51
|
Skripnikov A. Bioassays for Identifying and Characterizing Plant Regulatory Peptides. Biomolecules 2023; 13:1795. [PMID: 38136666 PMCID: PMC10741408 DOI: 10.3390/biom13121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant peptides are a new frontier in plant biology, owing to their key regulatory roles in plant growth, development, and stress responses. Synthetic peptides are promising biological agents that can be used to improve crop growth and protection in an environmentally sustainable manner. Plant regulatory peptides identified in pioneering research, including systemin, PSK, HypSys, RALPH, AtPep1, CLV3, TDIF, CLE, and RGF/GLV/CLEL, hold promise for crop improvement as potent regulators of plant growth and defense. Mass spectrometry and bioinformatics are greatly facilitating the discovery and identification of new plant peptides. The biological functions of most novel plant peptides remain to be elucidated. Bioassays are an essential part in studying the biological activity of identified and putative plant peptides. Root growth assays and cultivated plant cell cultures are widely used to evaluate the regulatory potential of plant peptides during growth, differentiation, and stress reactions. These bioassays can be used as universal approaches for screening peptides from different plant species. Development of high-throughput bioassays can facilitate the screening of large numbers of identified and putative plant peptides, which have recently been discovered but remain uncharacterized for biological activity.
Collapse
Affiliation(s)
- Alexander Skripnikov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya St. 16/10, 119997 Moscow, Russia;
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
52
|
Xu F, Yu F. Sensing and regulation of plant extracellular pH. TRENDS IN PLANT SCIENCE 2023; 28:1422-1437. [PMID: 37596188 DOI: 10.1016/j.tplants.2023.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2023]
Abstract
In plants, pH determines nutrient acquisition and sensing, and triggers responses to osmotic stress, whereas pH homeostasis protects the cellular machinery. Extracellular pH (pHe) controls the chemistry and rheology of the cell wall to adjust its elasticity and regulate cell expansion in space and time. Plasma membrane (PM)-localized proton pumps, cell-wall components, and cell wall-remodeling enzymes jointly maintain pHe homeostasis. To adapt to their environment and modulate growth and development, plant cells must sense subtle changes in pHe caused by the environment or neighboring cells. Accumulating evidence indicates that PM-localized cell-surface peptide-receptor pairs sense pHe. We highlight recent advances in understanding how plants perceive and maintain pHe, and discuss future perspectives.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
53
|
Yang H, Kim X, Skłenar J, Aubourg S, Sancho-Andrés G, Stahl E, Guillou MC, Gigli-Bisceglia N, Tran Van Canh L, Bender KW, Stintzi A, Reymond P, Sánchez-Rodríguez C, Testerink C, Renou JP, Menke FLH, Schaller A, Rhodes J, Zipfel C. Subtilase-mediated biogenesis of the expanded family of SERINE RICH ENDOGENOUS PEPTIDES. NATURE PLANTS 2023; 9:2085-2094. [PMID: 38049516 DOI: 10.1038/s41477-023-01583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
Plant signalling peptides are typically released from larger precursors by proteolytic cleavage to regulate plant growth, development and stress responses. Recent studies reported the characterization of a divergent family of Brassicaceae-specific peptides, SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs), and their perception by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Here, we reveal that the SCOOP family is highly expanded, containing at least 50 members in the Columbia-0 reference Arabidopsis thaliana genome. Notably, perception of these peptides is strictly MIK2-dependent. How bioactive SCOOP peptides are produced, and to what extent their perception is responsible for the multiple physiological roles associated with MIK2 are currently unclear. Using N-terminomics, we validate the N-terminal cleavage site of representative PROSCOOPs. The cleavage sites are determined by conserved motifs upstream of the minimal SCOOP bioactive epitope. We identified subtilases necessary and sufficient to process PROSCOOP peptides at conserved cleavage motifs. Mutation of these subtilases, or their recognition motifs, suppressed PROSCOOP cleavage and associated overexpression phenotypes. Furthermore, we show that higher-order mutants of these subtilases show phenotypes reminiscent of mik2 null mutant plants, consistent with impaired PROSCOOP biogenesis, and demonstrating biological relevance of SCOOP perception by MIK2. Together, this work provides insights into the molecular mechanisms underlying the functions of the recently identified SCOOP peptides and their receptor MIK2.
Collapse
Affiliation(s)
- Huanjie Yang
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xeniya Kim
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Jan Skłenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sébastien Aubourg
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Loup Tran Van Canh
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Kyle W Bender
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Annick Stintzi
- Institute of Biology, Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Jean-Pierre Renou
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andreas Schaller
- Institute of Biology, Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Jack Rhodes
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
54
|
Mishra S, Hu W, DiGennaro P. Root-Knot-Nematode-Encoded CEPs Increase Nitrogen Assimilation. Life (Basel) 2023; 13:2020. [PMID: 37895402 PMCID: PMC10608282 DOI: 10.3390/life13102020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
C-terminally encoded peptides (CEPs) are plant developmental signals that regulate growth and adaptive responses to nitrogen stress conditions. These small signal peptides are common to all vascular plants, and intriguingly have been characterized in some plant parasitic nematodes. Here, we sought to discover the breadth of root-knot nematode (RKN)-encoded CEP-like peptides and define the potential roles of these signals in the plant-nematode interaction, focusing on peptide activity altering plant root phenotypes and nitrogen uptake and assimilation. A comprehensive bioinformatic screen identified 61 CEP-like sequences encoded within the genomes of six root-knot nematode (RKN; Meloidogyne spp.) species. Exogenous application of an RKN CEP-like peptide altered A. thaliana and M. truncatula root phenotypes including reduced lateral root number in M. truncatula and inhibited primary root length in A. thaliana. To define the role of RKN CEP-like peptides, we applied exogenous RKN CEP and demonstrated increases in plant nitrogen uptake through the upregulation of nitrate transporter gene expression in roots and increased 15N/14N in nematode-formed root galls. Further, we also identified enhanced nematode metabolic processes following CEP application. These results support a model of parasite-induced changes in host metabolism and inform endogenous pathways to regulate plant nitrogen assimilation.
Collapse
Affiliation(s)
| | | | - Peter DiGennaro
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA; (S.M.); (W.H.)
| |
Collapse
|
55
|
Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. ABIOTECH 2023; 4:238-256. [PMID: 37970469 PMCID: PMC10638237 DOI: 10.1007/s42994-023-00100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
Small peptides represent a subset of dark matter in plant proteomes. Through differential expression patterns and modes of action, small peptides act as important regulators of plant growth and development. Over the past 20 years, many small peptides have been identified due to technical advances in genome sequencing, bioinformatics, and chemical biology. In this article, we summarize the classification of plant small peptides and experimental strategies used to identify them as well as their potential use in agronomic breeding. We review the biological functions and molecular mechanisms of small peptides in plants, discuss current problems in small peptide research and highlight future research directions in this field. Our review provides crucial insight into small peptides in plants and will contribute to a better understanding of their potential roles in biotechnology and agriculture.
Collapse
Affiliation(s)
- Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing-Feng Zhu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jiao Xue
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Pei Chen
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
56
|
Kimura S, Vaattovaara A, Ohshita T, Yokoyama K, Yoshida K, Hui A, Kaya H, Ozawa A, Kobayashi M, Mori IC, Ogata Y, Ishino Y, Sugano SS, Nagano M, Fukao Y. Zinc deficiency-induced defensin-like proteins are involved in the inhibition of root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1071-1083. [PMID: 37177878 DOI: 10.1111/tpj.16281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.
Collapse
Affiliation(s)
- Sachie Kimura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
| | - Tomoya Ohshita
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kotomi Yokoyama
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kota Yoshida
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Agnes Hui
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Hidetaka Kaya
- Department of Food Production Science, Ehime University, Ehime, 790-8566, Japan
| | - Ai Ozawa
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Mami Kobayashi
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Yoshiyuki Ogata
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Osaka, 599-8531, Japan
| | - Yoko Ishino
- Graduate School of Innovation and Technology Management, Yamaguchi University, Yamaguchi, 755-8611, Japan
| | - Shigeo S Sugano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566, Japan
| | - Minoru Nagano
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| |
Collapse
|
57
|
van Wijk KJ, Leppert T, Sun Z, Kearly A, Li M, Mendoza L, Guzchenko I, Debley E, Sauermann G, Routray P, Malhotra S, Nelson A, Sun Q, Deutsch EW. Mapping the Arabidopsis thaliana proteome in PeptideAtlas and the nature of the unobserved (dark) proteome; strategies towards a complete proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543322. [PMID: 37333403 PMCID: PMC10274743 DOI: 10.1101/2023.06.01.543322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
This study describes a new release of the Arabidopsis thaliana PeptideAtlas proteomics resource providing protein sequence coverage, matched mass spectrometry (MS) spectra, selected PTMs, and metadata. 70 million MS/MS spectra were matched to the Araport11 annotation, identifying ∼0.6 million unique peptides and 18267 proteins at the highest confidence level and 3396 lower confidence proteins, together representing 78.6% of the predicted proteome. Additional identified proteins not predicted in Araport11 should be considered for building the next Arabidopsis genome annotation. This release identified 5198 phosphorylated proteins, 668 ubiquitinated proteins, 3050 N-terminally acetylated proteins and 864 lysine-acetylated proteins and mapped their PTM sites. MS support was lacking for 21.4% (5896 proteins) of the predicted Araport11 proteome - the 'dark' proteome. This dark proteome is highly enriched for certain ( e.g. CLE, CEP, IDA, PSY) but not other ( e.g. THIONIN, CAP,) signaling peptides families, E3 ligases, TFs, and other proteins with unfavorable physicochemical properties. A machine learning model trained on RNA expression data and protein properties predicts the probability for proteins to be detected. The model aids in discovery of proteins with short-half life ( e.g. SIG1,3 and ERF-VII TFs) and completing the proteome. PeptideAtlas is linked to TAIR, JBrowse, PPDB, SUBA, UniProtKB and Plant PTM Viewer.
Collapse
|
58
|
Zhang R, Shi PT, Zhou M, Liu HZ, Xu XJ, Liu WT, Chen KM. Rapid alkalinization factor: function, regulation, and potential applications in agriculture. STRESS BIOLOGY 2023; 3:16. [PMID: 37676530 PMCID: PMC10442051 DOI: 10.1007/s44154-023-00093-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 09/08/2023]
Abstract
Rapid alkalinization factor (RALF) is widespread throughout the plant kingdom and controls many aspects of plant life. Current studies on the regulatory mechanism underlying RALF function mainly focus on Arabidopsis, but little is known about the role of RALF in crop plants. Here, we systematically and comprehensively analyzed the relation between RALF family genes from five important crops and those in the model plant Arabidopsis thaliana. Simultaneously, we summarized the functions of RALFs in controlling growth and developmental behavior using conservative motifs as cues and predicted the regulatory role of RALFs in cereal crops. In conclusion, RALF has considerable application potential in improving crop yields and increasing economic benefits. Using gene editing technology or taking advantage of RALF as a hormone additive are effective way to amplify the role of RALF in crop plants.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng-Tao Shi
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min Zhou
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huai-Zeng Liu
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
59
|
Yan LL, Mi J, Shen CC, Qian R, Wang J, Pu CX, Sun Y. OsCIP1, a secreted protein, binds to and stabilizes OsCR4 to promote aleurone layer development, seed germination and early seedling growth in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111637. [PMID: 36787850 DOI: 10.1016/j.plantsci.2023.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The receptor kinase CRINKLY 4 (CR4) and its orthologs are known for their essential roles in cell differentiation and their shuttling between plasma membrane and cytoplasmic vesicles, a unique feature tied to their extracellular domain. However, the extracellular regulators of CR4 have been little known. Here we identified an OsCR4 Interacting Protein 1 (OsCIP1) (also named as OsLTPL36 in rice) by a yeast two-hybrid screen using the extracellular domain of OsCR4 (OsCR4E) as bait. OsCIP1/OsLTPL36 harbors a signal peptide and is localized to the outer surface of the plasma membrane. It interacted with the TNFR subdomain of OsCR4, causing an increase in OsCR4 recycling to the plasma membrane. oscip1, in which OsCR4 protein was decreased, exhibited thinner aleurone layer, late germination and delayed growth; while OsCIP1-overexpressing plants, in which OsCR4 protein was increased, displayed enhanced growth at the early seedling stage. OsCIP1 was cleaved between W61 and Q62, and the resulting C-terminal half exhibited a greater affinity for OsCR4E than did its precursor. Abolishing this cleavage site compromises OsCIP1's ability to promote seedling growth. Our results provide valuable clues for the regulation of CR4 activity and its functions in aleurone layer cell differentiation by a secreted small protein in rice.
Collapse
Affiliation(s)
- Lin-Lin Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Jing Mi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Can-Can Shen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Rong Qian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Jiao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| |
Collapse
|
60
|
Fu B, Xu Z, Lei Y, Dong R, Wang Y, Guo X, Zhu H, Cao Y, Yan Z. A novel secreted protein, NISP1, is phosphorylated by soybean Nodulation Receptor Kinase to promote nodule symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1297-1311. [PMID: 36534458 DOI: 10.1111/jipb.13436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/15/2022] [Indexed: 05/13/2023]
Abstract
Nodulation Receptor Kinase (NORK) functions as a co-receptor of Nod factor receptors to mediate rhizobial symbiosis in legumes, but its direct phosphorylation substrates that positively mediate root nodulation remain to be fully identified. Here, we identified a GmNORK-Interacting Small Protein (GmNISP1) that functions as a phosphorylation target of GmNORK to promote soybean nodulation. GmNORKα directly interacted with and phosphorylated GmNISP1. Transcription of GmNISP1 was strongly induced after rhizobial infection in soybean roots and nodules. GmNISP1 encodes a peptide containing 90 amino acids with a "DY" consensus motif at its N-terminus. GmNISP1 protein was detected to be present in the apoplastic space. Phosphorylation of GmNISP1 by GmNORKα could enhance its secretion into the apoplast. Pretreatment with either purified GmNISP1 or phosphorylation-mimic GmNISP112D on the roots could significantly increase nodule numbers compared with the treatment with phosphorylation-inactive GmNISP112A . The data suggested a model that soybean GmNORK phosphorylates GmNISP1 to promote its secretion into the apoplast, which might function as a potential peptide hormone to promote root nodulation.
Collapse
Affiliation(s)
- Baolan Fu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhipeng Xu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutao Lei
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ru Dong
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanan Wang
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoli Guo
- State Key Lab of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Yan
- National Key Facility for Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
61
|
Wang P, Wu T, Jiang C, Huang B, Li Z. Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111642. [PMID: 36804389 DOI: 10.1016/j.plantsci.2023.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As signal molecules, plant peptides play key roles in intercellular communication during growth and development, as well as stress responses. The 14-amino-acid (aa) INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide was originally identified to play an essential role in the floral organ abscission of Arabidopsis. It is synthesized from its precursor, a small protein containing 77-aa residues with an N-terminal signal peptide sequence. Recently, the IDA/IDA-like (IDLs) genes are isolated in several angiosperms and are highly conserved in land plants. In addition, IDA/IDLs are not only involved in organ abscission but also function in multiple biological processes, including biotic and abiotic stress responses. Here, we summarize the post-translational modification and proteolytic processing, the evolutionary conservation, and the potential regulatory function of IDA/IDLs, and also present future perspectives to investigate the IDA/IDLs signaling pathway. We anticipate that this detailed knowledge will help to improve the understanding of the molecular mechanism of plant peptide signaling.
Collapse
Affiliation(s)
- Pingyu Wang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Ting Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Chen Jiang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
62
|
van de Sande JW, Albada B. Chemical Synthesis of Glycopeptides containing l-Arabinosylated Hydroxyproline and Sulfated Tyrosine. Org Lett 2023; 25:1907-1911. [PMID: 36917069 PMCID: PMC10043930 DOI: 10.1021/acs.orglett.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Post-translationally modified peptides are important regulating molecules for living organisms. Here, we report the stereoselective total synthesis of β-1,2-linked l-arabinosylated Fmoc-protected hydroxyproline building blocks and their incorporation, together with sulfated tyrosine and hydroxyproline, into the plant peptide hormone PSY1. Clean glycopeptides were obtained by performing acetyl removal from the l-arabinose groups prior to deprotection of the neopentyl-protected sulfated tyrosine.
Collapse
Affiliation(s)
- Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
63
|
Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Zhao HY, Yu HX, Guo SQ, Lei JJ, Liao B, Chai J, Lin HX. Optimization of rice panicle architecture by specifically suppressing ligand-receptor pairs. Nat Commun 2023; 14:1640. [PMID: 36964129 PMCID: PMC10039049 DOI: 10.1038/s41467-023-37326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Rice panicle architecture determines the grain number per panicle and therefore impacts grain yield. The OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle architecture by regulating cytokinin metabolism. However, the specific upstream ligands perceived by the OsER1 receptor are unknown. Here, we report that the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) small secreted peptide family members OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 synergistically contribute to rice panicle morphogenesis by recognizing the OsER1 receptor and activating the mitogen-activated protein kinase cascade. Notably, OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 negatively regulate spikelet number per panicle, but OsEPFL8 also controls rice spikelet fertility. A osepfl6 osepfl7 osepfl9 triple mutant had significantly enhanced grain yield without affecting spikelet fertility, suggesting that specifically suppressing the OsEPFL6-OsER1, OsEPFL7-OsER1, and OsEPFL9-OsER1 ligand-receptor pairs can optimize rice panicle architecture. These findings provide a framework for fundamental understanding of the role of ligand-receptor signaling in rice panicle development and demonstrate a potential method to overcome the trade-off between spikelet number and fertility.
Collapse
Affiliation(s)
- Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yehui Xiong
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
64
|
Ding S, Lv J, Hu Z, Wang J, Wang P, Yu J, Foyer CH, Shi K. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J 2023; 42:e111858. [PMID: 36562188 PMCID: PMC10015362 DOI: 10.15252/embj.2022111858] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.
Collapse
Affiliation(s)
- Shuting Ding
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jianrong Lv
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Zhangjian Hu
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jiao Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Ping Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Kai Shi
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
65
|
Sheng P, Xu M, Zheng Z, Liu X, Ma W, Ding T, Zhang C, Chen M, Zhang M, Cheng B, Zhang X. Peptidome and Transcriptome Analysis of Plant Peptides Involved in Bipolaris maydis Infection of Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1307. [PMID: 36986996 PMCID: PMC10056677 DOI: 10.3390/plants12061307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Southern corn leaf blight (SCLB) caused by Bipolaris maydis threatens maize growth and yield worldwide. In this study, TMT-labeled comparative peptidomic analysis was established between infected and uninfected maize leaf samples using liquid-chromatography-coupled tandem mass spectrometry. The results were further compared and integrated with transcriptome data under the same experimental conditions. Plant peptidomic analysis identified 455 and 502 differentially expressed peptides (DEPs) in infected maize leaves on day 1 and day 5, respectively. A total of 262 common DEPs were identified in both cases. Bioinformatic analysis indicated that the precursor proteins of DEPs are associated with many pathways generated by SCLB-induced pathological changes. The expression profiles of plant peptides and genes in maize plants were considerably altered after B. maydis infection. These findings provide new insights into the molecular mechanisms of SCLB pathogenesis and offer a basis for the development of maize genotypes with SCLB resistance.
Collapse
Affiliation(s)
- Pijie Sheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Minyan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhenzhen Zheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaojing Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Wanlu Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ting Ding
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chenchen Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Meng Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
66
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
67
|
Zhu XT, Zhou R, Che J, Zheng YY, Tahir Ul Qamar M, Feng JW, Zhang J, Gao J, Chen LL. Ribosome profiling reveals the translational landscape and allele-specific translational efficiency in rice. PLANT COMMUNICATIONS 2023; 4:100457. [PMID: 36199246 PMCID: PMC10030323 DOI: 10.1016/j.xplc.2022.100457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 10/01/2022] [Indexed: 05/04/2023]
Abstract
Translational regulation is a critical step in the process of gene expression and governs the synthesis of proteins from mRNAs. Many studies have revealed translational regulation in plants in response to various environmental stimuli. However, there have been no studies documenting the comprehensive landscape of translational regulation and allele-specific translational efficiency in multiple plant tissues, especially those of rice, a main staple crop that feeds nearly half of the world's population. Here we used RNA sequencing and ribosome profiling data to analyze the transcriptome and translatome of an elite hybrid rice, Shanyou 63 (SY63), and its parental varieties Zhenshan 97 and Minghui 63. The results revealed that gene expression patterns varied more among tissues than among varieties at the transcriptional and translational levels. We identified 3392 upstream open reading frames (uORFs), and the uORF-containing genes were enriched in transcription factors. Only 668 of 13 492 long non-coding RNAs could be translated into peptides. Finally, we discovered numerous genes with allele-specific translational efficiency in SY63 and demonstrated that some cis-regulatory elements may contribute to allelic divergence in translational efficiency. Overall, these findings may improve our understanding of translational regulation in rice and provide information for molecular breeding research.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Run Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Yu Zheng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxiang Gao
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
68
|
Pastor-Fernández J, Sánchez-Bel P, Flors V, Cerezo M, Pastor V. Small Signals Lead to Big Changes: The Potential of Peptide-Induced Resistance in Plants. J Fungi (Basel) 2023; 9:265. [PMID: 36836379 PMCID: PMC9965805 DOI: 10.3390/jof9020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Paloma Sánchez-Bel
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Miguel Cerezo
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
69
|
Huang A, Cui T, Zhang Y, Ren X, Wang M, Jia L, Zhang Y, Wang G. CRISPR/Cas9-Engineered Large Fragment Deletion Mutations in Arabidopsis CEP Peptide-Encoding Genes Reveal Their Role in Primary and Lateral Root Formation. PLANT & CELL PHYSIOLOGY 2023; 64:19-26. [PMID: 36508310 DOI: 10.1093/pcp/pcac171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
C-TERMINALLY ENCODED PEPTIDEs (CEPs) are post-translationally modified peptides that play essential roles in root and shoot development, nitrogen absorption, nodule formation and stress resilience. However, it has proven challenging to determine biological activities of CEPs because of difficulties in obtaining loss-of-function mutants for these small genes. To overcome this challenge, we thus assembled a collection of easily detectable large fragment deletion mutants of Arabidopsis CEP genes through the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9-engineered genome editing. This collection was then evaluated for the usability by functionally analyzing the Arabidopsis growth and development with a focus on the root. Most cep mutants displayed developmental defects in primary and lateral roots showing an increased primary root length and an enhanced lateral root number, demonstrating that the genetic resource provides a useful tool for further investigations into the roles of CEPs.
Collapse
Affiliation(s)
- Aixia Huang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Tingting Cui
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xufang Ren
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengfang Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingyu Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yonghong Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
70
|
Kobayashi H, Murakami K, Sugano SS, Tamura K, Oka Y, Matsushita T, Shimada T. Comprehensive analysis of peptide-coding genes and initial characterization of an LRR-only microprotein in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2023; 13:1051017. [PMID: 36756228 PMCID: PMC9901580 DOI: 10.3389/fpls.2022.1051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the past two decades, many plant peptides have been found to play crucial roles in various biological events by mediating cell-to-cell communications. However, a large number of small open reading frames (sORFs) or short genes capable of encoding peptides remain uncharacterized. In this study, we examined several candidate genes for peptides conserved between two model plants: Arabidopsis thaliana and Marchantia polymorpha. We examined their expression pattern in M. polymorpha and subcellular localization using a transient assay with Nicotiana benthamiana. We found that one candidate, MpSGF10B, was expressed in meristems, gemma cups, and male reproductive organs called antheridiophores. MpSGF10B has an N-terminal signal peptide followed by two leucine-rich repeat (LRR) domains and was secreted to the extracellular region in N. benthamiana and M. polymorpha. Compared with the wild type, two independent Mpsgf10b mutants had a slightly increased number of antheridiophores. It was revealed in gene ontology enrichment analysis that MpSGF10B was significantly co-expressed with genes related to cell cycle and development. These results suggest that MpSGF10B may be involved in the reproductive development of M. polymorpha. Our research should shed light on the unknown role of LRR-only proteins in land plants.
Collapse
Affiliation(s)
| | | | - Shigeo S. Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
71
|
Cheng X, Li X, Liao B, Xu J, Hu L. Improved performance of proteomic characterization for Panax ginseng by strong cation exchange extraction and liquid chromatography-mass spectrometry analysis. J Chromatogr A 2023; 1688:463692. [PMID: 36549145 DOI: 10.1016/j.chroma.2022.463692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Panax ginseng is a precious and ancient medicinal plant. The completion of its genome sequencing has laid the foundation for the study of proteome and peptidome. However, the high abundance of secondary metabolites in ginseng reduces the identification efficiency of proteins and peptides in mass spectrometry. In this report, strong cation exchange pretreatment was carried out to eliminate the interference of impurities. Based on the charge separation of proteolytic peptides and metabolites, the sensitivity of mass spectrometry detection was greatly improved. After pretreatment, 2322 and 2685 proteins were identified from the root and stem leaf extract. Further, the ginseng peptidome was analyzed based on this optimized strategy, where 970 and 653 endogenous peptides were identified from root and stem leaf extract, respectively. Functional analysis of proteins and endogenous peptides provided valuable information on the biological activities, metabolic processes, and ginsenoside biosynthesis pathways of ginseng.
Collapse
Affiliation(s)
- Xianhui Cheng
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoying Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
72
|
Chen QJ, Zhang LP, Song SR, Wang L, Xu WP, Zhang CX, Wang SP, Liu HF, Ma C. vvi-miPEP172b and vvi-miPEP3635b increase cold tolerance of grapevine by regulating the corresponding MIRNA genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111450. [PMID: 36075277 DOI: 10.1016/j.plantsci.2022.111450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As a kind of small molecular weight proteins, many peptides have been discovered, including peptides encoded by pri-miRNA (miPEPs). Similar as traditional phytohormone or signaling molecular, these peptides participate in numerous plant growth processes. MicroRNAs (miRNAs) play an important regulatory role in plant stress response. While the roles of miPEPs in response to abiotic stress has not been studied now. In this study, to explore whether miPEPs could contribute to low temperature (4ºC) tolerance of plants, the expression pattern of 23 different vvi-MIRs were analyzed by qRT-PCR in 'Thompson Seedless' (Vitis vinifera) plantlets under cold stress (4ºC) firstly, and vvi-MIR172b and vvi-MIR3635b which showed an elevated expression levels were selected to identify miPEPs. Through transient expression, one small open reading frame (sORF) in each of the two pri-miRNAs could increase the expression of corresponding vvi-MIR, and the amino acid sequences of sORFs were named vvi-miPEP172b and vvi-miPEP3635b, respectively. The synthetic vvi-miPEP172b and vvi-miPEP3635b were applied to the grape plantlets, and the tissue culture plantlets exhibited a higher cold tolerance compared with the control groups. These results revealed the effective roles of miPEPs in plant cold stress resistance for the first time, providing a theoretical basis for the future application of miPEPs to agricultural production.
Collapse
Affiliation(s)
- Qiu-Ju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Li-Peng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Shi-Ren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Ping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cai-Xi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Ping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huai-Feng Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
73
|
Chiu T, Poucet T, Li Y. The potential of plant proteins as antifungal agents for agricultural applications. Synth Syst Biotechnol 2022; 7:1075-1083. [PMID: 35891944 PMCID: PMC9305310 DOI: 10.1016/j.synbio.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Fungal pathogens induce a variety of diseases in both plants and post-harvest food crops, resulting in significant crop losses for the agricultural industry. Although the usage of chemical-based fungicides is the most common way to control these diseases, they damage the environment, have the potential to harm human and animal life, and may lead to resistant fungal strains. Accordingly, there is an urgent need for diverse and effective agricultural fungicides that are environmentally- and eco-friendly. Plants have evolved various mechanisms in their innate immune system to defend against fungal pathogens, including soluble proteins secreted from plants with antifungal activities. These proteins can inhibit fungal growth and infection through a variety of mechanisms while exhibiting diverse functionality in addition to antifungal activity. In this mini review, we summarize and discuss the potential of using plant antifungal proteins for future agricultural applications from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Tiffany Chiu
- Graduate Program in Genetics, Genomics, And Bioinformatics, 1140 Batchelor Hall, University of California Riverside, California, 92521, USA
| | - Theo Poucet
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
74
|
Stafen CF, Kleine-Vehn J, Maraschin FDS. Signaling events for photomorphogenic root development. TRENDS IN PLANT SCIENCE 2022; 27:1266-1282. [PMID: 36057533 DOI: 10.1016/j.tplants.2022.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A germinating seedling incorporates environmental signals such as light into developmental outputs. Light is not only a source of energy, but also a central coordinative signal in plants. Traditionally, most research focuses on aboveground organs' response to light; therefore, our understanding of photomorphogenesis in roots is relatively scarce. However, root development underground is highly responsive to light signals from the shoot and understanding these signaling mechanisms will give a better insight into early seedling development. Here, we review the central light signaling hubs and their role in root growth promotion of Arabidopsis thaliana seedlings.
Collapse
Affiliation(s)
- Cássia Fernanda Stafen
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Chair of Molecular Plant Physiology (MoPP), University of Freiburg, Freiburg, Germany; Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Felipe Dos Santos Maraschin
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
75
|
Ogawa-Ohnishi M, Yamashita T, Kakita M, Nakayama T, Ohkubo Y, Hayashi Y, Yamashita Y, Nomura T, Noda S, Shinohara H, Matsubayashi Y. Peptide ligand-mediated trade-off between plant growth and stress response. Science 2022; 378:175-180. [PMID: 36227996 DOI: 10.1126/science.abq5735] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Deciding whether to grow or to divert energy to stress responses is a major physiological trade-off for plants surviving in fluctuating environments. We show that three leucine-rich repeat receptor kinases (LRR-RKs) act as direct ligand-perceiving receptors for PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides and mediate switching between two opposing pathways. By contrast to known LRR-RKs, which activate signaling upon ligand binding, PSY receptors (PSYRs) activate the expression of various genes encoding stress response transcription factors upon depletion of the ligands. Loss of PSYRs results in defects in plant tolerance to both biotic and abiotic stresses. This ligand-deprivation-dependent activation system potentially enables plants to exert tuned regulation of stress responses in the tissues proximal to metabolically dysfunctional damaged sites where ligand production is impaired.
Collapse
Affiliation(s)
| | | | - Mitsuru Kakita
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takuya Nakayama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuri Ohkubo
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yoko Hayashi
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuko Yamashita
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Taizo Nomura
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Saki Noda
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
76
|
Wang J, Xi L, Wu XN, König S, Rohr L, Neumann T, Weber J, Harter K, Schulze WX. PEP7 acts as a peptide ligand for the receptor kinase SIRK1 to regulate aquaporin-mediated water influx and lateral root growth. MOLECULAR PLANT 2022; 15:1615-1631. [PMID: 36131543 DOI: 10.1016/j.molp.2022.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Plant receptors constitute a large protein family that regulates various aspects of development and responses to external cues. Functional characterization of this protein family and the identification of their ligands remain major challenges in plant biology. Previously, we identified plasma membrane-intrinsic sucrose-induced receptor kinase 1 (SIRK1) and Qian Shou kinase 1 (QSK1) as receptor/co-receptor pair involved in the regulation of aquaporins in response to osmotic conditions induced by sucrose. In this study, we identified a member of the elicitor peptide (PEP) family, namely PEP7, as the specific ligand of th receptor kinase SIRK1. PEP7 binds to the extracellular domain of SIRK1 with a binding constant of 1.44 ± 0.79 μM and is secreted to the apoplasm specifically in response to sucrose treatment. Stabilization of a signaling complex involving SIRK1, QSK1, and aquaporins as substrates is mediated by alterations in the external sucrose concentration or by PEP7 application. Moreover, the presence of PEP7 induces the phosphorylation of aquaporins in vivo and enhances water influx into protoplasts. Disturbed water influx, in turn, led to delayed lateral root development in the pep7 mutant. The loss-of-function mutant of SIRK1 is not responsive to external PEP7 treatment regarding kinase activity, aquaporin phosphorylation, water influx activity, and lateral root development. Taken together, our data indicate that the PEP7/SIRK1/QSK1 complex represents a crucial perception and response module that mediates sucrose-controlled water flux in plants and lateral root development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany; School of Life Science, Center for Life Sciences, Yunnan University, 650091 Kunming, People's Republic of China
| | - Stefanie König
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Leander Rohr
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Theresia Neumann
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jan Weber
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
77
|
Stintzi A, Schaller A. Biogenesis of post-translationally modified peptide signals for plant reproductive development. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102274. [PMID: 35977439 DOI: 10.1016/j.pbi.2022.102274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Post-translationally modified peptides (PMPs) are important regulators of plant growth and development. They are derived from larger inactive precursors by post-translational modification (PTM) and proteolytic processing to result in the bioactive peptide signals. We discuss how and why these modifications contribute to the bioactivity of inflorescence deficient in abscission (IDA), phytosulfokine (PSK), and peptides of the Casparian strip integrity factor (CIF) family, as signaling molecules during reproductive development. The emerging picture suggests that PTMs evolved to increase the specificity of interaction of PMPs with cognate receptors and of PMP precursors with processing proteases. Cleavage sites in PMP precursors are recognized by subtilases (SBTs) in a highly specific manner. SBT-mediated processing results in the activation of PMP signals regulating stress-induced flower drop, the formation of the embryonic cuticle, and pollen development.
Collapse
Affiliation(s)
- Annick Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
78
|
Kawaguchi K, Nakaune M, Ma JF, Kojima M, Takebayashi Y, Sakakibara H, Otagaki S, Matsumoto S, Shiratake K. Plant Hormone and Inorganic Ion Concentrations in the Xylem Exudate of Grafted Plants Depend on the Scion-Rootstock Combination. PLANTS (BASEL, SWITZERLAND) 2022; 11:2594. [PMID: 36235460 PMCID: PMC9571263 DOI: 10.3390/plants11192594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In grafted plants, inorganic ions and plant hormones in the xylem exudate transported from the rootstock to the scion directly or indirectly affect the scion, thereby improving the traits. Therefore, the concentration of these components in the xylem exudate of grafted plants may be an indicator for rootstock selection. On the other hand, few reports have presented a comprehensive analysis of substances transferred from the rootstock to the scion in plants grafted onto different rootstocks, primarily commercial cultivars. In this study, we measured inorganic ions and plant hormones in the xylem exudate from the rootstock to the scion in various grafted plants of tomato and eggplant. The results revealed that the concentrations of inorganic ions and plant hormones in the xylem exudate significantly differed depending on the type of rootstock. In addition, we confirmed the concentration of the inorganic ions and plant hormones in the xylem exudate of plants grafted onto the same tomato rootstock cultivars as rootstock with tomato or eggplant as the scions. As a result, the concentrations of inorganic ions and plant hormones in the xylem exudate were significantly different in the grafted plants with eggplant compared with tomato as the scion. These results suggest that signals from the scion (shoot) control the inorganic ions and plant hormones transported from the rootstock (root).
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Nakaune
- Saitama Agricultural Technology Research Center, Sugahiro, Kumagaya 360-0102, Japan
| | - Jian Feng Ma
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki 710-0046, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
79
|
Liu D, Shen Z, Zhuang K, Qiu Z, Deng H, Ke Q, Liu H, Han H. Systematic Annotation Reveals CEP Function in Tomato Root Development and Abiotic Stress Response. Cells 2022; 11:2935. [PMID: 36230896 PMCID: PMC9562649 DOI: 10.3390/cells11192935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops worldwide; however, environmental stressors severely restrict tomato growth and yield. Therefore, it is of great interest to discover novel regulators to improve tomato growth and environmental stress adaptions. Here, we applied a comprehensive bioinformatics approach to identify putative tomato C-TERMINALLY ENCODED PEPTIDE (CEP) genes and to explore their potential physiological function in tomato root development and abiotic stress responses. A total of 17 tomato CEP genes were identified and grouped into two subgroups based on the similarity of CEP motifs. The public RNA-Seq data revealed that tomato CEP genes displayed a diverse expression pattern in tomato tissues. Additionally, CEP genes expression was differentially regulated by nitrate or ammonium status in roots and shoots, respectively. The differences in expression levels of CEP genes induced by nitrogen indicate a potential involvement of CEPs in tomato nitrogen acquisition. The synthetic CEP peptides promoted tomato primary root growth, which requires nitric oxide (NO) and calcium signaling. Furthermore, we also revealed that CEP peptides improved tomato root resistance to salinity. Overall, our work will contribute to provide novel genetic breeding strategies for tomato cultivation under adverse environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
80
|
Liu L, Song W, Huang S, Jiang K, Moriwaki Y, Wang Y, Men Y, Zhang D, Wen X, Han Z, Chai J, Guo H. Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 2022; 185:3341-3355.e13. [PMID: 35998629 DOI: 10.1016/j.cell.2022.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
The extracellular pH is a vital regulator of various biological processes in plants. However, how plants perceive extracellular pH remains obscure. Here, we report that plant cell-surface peptide-receptor complexes can function as extracellular pH sensors. We found that pattern-triggered immunity (PTI) dramatically alkalinizes the acidic extracellular pH in root apical meristem (RAM) region, which is essential for root meristem growth factor 1 (RGF1)-mediated RAM growth. The extracellular alkalinization progressively inhibits the acidic-dependent interaction between RGF1 and its receptors (RGFRs) through the pH sensor sulfotyrosine. Conversely, extracellular alkalinization promotes the alkaline-dependent binding of plant elicitor peptides (Peps) to its receptors (PEPRs) through the pH sensor Glu/Asp, thereby promoting immunity. A domain swap between RGFR and PEPR switches the pH dependency of RAM growth. Thus, our results reveal a mechanism of extracellular pH sensing by plant peptide-receptor complexes and provide insights into the extracellular pH-mediated regulation of growth and immunity in the RAM.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China; Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Wen Song
- Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany; Institute of Biochemistry, University of Cologne, Cologne 50923, Germany; Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shijia Huang
- Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China; SUSTech Academy for Advanced and Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yichuan Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Dan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhifu Han
- Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany; Institute of Biochemistry, University of Cologne, Cologne 50923, Germany; Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
81
|
Sin WC, Lam HM, Ngai SM. Identification of Diverse Stress-Responsive Xylem Sap Peptides in Soybean. Int J Mol Sci 2022; 23:ijms23158641. [PMID: 35955768 PMCID: PMC9369194 DOI: 10.3390/ijms23158641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.
Collapse
|
82
|
Stewart V, Ronald PC. Sulfotyrosine residues: interaction specificity determinants for extracellular protein-protein interactions. J Biol Chem 2022; 298:102232. [PMID: 35798140 PMCID: PMC9372746 DOI: 10.1016/j.jbc.2022.102232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Tyrosine sulfation, a post-translational modification, can determine and often enhance protein–protein interaction specificity. Sulfotyrosyl residues (sTyrs) are formed by the enzyme tyrosyl-protein sulfotransferase during protein maturation in the Golgi apparatus and most often occur singly or as a cluster within a six-residue span. With both negative charge and aromatic character, sTyr facilitates numerous atomic contacts as visualized in binding interface structural models, thus there is no discernible binding site consensus. Found exclusively in secreted proteins, in this review, we discuss the four broad sequence contexts in which sTyr has been observed: first, a solitary sTyr has been shown to be critical for diverse high-affinity interactions, such as between peptide hormones and their receptors, in both plants and animals. Second, sTyr clusters within structurally flexible anionic segments are essential for a variety of cellular processes, including coreceptor binding to the HIV-1 envelope spike protein during virus entry, chemokine interactions with receptors, and leukocyte rolling cell adhesion. Third, a subcategory of sTyr clusters is found in conserved acidic sequences termed hirudin-like motifs that enable proteins to interact with thrombin; consequently, many proven and potential therapeutic proteins derived from blood-consuming invertebrates depend on sTyrs for their activity. Finally, several proteins that interact with collagen or similar proteins contain one or more sTyrs within an acidic residue array. Refined methods to direct sTyr incorporation in peptides synthesized both in vitro and in vivo, together with continued advances in mass spectrometry and affinity detection, promise to accelerate discoveries of sTyr occurrence and function.
Collapse
Affiliation(s)
- Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, USA.
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, USA; Genome Center, University of California, Davis, USA.
| |
Collapse
|
83
|
Huang P, Li Z, Guo H. New Advances in the Regulation of Leaf Senescence by Classical and Peptide Hormones. FRONTIERS IN PLANT SCIENCE 2022; 13:923136. [PMID: 35837465 PMCID: PMC9274171 DOI: 10.3389/fpls.2022.923136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is the last stage of leaf development, manifested by leaf yellowing due to the loss of chlorophyll, along with the degradation of macromolecules and facilitates nutrient translocation from the sink to the source tissues, which is essential for the plants' fitness. Leaf senescence is controlled by a sophisticated genetic network that has been revealed through the study of the molecular mechanisms of hundreds of senescence-associated genes (SAGs), which are involved in multiple layers of regulation. Leaf senescence is primarily regulated by plant age, but also influenced by a variety of factors, including phytohormones and environmental stimuli. Phytohormones, as important signaling molecules in plant, contribute to the onset and progression of leaf senescence. Recently, peptide hormones have been reported to be involved in the regulation of leaf senescence, enriching the significance of signaling molecules in controlling leaf senescence. This review summarizes recent advances in the regulation of leaf senescence by classical and peptide hormones, aiming to better understand the coordinated network of different pathways during leaf senescence.
Collapse
Affiliation(s)
- Peixin Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
84
|
Badola PK, Sharma A, Gautam H, Trivedi PK. MicroRNA858a, its encoded peptide, and phytosulfokine regulate Arabidopsis growth and development. PLANT PHYSIOLOGY 2022; 189:1397-1415. [PMID: 35325214 PMCID: PMC9237717 DOI: 10.1093/plphys/kiac138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 06/02/2023]
Abstract
Small molecules, such as peptides and miRNAs, are crucial regulators of plant growth. Here, we show the importance of cross-talk between miPEP858a (microRNA858a-encoded peptide)/miR858a and phytosulfokine (PSK4) in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana). Genome-wide expression analysis suggested modulated expression of PSK4 in miR858a mutants and miR858a-overexpressing (miR858aOX) plants. The silencing of PSK4 in miR858aOX plants compromised growth, whereas overexpression of PSK4 in the miR858a mutant rescued the developmental defects. The exogenous application of synthetic PSK4 further complemented the plant development in mutant plants. Exogenous treatment of synthetic miPEP858a in the PSK4 mutant led to clathrin-mediated internalization of the peptide; however, it did not enhance growth as is the case in wild-type plants. We also demonstrated that MYB3 is an important molecular component participating in the miPEP858a/miR858a-PSK4 module. Finally, our work highlights the signaling between miR858a/miPEP858a-MYB3-PSK4 in modulating the expression of key elements involved in auxin responses, leading to the regulation of growth.
Collapse
Affiliation(s)
| | | | - Himanshi Gautam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | |
Collapse
|
85
|
Zeng Y, Tang Y, Shen S, Zhang M, Chen L, Ye D, Zhang X. Plant-specific small peptide AtZSP1 interacts with ROCK1 to regulate organ size in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1696-1713. [PMID: 35285523 DOI: 10.1111/nph.18093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Organ size is an important agronomic trait. Small peptides function in various stages of plant growth, but their regulatory mechanisms in organ growth remain poorly understood. Here, we characterize a novel small peptide, AtZSP1, which positively regulates organ size in Arabidopsis. Loss-of-function mutant atzsp1-1 exhibited small organs, whereas AtZSP1 overexpression plants (p35S:AtZSP1#1) produced larger organs. Differentially expressed genes in the shoots of atzsp1-1 and p35S:AtZSP1#1 were enriched in the cytokinin pathway. Further analysis on shoots of atzsp1-1 showed that endogenous cytokinin levels were significantly reduced, consistent with reduced expression of the cytokinin response genes ARR5/6/7 and a decrease in pARR5:GUS activity. By contrast, cytokinin levels were elevated in p35S:AtZSP1#1. These results indicate that AtZSP1 affects shoot size via changes in cytokinin levels. AtZSP1 is ubiquitously expressed and encodes a 57-amino acid endomembrane-associated protein that is highly conserved among plant species. AtZSP1 interacts with ROCK1 at the endomembrane. Genetic analysis confirmed that the small organs and low cytokinin levels in atzsp1-1 shoots are partially suppressed by the rock1-4 mutation, suggesting that AtZSP1 may function in a common pathway with ROCK1 to antagonistically regulate organ growth. Our study identified an unknown small peptide, AtZSP1, and defined its function in regulating organ size in Arabidopsis.
Collapse
Affiliation(s)
- Yuejuan Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Tang
- University of California, Berkeley, 371 Koshland Hall, Berkeley, CA, 94720, USA
| | - Simin Shen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Man Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liqun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueqin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
86
|
Rhodes J, Roman AO, Bjornson M, Brandt B, Derbyshire P, Wyler M, Schmid MW, Menke FLH, Santiago J, Zipfel C. Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. eLife 2022; 11:74687. [PMID: 35617122 PMCID: PMC9191895 DOI: 10.7554/elife.74687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identified in Arabidopsis thaliana the orphan receptor kinase HAESA-LIKE 3 (HSL3) as the CTNIP receptor via a proteomics approach. CTNIP binding, ligand-triggered complex formation with BAK1, and induced downstream responses all involve HSL3. Notably, the HSL3-CTNIP signalling module is evolutionarily conserved amongst most extant angiosperms. The identification of this novel signalling module will further shed light on the diverse functions played by plant signalling peptides and will provide insights into receptor-ligand co-evolution.
Collapse
Affiliation(s)
- Jack Rhodes
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Andra-Octavia Roman
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Marta Bjornson
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Brandt
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Cyril Zipfel
- Department of Plant Molecular Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
87
|
Stegmann M, Zecua-Ramirez P, Ludwig C, Lee HS, Peterson B, Nimchuk ZL, Belkhadir Y, Hückelhoven R. RGI-GOLVEN signaling promotes cell surface immune receptor abundance to regulate plant immunity. EMBO Rep 2022; 23:e53281. [PMID: 35229426 DOI: 10.1101/2021.01.29.428839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 05/23/2023] Open
Abstract
Plant immune responses must be tightly controlled for proper allocation of resources for growth and development. In plants, endogenous signaling peptides regulate developmental and growth-related processes. Recent research indicates that some of these peptides also have regulatory functions in the control of plant immune responses. This classifies these peptides as phytocytokines as they show analogies with metazoan cytokines. However, the mechanistic basis for phytocytokine-mediated regulation of plant immunity remains largely elusive. Here, we identify GOLVEN2 (GLV2) peptides as phytocytokines in Arabidopsis thaliana. GLV2 signaling enhances sensitivity of plants to elicitation with immunogenic bacterial elicitors and contributes to resistance against virulent bacterial pathogens. GLV2 is perceived by ROOT MERISTEM GROWTH FACTOR 1 INSENSITIVE (RGI) receptors. RGI mutants show reduced elicitor sensitivity and enhanced susceptibility to bacterial infection. RGI3 forms ligand-induced complexes with the pattern recognition receptor (PRR) FLAGELLIN SENSITIVE 2 (FLS2), suggesting that RGIs are part of PRR signaling platforms. GLV2-RGI signaling promotes PRR abundance independent of transcriptional regulation and controls plant immunity via a previously undescribed mechanism of phytocytokine activity.
Collapse
Affiliation(s)
- Martin Stegmann
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Patricia Zecua-Ramirez
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Brenda Peterson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
88
|
Zhang L, Yang Y, Mu C, Liu M, Ishida T, Sawa S, Zhu Y, Pi L. Control of Root Stem Cell Differentiation and Lateral Root Emergence by CLE16/17 Peptides in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:869888. [PMID: 35519820 PMCID: PMC9062579 DOI: 10.3389/fpls.2022.869888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Secreted peptide-mediated cell-to-cell communication plays a crucial role in the development of multicellular organisms. A large number of secreted peptides have been predicated by bioinformatic approaches in plants. However, only a few of them have been functionally characterized. In this study, we show that two CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides CLE16/17 are required for both stem cell differentiation and lateral root (LR) emergence in Arabidopsis. We further demonstrate that the CLE16/17 peptides act through the CLAVATA1-ARABIDOPSIS CRINKLY4 (CLV1-ACR4) protein kinase complex in columella stem cell (CSC) differentiation, but not in LR emergence. Furthermore, we show that CLE16/17 promote LR emergence probably via activating the expression of HAESA/HAESA-LIKE2 (HAE/HSL2) required for cell wall remodeling. Collectively, our results reveal a CLV1-ACR4-dependent and -independent dual-function of the CLE16/17 peptides in root development.
Collapse
Affiliation(s)
- Lihua Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Changqing Mu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Mingyu Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| |
Collapse
|
89
|
Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays Biochem 2022; 66:447-458. [PMID: 35383834 DOI: 10.1042/ebc20210095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Perception of non-self molecules known as microbe-associated molecular patterns (MAMPs) by host pattern recognition receptors (PRRs) activates plant pattern-triggered immunity (PTI). Pathogen infections often trigger the release of modified-self molecules, termed damage- or danger-associated molecular patterns (DAMPs), which modulate MAMP-triggered signaling to shape the frontline of plant immune responses against infections. In the context of advances in identifying MAMPs and DAMPs, cognate receptors, and their signaling, here, we focus on the most recent breakthroughs in understanding the perception and role of non-self and modified-self patterns. We highlight the commonalities and differences of MAMPs from diverse microbes, insects, and parasitic plants, as well as the production and perception of DAMPs upon infections. We discuss the interplay between MAMPs and DAMPs for emerging themes of the mutual potentiation and attenuation of PTI signaling upon MAMP and DAMP perception during infections.
Collapse
|
90
|
Xie H, Zhao W, Li W, Zhang Y, Hajný J, Han H. Small signaling peptides mediate plant adaptions to abiotic environmental stress. PLANTA 2022; 255:72. [PMID: 35218440 DOI: 10.1007/s00425-022-03859-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Peptide-receptor complexes activate distinct downstream regulatory networks to mediate plant adaptions to abiotic environmental stress. Plants are constantly exposed to various adverse environmental factors; thus they must adjust their growth accordingly. Plants recruit small secretory peptides to adapt to these detrimental environments. These small peptides, which are perceived by their corresponding receptors and/or co-receptors, act as local- or long-distance mobile signaling molecules to establish cell-to-cell regulatory networks, resulting in optimal cellular and physiological outputs. In this review, we highlight recent advances on the regulatory role of small peptides in plant abiotic responses and nutrients signaling.
Collapse
Affiliation(s)
- Heping Xie
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Wen Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Weilin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Yuzhou Zhang
- College of Life Science, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Jakub Hajný
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacký University, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China.
| |
Collapse
|
91
|
Roman AO, Jimenez-Sandoval P, Augustin S, Broyart C, Hothorn LA, Santiago J. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun 2022; 13:876. [PMID: 35169143 PMCID: PMC8847575 DOI: 10.1038/s41467-022-28558-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
The membrane receptor kinases HAESA and HSL2 recognize a family of IDA/IDL signaling peptides to control cell separation processes in different plant organs. The homologous HSL1 has been reported to regulate epidermal cell patterning by interacting with a different class of signaling peptides from the CLE family. Here we demonstrate that HSL1 binds IDA/IDL peptides with high, and CLE peptides with lower affinity, respectively. Ligand sensing capability and receptor activation of HSL1 require a SERK co-receptor kinase. Crystal structures with IDA/IDLs or with CLE9 reveal that HSL1-SERK1 complex recognizes the entire IDA/IDL signaling peptide, while only parts of CLE9 are bound to the receptor. In contrast, the receptor kinase BAM1 interacts with the entire CLE9 peptide with high affinity and specificity. Furthermore, the receptor tandem BAM1/BAM2 regulates epidermal cell division homeostasis. Consequently, HSL1-IDLs and BAM1/BAM2-CLEs independently regulate cell patterning in the leaf epidermal tissue.
Collapse
Affiliation(s)
- Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30167, Hannover, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
92
|
Liu C, Sun L, Sun Y, You X, Wan Y, Wu X, Tan M, Wu Q, Bai X, Ye X, Peng L, Zhao G, Xiang D, Zou L. Integrating transcriptome and physiological analyses to elucidate the molecular responses of buckwheat to graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127443. [PMID: 34653867 DOI: 10.1016/j.jhazmat.2021.127443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
With the increasing application of nanomaterials, evaluation of the phytotoxicity of nanoparticles has attracted considerable interest. Buckwheat is an economically pseudocereal crop, which is a potential model for investigating the response of plants to hazardous materials. In this study, the response of buckwheat to graphene oxide (GO) was investigated by integrating physiological and transcriptome analysis. GO can penetrate into buckwheat root and stem, and high concentrations of GO inhibited seedlings growth. High concentration of GO improved ROS production and regulated the activities and gene expression of oxidative enzymes, which implying GO may affect plant growth via regulating ROS detoxification. Root and stem exhibit distinct transcriptomic responses to GO, and the GO-responsive genes in stem are more enriched in cell cycle and epigenetic regulation. GO inhibited plant hormone biosynthesis and signaling by analyzing the expression data. Additionally, 97 small secreted peptides (SSPs) encoding genes were found to be involved in GO response. The gene expression of 111 transcription factor (TFs) and 43 receptor-like protein kinases (RLKs) were regulated by GO, and their expression showed high correlation with SSPs. Finally, the TFs-SSPs-RLKs signaling networks in regulating GO response were proposed. This study provides insights into the molecular responses of plants to GO.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| | - Lu Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoqing You
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Maoling Tan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| |
Collapse
|
93
|
Zhou H, Xiao F, Zheng Y, Liu G, Zhuang Y, Wang Z, Zhang Y, He J, Fu C, Lin H. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants. THE PLANT CELL 2022; 34:927-944. [PMID: 34865139 PMCID: PMC8824610 DOI: 10.1093/plcell/koab292] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
High soil salinity negatively affects plant growth and development, leading to a severe decrease in crop production worldwide. Here, we report that a secreted peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), plays an essential role in plant salt tolerance through RECEPTOR-LIKE KINASE 7 (RLK7) in Arabidopsis (Arabidopsis thaliana). The gene encoding the PIP3 precursor, prePIP3, was significantly induced by salt stress. Plants overexpressing prePIP3 exhibited enhanced salt tolerance, whereas a prePIP3 knockout mutant had a salt-sensitive phenotype. PIP3 physically interacted with RLK7, a leucine-rich repeat RLK, and salt stress enhanced PIP3-RLK7 complex formation. Functional analyses revealed that PIP3-mediated salt tolerance is dependent on RLK7. Exogenous application of synthetic PIP3 peptide activated RLK7, and salt treatment significantly induced RLK7 phosphorylation in a PIP3-dependent manner. Notably, MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 were downstream of the PIP3-RLK7 module in salt response signaling. Activation of MPK3/6 was attenuated in pip3 or rlk7 mutants under saline conditions. Therefore, MPK3/6 might amplify salt stress response signaling in plants for salt tolerance. Collectively, our work characterized a novel ligand-receptor signaling cascade that modulates plant salt tolerance in Arabidopsis. This study contributes to our understanding of how plants respond to salt stress.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fei Xiao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yuan Zheng
- Department of Biology, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Guoyong Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yufen Zhuang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhiyue Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yiyi Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jiaxian He
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
94
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
95
|
Meng X, Li W, Shen R, Lan P. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126913. [PMID: 34419841 DOI: 10.1016/j.jhazmat.2021.126913] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Increasing cadmium (Cd) pollution severely affects plant growth and development, posing risks to human health via food chains. The Cd toxicity could be mitigated by improving Fe nutrient in plants. IMA1 and IMA3, two novel small peptides functionally epistatic to the key transcription factor bHLH39 but independent of bHLH104, were recently identified as the newest additions to the Fe regulatory cascade, but their roles in Cd uptake and toxicity remain not addressed. Here, the functions of two IMAs and two transcription factors related to Cd tolerance were verified. Overexpression of either bHLH39 or bHLH104 in Arabidopsis showed weak roles in Cd tolerance, but overexpression of IMAs, which activates the Fe-deficient response, significantly enhanced Cd tolerance, showing greater root elongation, biomass and chlorophyll contents. The Cd contents did not show significant difference among the overexpression lines. Further investigations revealed that the tolerance of transgenic plants to Cd mainly depended on higher Fe accumulation, which decreased the MDA contents and enhanced root elongation under Cd exposure, finally contributing to attenuating Cd toxicity. Taken together, the results suggest that increasing Fe accumulation is promising for improving plant tolerance to Cd toxicity and that IMAs are potential candidates for solving Cd toxicity problem.
Collapse
Affiliation(s)
- Xiangxiang Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
96
|
Roy S, Griffiths M, Torres-Jerez I, Sanchez B, Antonelli E, Jain D, Krom N, Zhang S, York LM, Scheible WR, Udvardi M. Application of Synthetic Peptide CEP1 Increases Nutrient Uptake Rates Along Plant Roots. FRONTIERS IN PLANT SCIENCE 2022; 12:793145. [PMID: 35046980 PMCID: PMC8763272 DOI: 10.3389/fpls.2021.793145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 05/26/2023]
Abstract
The root system of a plant provides vital functions including resource uptake, storage, and anchorage in soil. The uptake of macro-nutrients like nitrogen (N), phosphorus (P), potassium (K), and sulphur (S) from the soil is critical for plant growth and development. Small signaling peptide (SSP) hormones are best known as potent regulators of plant growth and development with a few also known to have specialized roles in macronutrient utilization. Here we describe a high throughput phenotyping platform for testing SSP effects on root uptake of multiple nutrients. The SSP, CEP1 (C-TERMINALLY ENCODED PEPTIDE) enhanced nitrate uptake rate per unit root length in Medicago truncatula plants deprived of N in the high-affinity transport range. Single structural variants of M. truncatula and Arabidopsis thaliana specific CEP1 peptides, MtCEP1D1:hyp4,11 and AtCEP1:hyp4,11, enhanced uptake not only of nitrate, but also phosphate and sulfate in both model plant species. Transcriptome analysis of Medicago roots treated with different MtCEP1 encoded peptide domains revealed that hundreds of genes respond to these peptides, including several nitrate transporters and a sulfate transporter that may mediate the uptake of these macronutrients downstream of CEP1 signaling. Likewise, several putative signaling pathway genes including LEUCINE-RICH REPEAT RECPTOR-LIKE KINASES and Myb domain containing transcription factors, were induced in roots by CEP1 treatment. Thus, a scalable method has been developed for screening synthetic peptides of potential use in agriculture, with CEP1 shown to be one such peptide.
Collapse
Affiliation(s)
- Sonali Roy
- Noble Research Institute LLC, Ardmore, OK, United States
- College of Agriculture, Tennessee State University, Nashville, TN, United States
| | | | | | - Bailey Sanchez
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Nicholas Krom
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Shulan Zhang
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Larry M. York
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | | |
Collapse
|
97
|
Zhang Z, Liu C, Li K, Li X, Xu M, Guo Y. CLE14 functions as a "brake signal" to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. MOLECULAR PLANT 2022; 15:179-188. [PMID: 34530165 DOI: 10.1016/j.molp.2021.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Leaf senescence is an important developmental process in the plant life cycle and has a significant impact on agriculture. When facing harsh environmental conditions, monocarpic plants often initiate early leaf senescence as an adaptive mechanism to ensure a complete life cycle. Upon initiation, the senescence process is fine-tuned through the coordination of both positive and negative regulators. Here, we report that the small secreted peptide CLAVATA3/ESR-RELATED 14 (CLE14) functions in the suppression of leaf senescence by regulating ROS homeostasis in Arabidopsis. Expression of the CLE14-encoding gene in leaves was significantly induced by age, high salinity, abscisic acid (ABA), salicylic acid, and jasmonic acid. CLE14 knockout plants displayed accelerated progression of both natural and salinity-induced leaf senescence, whereas increased CLE14 expression or treatments with synthetic CLE14 peptides delayed senescence. CLE14 peptide treatments also delayed ABA-induced senescence in detached leaves. Further analysis showed that overexpression of CLE14 led to reduced ROS levels in leaves, where higher expression of ROS scavenging genes was detected. Moreover, CLE14 signaling resulted in transcriptional activation of JUB1, a NAC family transcription factor previously identified as a negative regulator of senescence. Notably, the delay of leaf senescence, reduction in H2O2 level, and activation of ROS scavenging genes by CLE14 peptides were dependent on JUB1. Collectively, these results suggest that the small peptide CLE14 serves as a novel "brake signal" to regulate age-dependent and stress-induced leaf senescence through JUB1-mediated ROS scavenging.
Collapse
Affiliation(s)
- Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Cheng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Kui Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Mengmeng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
98
|
Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1791-1812. [PMID: 34129041 DOI: 10.1093/pcp/pcab087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.
Collapse
Affiliation(s)
- Alban Mariette
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Hee Sung Kang
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| |
Collapse
|
99
|
Fang Y, Chang J, Shi T, Luo W, Ou Y, Wan D, Li J. Evolution of RGF/GLV/CLEL Peptide Hormones and Their Roles in Land Plant Growth and Regulation. Int J Mol Sci 2021; 22:ijms222413372. [PMID: 34948169 PMCID: PMC8708909 DOI: 10.3390/ijms222413372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Rooting is a key innovation during plant terrestrialization. RGFs/GLVs/CLELs are a family of secreted peptides, playing key roles in root stem cell niche maintenance and pattern formation. The origin of this peptide family is not well characterized. RGFs and their receptor genes, RGIs, were investigated comprehensively using phylogenetic and genetic analyses. We identified 203 RGF genes from 24 plant species, representing a variety of land plant lineages. We found that the RGF genes originate from land plants and expand via multiple duplication events. The lineage-specific RGF duplicates are retained due to their regulatory divergence, while a majority of RGFs experienced strong purifying selection in most land plants. Functional analysis indicated that RGFs and their receptor genes, RGIs, isolated from liverwort, tomato, and maize possess similar biological functions with their counterparts from Arabidopsis in root development. RGFs and RGIs are likely coevolved in land plants. Our studies shed light on the origin and functional conservation of this important peptide family in plant root development.
Collapse
Affiliation(s)
- Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Jinke Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Wenchun Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Dongshi Wan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
- Correspondence: (D.W.); (J.L.)
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Correspondence: (D.W.); (J.L.)
| |
Collapse
|
100
|
Liu C, Xiang D, Wu Q, Ye X, Yan H, Zhao G, Zou L. Dynamic transcriptome and co-expression analysis suggest the potential roles of small secreted peptides from Tartary buckwheat (Fagopyrum tataricum) in low nitrogen stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111091. [PMID: 34763875 DOI: 10.1016/j.plantsci.2021.111091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Small secreted peptides (SSPs) regulate nitrogen (N) response and signaling in plants. Although much progress has been made in understanding the functions of SSPs in N response, very little information is available regarding non-model plants. Tartary buckwheat (Fagopyrum tataricum), a dicotyledonous crop, has a good adaptability to low N (LN) stress; however, little is known regarding the associated mechanisms underlying this adaptation. In this study, 932 putative SSPs were genome-wide characterized in TB genome. Of these SSPs, 233 SSPs were annotated as established SSPs, such as CLE, RALF, PSK, and CEP peptides. The gene expression of 675 putative SSPs was detected in five tissues and 258 SSPs were tissue-specific expressed genes. To analyze the responses of TB SSPs to LN, the dynamic expression analysis of TB roots under LN stress was conducted by RNA-seq. The expression of 378 putative TB SSP genes was detected with diverse expression patterns under LN stress, and some important LN-responsive SSPs were identified. Co-expression analysis suggested SSPs may regulate the adaptability of TB under LN conditions by modulating the expression of the genes involved in N transport and assimilation and IAA signaling. Furthermore, 53 LN stress-responsive RLKs encoding genes were identified and they were predicted as potential SSP receptors. This study expands the repertoire of SSPs in plants and provides useful information for further investigation of the functions of Tartary buckwheat SSPs in LN stress responses.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| |
Collapse
|