51
|
Boorsma CE, van der Veen TA, Putri KSS, de Almeida A, Draijer C, Mauad T, Fejer G, Brandsma CA, van den Berge M, Bossé Y, Sin D, Hao K, Reithmeier A, Andersson G, Olinga P, Timens W, Casini A, Melgert BN. A Potent Tartrate Resistant Acid Phosphatase Inhibitor to Study the Function of TRAP in Alveolar Macrophages. Sci Rep 2017; 7:12570. [PMID: 28974738 PMCID: PMC5626781 DOI: 10.1038/s41598-017-12623-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/13/2017] [Indexed: 12/03/2022] Open
Abstract
The enzyme tartrate resistant acid phosphatase (TRAP, two isoforms 5a and 5b) is highly expressed in alveolar macrophages, but its function there is unclear and potent selective inhibitors of TRAP are required to assess functional aspects of the protein. We found higher TRAP activity/expression in lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma compared to controls and more TRAP activity in lungs of mice with experimental COPD or asthma. Stimuli related to asthma and/or COPD were tested for their capacity to induce TRAP. Receptor activator of NF-κb ligand (RANKL) and Xanthine/Xanthine Oxidase induced TRAP mRNA expression in mouse macrophages, but only RANKL also induced TRAP activity in mouse lung slices. Several Au(III) coordination compounds were tested for their ability to inhibit TRAP activity and [Au(4,4′-dimethoxy-2,2′-bipyridine)Cl2][PF6] (AubipyOMe) was found to be the most potent inhibitor of TRAP5a and 5b activity reported to date (IC50 1.3 and 1.8 μM respectively). AubipyOMe also inhibited TRAP activity in murine macrophage and human lung tissue extracts. In a functional assay with physiological TRAP substrate osteopontin, AubipyOMe inhibited mouse macrophage migration over osteopontin-coated membranes. In conclusion, higher TRAP expression/activity are associated with COPD and asthma and TRAP is involved in regulating macrophage migration.
Collapse
Affiliation(s)
- Carian E Boorsma
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - T Anienke van der Veen
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Kurnia S S Putri
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | | | - Christina Draijer
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Thais Mauad
- São Paulo University, Department of Pathology, São Paulo, Brazil
| | - Gyorgy Fejer
- University of Plymouth, School of Biomedical and Healthcare Sciences, Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Yohan Bossé
- Laval University, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Québec, Canada
| | - Don Sin
- University of British Columbia, James Hogg Research Center, Providence Heart+Lung Institute, St. Paul's Hospital, Vancouver, British Columbia, Canada.,University of British Columbia, Respiratory Division, Department of Medicine, Vancouver, British Columbia, Canada
| | - Ke Hao
- Merck Research Laboratories, Boston, Massachusetts, United States of America
| | - Anja Reithmeier
- Karolinska Institute, Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Göran Andersson
- Karolinska Institute, Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Peter Olinga
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Angela Casini
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands. .,School of Chemistry, Cardiff University, Cardiff, United Kingdom.
| | - Barbro N Melgert
- University of Groningen, Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, Groningen, The Netherlands. .,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
| |
Collapse
|
52
|
Fibulin-5 promotes airway smooth muscle cell proliferation and migration via modulating Hippo-YAP/TAZ pathway. Biochem Biophys Res Commun 2017; 493:985-991. [PMID: 28942149 DOI: 10.1016/j.bbrc.2017.09.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 01/27/2023]
Abstract
Asthma is a common chronic disease mainly occurs from childhood. Increased airway smooth muscle mass is involved in the pathogenesis of asthma. Fibulin-5 was upregulated in the lung tissues of patients with COPD and idiopathic pulmonary fibrosis. This study aimed to investigate Fibulin-5 expression in asthmatic patients and the effect and mechanism of Fibulin-5 on the proliferation and migration of airway smooth muscle cells (ASMCs). The expression of Fibulin-5, YAP, and TAZ in the induced sputum of 38 asthmatic children (19 mild and 19 moderate asthmatics) and 19 healthy controls was determined. The effects and mechanisms of Fibulin-5 on the proliferation and migration of ASMCs were analyzed through upregulating Fibulin-5. We found compared with healthy controls, the expression of Fibulin-5, YAP, and TAZ was increased in the induced sputum of asthmatic children and much higher in moderate asthmatics. Fibulin-5 overexpression promoted the proliferation and migration of ASMCs, upregulated the expression of YAP and TAZ, and reduced the levels of p-YAP and p-TAZ. YAP inhibitor (Peptide 17) abrogated the proliferation and migration of ASMCs induced by Fibulin-5 overexpression in a dose-dependent manner. Additionally, Fibulin-5 overexpression enhanced its binding capacity of β1 integrin, and β1 integrin blocking antibody partly reversed the effect of Fibulin-5 overexpression on the levels of YAP and TAZ. In conclusion, Fibulin-5 expression is correlated with the pathogenesis of childhood asthma. It may function at least partly through binding to β1 integrin and modulating Hippo-YAP/TAZ pathway to promote the proliferation and migration of ASMCs.
Collapse
|
53
|
Ong J, Timens W, Rajendran V, Algra A, Spira A, Lenburg ME, Campbell JD, van den Berge M, Postma DS, van den Berg A, Kluiver J, Brandsma CA. Identification of transforming growth factor-beta-regulated microRNAs and the microRNA-targetomes in primary lung fibroblasts. PLoS One 2017; 12:e0183815. [PMID: 28910321 PMCID: PMC5599028 DOI: 10.1371/journal.pone.0183815] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/10/2017] [Indexed: 12/05/2022] Open
Abstract
Background Lung fibroblasts are involved in extracellular matrix homeostasis, which is mainly regulated by transforming growth factor-beta (TGF-β), and are therefore crucial in lung tissue repair and remodeling. Abnormal repair and remodeling has been observed in lung diseases like COPD. As miRNA levels can be influenced by TGF-β, we hypothesized that TGF-β influences miRNA expression in lung fibroblasts, thereby affecting their function. Materials and methods We investigated TGF-β1-induced miRNA expression changes in 9 control primary parenchymal lung fibroblasts using miRNA arrays. TGF-β1-induced miRNA expression changes were validated and replicated in an independent set of lung fibroblasts composted of 10 controls and 15 COPD patients using qRT-PCR. Ago2-immunoprecipitation followed by mRNA expression profiling was used to identify the miRNA-targetomes of unstimulated and TGF-β1-stimulated primary lung fibroblasts (n = 2). The genes affected by TGF-β1-modulated miRNAs were identified by comparing the miRNA targetomes of unstimulated and TGF-β1-stimulated fibroblasts. Results Twenty-nine miRNAs were significantly differentially expressed after TGF-β1 stimulation (FDR<0.05). The TGF-β1-induced miR-455-3p and miR-21-3p expression changes were validated and replicated, with in addition, lower miR-455-3p levels in COPD (p<0.05). We identified 964 and 945 genes in the miRNA-targetomes of unstimulated and TGF-β1-stimulated lung fibroblasts, respectively. The TGF-β and Wnt pathways were significantly enriched among the Ago2-IP enriched and predicted targets of miR-455-3p and miR-21-3p. The miR-455-3p target genes HN1, NGF, STRADB, DLD and ANO3 and the miR-21-3p target genes HHEX, CHORDC1 and ZBTB49 were consistently more enriched after TGF-β1 stimulation. Conclusion Two miRNAs, miR-455-3p and miR-21-3p, were induced by TGF-β1 in lung fibroblasts. The significant Ago2-IP enrichment of targets of these miRNAs related to the TGF-β and/or Wnt pathways (NGF, DLD, HHEX) in TGF-β1-stimulated fibroblasts suggest a role for these miRNAs in lung diseases by affecting lung fibroblast function.
Collapse
Affiliation(s)
- Jennie Ong
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Vijay Rajendran
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Arjan Algra
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Avrum Spira
- Boston University, School of Medicine, Department of Medicine, Section of Computational Biomedicine, Boston, Massachusetts, United States of America
| | - Marc E. Lenburg
- Boston University, School of Medicine, Department of Medicine, Section of Computational Biomedicine, Boston, Massachusetts, United States of America
| | - Joshua D. Campbell
- Boston University, School of Medicine, Department of Medicine, Section of Computational Biomedicine, Boston, Massachusetts, United States of America
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Dirkje S. Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Anke van den Berg
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Joost Kluiver
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
54
|
Zhao H, Wu X, Dong CL, Wang BY, Zhao J, Cao XE. Association Between ADRB2 Genetic Polymorphisms and the Risk of Chronic Obstructive Pulmonary Disease: A Case-Control Study in a Chinese Population. Genet Test Mol Biomarkers 2017; 21:491-496. [PMID: 28753063 DOI: 10.1089/gtmb.2017.0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE This study was designed to investigate the association between single nucleotide polymorphisms (SNPs) of the β2-adrenergic receptor (ADRB2) gene and the risk of chronic obstructive pulmonary disease (COPD) in a Chinese population. METHODS From January 2010 to October 2014, 261 COPD patients were selected as the case group and 239 healthy subjects were selected as the control group. Pulmonary function tests were performed to detect forced vital capacity (FVC), 1-s forced expiratory volume (FEV1), and FEV1/FVC (%). rs1042711, rs1042714, and rs1042718 were selected as tagSNPs of the ADRB2 gene from the HapMap database in accordance with previous studies. The ADRB2 genotypes were established by real-time polymerase chain reaction assays using TaqMan-labeled probes. The relationships between the ADRB2 polymorphisms and COPD risk were estimated using logistic regression analyses. RESULTS The frequency of the genotypes and alleles of rs1042711 in ADRB2 showed a significant difference between the COPD and control groups (p < 0.05); compared with the CC genotype, the non-CC genotypes showed an increased COPD risk (p = 0.002). Compared with the CC haplotype, the TG haplotype increased COPD risk, while the CG haplotype reduced COPD risk for normal individuals. Compared with the CC genotype, the TT genotype showed significantly lower FEV1 and FEV1/FVC (p = 0.022, p = 0.0191, respectively). Both the TC and TG haplotypes showed lower FEV1 and FEV1/FVC in comparison with the CC haplotype (both p < 0.05). The results of logistic regression analysis showed that rs1042711 of ADRB2 and smoking history were associated with COPD risk (both p < 0.05). CONCLUSION It is indicated that the TT genotype of rs1042711 and smoking pack years are both risk factors for COPD.
Collapse
Affiliation(s)
- Hui Zhao
- 1 Department of Rheumatology, Linyi People's Hospital , Linyi, P.R. China
| | - Xuan Wu
- 2 Supply Room, Linyi People's Hospital , Linyi, P.R. China
| | - Chun-Ling Dong
- 3 Department of Nursing, Linyi People's Hospital , Linyi, P.R. China
| | - Bi-Ying Wang
- 4 Department of Geriatrics, Linyi People's Hospital , Linyi, P.R. China
| | - Jiao Zhao
- 4 Department of Geriatrics, Linyi People's Hospital , Linyi, P.R. China
| | - Xian-E Cao
- 4 Department of Geriatrics, Linyi People's Hospital , Linyi, P.R. China
| |
Collapse
|
55
|
Gregory DJ, Kobzik L, Yang Z, McGuire CC, Fedulov AV. Transgenerational transmission of asthma risk after exposure to environmental particles during pregnancy. Am J Physiol Lung Cell Mol Physiol 2017; 313:L395-L405. [PMID: 28495853 DOI: 10.1152/ajplung.00035.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 05/03/2017] [Indexed: 01/23/2023] Open
Abstract
Exposure to environmental particles during pregnancy increases asthma susceptibility of the offspring. We tested the hypothesis that this transmission continues to F2 and F3 generations and occurs via epigenetic mechanisms. We compared allergic susceptibility of three generations of BALB/c offspring after a single maternal exposure during pregnancy to diesel exhaust particles or concentrated urban air particles. After pregnant dams received intranasal instillations of particle suspensions or control, their F1, F2, and F3 offspring were tested in a low-dose ovalbumin protocol for sensitivity to allergic asthma. We found that the elevated susceptibility after maternal exposure to particles during pregnancy persists into F2 and, with lesser magnitude, into F3 generations. This was evident from elevated eosinophil counts in bronchoalveolar lavage (BAL) fluid, histopathological changes of allergic airway disease, and increased BAL levels of IL-5 and IL-13. We have previously shown that dendritic cells (DCs) can mediate transmission of risk upon adoptive transfer. Therefore, we used an enhanced reduced representation bisulfite sequencing protocol to quantify DNA methylation in DCs from each generation. Distinct methylation changes were identified in F1, F2, and F3 DCs. The subset of altered loci shared across the three generations were not linked to known allergy genes or pathways but included a number of genes linked to chromatin modification, suggesting potential interaction with other epigenetic mechanisms (e.g., histone modifications). The data indicate that pregnancy airway exposure to diesel exhaust particles (DEP) triggers a transgenerationally transmitted asthma susceptibility and suggests a mechanistic role for epigenetic alterations in DCs in this process.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Integrative Physiological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - Zhiping Yang
- Molecular and Integrative Physiological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - Connor C McGuire
- Molecular and Integrative Physiological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alexey V Fedulov
- Molecular and Integrative Physiological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and .,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
56
|
Weidner J, Jarenbäck L, de Jong K, Vonk JM, van den Berge M, Brandsma CA, Boezen HM, Sin D, Bossé Y, Nickle D, Ankerst J, Bjermer L, Postma DS, Faiz A, Tufvesson E. Sulfatase modifying factor 1 (SUMF1) is associated with Chronic Obstructive Pulmonary Disease. Respir Res 2017; 18:77. [PMID: 28464818 PMCID: PMC5414362 DOI: 10.1186/s12931-017-0562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Background It has been observed that mice lacking the sulfatase modifying factor (Sumf1) developed an emphysema-like phenotype. However, it is unknown if SUMF1 may play a role in Chronic Obstructive Pulmonary Disease (COPD) in humans. The aim was to investigate if the expression and genetic regulation of SUMF1 differs between smokers with and without COPD. Methods SUMF1 mRNA was investigated in sputum cells and whole blood from controls and COPD patients (all current or former smokers). Expression quantitative trait loci (eQTL) analysis was used to investigate if single nucleotide polymorphisms (SNPs) in SUMF1 were significantly associated with SUMF1 expression. The association of SUMF1 SNPs with COPD was examined in a population based cohort, Lifelines. SUMF1 mRNA from sputum cells, lung tissue, and lung fibroblasts, as well as lung function parameters, were investigated in relation to genotype. Results Certain splice variants of SUMF1 showed a relatively high expression in lung tissue compared to many other tissues. SUMF1 Splice variant 2 and 3 showed lower levels in sputum cells from COPD patients as compared to controls. Twelve SNPs were found significant by eQTL analysis and overlapped with the array used for genotyping of Lifelines. We found alterations in mRNA expression in sputum cells and lung fibroblasts associated with SNP rs11915920 (top hit in eQTL), which validated the results of the lung tissue eQTL analysis. Of the twelve SNPs, two SNPs, rs793391 and rs308739, were found to be associated with COPD in Lifelines. The SNP rs793391 was also confirmed to be associated with lung function changes. Conclusions We show that SUMF1 expression is affected in COPD patients compared to controls, and that SNPs in SUMF1 are associated with an increased risk of COPD. Certain COPD-associated SNPs have effects on either SUMF1 gene expression or on lung function. Collectively, this study shows that SUMF1 is associated with an increased risk of developing COPD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0562-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Weidner
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden
| | - Linnea Jarenbäck
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden
| | - Kim de Jong
- University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- University Medical Center Groningen, Department of Pulmonology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University Medical Center Groningen, Department of Pulmonology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Don Sin
- Department of Medicine (Respirology), University of British Columbia, Centre for Heart Lung Innovation, Vancouver, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Canada
| | - David Nickle
- Genetics and Pharmacogenomics (GpGx), Merck Research Laboratories, Boston, MA, USA
| | - Jaro Ankerst
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden
| | - Leif Bjermer
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden
| | - Dirkje S Postma
- University Medical Center Groningen, Department of Pulmonology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- University Medical Center Groningen, Department of Pulmonology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, The Netherlands
| | - Ellen Tufvesson
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, BMC, D12, Lund University, Skåne University Hospital, 221 84, Lund, Sweden.
| |
Collapse
|
57
|
Van Dijk EM, Culha S, Menzen MH, Bidan CM, Gosens R. Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model. Front Physiol 2017; 7:657. [PMID: 28101062 PMCID: PMC5209351 DOI: 10.3389/fphys.2016.00657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
Background: COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive ex vivo Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes. Methods: Lungs of C57Bl/6J mice were sliced and treated ex vivo with elastase (2.5 μg/ml) or H2O2 (200 μM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed. Results: Following elastase, but not H2O2 treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas H2O2 stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi. Conclusion: Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction. This finding may have implications for COPD, as the amount of elastin fiber and parenchymal tissue disruption is associated with disease severity. Therefore, we suggest that PCLS can be used to model certain aspects of COPD pathophysiology and that the parenchymal tissue damage observed in COPD contributes to lung function decline by disrupting airway biomechanics. Targeting the parenchymal compartment may therefore be a promising therapeutic target in the treatment of COPD.
Collapse
Affiliation(s)
- Eline M Van Dijk
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Sule Culha
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Cécile M Bidan
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble, France
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
58
|
Efficacy of Continuous Positive Airway Pressure in the Treatment of Chronic Obstructive Pulmonary Disease Combined With Respiratory Failure. Am J Ther 2016; 23:e439-50. [PMID: 25768378 DOI: 10.1097/mjt.0000000000000222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our aim is to investigate the efficacy of continuous positive airway pressure (CPAP) in chronic obstructive pulmonary disease (COPD) combined with respiratory failure. Electronic and manual searches were applied to retrieve published studies relevant to CPAP, COPD, and respiratory failure. The retrieved studies were screened based on stringent inclusion and exclusion criteria to identify high-quality clinical studies for meta-analysis. Comprehensive meta-analysis 2.0 was conducted to statistical analysis. Initially, we retrieved 958 studies based on stringent inclusion and exclusion criteria, 10 studies, containing a total of 372 patients with COPD combined with respiratory failure, were selected for meta-analysis. The result of our meta-analysis revealed that partial pressure of carbon dioxide (PaCO2) in patients with COPD combined with respiratory failure was significantly lower 24 hours after CPAP treatment, and partial pressure of oxygen (PaO2) and pH were markedly higher 24 hours after CPAP treatment in the same patient group, indicating statistically significant differences as a result of CPAP treatment. Subgroup analysis based on ethnicity demonstrated that PaCO2 in patients with COPD combined with respiratory failure is evidently lower 24 hours after CPAP treatment among whites, but no such statistical correlation was observed among Asians. The results of this meta-analysis indicate that CPAP can effectively improve the respiratory function of patients with COPD combined with respiratory failure, and CPAP can be an effective way of treating COPD.
Collapse
|
59
|
Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol 2016; 240:397-409. [PMID: 27623753 PMCID: PMC5129494 DOI: 10.1002/path.4808] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has provided novel insights revealing that the ECM is also a bioactive environment that orchestrates the cellular responses in its environs. Changes in the ECM in the airway or parenchymal tissues are now recognized in the pathological profiles of many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Only recently have we begun to investigate whether these ECM changes result from the disease process, or whether they constitute a driving factor that orchestrates the pathological outcomes. This review summarizes our current knowledge of the alterations in the ECM in asthma, COPD, and IPF, and the contributions of these alterations to the pathologies. Emerging data suggest that alterations in the composition, folding or rigidity of ECM proteins may alter the functional responses of cells within their environs, and in so doing change the pathological outcomes. These characteristics highlight potential avenues for targeting lung pathologies in the future. This may ultimately contribute to a better understanding of chronic lung diseases, and novel approaches for finding therapeutic solutions. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands.,Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, The University of Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Thais Mauad
- Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Gavin Tjin
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Jenny C Karlsson
- Lung Biology, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | | |
Collapse
|
60
|
Orriols M, Varona S, Aguiló S, Galán M, Martínez González J, Rodríguez C. [Inflammation inhibits vascular fibulin-5 expression: Involvement of transcription factor SOX9]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2016; 28:271-280. [PMID: 27692634 DOI: 10.1016/j.arteri.2016.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Fibulin-5 (FBLN5) is an elastogenic protein critically involved in extracellular matrix (ECM) remodelling, a key process in abdominal aortic aneurysm (AAA). However, the possible contribution of FBLN5 to AAA development has not been addressed. METHODS Expression levels were determined by real-time PCR and Western blot in human abdominal aorta from patients with AAA or healthy donors, as well as in human aortic vascular smooth muscle cells (VSMC). Lentiviral transduction, transient transfections, and chromatin immunoprecipitation (ChIP) assays were also performed. RESULTS The expression of FBLN5 in human AAA was significantly lower than in healthy donors. FBLN5 mRNA and protein levels and their secretion to the extracellular environment were down-regulated in VSMC exposed to inflammatory stimuli. Interestingly, FBLN5 transcriptional activity was inhibited by TNFα and lipopolysaccharide (LPS), and depends on a SOX response element. In fact, SOX9 expression was reduced in VMSC induced by inflammatory mediators and in human AAA, and correlated with that of FBLN5. Furthermore, SOX9 over-expression limited the reduction of FBLN5 expression induced by cytokines in VSMC. Finally, it was observed that SOX9 interacts with FBLN5 promoter, and that this binding was reduced upon TNFα exposure. CONCLUSIONS FBLN5 downregulation in human AAA could contribute to extracellular matrix remodelling induced by the inflammatory component of the disease.
Collapse
Affiliation(s)
- Mar Orriols
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España
| | - Saray Varona
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España
| | - Silvia Aguiló
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España
| | - María Galán
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España
| | | | - Cristina Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España.
| |
Collapse
|
61
|
Bracht T, Mölleken C, Ahrens M, Poschmann G, Schlosser A, Eisenacher M, Stühler K, Meyer HE, Schmiegel WH, Holmskov U, Sorensen GL, Sitek B. Evaluation of the biomarker candidate MFAP4 for non-invasive assessment of hepatic fibrosis in hepatitis C patients. J Transl Med 2016; 14:201. [PMID: 27378383 PMCID: PMC4932744 DOI: 10.1186/s12967-016-0952-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The human microfibrillar-associated protein 4 (MFAP4) is located to extracellular matrix fibers and plays a role in disease-related tissue remodeling. Previously, we identified MFAP4 as a serum biomarker candidate for hepatic fibrosis and cirrhosis in hepatitis C patients. The aim of the present study was to elucidate the potential of MFAP4 as biomarker for hepatic fibrosis with a focus on the differentiation of no to moderate (F0-F2) and severe fibrosis stages and cirrhosis (F3 and F4, Desmet-Scheuer scoring system). METHODS MFAP4 levels were measured using an AlphaLISA immunoassay in a retrospective study including n = 542 hepatitis C patients. We applied a univariate logistic regression model based on MFAP4 serum levels and furthermore derived a multivariate model including also age and gender. Youden-optimal cutoffs for binary classification were determined for both models without restrictions and considering a lower limit of 80 % sensitivity (correct classification of F3 and F4), respectively. To assess the generalization error, leave-one-out cross validation (LOOCV) was performed. RESULTS MFAP4 levels were shown to differ between no to moderate fibrosis stages F0-F2 and severe stages (F3 and F4) with high statistical significance (t test on log scale, p value <2.2·10(-16)). In the LOOCV, the univariate classification resulted in 85.8 % sensitivity and 54.9 % specificity while the multivariate model yielded 81.3 % sensitivity and 61.5 % specificity (restricted approaches). CONCLUSIONS We confirmed the applicability of MFAP4 as a novel serum biomarker for assessment of hepatic fibrosis and identification of high-risk patients with severe fibrosis stages in hepatitis C. The combination of MFAP4 with existing tests might lead to a more accurate non-invasive diagnosis of hepatic fibrosis and allow a cost-effective disease management in the era of new direct acting antivirals.
Collapse
Affiliation(s)
- Thilo Bracht
- />Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Christian Mölleken
- />Department of Gastroenterology and Hepatology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum, Germany
| | - Maike Ahrens
- />Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gereon Poschmann
- />Molecular Proteomics Laboratory (MPL), Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anders Schlosser
- />Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Eisenacher
- />Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kai Stühler
- />Molecular Proteomics Laboratory (MPL), Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Helmut E. Meyer
- />Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Wolff H. Schmiegel
- />Department of Gastroenterology and Hepatology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum, Germany
| | - Uffe Holmskov
- />Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L. Sorensen
- />Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Barbara Sitek
- />Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
62
|
Boucherat O, Morissette MC, Provencher S, Bonnet S, Maltais F. Bridging Lung Development with Chronic Obstructive Pulmonary Disease. Relevance of Developmental Pathways in Chronic Obstructive Pulmonary Disease Pathogenesis. Am J Respir Crit Care Med 2016; 193:362-75. [PMID: 26681127 DOI: 10.1164/rccm.201508-1518pp] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation. This generic term encompasses emphysema and chronic bronchitis, two common conditions, each having distinct but also overlapping features. Recent epidemiological and experimental studies have challenged the traditional view that COPD is exclusively an adult disease occurring after years of inhalational insults to the lungs, pinpointing abnormalities or disruption of the pathways that control lung development as an important susceptibility factor for adult COPD. In addition, there is growing evidence that emphysema is not solely a destructive process because it is also characterized by a failure in cell and molecular maintenance programs necessary for proper lung development. This leads to the concept that tissue regeneration required stimulation of signaling pathways that normally operate during development. We undertook a review of the literature to outline the contribution of developmental insults and genes in the occurrence and pathogenesis of COPD, respectively.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Mathieu C Morissette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Sébastien Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - François Maltais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
63
|
Orriols M, Varona S, Martí-Pàmies I, Galán M, Guadall A, Escudero JR, Martín-Ventura JL, Camacho M, Vila L, Martínez-González J, Rodríguez C. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Cardiovasc Res 2016; 110:431-42. [DOI: 10.1093/cvr/cvw082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
|
64
|
Brandsma CA, van den Berge M, Postma D, Timens W. Fibulin-5 as a potential therapeutic target in COPD. Expert Opin Ther Targets 2016; 20:1031-3. [PMID: 26962995 DOI: 10.1517/14728222.2016.1164696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Corry-Anke Brandsma
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands
| | - Maarten van den Berge
- b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands.,c Department of Pulmonary Diseases , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Dirkje Postma
- b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands.,c Department of Pulmonary Diseases , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wim Timens
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands
| |
Collapse
|
65
|
Li Y, Lu Y, Zhao Z, Wang J, Li J, Wang W, Li S, Song L. Relationships of MMP-9 and TIMP-1 proteins with chronic obstructive pulmonary disease risk: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 21:12. [PMID: 27904558 PMCID: PMC5122186 DOI: 10.4103/1735-1995.178737] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/18/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
Background: We performed this meta-analysis in order to collect all the relevant studies to clarify the correlations of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) with chronic obstructive pulmonary disease (COPD). Materials and Methods: After a literature search in electronic databases, pertinent case-control studies investigating the correlations of MMP-9 and TIMP-1 protein expressions within a COPD setting were enrolled based on our strict inclusion and exclusion criteria. We used key words such as “chronic obstructive pulmonary disease,” “COPD” or “COAD” or “chronic obstructive airway disease” and “matrix metalloproteinases” or “MMPs” to make a searching strategy in this study. STATA software (version 12.0, Stata Corporation, College Station, TX, USA) was utilized for statistical analysis. Results: A total of 20 studies were enrolled into this meta-analysis including 923 COPD patients and 641 healthy controls. The findings of this meta-analysis revealed that serum expression levels of MMP-9 and TIMP-1 protein in COPD patients were higher than those of healthy controls (MMP-9: SMD = 1.44, 95%CI = 0.85 ~ 2.04, P < 0.001; TIMP-1: SMD = 3.53, 95% CI = 2.31 ~ 4.75, P < 0.001). Subgroup analysis based on ethnicity revealed that both Caucasians and Asian COPD patients exhibited higher MMP-9 and TIMP-1 serum protein levels than healthy controls (MMP-9: SMD = 0.81, 95%CI = 0.15~1.48, P = 0.016; TIMP-1: SMD = 4.43, 95%CI = 1.98 ~ 6.87, P = 0.016) and in Caucasians (MMP-9: SMD = 2.30, 95%CI = 1.21 ~ 3.38, P < 0.001; TIMP-1: SMD = 2.86, 95%CI = 1.47 ~ 4.24, P < 0.001). Conclusion: The result of this meta-analysis indicates that elevated levels of MMP-9 and TIMP-1 proteins may be correlated with the pathogenesis of COPD, and the two proteins may represent important biological markers for the early diagnosis of COPD.
Collapse
Affiliation(s)
- Yangxue Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yang Lu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhuo Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Junnan Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Jianxin Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Weiming Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Shumei Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Lei Song
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
66
|
Milićević NM, Schmidt F, Kunz N, Kalies K, Milićević Ž, Schlosser A, Holmskov U, Sorensen GL, Westermann J. The role of microfibrillar-associated protein 4 (MFAP4) in the formation and function of splenic compartments during embryonic and adult life. Cell Tissue Res 2016; 365:135-45. [DOI: 10.1007/s00441-016-2374-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
|
67
|
Spanjer AIR, Menzen MH, Dijkstra AE, van den Berge M, Boezen HM, Nickle DC, Sin DD, Bossé Y, Brandsma CA, Timens W, Postma DS, Meurs H, Heijink IH, Gosens R. A pro-inflammatory role for the Frizzled-8 receptor in chronic bronchitis. Thorax 2016; 71:312-22. [PMID: 26797711 DOI: 10.1136/thoraxjnl-2015-206958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 12/21/2015] [Indexed: 11/03/2022]
Abstract
RATIONALE We have previously shown increased expression of the Frizzled-8 receptor of the Wingless/integrase-1 (WNT) signalling pathway in COPD. Here, we investigated if the Frizzled-8 receptor has a functional role in airway inflammation associated with chronic bronchitis. METHODS Acute cigarette-smoke-induced airway inflammation was studied in wild-type and Frizzled-8-deficient mice. Genetic association studies and lung expression quantitative trait loci (eQTL) analyses for Frizzled-8 were performed to evaluate polymorphisms in FZD8 and their relationship to tissue expression in chronic bronchitis. Primary human lung fibroblasts and primary human airway epithelial cells were used for in vitro studies. RESULTS Cigarette-smoke-exposure induced airway inflammation in wild-type mice, which was prevented in Frizzled-8-deficient mice, suggesting a crucial role for Frizzled-8 in airway inflammation. Furthermore, we found a significant genetic association (p=0.009) between single nucleotide polymorphism (SNP) rs663700 in the FZD8 region and chronic mucus hypersecretion, a characteristic of chronic bronchitis, in a large cohort of smoking individuals. We found SNP rs663700 to be a cis-eQTL regulating Frizzled-8 expression in lung tissue. Functional data link mesenchymal Frizzled-8 expression to inflammation as its expression in COPD-derived lung fibroblasts was regulated by pro-inflammatory cytokines in a genotype-dependent manner. Moreover, Frizzled-8 regulates inflammatory cytokine secretion from human lung fibroblasts, which in turn promoted MUC5AC expression by differentiated human airway epithelium. CONCLUSIONS These findings indicate an important pro-inflammatory role for Frizzled-8 and suggest that its expression is related to chronic bronchitis. Furthermore, our findings indicate an unexpected role for fibroblasts in regulating airway inflammation in COPD.
Collapse
Affiliation(s)
- Anita I R Spanjer
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Akkelies E Dijkstra
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David C Nickle
- Departments of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Massachusetts, USA
| | - Don D Sin
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, British Columbia, Canada Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada Department of Molecular Medicine, Laval University, Québec City, Canada
| | - Corry-Anke Brandsma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
68
|
Artigas MS, Wain LV, Miller S, Kheirallah AK, Huffman JE, Ntalla I, Shrine N, Obeidat M, Trochet H, McArdle WL, Alves AC, Hui J, Zhao JH, Joshi PK, Teumer A, Albrecht E, Imboden M, Rawal R, Lopez LM, Marten J, Enroth S, Surakka I, Polasek O, Lyytikäinen LP, Granell R, Hysi PG, Flexeder C, Mahajan A, Beilby J, Bossé Y, Brandsma CA, Campbell H, Gieger C, Gläser S, González JR, Grallert H, Hammond CJ, Harris SE, Hartikainen AL, Heliövaara M, Henderson J, Hocking L, Horikoshi M, Hutri-Kähönen N, Ingelsson E, Johansson Å, Kemp JP, Kolcic I, Kumar A, Lind L, Melén E, Musk AW, Navarro P, Nickle DC, Padmanabhan S, Raitakari OT, Ried JS, Ripatti S, Schulz H, Scott RA, Sin DD, Starr JM, Viñuela A, Völzke H, Wild SH, Wright AF, Zemunik T, Jarvis DL, Spector TD, Evans DM, Lehtimäki T, Vitart V, Kähönen M, Gyllensten U, Rudan I, Deary IJ, Karrasch S, Probst-Hensch NM, Heinrich J, Stubbe B, Wilson JF, Wareham NJ, James AL, Morris AP, Jarvelin MR, Hayward C, Sayers I, Strachan DP, Hall IP, Tobin MD. Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat Commun 2015; 6:8658. [PMID: 26635082 PMCID: PMC4686825 DOI: 10.1038/ncomms9658] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/17/2015] [Indexed: 01/11/2023] Open
Abstract
Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P<5 × 10(-8)) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.
Collapse
Affiliation(s)
- María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Suzanne Miller
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Abdul Kader Kheirallah
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer E. Huffman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - Ioanna Ntalla
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ma'en Obeidat
- University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
| | - Holly Trochet
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh, Glasgow EH4 2XU, UK
| | - Wendy L. McArdle
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, MRC -PHE Centre for Environment & Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Jennie Hui
- Busselton Population Medical Research Institute, Busselton, Western Australia 6280, Australia
- PathWest Laboratory Medicine WA, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
- School of Population Health, The University of Western Australia, Western Australia 6009, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Western Australia 6009, Australia
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Peter K. Joshi
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
| | - Alexander Teumer
- University Medicine Greifswald, Community Medicine, SHIP—Clinical Epidemiological Research, Greifswald 17489, Germany
- Department for Genetics and Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17489, Germany
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | - Rajesh Rawal
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Lorna M. Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9AD, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9AD, UK
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala 751 23, Sweden
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
- The National Institute for Health and Welfare (THL), Helsinki FI-00271, Finland
| | - Ozren Polasek
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
- Department of Public Health, Faculty of Medicine, University of Split, Split 21000, Croatia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere FI-33101, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere FI-33520, Finland
| | - Raquel Granell
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
| | - Pirro G. Hysi
- KCL Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Claudia Flexeder
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - John Beilby
- Busselton Population Medical Research Institute, Busselton, Western Australia 6280, Australia
- PathWest Laboratory Medicine WA, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Western Australia 6009, Australia
| | - Yohan Bossé
- Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada G1V 0A6
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9700, The Netherlands
| | - Harry Campbell
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Sven Gläser
- Department of Internal Medicine B, Pneumology, Cardiology, Intensive Care, Weaning, Field of Research: Pneumological Epidemiology, University Medicine Greifswald, Greifswald 17489, Germany
| | - Juan R. González
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona E-08003, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
- Pompeu Fabra University (UPF), Barcelona 08002, Catalonia, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Chris J. Hammond
- KCL Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9AD, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH8 9AD, UK
| | - Anna-Liisa Hartikainen
- Department of Obstetrics and Gynecology of Oulu University Hospital ,MRC of Oulu University, Oulu 90220, Finland
| | - Markku Heliövaara
- The National Institute for Health and Welfare (THL), Helsinki FI-00271, Finland
| | - John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
| | - Lynne Hocking
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh, Glasgow EH4 2XU, UK
- Division of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland AB24 3FX, UK
| | - Momoko Horikoshi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX1 2JD, UK
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere 33521, Finland
- Department of Pediatrics, University of Tampere School of Medicine, Tampere FI-33520, Finland
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 751 23, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Åsa Johansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala 751 23, Sweden
- Uppsala Clinical Research Centre, Uppsala University, Uppsala 751 23, Sweden
| | - John P. Kemp
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland QLD 4072, Australia
- MRC Integrative Epidemiology Unit, Bristol BS8 1TH, UK
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split 21000, Croatia
| | - Ashish Kumar
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 7, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala 751 23, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm SE-171 7, Sweden
| | - Arthur W. Musk
- Busselton Population Medical Research Institute, Busselton, Western Australia 6280, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Western Australia 6009, Australia
| | - Pau Navarro
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - David C. Nickle
- Genetics and Pharmacogenomics, Merck Research Labs, Boston, Massachusetts 02115, USA
| | - Sandosh Padmanabhan
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh, Glasgow EH4 2XU, UK
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20014, Finland
| | - Janina S. Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
- Department of Public Health, University of Helsinki, Helsinki FI-00014, Finland
- Department of Human Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich 85764, Germany
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Don D. Sin
- University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
- Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9AD, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh EH8 9AD, UK
| | - Ana Viñuela
- KCL Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Henry Völzke
- University Medicine Greifswald, Community Medicine, SHIP—Clinical Epidemiological Research, Greifswald 17489, Germany
| | - Sarah H. Wild
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - Tatijana Zemunik
- Department of Medical Biology, Faculty of Medicine, University of Split, Split 21000, Croatia
| | - Deborah L. Jarvis
- Respiratory Epidemiology and Public Health, Imperial College London, London SW7 2AZ, UK
- MRC Health Protection Agency (HPA) Centre for Environment and Health, Imperial College London, London SW7 2AZ, UK
| | - Tim D. Spector
- KCL Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - David M. Evans
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland QLD 4072, Australia
- MRC Integrative Epidemiology Unit, Bristol BS8 1TH, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere FI-33101, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere FI-33520, Finland
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere 33521, Finland
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala 751 23, Sweden
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
- Centre for Population Health Sciences, Medical School, University of Edinburgh, Edinburgh EH8 9AD, Scotland, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9AD, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9AD, UK
| | - Stefan Karrasch
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Institute of General Practice, University Hospital Klinikum rechts der Isar, Technische Universität München, Munich D - 81675, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Nicole M. Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich 85764, Germany
- University Hospital Munich, Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilian University Munich, Munich 80539, Germany
| | - Beate Stubbe
- Department of Internal Medicine B, Pneumology, Cardiology, Intensive Care, Weaning, Field of Research: Pneumological Epidemiology, University Medicine Greifswald, Greifswald 17489, Germany
| | - James F. Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Alan L. James
- Busselton Population Medical Research Institute, Busselton, Western Australia 6280, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Western Australia 6009, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Biostatistics, University of Liverpool, Liverpool L69 7ZX, UK
- Estonian Genome Centre, University of Tartu, Tartu 50090, Estonia
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC -PHE Centre for Environment & Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
- Center for Life Course Epidemiology, Faculty of Medicine, P.O.Box 5000, FI-90014 University of Oulu, Oulu FI-01051, Finland
- Biocenter Oulu, P.O.Box 5000, Aapistie 5A, FI-90014 University of Oulu, Oulu FI-01051, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O.Box 20, FI-90220 Oulu, 90029 OYS, Finland
| | - Caroline Hayward
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh, Glasgow EH4 2XU, UK
| | - Ian Sayers
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - David P. Strachan
- Population Health Research Institute, St George's, University of London, Cranmer Terrace, London WC1B 5DN, UK
| | - Ian P. Hall
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
69
|
Pilecki B, Holm AT, Schlosser A, Moeller JB, Wohl AP, Zuk AV, Heumüller SE, Wallis R, Moestrup SK, Sengle G, Holmskov U, Sorensen GL. Characterization of Microfibrillar-associated Protein 4 (MFAP4) as a Tropoelastin- and Fibrillin-binding Protein Involved in Elastic Fiber Formation. J Biol Chem 2015; 291:1103-14. [PMID: 26601954 DOI: 10.1074/jbc.m115.681775] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/06/2022] Open
Abstract
MFAP4 (microfibrillar-associated protein 4) is an extracellular glycoprotein found in elastic fibers without a clearly defined role in elastic fiber assembly. In the present study, we characterized molecular interactions between MFAP4 and elastic fiber components. We established that MFAP4 primarily assembles into trimeric and hexameric structures of homodimers. Binding analysis revealed that MFAP4 specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and that it co-localizes with fibrillin-1-positive fibers in vivo. Site-directed mutagenesis disclosed residues Phe(241) and Ser(203) in MFAP4 as being crucial for type I collagen, elastin, and tropoelastin binding. Furthermore, we found that MFAP4 actively promotes tropoelastin self-assembly. In conclusion, our data identify MFAP4 as a new ligand of microfibrils and tropoelastin involved in proper elastic fiber organization.
Collapse
Affiliation(s)
- Bartosz Pilecki
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | - Anne T Holm
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | - Anders Schlosser
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | - Jesper B Moeller
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | | - Stefanie E Heumüller
- the Center for Biochemistry, Faculty of Medicine and the Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Russell Wallis
- the Department of Infection, Immunity and Inflammation, and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Soren K Moestrup
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark, the Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark
| | - Gerhard Sengle
- the Center for Biochemistry, Faculty of Medicine and the Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Uffe Holmskov
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | - Grith L Sorensen
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark,
| |
Collapse
|
70
|
Schlosser A, Pilecki B, Hemstra LE, Kejling K, Kristmannsdottir GB, Wulf-Johansson H, Moeller JB, Füchtbauer EM, Nielsen O, Kirketerp-Møller K, Dubey LK, Hansen PBL, Stubbe J, Wrede C, Hegermann J, Ochs M, Rathkolb B, Schrewe A, Bekeredjian R, Wolf E, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Lindholt JS, Holmskov U, Sorensen GL. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation. Arterioscler Thromb Vasc Biol 2015; 36:122-33. [PMID: 26564819 DOI: 10.1161/atvbaha.115.306672] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/29/2015] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4(-/-) mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4(-/-) carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVβ3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3-dependent manner. CONCLUSIONS MFAP4 regulates integrin αVβ3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury.
Collapse
Affiliation(s)
- Anders Schlosser
- From the Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark (A.S., B.P., L.E.H., K.K., G.B.K., H.W.-J., J.B.M., K.K.-M., L.K.D., P.B.L.H., J.S., U.H, G.L.S.); Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (E.-M.F.); Department of Pathology, Odense University Hospital, Odense, Denmark (O.N.); Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany (C.W., J.H., M.O.); Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany (C.W., J.H., M.O.); REBIRTH Cluster of Excellence, Hannover, Germany (C.W., J.H., M.O.); German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (B.R., A.S., V.G.-D., H.F., M.H.d.A.); Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany (B.R, E.W.); Division of Cardiology, Department of Medicine III, University of Heidelberg, Heidelberg, Germany (A.S., R.B.); Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Munich, Germany (M.H.d.A.); Cardiovascular Research Unit, Viborg Hospital, Viborg, Denmark (J.S.L.); and Department of Cardiothoracic and Vascular Surgery, Center of Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark (J.S.L.)
| | - Bartosz Pilecki
- From the Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark (A.S., B.P., L.E.H., K.K., G.B.K., H.W.-J., J.B.M., K.K.-M., L.K.D., P.B.L.H., J.S., U.H, G.L.S.); Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (E.-M.F.); Department of Pathology, Odense University Hospital, Odense, Denmark (O.N.); Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany (C.W., J.H., M.O.); Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany (C.W., J.H., M.O.); REBIRTH Cluster of Excellence, Hannover, Germany (C.W., J.H., M.O.); German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (B.R., A.S., V.G.-D., H.F., M.H.d.A.); Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany (B.R, E.W.); Division of Cardiology, Department of Medicine III, University of Heidelberg, Heidelberg, Germany (A.S., R.B.); Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Munich, Germany (M.H.d.A.); Cardiovascular Research Unit, Viborg Hospital, Viborg, Denmark (J.S.L.); and Department of Cardiothoracic and Vascular Surgery, Center of Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark (J.S.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Sækmose SG, Mössner B, Christensen PB, Lindvig K, Schlosser A, Holst R, Barington T, Holmskov U, Sorensen GL. Microfibrillar-Associated Protein 4: A Potential Biomarker for Screening for Liver Fibrosis in a Mixed Patient Cohort. PLoS One 2015; 10:e0140418. [PMID: 26460565 PMCID: PMC4604125 DOI: 10.1371/journal.pone.0140418] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022] Open
Abstract
Background and Aims A method for assessment of liver fibrosis and cirrhosis without the need for a liver biopsy is desirable. Microfibrillar-associated protein 4 (MFAP4) is a suggested biomarker for identification of high-risk patients with severe fibrosis stages. This study aimed to examine associations between plasma MFAP4 (pMFAP4) and transient elastography or chronic hepatitis C virus infection in drug users and in a mixed patient cohort with increased risk of liver disease. Moreover, the study aimed to identify comorbidities that significantly influence pMFAP4. Methods pMFAP4 was measured in samples from 351 drug users attending treatment centres and from 248 acutely hospitalized medical patients with mixed diagnoses. Linear and logistic multivariate regression analyses were performed and nonparametric receiver operating characteristic-curves for cirrhosis were used to estimate cut-off points for pMFAP4. Univariate and subgroup analyses were performed using non-parametric methods. Results pMFAP4 increased significantly with liver fibrosis score. pMFAP4 was significantly associated with chronic viral infection in the drug users and with transient elastography in both cohorts. In the mixed patient cohort, pMFAP4 was significantly increased among patients with a previous diagnosis of liver disease or congestive heart failure compared to patients with other diagnoses. Conclusions pMFAP4 has the potential to be used as an outreach-screening tool for liver fibrosis in drug users and in mixed medical patients. pMFAP4 level is positively associated with transient elastography, but additional studies are warranted to validate the possible use of pMFAP4 in larger cohorts and in combination with transient elastography.
Collapse
Affiliation(s)
- Susanne Gjørup Sækmose
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark
| | - Belinda Mössner
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | | | - Kristoffer Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Anders Schlosser
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - René Holst
- Department of Biostatistics, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Uffe Holmskov
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
72
|
Affiliation(s)
- Clare Lloyd
- Imperial College (National Heart and Lung Institute), London, UK
| | - Paul Cullinan
- Imperial College (National Heart and Lung Institute), London, UK
| |
Collapse
|
73
|
Vanakker O, Callewaert B, Malfait F, Coucke P. The Genetics of Soft Connective Tissue Disorders. Annu Rev Genomics Hum Genet 2015; 16:229-55. [DOI: 10.1146/annurev-genom-090314-050039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| |
Collapse
|
74
|
Pilecki B, Schlosser A, Wulf-Johansson H, Trian T, Moeller JB, Marcussen N, Aguilar-Pimentel JA, de Angelis MH, Vestbo J, Berger P, Holmskov U, Sorensen GL. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma. Thorax 2015; 70:862-72. [PMID: 26038533 DOI: 10.1136/thoraxjnl-2014-206609] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recently, several proteins of the extracellular matrix have been characterised as active contributors to allergic airway disease. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein abundant in the lung, whose biological functions remain poorly understood. In the current study we investigated the role of MFAP4 in experimental allergic asthma. METHODS MFAP4-deficient mice were subjected to alum/ovalbumin and house dust mite induced models of allergic airway disease. In addition, human healthy and asthmatic primary bronchial smooth muscle cell cultures were used to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development and correlated with local eotaxin levels. MFAP4 was expressed in human bronchial smooth muscle cells and its expression was upregulated in asthmatic cells. Regarding the underlying mechanism, we showed that MFAP4 interacted with integrin αvβ5 and promoted asthmatic bronchial smooth muscle cell proliferation and CCL11 release dependent on phosphatidyloinositol-3-kinase but not extracellular signal-regulated kinase pathway. CONCLUSIONS MFAP4 promoted the development of asthmatic airway disease in vivo and pro-asthmatic functions of bronchial smooth muscle cells in vitro. Collectively, our results identify MFAP4 as a novel contributor to experimental asthma, acting through modulation of airway smooth muscle cells.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Wulf-Johansson
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas Trian
- Department of Pharmacology, Bordeaux University, Cardio-thoracic Research Centre, U1045, Bordeaux, France
| | - Jesper B Moeller
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Juan A Aguilar-Pimentel
- German Research Center for Environmental Health, German Mouse Clinic and Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany Department of Dermatology and Allergology am Biederstein, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Martin Hrabe de Angelis
- German Research Center for Environmental Health, German Mouse Clinic and Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technical University Munich, Freising-Weihenstephan, Germany
| | - Jorgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark Manchester Academic Health Science Centre, University Hospital South Manchester NHS Foundation Trust, Manchester, UK
| | - Patrick Berger
- Department of Pharmacology, Bordeaux University, Cardio-thoracic Research Centre, U1045, Bordeaux, France Department of Lung Function Testing, Department of Thoracic Chirurgy, Department of Anatomy and Pathology, CHU Bordeaux Teaching Hospital, Pessac, France
| | - Uffe Holmskov
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
75
|
De Smet EG, Mestdagh P, Vandesompele J, Brusselle GG, Bracke KR. Non-coding RNAs in the pathogenesis of COPD. Thorax 2015; 70:782-91. [PMID: 25995155 DOI: 10.1136/thoraxjnl-2014-206560] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/29/2015] [Indexed: 12/26/2022]
Abstract
A large part of the human genome is transcribed in non-coding RNAs, transcripts that do not code for protein, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). MiRNAs are short single-stranded RNA molecules that negatively regulate gene expression at the post-transcriptional level. They play an important regulatory role in many biological processes. Consequently, altered expression of these non-coding RNAs has been shown to lead to inflammation and disease. In contrast, lncRNAs, can both enhance or repress the expression of protein-coding genes. COPD is typically caused by tobacco smoking and leads to a progressive decline in lung function and a premature death. Exaggerated pulmonary inflammation is a hallmark feature in this disease, leading to obstructive bronchiolitis and emphysema. In this review, we discuss the miRNA expression patterns in lungs of patients with COPD and in mouse models and we highlight various miRNAs involved in COPD pathogenesis. In addition, we briefly discuss a specific lncRNA that is upregulated upon cigarette smoke exposure, providing a short introduction to this more recently discovered group of non-coding RNAs.
Collapse
Affiliation(s)
- Elise G De Smet
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
76
|
Uhl FE, Vierkotten S, Wagner DE, Burgstaller G, Costa R, Koch I, Lindner M, Meiners S, Eickelberg O, Königshoff M. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures. Eur Respir J 2015; 46:1150-66. [DOI: 10.1183/09031936.00183214] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/22/2015] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/β-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3β inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/β-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/β-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/β-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/β-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs.
Collapse
|
77
|
Holm AT, Wulf-Johansson H, Hvidsten S, Jorgensen PT, Schlosser A, Pilecki B, Ormhøj M, Moeller JB, Johannsen C, Baun C, Andersen T, Schneider JP, Hegermann J, Ochs M, Götz AA, Schulz H, de Angelis MH, Vestbo J, Holmskov U, Sorensen GL. Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1114-24. [PMID: 26033354 DOI: 10.1152/ajplung.00351.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
Microfibrillar-associated protein 4 (MFAP4) is localized to elastic fibers in blood vessels and the interalveolar septa of the lungs and is further present in bronchoalveolar lavage. Mfap4 has been previously suggested to be involved in elastogenesis in the lung. We tested this prediction and aimed to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated microcomputed tomography (micro-CT) in 8-mo-old Mfap4(-/-) mice, we found that the mean density of the lung parenchyma was decreased, and the low-attenuation area (LAA) was significantly increased by 14% compared with Mfap4(+/+) mice. Transmission electron microscopy (TEM) did not reveal differences in the organization of elastic fibers, and there was no difference in elastin content, but a borderline significant increase in elastin mRNA expression in 3-mo-old mice. Stereological analysis showed that alveolar surface density in relation to the lung parenchyma and total alveolar surface area inside of the lung were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes.
Collapse
Affiliation(s)
- Anne Trommelholt Holm
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Helle Wulf-Johansson
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Svend Hvidsten
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Patricia Troest Jorgensen
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Bartosz Pilecki
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Maria Ormhøj
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jesper Bonnet Moeller
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Claus Johannsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Thomas Andersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and REBIRTH Cluster of Excellence, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and REBIRTH Cluster of Excellence, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and REBIRTH Cluster of Excellence, Hannover, Germany
| | - Alexander A Götz
- Institute of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Holger Schulz
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; and Member of the German Center for Lung Research (DZL), Hannover, Germany; Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; and
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark
| | - Uffe Holmskov
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
78
|
Bracht T, Schweinsberg V, Trippler M, Kohl M, Ahrens M, Padden J, Naboulsi W, Barkovits K, Megger DA, Eisenacher M, Borchers CH, Schlaak JF, Hoffmann AC, Weber F, Baba HA, Meyer HE, Sitek B. Analysis of Disease-Associated Protein Expression Using Quantitative Proteomics—Fibulin-5 Is Expressed in Association with Hepatic Fibrosis. J Proteome Res 2015; 14:2278-86. [DOI: 10.1021/acs.jproteome.5b00053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Thilo Bracht
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Martin Trippler
- Department
of Gastroenterology and Hepatology, University Hospital of Essen, 45122 Essen, Germany
| | - Michael Kohl
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Maike Ahrens
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Juliet Padden
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Wael Naboulsi
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Katalin Barkovits
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Dominik A. Megger
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Christoph H. Borchers
- Genome
British Columbia Proteomics Center, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jörg F. Schlaak
- Department
of Gastroenterology and Hepatology, University Hospital of Essen, 45122 Essen, Germany
| | - Andreas-Claudius Hoffmann
- Department
of Medicine (Cancer Research), Molecular Oncology Risk-Profile Evaluation, University Hospital of Essen, 45122 Essen, Germany
| | - Frank Weber
- Department
of General, Visceral, and Transplantation Surgery, University Hospital of Essen, 45122 Essen, Germany
| | - Hideo A. Baba
- Department of Pathology, University Hospital of Essen, 45147 Essen, Germany
| | - Helmut E. Meyer
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Leibniz Institute for
Analytical Sciences-ISAS, 44139 Dortmund, Germany
| | - Barbara Sitek
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
79
|
Tomasovic A, Kurrle N, Sürün D, Heidler J, Husnjak K, Poser I, Schnütgen F, Scheibe S, Seimetz M, Jaksch P, Hyman A, Weissmann N, von Melchner H. Sestrin 2 protein regulates platelet-derived growth factor receptor β (Pdgfrβ) expression by modulating proteasomal and Nrf2 transcription factor functions. J Biol Chem 2015; 290:9738-52. [PMID: 25716320 DOI: 10.1074/jbc.m114.632133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 01/12/2023] Open
Abstract
We recently identified the antioxidant protein Sestrin 2 (Sesn2) as a suppressor of platelet-derived growth factor receptor β (Pdgfrβ) signaling and Pdgfrβ signaling as an inducer of lung regeneration and injury repair. Here, we identified Sesn2 and the antioxidant gene inducer nuclear factor erythroid 2-related factor 2 (Nrf2) as positive regulators of proteasomal function. Inactivation of Sesn2 or Nrf2 induced reactive oxygen species-mediated proteasomal inhibition and Pdgfrβ accumulation. Using bacterial artificial chromosome (BAC) transgenic HeLa and mouse embryonic stem cells stably expressing enhanced green fluorescent protein-tagged Sesn2 at nearly endogenous levels, we also showed that Sesn2 physically interacts with 2-Cys peroxiredoxins and Nrf2 albeit under different reductive conditions. Overall, we characterized a novel, redox-sensitive Sesn2/Pdgfrβ suppressor pathway that negatively interferes with lung regeneration and is up-regulated in the emphysematous lungs of patients with chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Ana Tomasovic
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Nina Kurrle
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Duran Sürün
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Juliana Heidler
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Frank Schnütgen
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Susan Scheibe
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-University Giessen, Department of Internal Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), 35392 Giessen, Germany, and
| | - Michael Seimetz
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-University Giessen, Department of Internal Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), 35392 Giessen, Germany, and
| | - Peter Jaksch
- Department of Thoracic Surgery, University Hospital of Vienna, A-1090 Vienna, Austria
| | - Anthony Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-University Giessen, Department of Internal Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), 35392 Giessen, Germany, and
| | - Harald von Melchner
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany,
| |
Collapse
|