLR-3 is involved in the immune regulation of the PI in CPC group, MI and DI in SBM, PM, CSM and CPC groups, while might be involved in the immune regulation of the PI in SBM, PM and CSM groups. Furthermore, PI3K/Akt signaling does not participate in the regulation of PI and MI in the CSM group, MI and DI in the CPC group.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524025, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524025, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524025, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, China.
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524025, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524025, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524025, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524025, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, China
| |
Collapse
|
95
|
Rengarajan S, Knoop KA, Rengarajan A, Chai JN, Grajales-Reyes JG, Samineni VK, Russler-Germain EV, Ranganathan P, Fasano A, Sayuk GS, Gereau RW, Kau AL, Knights D, Kashyap PC, Ciorba MA, Newberry RD, Hsieh CS. A Potential Role for Stress-Induced Microbial Alterations in IgA-Associated Irritable Bowel Syndrome with Diarrhea. CELL REPORTS MEDICINE 2020; 1. [PMID: 33196055 PMCID: PMC7659537 DOI: 10.1016/j.xcrm.2020.100124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stress is a known trigger for flares of inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS); however, this process is not well understood. Here, we find that restraint stress in mice leads to signs of diarrhea, fecal dysbiosis, and a barrier defect via the opening of goblet-cell associated passages. Notably, stress increases host immunity to gut bacteria as assessed by immunoglobulin A (IgA)-bound gut bacteria. Stress-induced microbial changes are necessary and sufficient to elicit these effects. Moreover, similar to mice, many diarrhea-predominant IBS (IBS-D) patients from two cohorts display increased antibacterial immunity as assessed by IgA-bound fecal bacteria. This antibacterial IgA response in IBS-D correlates with somatic symptom severity and was distinct from healthy controls or IBD patients. These findings suggest that stress may play an important role in patients with IgA-associated IBS-D by disrupting the intestinal microbial community that alters gastrointestinal function and host immunity to commensal bacteria. Stress in mice causes diarrhea, dysbiosis, barrier defect, increased antibacterial IgA Stress-induced microbial changes are sufficient to elicit the above effects IBS-D patients from two cohorts display increased and unique antibacterial IgA Antibacterial IgA in IBS-D correlates with patient symptom severity
Collapse
Affiliation(s)
- Sunaina Rengarajan
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathryn A Knoop
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arvind Rengarajan
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jose G Grajales-Reyes
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vijay K Samineni
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prabha Ranganathan
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessio Fasano
- Center for Celiac Research and Treatment and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gregory S Sayuk
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Gastroenterology Section, John Cochran Veterans Affairs Medical Center, St. Louis, MO 63125, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Center for Women's Infectious Disease Research and Department of Internal Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dan Knights
- Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew A Ciorba
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Lead Contact
| |
Collapse
|
96
|
Carco C, Young W, Gearry RB, Talley NJ, McNabb WC, Roy NC. Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis. Front Cell Infect Microbiol 2020; 10:468. [PMID: 33014892 PMCID: PMC7509092 DOI: 10.3389/fcimb.2020.00468] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbors most of the microbial cells inhabiting the body, collectively known as the microbiota. These microbes have several implications for the maintenance of structural integrity of the gastrointestinal mucosal barrier, immunomodulation, metabolism of nutrients, and protection against pathogens. Dysfunctions in these mechanisms are linked to a range of conditions in the gastrointestinal tract, including functional gastrointestinal disorders, ranging from irritable bowel syndrome, to functional constipation and functional diarrhea. Irritable bowel syndrome is characterized by chronic abdominal pain with changes in bowel habit in the absence of morphological changes. Despite the high prevalence of irritable bowel syndrome in the global population, the mechanisms responsible for this condition are poorly understood. Although alterations in the gastrointestinal microbiota, low-grade inflammation and immune activation have been implicated in the pathophysiology of functional gastrointestinal disorders, there is inconsistency between studies and a lack of consensus on what the exact role of the microbiota is, and how changes to it relate to these conditions. The complex interplay between host factors, such as microbial dysbiosis, immune activation, impaired epithelial barrier function and motility, and environmental factors, including diet, will be considered in this narrative review of the pathophysiology of functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Caterina Carco
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Wayne Young
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Richard B Gearry
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
97
|
The Gut Microbiota in Collagenous Colitis Shares Characteristics With Inflammatory Bowel Disease-Associated Dysbiosis. Clin Transl Gastroenterol 2020; 10:e00065. [PMID: 31343467 PMCID: PMC6708665 DOI: 10.14309/ctg.0000000000000065] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In inflammatory bowel disease (IBD), an aberrant immune response to gut microbiota is important, but the role of the microbiota in collagenous colitis (CC) is largely unknown. We aimed to characterize the microbiota of patients with CC compared with that of healthy control and patients with IBD.
Collapse
|
98
|
Yue YY, Fan XY, Zhang Q, Lu YP, Wu S, Wang S, Yu M, Cui CW, Sun ZR. Bibliometric analysis of subject trends and knowledge structures of gut microbiota. World J Clin Cases 2020; 8:2817-2832. [PMID: 32742991 PMCID: PMC7360702 DOI: 10.12998/wjcc.v8.i13.2817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbiota is an emerging field of research, with related research having breakthrough development in the past 15 years. Bibliometric analysis can be applied to analyze the evolutionary trends and emerging hotspots in this field.
AIM To study the subject trends and knowledge structures of gut microbiota related research fields from 2004 to 2018.
METHODS The literature data on gut microbiota were identified and downloaded from the PubMed database. Through biclustering analysis, strategic diagrams, and social network analysis diagrams, the main trend and knowledge structure of research fields concerning gut microbiota were analyzed to obtain and compare the research hotspots in each period.
RESULTS According to the strategic coordinates and social relationship network map, Clostridium Infections/microbiology, Clostridium Infections/therapy, RNA, Ribosomal, 16S/genetics, Microbiota/genetics, Microbiota/immunology, Dysbiosis/immunology, Infla-mmation/immunology, Fecal Microbiota Transplantation/methods, Fecal Microbiota Transplantation can be used as an emerging research hotspot in the past 5 years (2014-2018).
CONCLUSION Some subjects were not yet fully studied according to the strategic coordinates; and the emerging hotspots in the social network map can be considered as directions of future research.
Collapse
Affiliation(s)
- Yuan-Yi Yue
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xin-Yue Fan
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province
| | - Yi-Ping Lu
- BioBank, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si Wu
- BioBank, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shuang Wang
- BioBank, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Miao Yu
- BioBank, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chang-Wan Cui
- BioBank, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Zheng-Rong Sun
- BioBank, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
99
|
Gu X, Song LJ, Li LX, Liu T, Zhang MM, Li Z, Wang P, Li M, Zuo XL. Fusobacterium nucleatum Causes Microbial Dysbiosis and Exacerbates Visceral Hypersensitivity in a Colonization-Independent Manner. Front Microbiol 2020; 11:1281. [PMID: 32733392 PMCID: PMC7358639 DOI: 10.3389/fmicb.2020.01281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Microbial dysbiosis is closely associated with visceral hypersensitivity and is involved in the pathogenesis of irritable bowel syndrome (IBS), but the specific strains that play a key role have yet to be identified. Previous bioinformatic studies have demonstrated that Fusobacterium is a shared microbial feature between IBS patients and maternal separation (MS)-stressed rats. In this study, we assessed the potential role of Fusobacterium nucleatum (F. nucleatum) in the pathogenesis of IBS. Methods: Fecal samples of patients with diarrhea predominant-IBS (IBS-D) and healthy controls were obtained. An MS rat model was established to receive gavage of either F. nucleatum or normal saline. Visceral sensitivity was evaluated through colorectal distension test, and fecal microbiota was analyzed by 16S rRNA gene sequencing. F. nucleatum-specific IgA levels in fecal supernatants were assessed by western blotting. The antigen reacted with the specific IgA of F. nucleatum was identified by mass spectrometry and the construction of a recombinant Escherichia coli BL21 (DE3). Results: IBS-D patients showed a lower Shannon index and a higher abundance of Fusobacterium. The F. nucleatum-gavage was shown to exacerbate visceral hypersensitivity in MS rats, with both the F. nucleatum-gavage and MS causing a decreased Shannon index and a clear segregation of fecal microbiota. In addition, specific IgA against F. nucleatum was detected in fecal supernatants of both the F. nucleatum-gavaged rats and the IBS-D patients. The FomA protein, which is a major outer membrane protein of F. nucleatum, was confirmed to react with the specific IgA of F. nucleatum in fecal supernatants. Conclusion:Fusobacterium increased significantly in IBS-D patients, and F. nucleatum was involved in the pathogenesis of IBS by causing microbial dysbiosis and exacerbating visceral hypersensitivity in a colonization-independent manner. Meanwhile, F. nucleatum was found to induce an increase in specific secretory IgA through FomA.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Li-Jin Song
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Li-Xiang Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Tong Liu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Ming-Ming Zhang
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
100
|
Lahtinen P, Jalanka J, Hartikainen A, Mattila E, Hillilä M, Punkkinen J, Koskenpato J, Anttila VJ, Tillonen J, Satokari R, Arkkila P. Randomised clinical trial: faecal microbiota transplantation versus autologous placebo administered via colonoscopy in irritable bowel syndrome. Aliment Pharmacol Ther 2020; 51:1321-1331. [PMID: 32343000 DOI: 10.1111/apt.15740] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/14/2019] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) has been associated with microbial dysbiosis. AIM To investigate the efficacy of faecal microbiota transplantation (FMT) in the treatment of IBS. METHODS Forty-nine IBS patients were randomised to receive autologous or allogenic FMT via colonoscopy. The primary endpoint was a sustained, minimum of 50-point, reduction in the IBS Symptom Severity Score. The secondary outcomes were levels of anxiety and depression, changes in quality of life, gut microbiota and faecal water content as assessed with validated questionnaires, intestinal microbiota composition and stool dry weight. RESULTS The primary endpoint was not achieved in either group. However, there was a transient reduction in the mean IBS Symptom Severity Score in the FMT group at 12 weeks after treatment as compared to baseline (P = 0.01). The groups did not differ in the number of patients achieving clinical response at 12 weeks. In the FMT-treated patients, microbial composition had changed to resemble that of the donor and the stool water content decreased significantly compared to baseline. The depression score decreased in patients with a reduction in IBS symptoms after FMT, but not in those placebo-treated patients who experienced a reduction in IBS symptoms. CONCLUSIONS FMT provided only a transient relief of symptoms, although it induced a sustained alteration in the microbiota of IBS patients. Therefore, FMT delivered by a single infusion via colonoscopy cannot be recommended as a treatment for IBS in clinical practice. ClinicalTrials.Org, Trial registration number: NCT03561519.
Collapse
Affiliation(s)
- Perttu Lahtinen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Jalanka
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hartikainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Mattila
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Markku Hillilä
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Gastroenterology, Helsinki University Hospital, Espoo, Finland
| | - Jari Punkkinen
- Department of Gastroenterology, Porvoo Hospital, Porvoo, Finland
| | - Jari Koskenpato
- Department of Gastroenterology, Aava Medical Centre, Helsinki, Finland
| | - Veli-Jukka Anttila
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Jyrki Tillonen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Arkkila
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Gastroenterology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|