51
|
Liu K, Huang J, Liu J, Li C, Kroemer G, Tang D, Kang R. HSP90 Mediates IFNγ-Induced Adaptive Resistance to Anti-PD-1 Immunotherapy. Cancer Res 2022; 82:2003-2018. [PMID: 35247909 DOI: 10.1158/0008-5472.can-21-3917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE This study reveals an HSP90-centric, iron-modulated mechanism that confers immunosuppression, offering potential therapeutic targets for interfering with acquired resistance to the most prevalent anticancer immunotherapies.
Collapse
Affiliation(s)
- Ke Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
52
|
Abstract
Interferon gamma (IFNG/IFNγ)-induced adaptive immune resistance remains a challenge for tumor therapy. We observed that the chaperone heat shock protein 90 (HSP90) stabilizes the transcription factor signal transducer and activator of transcription 1 (STAT1), resulting in IFNγ-induced expression of immunosuppressive indoleamine 2,3-dioxygenase 1 (IDO1) and programmed death-ligand 1 (PD-L1/CD274). Pharmacological inhibition of HSP90 enhances the efficacy of programmed cell death 1 (PDCD1/PD-1) targeting immunotherapy in suitable mouse models without any toxicity.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms,Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas USA
| |
Collapse
|
53
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
54
|
Chen F, Kang R, Liu J, Tang D. The V-ATPases in cancer and cell death. Cancer Gene Ther 2022; 29:1529-1541. [PMID: 35504950 PMCID: PMC9063253 DOI: 10.1038/s41417-022-00477-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane ATPases are membrane-bound enzyme complexes and ion transporters that can be divided into F-, V-, and A-ATPases according to their structure. The V-ATPases, also known as H+-ATPases, are large multi-subunit protein complexes composed of a peripheral domain (V1) responsible for the hydrolysis of ATP and a membrane-integrated domain (V0) that transports protons across plasma membrane or organelle membrane. V-ATPases play a fundamental role in maintaining pH homeostasis through lysosomal acidification and are involved in modulating various physiological and pathological processes, such as macropinocytosis, autophagy, cell invasion, and cell death (e.g., apoptosis, anoikis, alkaliptosis, ferroptosis, and lysosome-dependent cell death). In addition to participating in embryonic development, V-ATPase pathways, when dysfunctional, are implicated in human diseases, such as neurodegenerative diseases, osteopetrosis, distal renal tubular acidosis, and cancer. In this review, we summarize the structure and regulation of isoforms of V-ATPase subunits and discuss their context-dependent roles in cancer biology and cell death. Updated knowledge about V-ATPases may enable us to design new anticancer drugs or strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- grid.417009.b0000 0004 1758 4591DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 China
| | - Rui Kang
- grid.267313.20000 0000 9482 7121Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jiao Liu
- grid.417009.b0000 0004 1758 4591DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 China
| | - Daolin Tang
- grid.267313.20000 0000 9482 7121Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
55
|
Huang Z, Wang T, Wang C, Fan Y. CDK9 Inhibitors in Cancer Research. RSC Med Chem 2022; 13:688-710. [PMID: 35814933 PMCID: PMC9215160 DOI: 10.1039/d2md00040g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Cyclin dependent kinase 9 (CDK9) played an essential role in regulating transcriptional elongation. Aberrations in CDK9 activity have been observed in various cancers, which made CDK9 was an attractive therapeutic...
Collapse
Affiliation(s)
- Zhi Huang
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Cheng Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
56
|
A New Oxadiazole-Based Topsentin Derivative Modulates Cyclin-Dependent Kinase 1 Expression and Exerts Cytotoxic Effects on Pancreatic Cancer Cells. Molecules 2021; 27:molecules27010019. [PMID: 35011251 PMCID: PMC8746667 DOI: 10.3390/molecules27010019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal form of cancer characterized by drug resistance, urging new therapeutic strategies. In recent years, protein kinases have emerged as promising pharmacological targets for the treatment of several solid and hematological tumors. Interestingly, cyclin-dependent kinase 1 (CDK1) is overexpressed in PDAC tissues and has been correlated to the aggressive nature of these tumors because of its key role in cell cycle progression and resistance to the induction of apoptosis. For these reasons, CDK1 is one of the main causes of chemoresistance, representing a promising pharmacological target. In this study, we report the synthesis of new 1,2,4-oxadiazole compounds and evaluate their ability to inhibit the cell growth of PATU-T, Hs766T, and HPAF-II cell lines and a primary PDAC cell culture (PDAC3). Compound 6b was the most active compound, with IC50 values ranging from 5.7 to 10.7 µM. Molecular docking of 6b into the active site of CDK1 showed the ability of the compound to interact effectively with the adenosine triphosphate binding pocket. Therefore, we assessed its ability to induce apoptosis (which increased 1.5- and 2-fold in PATU-T and PDAC3 cells, respectively) and to inhibit CDK1 expression, which was reduced to 45% in Hs766T. Lastly, compound 6b passed the ADME prediction, showing good pharmacokinetic parameters. These data demonstrate that 6b displays cytotoxic activity, induces apoptosis, and targets CDK1, supporting further studies for the development of similar compounds against PDAC.
Collapse
|
57
|
Lin W, Wang X, Xu Z, Wang Z, Liu T, Cao Z, Feng X, Gao Y, He J. Identification and validation of cellular senescence patterns to predict clinical outcomes and immunotherapeutic responses in lung adenocarcinoma. Cancer Cell Int 2021; 21:652. [PMID: 34872577 PMCID: PMC8647370 DOI: 10.1186/s12935-021-02358-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Background Aging and senescence can alter immune cell fitness and influence the efficacy of lung cancer treatments, especially immunotherapy. However, the correlations between cellular senescence and tumor microenvironment are still not clearly clarified and the value of cellular senescence-related genes in evaluating the immune infiltration and clinical outcomes of lung adenocarcinoma (LUAD) need further investigated. Methods We identified three cellular senescence clusters by NMF algorithm and correlated the cellular senescence clusters with the immune landscape in LUAD patients. A prognostic scoring system was established using random survival forest algorithm and validated in 4 external cohorts. Multivariate Cox regression analysis was performed to evaluate the prognostic value of the scoring system. Expression of LYPD3 was evaluated by immunohistochemistry in LUAD samples. Results Based on the mRNA expression profiles of 278 cellular senescence-related genes, three cellular senescence clusters with distinct prognosis were identified. We characterized three cellular senescence clusters by differences in biological processes, EMT score, expression of immunomodulatory genes, extent of intratumor heterogeneity and response to immunotherapy. Meanwhile, a cellular senescence-related scoring system (CSS) was established and validated as an independent prognostic factor and immunotherapy predictor of LUAD. Patients with low CSS was characterized by prolonged survival time. In response to anti-cancer drugs, patients with low CSS exhibited higher sensitivities to molecular drugs, such as Roscovitine (CDKs inhibitor), Lenaidornide (TNF-α inhibitor), MK2206 (Akt 1/2/3 inhibitor), and especially increased response to anti-PD-1/L1 immunotherapy. Conclusions This study demonstrated the correlations between cellular senescence patterns and tumor immune landscape in LUAD, which enhanced our understanding of the tumor immune microenvironment and provided new insights for improving the outcome of immunotherapy for LUAD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02358-0.
Collapse
Affiliation(s)
- Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiejun Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
58
|
Li XX, Xiong L, Wen Y, Zhang ZJ. Comprehensive Analysis of the Tumor Microenvironment and Ferroptosis-Related Genes Predict Prognosis with Ovarian Cancer. Front Genet 2021; 12:774400. [PMID: 34868262 PMCID: PMC8634641 DOI: 10.3389/fgene.2021.774400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
The early diagnosis of ovarian cancer (OC) is critical to improve the prognosis and prevent recurrence of patients. Nevertheless, there is still a lack of factors which can accurately predict it. In this study, we focused on the interaction of immune infiltration and ferroptosis and selected the ESTIMATE algorithm and 15 ferroptosis-related genes (FRGs) to construct a novel E-FRG scoring model for predicting overall survival of OC patients. The gene expression and corresponding clinical characteristics were obtained from the TCGA dataset (n = 375), GSE18520 (n = 53), and GSE32062 (n = 260). A total of 15 FRGs derived from FerrDb with the immune score and stromal score were identified in the prognostic model by using least absolute shrinkage and selection operator (LASSO)-penalized COX regression analysis. The Kaplan-Meier survival analysis and time-dependent ROC curves performed a powerful prognostic ability of the E-FRG model via multi-validation. Gene Set Enrichment Analysis and Gene Set Variation Analysis elucidate multiple potential pathways between the high and low E-FRG score group. Finally, the proteins of different genes in the model were verified in drug-resistant and non-drug-resistant tumor tissues. The results of this research provide new prospects in the role of immune infiltration and ferroptosis as a helpful tool to predict the outcome of OC patients.
Collapse
Affiliation(s)
| | | | | | - Zi-jian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
59
|
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021; 18:804-823. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal cancer characterized by late diagnosis, limited treatment success and dismal prognosis. Exocrine tumours account for 95% of pancreatic cancers and the most common pathological type is pancreatic ductal adenocarcinoma (PDAC). The occurrence and progression of PDAC involve multiple factors, including internal genetic alterations and external inflammatory stimuli. The biology and therapeutic response of PDAC are further shaped by various forms of regulated cell death, such as apoptosis, necroptosis, ferroptosis, pyroptosis and alkaliptosis. Cell death induced by local or systemic treatments suppresses tumour proliferation, invasion and metastasis. However, unrestricted cell death or tissue damage might result in an inflammation-related immunosuppressive microenvironment, which is conducive to tumour progression or recurrence. The precise extent to which cell death affects PDAC is not yet well described. A growing body of preclinical and clinical studies document significant correlations between mutations (for example, in KRAS and TP53), stress responses (such as hypoxia and autophagy), metabolic reprogramming and chemotherapeutic responses. Here, we describe the molecular machinery of cell death, discuss the complexity and multifaceted nature of lethal signalling in PDAC cells, and highlight the challenges and opportunities for activating cell death pathways through precision oncology treatments.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
60
|
Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer 2021; 20:128. [PMID: 34607583 PMCID: PMC8489073 DOI: 10.1186/s12943-021-01422-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
61
|
Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:cancers13174389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
|
62
|
Li R, He Y, Zhang H, Wang J, Liu X, Liu H, Wu H, Liang Z. Identification and Validation of Immune Molecular Subtypes in Pancreatic Ductal Adenocarcinoma: Implications for Prognosis and Immunotherapy. Front Immunol 2021; 12:690056. [PMID: 34335594 PMCID: PMC8320597 DOI: 10.3389/fimmu.2021.690056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains treatment refractory. Immunotherapy has achieved success in the treatment of multiple malignancies. However, the efficacy of immunotherapy in PDAC is limited by a lack of promising biomarkers. In this research, we aimed to identify robust immune molecular subtypes of PDAC to facilitate prognosis prediction and patient selection for immunotherapy. Methods A training cohort of 149 PDAC samples from The Cancer Genome Atlas (TCGA) with mRNA expression data was analyzed. By means of non-negative matrix factorization (NMF), we virtually dissected the immune-related signals from bulk gene expression data. Detailed immunogenomic and survival analyses of the immune molecular subtypes were conducted to determine their biological and clinical relevance. Validation was performed in five independent datasets on a total of 615 samples. Results Approximately 31% of PDAC samples (46/149) had higher immune cell infiltration, more active immune cytolytic activity, higher activation of the interferon pathway, a higher tumor mutational burden (TMB), and fewer copy number alterations (CNAs) than the other samples (all P < 0.001). This new molecular subtype was named Immune Class, which served as an independent favorable prognostic factor for overall survival (hazard ratio, 0.56; 95% confidence interval, 0.33-0.97). Immune Class in cooperation with previously reported tumor and stroma classifications had a cumulative effect on PDAC prognostic stratification. Moreover, programmed cell death-1 (PD-1) inhibitors showed potential efficacy for Immune Class (P = 0.04). The robustness of our immune molecular subtypes was further verified in the validation cohort. Conclusions By capturing immune-related signals in the PDAC tumor microenvironment, we reveal a novel molecular subtype, Immune Class. Immune Class serves as an independent favorable prognostic factor for overall survival in PDAC patients.
Collapse
Affiliation(s)
- Ruiyu Li
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yangzhige He
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoding Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hangqi Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
63
|
Chen R, Chen Y, Huang W, Zhao Y, Luo W, Lin J, Wang Z, Yang J. Comprehensive analysis of an immune-related ceRNA network in identifying a novel lncRNA signature as a prognostic biomarker for hepatocellular carcinoma. Aging (Albany NY) 2021; 13:17607-17628. [PMID: 34237706 PMCID: PMC8312417 DOI: 10.18632/aging.203250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022]
Abstract
The function of competitive endogenous RNA (ceRNA) network in the immune regulation of hepatocellular carcinoma (HCC) is unclear. Our study aimed to construct an immune-related ceRNA network and develop an immune-related long noncoding RNA (lncRNA) signature to assess the prognosis of HCC patients and to optimize the treatment methods. We firstly constructed a ceRNA regulatory network for HCC using differentially expressed lncRNAs, mRNAs and microRNAs (miRNAs) from the Cancer Genome Atlas. A signature was constructed by 11 immune-related prognostic lncRNAs from the ceRNA network. The survival analysis and receiver operating characteristic analysis validated the reliability of the signature. Multivariate Cox regression analysis revealed that the signature could act an independent prognostic indicator. This signature also showed high association with immune cell infiltration and immune check blockades. LINC00491 was identified as the hub lncRNA in the signature. In vitro and in vivo evidence demonstrated that silencing of LINC00491 significantly inhibited HCC growth. Finally, 59 lncRNAs, 21 miRNAs, and 26 mRNAs were obtained to build the immune-related ceRNA network for HCC. In conclusion, our novel immune-related lncRNA prognostic signature and the immune-related ceRNA network might provide in-depth insights into tumor-immune interaction of HCC and promote better individual treatment strategies in HCC patients.
Collapse
Affiliation(s)
- Rui Chen
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China
| | - Yunlong Chen
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China
| | - Wenjie Huang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yingnan Zhao
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China
| | - Wang Luo
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China
| | - Jinyu Lin
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China
| | - Zhuangxiong Wang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China
| | - Jian Yang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China
| |
Collapse
|
64
|
Jin MZ, Wang XP. Immunogenic Cell Death-Based Cancer Vaccines. Front Immunol 2021; 12:697964. [PMID: 34135914 PMCID: PMC8200667 DOI: 10.3389/fimmu.2021.697964] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy has achieved great advancement in the past decades. Whereas, its response is largely limited in immunologically cold tumors, in an urgent need to be solve. In recent years, an increasing number of studies have shown that inducing immunogenic cell deaths (ICDs) is an attractive approach to activate antitumor immunity. Upon specific stress, cancer cells undergo ICDs and dying cancer cells release danger associated molecular patterns (DAMPs), produce neoantigens and trigger adaptive immunity. ICDs exert a cancer vaccine-like effect and Inducement of ICDs mimics process of cancer vaccination. In this review, we propose a concept of ICD-based cancer vaccines and summarize sources of ICD-based cancer vaccines and their challenges, which may broaden the understandings of ICD and cancer vaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Peng Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
65
|
Ahn R, Ursini-Siegel J. Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors. Int J Mol Sci 2021; 22:ijms22052608. [PMID: 33807608 PMCID: PMC7961781 DOI: 10.3390/ijms22052608] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Oncogenic kinases contribute to immunosuppression and modulate the tumor microenvironment in solid tumors. Increasing evidence supports the fundamental role of oncogenic kinase signaling networks in coordinating immunosuppressive tumor microenvironments. This has led to numerous studies examining the efficacy of kinase inhibitors in inducing anti-tumor immune responses by increasing tumor immunogenicity. Kinase inhibitors are the second most common FDA-approved group of drugs that are deployed for cancer treatment. With few exceptions, they inevitably lead to intrinsic and/or acquired resistance, particularly in patients with metastatic disease when used as a monotherapy. On the other hand, cancer immunotherapies, including immune checkpoint inhibitors, have revolutionized cancer treatment for malignancies such as melanoma and lung cancer. However, key hurdles remain to successfully incorporate such therapies in the treatment of other solid cancers. Here, we review the recent literature on oncogenic kinases that regulate tumor immunogenicity, immune suppression, and anti-tumor immunity. Furthermore, we discuss current efforts in clinical trials that combine kinase inhibitors and immune checkpoint inhibitors to treat breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Oncology, McGill University, 546 Pine Avenue West, Montréal, QC H2W 1S6, Canada
- Correspondence: ; Tel.: +514-340-8222 (ext. 26557); Fax: +514-340-7502
| |
Collapse
|
66
|
Li MX, Wang HY, Yuan CH, Ma ZL, Jiang B, Li L, Zhang L, Xiu DR. Establishment of a Macrophage Phenotypic Switch Related Prognostic Signature in Patients With Pancreatic Cancer. Front Oncol 2021; 11:619517. [PMID: 33747931 PMCID: PMC7966706 DOI: 10.3389/fonc.2021.619517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Macrophage phenotype switch plays a vital role in the progression of malignancies. We aimed to build a prognostic signature by exploring the expression pattern of macrophage phenotypic switch related genes (MRGs) in the Cancer Genome Atlas (TCGA)—pancreatic adenocarcinoma (PAAD), Genotype-Tissue Expression (GTEx)-Pancreas, and Gene Expression Omnibus (GEO) databases. Methods We identified the differentially expressed genes between the PAAD and normal tissues. We used single factor Cox proportional risk regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and multivariate Cox proportional hazard regression analysis to establish the prognosis risk score by the MRGs. The relationships between the risk score and immune landscape, “key driver” mutations and clinicopathological factors were also analyzed. Gene-set enrichment analysis (GSEA) analysis was also performed. Results We detected 198 differentially expressed MRGs. The risk score was constructed based on 9 genes (KIF23, BIN1, LAPTM4A, ERAP2, ATP8B2, FAM118A, RGS16, ELMO1, RAPGEFL1). The median overall survival time of patients in the low-risk group was significantly longer than that of patients in the high-risk group (P < 0.001). The prognostic value of the risk score was validated in GSE62452 dataset. The prognostic performance of nomogram based on risk score was superior to that of TNM stage. And GSEA analysis also showed that the risk score was closely related with P53 signaling pathway, pancreatic cancer and T cell receptor signaling pathway. qRT-PCR assay showed that the expressions of the 9 MRGs in PDAC cell lines were higher than those in human pancreatic ductal epithelium cell line. Conclusions The nine gene risk score could be used as an independent prognostic index for PAAD patients. Further studies validating the prognostic value of the risk score are warranted.
Collapse
Affiliation(s)
- Mu-Xing Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Hang-Yan Wang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Chun-Hui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Zhao-Lai Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Bin Jiang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Lei Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Li Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Dian-Rong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
67
|
Xie Y, Liu J, Kang R, Tang D. Mitophagy in Pancreatic Cancer. Front Oncol 2021; 11:616079. [PMID: 33718171 PMCID: PMC7953903 DOI: 10.3389/fonc.2021.616079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive solid malignancies, is characterized by the presence of oncogenic KRAS mutations, poor response to current therapies, prone to metastasis, and a low 5-year overall survival rate. Macroautophagy (herein referred to as autophagy) is a lysosome-dependent degradation system that forms a series of dynamic membrane structures to engulf, degrade, and recycle various cargoes, such as unused proteins, damaged organelles, and invading pathogens. Autophagy is usually upregulated in established cancers, but it plays a dual role in the regulation of the initiation and progression of PDAC. As a type of selective autophagy, mitophagy is a mitochondrial quality control mechanism that uses ubiquitin-dependent (e.g., the PINK1-PRKN pathway) and -independent (e.g., BNIP3L/NIX, FUNDC1, and BNIP3) pathways to regulate mitochondrial turnover and participate in the modulation of metabolism and cell death. Genetically engineered mouse models indicate that the loss of PINK1 or PRKN promotes, whereas the depletion of BNIP3L inhibits oncogenic KRAS-driven pancreatic tumorigenesis. Mitophagy also play a dual role in the regulation of the anticancer activity of certain cytotoxic agents (e.g., rocaglamide A, dichloroacetate, fisetin, and P. suffruticosa extracts) in PDAC cells or xenograft models. In this min-review, we summarize the latest advances in understanding the complex role of mitophagy in the occurrence and treatment of PDAC.
Collapse
Affiliation(s)
- Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
68
|
Liu J, Song X, Kuang F, Zhang Q, Xie Y, Kang R, Kroemer G, Tang D. NUPR1 is a critical repressor of ferroptosis. Nat Commun 2021; 12:647. [PMID: 33510144 PMCID: PMC7843652 DOI: 10.1038/s41467-021-20904-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Transcription factors play multiple roles in ferroptosis, although the key regulator for ferroptosis in iron metabolism remains elusive. Using NanoString technology, we identify NUPR1, a stress-inducible transcription factor, as a driver of ferroptosis resistance. Mechanistically, NUPR1-mediated LCN2 expression blocks ferroptotic cell death through diminishing iron accumulation and subsequent oxidative damage. Consequently, LCN2 depletion mimics NUPR1 deficiency with respect to ferroptosis induction, whereas transfection-enforced re-expression of LCN2 restores resistance to ferroptosis in NUPR1-deficient cells. Pharmacological or genetic blockade of the NUPR1-LCN2 pathway (using NUPR1 shRNA, LCN2 shRNA, pancreas-specific Lcn2 conditional knockout mice, or the small molecule ZZW-115) increases the activity of the ferroptosis inducer erastin and worsens pancreatitis, in suitable mouse models. These findings suggest a link between NUPR1-regulated iron metabolism and ferroptosis susceptibility.
Collapse
Affiliation(s)
- Jiao Liu
- The Third Affiliated Hospital, Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, 510600, Guangdong, China
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Feimei Kuang
- The Third Affiliated Hospital, Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, 510600, Guangdong, China
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.
- Université Pierre et Marie Curie, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| | - Daolin Tang
- The Third Affiliated Hospital, Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, 510600, Guangdong, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
69
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an immune resistant tumor. We recently demonstrated that inhibiting CDK1/2/5 by dinaciclib not only blocks immune checkpoint expression, but also triggers histone-dependent immunogenic cell death. This dual mechanism turns immunologically "cold" tumor microenvironment into a "hot" one, improves overall survival rates in mouse PDAC models.
Collapse
Affiliation(s)
- Jiao Liu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
70
|
Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R, Bai L, Tang D. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun 2020; 11:6339. [PMID: 33311482 PMCID: PMC7732843 DOI: 10.1038/s41467-020-20154-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a more recently recognized form of cell death that relies on iron-mediated oxidative damage. Here, we evaluate the impact of high-iron diets or depletion of Gpx4, an antioxidant enzyme reported as an important ferroptosis suppressor, in the pancreas of mice with cerulean- or L-arginine-induced pancreatitis, and in an oncogenic Kras murine model of spontaneous pancreatic ductal adenocarcinoma (PDAC). We find that either high-iron diets or Gpx4 depletion promotes 8-OHG release and thus activates the TMEM173/STING-dependent DNA sensor pathway, which results in macrophage infiltration and activation during Kras-driven PDAC in mice. Consequently, the administration of liproxstatin-1 (a ferroptosis inhibitor), clophosome-mediated macrophage depletion, or pharmacological and genetic inhibition of the 8-OHG-TMEM173 pathway suppresses Kras-driven pancreatic tumorigenesis in mice. GPX4 is also a prognostic marker in patients with PDAC. These findings provide pathological and mechanistic insights into ferroptotic damage in PDAC tumorigenesis in mice.
Collapse
Affiliation(s)
- Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Leng Han
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- Protein Modification and Degradation Lab, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lulu Bai
- Department of Pediatric Hematology, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|