51
|
Zheng L, Xu H, Zheng F, Lai Y, Li J, Lv W, Hu Z, Wang W. Intervention time decides the status of autophagy, NLRP3 activity and apoptosis in macrophages induced by ox-LDL. Lipids Health Dis 2022; 21:107. [PMID: 36284323 PMCID: PMC9594915 DOI: 10.1186/s12944-022-01714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background It has been determined through extensive studies that autophagy, the Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and apoptotic responses in macrophages jointly contribute to atherogenesis and its development in the presence of lipid abnormalities. Few studies have investigated in full-scale if the intervention time for lipids abnormality or NLRP3 activation have a significant effect on autophagy, NLRP3 or the apoptotic status in macrophages. Methods Human THP-1 monocyte-derived macrophages were established by challenging THP-1 monocytes with 80 µg/ml oxidized low-density lipoprotein (ox-LDL) for specific durations. Foam cell formation was observed by Oil Red O (ORO) staining. Western blots were employed to determine protein expression. Transmission electron microscope (TEM) and immunofluorescence microscopy were applied to observe the autophagic status of cells. Cell apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Results The cells were treated with ox-LDL for 12 h and 36 h, which were considered to represent early and advanced stages of atherogenesis for this study. The results showed that inhibition of ox-LDL phagocytosis by cytochalasin D in the early stage improved autophagic status, reduced NLRP3 activation and the apoptotic response significantly. In contrast, cytochalasin D had little effect on blocking the detrimental effect of ox-LDL at the advanced stage. Moreover, the changes in autophagy, apoptosis and NLRP3 expression after treatment with small interfering (si) RNA targeting NLRP3 in the early and advanced stages of atherogenesis were consistent with the above data. Conclusions Interventions against lipid disorders or inflammatory reactions in the early or advanced stages of atherogenesis may have different results depending on when they are applied during the process of atherosclerotic pathogenesis. These results may help improve therapeutic strategies for atherosclerosis prevention. Furthermore, a healthy lifestyle should still be recommended as the most important and inexpensive measure to prevent atherogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01714-x.
Collapse
Affiliation(s)
- Liang Zheng
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hongbiao Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Fufu Zheng
- Department of Urology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yuanhui Lai
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jie Li
- Department of Thyroid and Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Weiming Lv
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zuojun Hu
- Department of Vascular Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Wenjian Wang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China. .,Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
52
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
53
|
Unhealthy Diets Induce Distinct and Regional Effects on Intestinal Inflammatory Signalling Pathways and Long-Lasting Metabolic Dysfunction in Rats. Int J Mol Sci 2022; 23:ijms231810984. [PMID: 36142897 PMCID: PMC9503261 DOI: 10.3390/ijms231810984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The intestinal epithelium is a principal site for environmental agents’ detection. Several inflammation- and stress-related signalling pathways have been identified as key players in these processes. However, it is still unclear how the chronic intake of inadequate nutrients triggers inflammatory signalling pathways in different intestinal regions. We aimed to evaluate the impact of unhealthy dietary patterns, starting at a younger age, and the association with metabolic dysfunction, intestinal inflammatory response, and obesity in adulthood. A rat model was used to evaluate the effects of the consumption of sugary beverages (HSD) and a Western diet (WD), composed of ultra-processed foods. Both diets showed a positive correlation with adiposity index, but a positive correlation was found between the HSD diet and the levels of blood glucose and triglycerides, whereas the WD diet correlated positively with triglyceride levels. Moreover, a distinct inflammatory response was associated with either the WD or HSD diets. The WD induced an increase in TLR2, TLR4, and nuclear factor-kappa B (NF-κB) intestinal gene expression, with higher levels in the colon and overexpression of the inducible nitric oxide synthase. In turn, the HSD diet induced activation of the TLR2-mediated NF-κB signalling pathway in the small intestine. Altogether, these findings support the concept that early intake of unhealthy foods and nutrients are a main exogenous signal for disturbances of intestinal immune mechanisms and in a region-specific manner, ultimately leading to obesity-related disorders in later life.
Collapse
|
54
|
Roberts MJ, Leonard AN, Bishop NC, Moorthy A. Lifestyle modification and inflammation in people with axial spondyloarthropathy-A scoping review. Musculoskeletal Care 2022; 20:516-528. [PMID: 35179819 DOI: 10.1002/msc.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION People with axial spondyloarthritis (AS) have an inflammatory profile, increasing the risk of hypertension, type 2 diabetes, obesity, and dyslipidaemia. Consequently, AS is linked with co-morbidities such as cardiovascular disease (CVD). Physical inactivity, diet, smoking, alcohol consumption, and obesity influence inflammation, but knowledge of the interaction between these with inflammation, disease activity, and CVD risk in AS is dominated by cross-sectional research. METHODS A review of the literature was conducted between July 2020 and December 2021. The focus of the scoping review is to summarise longitudinal and randomised control trials in humans to investigate how tracking or modifying lifestyle influences inflammation and disease burden in patients with AS. KEY MESSAGES (1) Lifestyle modifications, especially increased physical activity (PA), exercise, and smoking cessation, are critical in managing AS. (2) Smoking is negatively associated with patient reported outcome measures with AS, plus pharmaceutical treatment adherence, but links with structural radiographic progression are inconclusive. (3) Paucity of data warrant structured studies measuring inflammatory cytokine responses to lifestyle modification in AS. CONCLUSION Increased PA, exercise, and smoking cessation should be supported at every given opportunity to improve health outcomes in patients with AS. The link between smoking and radiographic progression needs further investigation. Studies investigating the longitudinal effect of body weight, alcohol, and psychosocial factors on disease activity and physical function in patients with AS are needed. Given the link between inflammation and AS, future studies should also incorporate markers of chronic inflammation beyond the standard C-reactive protein and erythrocyte sedimentation rate measurements.
Collapse
Affiliation(s)
- Matthew J Roberts
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Amber N Leonard
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Nicolette C Bishop
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Arumugam Moorthy
- Department of Rheumatology, University Hospitals of NHS Trust, College of Life Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
55
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2022; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
56
|
Molecular Mechanisms of Inflammation in Sarcopenia: Diagnosis and Therapeutic Update. Cells 2022; 11:cells11152359. [PMID: 35954203 PMCID: PMC9367570 DOI: 10.3390/cells11152359] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Sarcopenia is generally an age-related condition that directly impacts the quality of life. It is also related to chronic diseases such as metabolic dysfunction associated with diabetes and obesity. This means that everyone will be vulnerable to sarcopenia at some point in their life. Research to find the precise molecular mechanisms implicated in this condition can increase knowledge for the better prevention, diagnosis, and treatment of sarcopenia. Our work gathered the most recent research regarding inflammation in sarcopenia and new therapeutic agents proposed to target its consequences in pyroptosis and cellular senescence. Finally, we compared dual X-ray absorptiometry (DXA), magnetic resonance imaging (MRI), and ultrasound (US) as imaging techniques to diagnose and follow up on sarcopenia, indicating their respective advantages and disadvantages. Our goal is for the scientific evidence presented here to help guide future research to understand the molecular mechanisms involved in sarcopenia, new treatment strategies, and their translation into clinical practice.
Collapse
|
57
|
Zhang XN, Yu ZL, Chen JY, Li XY, Wang ZP, Wu M, Liu LT. The crosstalk between NLRP3 inflammasome and gut microbiome in atherosclerosis. Pharmacol Res 2022; 181:106289. [PMID: 35671922 DOI: 10.1016/j.phrs.2022.106289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023]
Abstract
Atherosclerosis (AS) is chronic pathological process based on the inflammatory reaction associated with factors including vascular endothelial dysfunction, inflammation, and autoimmunity. Inflammasomes are known to be at the core of the inflammatory response. As a pattern recognition receptor of innate immunity, the NLRP3 inflammasome mediates the secretion of inflammatory factors by activating the Caspase-1, which is important for maintaining the immune system and regulating the gut microbiome, and participates in the occurrence and development of AS. The intestinal microecology is composed of a large number of complex structures of gut microbiota and its metabolites, which play an important role in AS. The gut microbiota and its metabolites regulate the activation of the NLRP3 inflammasome. Targeting the NLRP3 inflammasome and regulating intestinal microecology represent a new direction for the treatment of AS. This paper systematically reviews the interaction between the NLRP3 inflammasome and gut microbiome in AS, strategies for targeting the NLRP3 inflammasome and gut microbiome for the treatment of AS, and provides new ideas for the research and development of drugs for the treatment of AS.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Zong-Liang Yu
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Ji-Ye Chen
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Xiao-Ya Li
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China; Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ze-Ping Wang
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China; Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Min Wu
- Department of comprehensive Internal Medicine, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Long-Tao Liu
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China.
| |
Collapse
|
58
|
Singh S, Sharma A, Guru B, Ahmad S, Gulzar F, Kumar P, Ahmad I, Tamrakar AK. Fructose-mediated NLRP3 activation induces inflammation and lipogenesis in adipose tissue. J Nutr Biochem 2022; 107:109080. [PMID: 35660098 DOI: 10.1016/j.jnutbio.2022.109080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/02/2022] [Accepted: 05/03/2022] [Indexed: 01/07/2023]
Abstract
Adipose tissue plays a crucial role in energy intake and regulation of metabolic homeostasis. Fructose consumption implicates in development and progression of metabolic dysfunctions. Fructose is a lipogenic sugar known to induce inflammatory response. However, the role of specific inflammatory signal such as nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) in fructose-induced inflammatory response and its relevance to lipogenesis in adipose tissue are elusive. We assessed NLRP3 activation and its significance in inflammatory response and lipogenesis in epididymal adipose tissue of 60% fructose diet (HFrD)-fed rats. The long term consumption of HFrD led to impairment of glucose metabolism, development of visceral adiposity, insulin resistance, and elevation of serum triglycerides level, accompanied by activation of NLRP3 in adipose tissue. NLRP3 inflammasome activation in adipose tissue was associated with up-regulated expression of Nlrp3, Asc, and Caspase-1, and raised caspase-1 activity, which resulted in increased expression of IL-1β and IL-18 and secretion of IL-1β. Moreover, lipid accumulation and expression of transcription factors exacerbating accumulation of lipids were augmented in adipose tissue of HFrD-fed rats. Treatment with glyburide, quercetin or allopurinol corrected HFrD-induced dyslipidemia or hyperuricemia, and blocked NLRP3 activation, leading to mitigated inflammatory signalling and lipid accumulation in adipose tissue, improved glucose tolerance and insulin sensitivity in HFrD-fed rats. These data suggest the role of NLRP3 inflammasome to establish linkage among inflammation, lipid accumulation and insulin resistance in adipose tissue, and targeting NLRP3 inflammasome may be a plausible approach for prevention and management for fructose-induced metabolic impairments.
Collapse
Affiliation(s)
- Sushmita Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditya Sharma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bhavimani Guru
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ishbal Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
59
|
Xu T, Sheng L, Guo X, Ding Z. Free Fatty Acid Increases the Expression of NLRP3-Caspase1 in Adipose Tissue Macrophages in Obese Severe Acute Pancreatitis. Dig Dis Sci 2022; 67:2220-2231. [PMID: 34114155 DOI: 10.1007/s10620-021-07027-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Obesity is an important risk factor for severe acute pancreatitis. The necrosis of epididymal adipose tissue occurs in severe acute pancreatitis. Adipose tissue macrophages play an important role in metabolic related inflammation. Therefore, we explored the potential mechanisms between adipose tissue macrophages and obesity-related severe acute pancreatitis. METHODS Severe acute pancreatitis mice model was induced by caerulein with lipopolysaccharide. The severity of severe acute pancreatitis was evaluated according to the morphological, general, and biochemical change. We assessed the injury of epididymal white adipose tissue, pancreas, and adipose tissue macrophages in obese mice and lean mice with severe acute pancreatitis. Outcomes of caerulein-induced severe acute pancreatitis were studied in lean and obese mice with or without lipase inhibitor orlistat. RESULTS Fat necrosis and pancreatic injury increased in the SAP groups. High levels of serum free fatty acid and triglyceride were increased significantly in the SAP group. The NLRP3-caspase1 inflammasome signal pathway in adipose tissue macrophages markedly enhanced in the SAP groups compared with control group. Free fatty acid can trigger macrophages inflammation through NLRP3-caspase1. Lipase inhibited by orlistat remarkably decreased in adipose tissue necrosis, and the levels of serum lipase, amylase, and pancreatic tissue damage decreased in the orlistat group compared with the SAP group. The NLRP3-caspase1 inflammasome pathway in adipose tissue macrophages markedly decreased in the orlistat groups compared with SAP group. The levels of serum free fatty acid and triglyceride were decreased significantly in the orlistat group. CONCLUSIONS Inflammation increases in adipose tissue macrophages of obese mice with severe acute pancreatitis. Free fatty acid generated via adipocyte lipolysis worsens inflammation in adipose tissue macrophages and the outcome of severe acute pancreatitis in obese mice through the NLRP3-caspase1 inflammasome pathway.
Collapse
Affiliation(s)
- Tao Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Liping Sheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xianwen Guo
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Zhen Ding
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
60
|
Zhang D, Ji P, Sun R, Zhou H, Huang L, Kong L, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice. Biomed Pharmacother 2022; 150:112936. [PMID: 35421784 DOI: 10.1016/j.biopha.2022.112936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic renal injury (CRI) is a common pathological damage in chronic renal disease, and the therapeutic options for preventing its progression are limited at present. Ginsenoside Rg1 (Rg1) is reported to have a protective effect on renal injury by improving oxidative stress and inflammation. Lipopolysaccharide (LPS) plays important roles in inducing inflammatory and high-dose LPS is often used to perform acute renal injury. However, little is known about the effect of low-dose LPS on CRI, and the protective effect of Rg1 against chronic LPS-induced CRI. Here, we reported the protective effect and mechanism of Rg1 against LPS-induced CRI in mice. In this study, the results demonstrated that low-dose LPS (0.25 mg/kg) exposure for 14 days significantly induced renal function impairment and renal injury and fibrosis. Meanwhile, LPS exposure significantly increased reactive oxygen species (ROS) generation, NADPH oxidase 4 (NOX4) and NLRP3 inflammasome expression in renal cortex. However, treatment with Rg1, tempol (a superoxide dismutase mimetic), and apocynin (a NOX inhibitor) significantly improved renal function impairment and renal fibrosis, and significantly decreased the levels of TGF-β, IL-1β, KIM-1, β-Gal, and collagen IV in the kidneys. And Rg1 treatment also significantly reduced ROS generation and inhibited the activation of NOX4 and NLRP3 inflammasome. Overall, these results suggest that Rg1 treatment can ameliorate LPS-induced chronic kidney injury and renal fibrosis, the mechanisms may be involved in reducing NOX2-mediated oxidative stress and inhibiting NLRP1 inflammasome.
Collapse
Affiliation(s)
- Duoduo Zhang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Pengmin Ji
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ran Sun
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huimin Zhou
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Lei Huang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Liangliang Kong
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing 246052, Anhui, China.
| | - Weizu Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
61
|
Simões-Alves AC, Arcoverde-Mello APFC, Campos JDO, Wanderley AG, Leandro CVG, da Costa-Silva JH, de Oliveira Nogueira Souza V. Cardiometabolic Effects of Postnatal High-Fat Diet Consumption in Offspring Exposed to Maternal Protein Restriction In Utero. Front Physiol 2022; 13:829920. [PMID: 35620602 PMCID: PMC9127546 DOI: 10.3389/fphys.2022.829920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
In recent decades, the high incidence of infectious and parasitic diseases has been replaced by a high prevalence of chronic and degenerative diseases. Concomitantly, there have been profound changes in the behavior and eating habits of families around the world, characterizing a "nutritional transition" phenomenon, which refers to a shift in diet in response to modernization, urbanization, or economic development from undernutrition to the excessive consumption of hypercaloric and ultra-processed foods. Protein malnutrition that was a health problem in the first half of the 20th century has now been replaced by high-fat diets, especially diets high in saturated fat, predisposing consumers to overweight and obesity. This panorama points us to the alarming coexistence of both malnutrition and obesity in the same population. In this way, individuals whose mothers were undernourished early in pregnancy and then exposed to postnatal hyperlipidic nutrition have increased risk factors for developing metabolic dysfunction and cardiovascular diseases in adulthood. Thus, our major aim was to review the cardiometabolic effects resulting from postnatal hyperlipidic diets in protein-restricted subjects, as well as to examine the epigenetic repercussions occasioned by the nutritional transition.
Collapse
Affiliation(s)
- Aiany Cibelle Simões-Alves
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Ana Paula Fonseca Cabral Arcoverde-Mello
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Jéssica de Oliveira Campos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | | | - Carol Virginia Gois Leandro
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - João Henrique da Costa-Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Viviane de Oliveira Nogueira Souza
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| |
Collapse
|
62
|
Immune system and sarcopenia: Presented relationship and future perspective. Exp Gerontol 2022; 164:111823. [DOI: 10.1016/j.exger.2022.111823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
|
63
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:1308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
64
|
Modulatory Properties of Food and Nutraceutical Components Targeting NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14030490. [PMID: 35276849 PMCID: PMC8840562 DOI: 10.3390/nu14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammasomes are key intracellular multimeric proteins able to initiate the cellular inflammatory signaling pathway. NLRP3 inflammasome represents one of the main protein complexes involved in the development of inflammatory events, and its activity has been largely demonstrated to be connected with inflammatory or autoinflammatory disorders, including diabetes, gouty arthritis, liver fibrosis, Alzheimer’s disease, respiratory syndromes, atherosclerosis, and cancer initiation. In recent years, it has been demonstrated how dietary intake and nutritional status represent important environmental elements that can modulate metabolic inflammation, since food matrices are an important source of several bioactive compounds. In this review, an updated status of knowledge regarding food bioactive compounds as NLRP3 inflammasome modulators is discussed. Several chemical classes, namely polyphenols, organosulfurs, terpenes, fatty acids, proteins, amino acids, saponins, sterols, polysaccharides, carotenoids, vitamins, and probiotics, have been shown to possess NLRP3 inflammasome-modulating activity through in vitro and in vivo assays, mainly demonstrating an anti-NLRP3 inflammasome activity. Plant foods are particularly rich in important bioactive compounds, each of them can have different effects on the pathway of inflammatory response, confirming the importance of the nutritional pattern (food model) as a whole rather than any single nutrient or functional compound.
Collapse
|
65
|
Zhao H, Jin K, Jiang C, Pan F, Wu J, Luan H, Zhao Z, Chen J, Mou T, Wang Z, Lu J, Lu S, Hu S, Xu Y, Huang M. A pilot exploration of multi-omics research of gut microbiome in major depressive disorders. Transl Psychiatry 2022; 12:8. [PMID: 35013099 PMCID: PMC8748871 DOI: 10.1038/s41398-021-01769-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of major depressive disorder (MDD) remains obscure. Recently, the microbiota-gut-brain (MGB) axis's role in MDD has an increasing attention. However, the specific mechanism of the multi-level effects of gut microbiota on host metabolism, immunity, and brain structure is unclear. Multi-omics approaches based on the analysis of different body fluids and tissues using a variety of analytical platforms have the potential to provide a deeper understanding of MGB axis disorders. Therefore, the data of metagenomics, metabolomic, inflammatory factors, and MRI scanning are collected from the two groups including 24 drug-naïve MDD patients and 26 healthy controls (HCs). Then, the correlation analysis is performed in all omics. The results confirmed that there are many markedly altered differences, such as elevated Actinobacteria abundance, plasma IL-1β concentration, lipid, vitamin, and carbohydrate metabolism disorder, and diminished grey matter volume (GMV) of inferior frontal gyrus (IFG) in the MDD patients. Notably, three kinds of discriminative bacteria, Ruminococcus bromii, Lactococcus chungangensis, and Streptococcus gallolyticus have an extensive correlation with metabolome, immunology, GMV, and clinical symptoms. All three microbiota are closely related to IL-1β and lipids (as an example, phosphoethanolamine (PEA)). Besides, Lactococcus chungangensis is negatively related to the GMV of left IFG. Overall, this study demonstrate that the effects of gut microbiome exert in MDD is multifactorial.
Collapse
Affiliation(s)
- Haoyang Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Chaonan Jiang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Fen Pan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Jing Wu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics the College of Laboratory Medicine Chongqing Medical University, Chongqing, 400016, China
| | - Honglin Luan
- Department of Psychiatry, Wen Zhou seventh People's Hospital, Wenzhou, 325006, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Zheng Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Shaojia Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Yi Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
| |
Collapse
|
66
|
Li R, Li X, Zhao J, Meng F, Yao C, Bao E, Sun N, Chen X, Cheng W, Hua H, Li X, Wang B, Wang H, Pan X, You H, Yang J, Ikezoe T. Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation. Am J Cancer Res 2022; 12:976-998. [PMID: 34976224 PMCID: PMC8692896 DOI: 10.7150/thno.63751] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023] Open
Abstract
Rationale: We found that a subset of signal transducer and activator of transcription 3 (STAT3) translocated into mitochondria in phagocytes, including macrophages isolated from individuals with sepsis. However, the role of mitochondrial STAT3 in macrophages remains unclear. Method: To investigate the function of mitochondrial STAT3 in vivo, we generated inducible mitochondrial STAT3 knock-in mice. A cytokine array analysis, a CBA analysis, flow cytometry, immunofluorescence staining and quantification and metabolic analyses in vivo were subsequently performed in an LPS-induced sepsis model. Single-cell RNA sequencing, a microarray analysis, metabolic assays, mass spectrometry and ChIP assays were utilized to gain insight into the mechanisms of mitochondrial STAT3 in metabolic reprogramming in LPS-induced sepsis. Results: We found that mitochondrial STAT3 induced NF-κB nuclear localization and exacerbated LPS-induced sepsis in parallel with a metabolic switch from mainly using glucose to an increased reliance on fatty acid oxidation (FAO). Moreover, mitochondrial STAT3 abrogated carnitine palmitoyl transferase 1a (CPT1a) ubiquitination and degradation in LPS-treated macrophages. Meanwhile, an interaction between CPT1a and ubiquitin-specific peptidase 50 (USP50) was observed. In contrast, knocking down USP50 decreased CPT1a expression and FAO mediated by mitochondrial STAT3. The ChIP assays revealed that NF-κB bound the USP50 promoter. Curcumin alleviated LPS-mediated sepsis by suppressing the activities of mitochondrial STAT3 and NF-κB. Conclusion: Our findings reveal that mitochondrial STAT3 could trigger FAO by inducing CPT1a stabilization mediated by USP50 in macrophages, at least partially.
Collapse
|
67
|
Cancer and immunity. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
68
|
Zhao W, Zhou L, Novák P, Shi X, Lin CB, Zhu X, Yin K. Metabolic Dysfunction in the Regulation of the NLRP3 Inflammasome Activation: A Potential Target for Diabetic Nephropathy. J Diabetes Res 2022; 2022:2193768. [PMID: 35719709 PMCID: PMC9203236 DOI: 10.1155/2022/2193768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic dysfunction plays a key role in the development of diabetic nephropathy (DN). However, the exact effects and mechanisms are still unclear. The pyrin domain-containing protein 3 (NLRP3) inflammasome, a member of the nod-like receptor family, is considered a crucial inflammatory regulator and plays important roles in the progress of DN. A growing body of evidence suggests that high glucose, high fat, or other metabolite disorders can abnormally activate the NLRP3 inflammasome. Thus, in this review, we discuss the potential function of abnormal metabolites such as saturated fatty acids (SFAs), cholesterol crystals, uric acid (UA), and homocysteine in the NLRP3 inflammasome activation and explain the potential function of metabolic dysfunction regulation of NLRP3 activation in the progress of DN via regulation of inflammatory response and renal interstitial fibrosis (RIF). In addition, the potential mechanisms of metabolism-related drugs, such as metformin and sodium glucose cotransporter (SGLT2) inhibitors, which have served as the suppressors of the NLRP3 inflammasomes, in DN, are also discussed. A better understanding of NLRP3 inflammasome activation in abnormal metabolic microenvironment may provide new insights for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xian Shi
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Chuang Biao Lin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| |
Collapse
|
69
|
Kajani S, Curley S, O'Reilly ME, Yin X, Dillon ET, Guo W, Nilaweera KN, Brennan L, Roche HM, McGillicuddy FC. Sodium salicylate rewires hepatic metabolic pathways in obesity and attenuates IL-1β secretion from adipose tissue - implications for obesity-impaired reverse cholesterol transport. Mol Metab 2021; 56:101425. [PMID: 34954383 PMCID: PMC8762459 DOI: 10.1016/j.molmet.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction High-fat diet (HFD)-induced obesity impairs clearance of cholesterol through the Reverse Cholesterol Transport (RCT) pathway, with downregulation in hepatic expression of cholesterol and bile acid transporters, namely ABCG5/8 and ABCB11, and reduced high-density lipoprotein (HDL) cholesterol efflux capacity (CEC). In the current study, we hypothesized that the development of hepatosteatosis, secondary to adipose-tissue dysfunction, contributes to obesity-impaired RCT and that such effects could be mitigated using the anti-inflammatory drug sodium salicylate (NaS). Materials and methods C57BL/6J mice, fed HFD ± NaS or low-fat diet (LFD) for 24 weeks, underwent glucose and insulin tolerance testing. The 3H-cholesterol movement from macrophage-to-feces was assessed in vivo. HDL-CEC was determined ex vivo. Cytokine secretion from adipose-derived stromal vascular fraction (SVF) cells was measured ex vivo. Liver and HDL proteins were determined by mass spectrometry and analyzed using Ingenuity Pathway Analysis. Results NaS delayed HFD-induced weight gain, abrogated priming of pro-IL-1β in SVFs, attenuated insulin resistance, and prevented steatohepatitis (ectopic fat accumulation in the liver). Prevention of hepatosteatosis coincided with increased expression of PPAR-alpha/beta-oxidation proteins with NaS and reduced expression of LXR/RXR-induced proteins including apolipoproteins. The latter effects were mirrored within the HDL proteome in circulation. Despite remarkable protection shown against steatosis, HFD-induced hypercholesterolemia and repression of the liver-to-bile cholesterol transporter, ABCG5/8, could not be rescued with NaS. Discussions and conclusions The cardiometabolic health benefits of NaS may be attributed to the reprogramming of hepatic metabolic pathways to increase fatty acid utilization in the settings of nutritional overabundance. Reduced hepatic cholesterol levels, coupled with reduced LXR/RXR-induced proteins, may underlie the lack of rescue of ABCG5/8 expression with NaS. This remarkable protection against HFD-induced hepatosteatosis did not translate to improvements in cholesterol homeostasis. Sodium salicylate (NaS) initially delays weight-gain in mice fed high-fat diet (HFD) - catch-up evident in weeks 12–24. NaS prevents HFD-induced insulin resistance, hepatosteatosis and pro-IL-1β priming in adipose tissue even upon weight-gain. Hepatic expression of proteins involved in beta oxidation, oxidative phosphorylation and TCA cycle upregulated with NaS. Hepatic expression of LXR/RXR proteins eg. apolipoproteins reduced with NaS; these effects were mirrored in HDL proteome. NaS failed to improve HFD-impaired Reverse Cholesterol Transport or hypercholesterolemia despite preventing hepatosteatosis.
Collapse
Affiliation(s)
- Sarina Kajani
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Sean Curley
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Marcella E O'Reilly
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Xiaofei Yin
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | - Weili Guo
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Kanishka N Nilaweera
- Teagasc Food Research Centre; VistaMilk Research Centre, Moorepark, Fermoy, Ireland
| | - Lorraine Brennan
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Helen M Roche
- Diabetes Complications Research Centre; UCD Conway Institute; Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science; UCD Institute of Food and Health
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health.
| |
Collapse
|
70
|
Investigation of the effects of maternal separation on the pancreatic oxidative and inflammatory damages along with metabolic impairment in response to chronic social defeat stress in young adult male rats. J Diabetes Metab Disord 2021; 20:1557-1565. [PMID: 34900807 DOI: 10.1007/s40200-021-00902-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Purpose Chronic glucocorticoid release during the stress response has been proposed to initiate certain damages, which in turn produce metabolic disorders. The present study is the first work to test whether maternal separation (MS) would impact the metabolic alterations associated with pancreatic oxidative and inflammatory damages under chronic exposure to social defeat stress (CSDS) in adulthood. Methods During the first 2 weeks of life, male Wistar rats were exposed to MS or left undisturbed with their mothers (Std). Starting on postnatal day 50, the animals of each group were either left undisturbed in the standard group housing (Con) or underwent CSDS for 3 weeks. Thus, there were 4 groups (n = 7/group): Std-Con, Ms-Con, Std-CSDS, MS-CSDS. Each animal was weighed and then decapitated so that we could collect trunk blood for assessment of fasting plasma corticosterone, insulin, glucose, lipid profile, and insulin resistance. Plasma and pancreatic catalase activity, reduced glutathione (GSH), malondialdehyde levels and pancreatic interleukin-1 beta (IL-1β) content were also measured. Results MS-CSDS animals showed elevated plasma corticosterone and insulin levels (P < 0.01) along with insulin resistance (P < 0.05). According to one-way ANOVA results, chronic exposure to early or adult life adversity decreased body weight (P < 0.0001), Catalase activity and GSH levels (P < 0.0001) and increased malondialdehyde level (P = 0.0006) in plasma. Pancreatic MDA and IL-1β contents elevated just in MS-CSDS rats (P < 0.05). Conclusion Maternal separation shapes vulnerability to develop corticosterone hypersecretion, insulin resistance, pancreatic oxidative, and inflammatory damages associated with chronic exposure to later social challenges, which could potentially trigger metabolic disorders. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00902-3.
Collapse
|
71
|
Yu Y, Pan Y, Fan Z, Xu S, Gao Z, Ren Z, Yu J, Li W, Liu F, Gu J, Yuan Y, Du Z. LuHui Derivative, A Novel Compound That Inhibits the Fat Mass and Obesity-Associated (FTO), Alleviates the Inflammatory Response and Injury in Hyperlipidemia-Induced Cardiomyopathy. Front Cell Dev Biol 2021; 9:731365. [PMID: 34881240 PMCID: PMC8647038 DOI: 10.3389/fcell.2021.731365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Hyperlipidemia is a major risk factor for metabolic disorders and cardiovascular injury. The excessive deposition of saturated fatty acids in the heart leads to chronic cardiac inflammation, which in turn causes myocardial damage and systolic dysfunction. However, the effective suppression of cardiac inflammation has emerged as a new strategy to reduce the impact of hyperlipidemia on cardiovascular disease. In this study, we identified a novel monomer, known as LuHui Derivative (LHD), which reduced the serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and reduced lipid deposition in cardiomyocytes. In addition, LHD treatment improved cardiac function, reduced hyperlipidemia-induced inflammatory infiltration in cardiomyocytes and suppressed the release of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). From a mechanistic perspective, cluster of differentiation 36 (CD36), an important cell surface receptor, was identified as a downstream target following the LHD treatment of palmitic acid-induced inflammation in cardiomyocytes. LHD specifically binds the pocket containing the regulatory sites of RNA methylation in the fat mass and obesity-associated (FTO) protein that is responsible for elevated intracellular m6A levels. Moreover, the overexpression of the N6-methyladenosine (m6A) demethylase FTO markedly increased CD36 expression and suppressed the anti-inflammatory effects of LHD. Conversely, loss-of-function of FTO inhibited palmitic acid-induced cardiac inflammation and altered CD36 expression by diminishing the stability of CD36 mRNA. Overall, our results provide evidence for the crucial role of LHD in fatty acid-induced cardiomyocyte inflammation and present a new strategy for the treatment of hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Ying Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Yumiao Pan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Ziyi Fan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Silun Xu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Zhiyuan Gao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Zijing Ren
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Wen Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Fangtong Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Jintao Gu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
72
|
Exercise Inhibits NLRP3 Inflammasome Activation in Obese Mice via the Anti-Inflammatory Effect of Meteorin-like. Cells 2021; 10:cells10123480. [PMID: 34943988 PMCID: PMC8700724 DOI: 10.3390/cells10123480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation. The benefits of exercise are partly attributed to its anti-inflammatory effect, but whether exercise can regulate NLRP3 inflammasome activation in obese adipose tissue remains unknown. Meteorin-like (METRNL), a recently discovered myokine, has been implicated in mediating the effect of exercise on metabolism. Herein, we examined the effect of exercise and METRNL on NLRP3 inflammasome activation. High-fat diet (HFD)-induced obese mice were subjected to treadmill exercise for 8 weeks. A subgroup of HFD mice was switched to normal chow with the exercise intervention. Exercise and diet attenuated weight gain, fat accumulation, and insulin resistance in obese mice. In addition, exercise downregulated gene and protein levels of inflammasome markers, including NLRP3 and caspase-1, in adipose tissue. In isolated bone marrow-derived macrophages, activation of NLRP3 inflammasome was suppressed in the exercise group, as confirmed by the downregulation of IL-1β and IL-18. Exercise significantly enhanced the expression of METRNL in various muscle depots, and further in vitro analysis revealed that recombinant METRNL treatment inhibited IL-1β secretion in macrophages. In conclusion, exercise exerts its anti-inflammatory action by suppressing adipose tissue NLRP3 inflammasome, and this is, in part, associated with METRNL induction in muscle and its anti-inflammatory effects in macrophages.
Collapse
|
73
|
Wang C, Murphy J, Delaney KZ, Khor N, Morais JA, Tsoukas MA, Lowry DE, Mutch DM, Santosa S. Association between rs174537 FADS1 polymorphism and immune cell profiles in abdominal and femoral subcutaneous adipose tissue: an exploratory study in adults with obesity. Adipocyte 2021; 10:124-130. [PMID: 33595419 PMCID: PMC7894460 DOI: 10.1080/21623945.2021.1888470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fatty acid desaturase 1 (FADS1) polymorphisms alter fatty acid content in subcutaneous adipose tissue (SAT); however, existing evidence is limited and conflicting regarding the association between FADS1 variants and SAT inflammatory status. To advance this area, we conducted an exploratory study to investigate whether the common rs174537 polymorphism in FADS1 was associated with immune cell profiles in abdominal and femoral SAT in individuals with obesity. FADS1 gene expression and immune cell profiles in SAT depots were assessed by qPCR and flow cytometry, respectively. Although FADS1 gene expression was associated with genotype, no associations were observed with immune cell profiles in either depot. Our study provides additional evidence that rs174537 in FADS1 has minimal impact on inflammatory status in obese SAT.
Collapse
Affiliation(s)
- Chenxuan Wang
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Jessica Murphy
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
- Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Kerri Z. Delaney
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
- Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Natalie Khor
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
- Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - José A. Morais
- Division of Geriatric Medicine, McGill University Health Centre, Montreal, Canada
| | - Michael A. Tsoukas
- Division of Endocrinology, Department of Medicine, McGill University, Montréal, Canada
| | - Dana E. Lowry
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - David M. Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
- Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| |
Collapse
|
74
|
Chen J, Ding X, Wu R, Tong B, Zhao L, Lv H, Meng X, Liu Y, Ren B, Li J, Jian T, Li W. Novel Sesquiterpene Glycoside from Loquat Leaf Alleviates Type 2 Diabetes Mellitus Combined with Nonalcoholic Fatty Liver Disease by Improving Insulin Resistance, Oxidative Stress, Inflammation, and Gut Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14176-14191. [PMID: 34783554 DOI: 10.1021/acs.jafc.1c05596] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly associated with type 2 diabetes mellitus (T2DM). Sesquiterpene glycosides from loquat leaf achieved beneficial effects on metabolic syndromes such as NAFLD and diabetes; however, their specific activity and underlying mechanism on T2DM-associated NAFLD have not yet been fully understood. In the present study, we found that sesquiterpene glycoside 3 (SG3), a novel sesquiterpene glycoside isolated from loquat leaf, was able to prevent insulin resistance (IR), oxidative stress, and inflammation. In db/db mice, SG3 administration (25 and 50 mg/kg/day) inhibited obesity, hyperglycemia, and the release of inflammatory cytokines. SG3 (5 and 10 μM) also significantly alleviated hepatic lipid accumulation, oxidative stress, and inflammatory response induced by high glucose combined with oleic acid in HepG2 cells. Western blotting analysis showed that these effects were related to repair the abnormal insulin signaling and inhibit the cytochrome P450 2E1 (CYP2E1) and NOD-like receptor family pyrin domain-containing 3 (NLRP3), both in vivo and in vitro. In addition, SG3 treatment could decrease the ratio of Firmicutes/Bacteroidetes and increase the relative abundance of Lachnospiraceae, Muribaculaceae, and Lactobacillaceae after a high-throughput pyrosequencing of 16S rRNA to observe the changes of related gut microbial composition in db/db mice. These findings proved that SG3 could protect against NAFLD in T2DM by improving IR, oxidative stress, inflammation through regulating insulin signaling and inhibiting CYP2E1/NLRP3 pathways, and remodeling the mouse gut microbiome. It is suggested that SG3 could be considered as a new functional additive for a healthy diet.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruoyun Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiuhua Meng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
75
|
Zhang Y, Aisker G, Dong H, Halemahebai G, Zhang Y, Tian L. Urolithin A suppresses glucolipotoxicity-induced ER stress and TXNIP/NLRP3/IL-1β inflammation signal in pancreatic β cells by regulating AMPK and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153741. [PMID: 34656886 DOI: 10.1016/j.phymed.2021.153741] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pancreatic inflammation plays a key role in diabetes pathogenesis and progression. Urolithin A (UA), an intestinal flora metabolite of pomegranate, has anti-diabetic, anti-inflammatory and kidney protection effects among others. However, its effects on pancreatic inflammation and the potential mechanisms have not been clearly established. PURPOSE This study aimed at investigating the molecular mechanisms of UA anti-pancreatic inflammation under a diabetic environment. METHODS Diabetes induction in male C57BL/6 mice was achieved by a high fat diet and intraperitoneal streptozotocin injections. Then, diabetic mice were orally administered with UA for 8 weeks. In vitro, endoplasmic reticulum stress and MIN6 pancreatic β cell inflammation were induced using 25 mM glucose and 0.5 mM palmitic acid. The effects of UA were evaluated by immunohistochemistry, Western blot, and enzyme linked immunosorbent assays. Finally, the underlying mechanisms were elucidated using an autophagy inhibitor (chloroquine, CQ) and an AMPK inhibitor (dorsomorphin dihydrochloride). RESULTS UA significantly inhibited IL-1β secretion and TXNIP/NLRP3 expression in the pancreas of diabetic mice and in MIN6 pancreatic cells. UA downregulated the ER stress protein, p-PERK, and promoted AMPK phosphorylation. UA activated autophagy to inhibit TXNIP/NLRP3 IL-1β inflammatory signal, an effect that was reversed by CQ. Dorsomorphin 2HCL, reversed the autophagy-activation and anti-inflammatory effects of UA. Verapamil, clinically applied as an antiarrhythmic drug, is a TXNIP inhibitor for prevention of beta cell loss and diabetes development, but limited by its cardiac toxicity. In this study, verapamil (as positive control) inhibited NLRP3 /IL-1β signaling in MIN6 cells. Inhibitory effects of UA on TXNIP and IL-1β were weaker than those of verapamil (both at 50 μM, p < 0.05, p < 0.01). Conversely, inhibitory effects of UA on p62 were stronger, relative to those of verapamil (p < 0.05), and there were no differences in AMPK activation and LC3 enhancement effects between UA and verapamil. CONCLUSION UA is a potential anti-pancreatic inflammation agent that activates AMPK and autophagy to inhibit endoplasmic reticulum stress associated TXNIP/NLRP3/IL-1β signal pathway.
Collapse
Affiliation(s)
- YanZhi Zhang
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| | - Gulimila Aisker
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Huaiyang Dong
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Gulihaixia Halemahebai
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yan Zhang
- Department of Pediatrics, Xinjiang Military General Hospital, Urumqi, China
| | - Linai Tian
- Third Clinical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
76
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Drakoulis N, Porter AL, Tsatsakis A, Spandidos DA. Contributing factors common to COVID‑19 and gastrointestinal cancer. Oncol Rep 2021; 47:16. [PMID: 34779496 PMCID: PMC8611322 DOI: 10.3892/or.2021.8227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID-19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID-19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot-product approach was used initially to identify potential CFs that affect COVID-19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID-19 core literature (~1-year-old) did not allow sufficient time for the direct effects of numerous CFs on COVID-19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature-related discovery approach was used to augment the COVID-19 core literature-based ‘direct impact’ CFs with discovery-based ‘indirect impact’ CFs [CFs were identified in the non-COVID-19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID-19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID-19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID-19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID-19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID-19 CFs. On the whole, the present study demonstrates that COVID-19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, USA
| | | | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I‑70125 Bari, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
77
|
Heeran AB, McCready J, Dunne MR, Donlon NE, Nugent TS, Bhardwaj A, Mitchelson KAJ, Buckley AM, Ravi N, Roche HM, Reynolds JV, Lynam-Lennon N, O’Sullivan J. Opposing Immune-Metabolic Signature in Visceral Versus Subcutaneous Adipose Tissue in Patients with Adenocarcinoma of the Oesophagus and the Oesophagogastric Junction. Metabolites 2021; 11:768. [PMID: 34822426 PMCID: PMC8624269 DOI: 10.3390/metabo11110768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) is an exemplar model of obesity-associated cancer. Previous work in our group has demonstrated that overweight/obese OAC patients have better responses to neoadjuvant therapy, but the underlying mechanisms are unknown. Unravelling the immune-metabolic signatures of adipose tissue may provide insight for this observation. We hypothesised that different metabolic pathways predominate in visceral (VAT) and subcutaneous adipose tissue (SAT) and inflammatory secretions will differ between the fat depots. Real-time ex vivo metabolic profiles of VAT and SAT from 12 OAC patients were analysed. These samples were screened for the secretion of 54 inflammatory mediators, and data were correlated with patient body composition. Oxidative phosphorylation (OXPHOS) was significantly higher in VAT when compared to SAT. OXPHOS was significantly higher in the SAT of patients receiving neoadjuvant treatment. VEGF-A, VEGF-C, P1GF, Flt-1, bFGF, IL-15, IL-16, IL-17A, CRP, SAA, ICAM-1, VCAM-1, IL-2, IL-13, IFN-γ, and MIP-1β secretions were significantly higher from VAT than SAT. Higher levels of bFGF, Eotaxin-3, and TNF-α were secreted from the VAT of obese patients, while higher levels of IL-23 and TARC were secreted from the SAT of obese patients. The angiogenic factors, bFGF and VEGF-C, correlated with visceral fat area. Levels of OXPHOS are higher in VAT than SAT. Angiogenic, vascular injury and inflammatory cytokines are elevated in VAT versus SAT, indicating that VAT may promote inflammation, linked to regulating treatment response.
Collapse
Affiliation(s)
- Aisling B. Heeran
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Jessica McCready
- Department of Biological and Physical Sciences, Assumption University, Worcester, MA 01609, USA;
| | - Margaret R. Dunne
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Noel E. Donlon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Timothy S. Nugent
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Anshul Bhardwaj
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Kathleen A. J. Mitchelson
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (K.A.J.M.); (H.M.R.)
| | - Amy M. Buckley
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Narayanasamy Ravi
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Helen M. Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (K.A.J.M.); (H.M.R.)
- Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK
| | - John V. Reynolds
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Niamh Lynam-Lennon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| | - Jacintha O’Sullivan
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (M.R.D.); (N.E.D.); (T.S.N.); (A.B.); (A.M.B.); (N.R.); (J.V.R.); (N.L.-L.)
| |
Collapse
|
78
|
Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Brichard SM, Abou-Samra M. Walking down Skeletal Muscle Lane: From Inflammasome to Disease. Cells 2021; 10:cells10113023. [PMID: 34831246 PMCID: PMC8616386 DOI: 10.3390/cells10113023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, innate immune system receptors and sensors called inflammasomes have been identified to play key pathological roles in the development and progression of numerous diseases. Among them, the nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat (LRR-) and pyrin domain-containing protein 3 (NLRP3) inflammasome is probably the best characterized. To date, NLRP3 has been extensively studied in the heart, where its effects and actions have been broadly documented in numerous cardiovascular diseases. However, little is still known about NLRP3 implications in muscle disorders affecting non-cardiac muscles. In this review, we summarize and present the current knowledge regarding the function of NLRP3 in diseased skeletal muscle, and discuss the potential therapeutic options targeting the NLRP3 inflammasome in muscle disorders.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Correspondence:
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| |
Collapse
|
79
|
Gao X, Liu S, Ding C, Miao Y, Gao Z, Li M, Fan W, Tang Z, Mhlambi NH, Yan L, Song S. Comparative effects of genistein and bisphenol A on non-alcoholic fatty liver disease in laying hens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117795. [PMID: 34274649 DOI: 10.1016/j.envpol.2021.117795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) and genistein (GEN) are selective estrogen receptor modulators, which are involved in the occurrence and development of metabolic syndrome. However, their roles in non-alcoholic fatty liver disease (NAFLD) of laying hens have not been reported. Here, we investigated the effects of different concentrations of GEN and BPA on the NAFLD of laying hens. Results showed that GEN ameliorated the high-energy and low-protein diet (HELP)-induced NAFLD by improving pathological damage, hepatic steatosis, and insulin resistance and blocking the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-related factors. By contrast, high dose of BPA could aggravate these changes with serious symptom of NAFLD and suppress the level of ERα in the liver considerably, while GEN could reverse this phenomenon in a dose-dependent manner. In general, our research shows that the protective effect of GEN on NAFLD aims to improve the metabolic disorders and inflammation closely connected to ERα, while BPA can inhibit the expression of ERα and exacerbate the symptom of NAFLD. In conclusion, we elucidate the opposing effects of GEN and BPA in NAFLD of laying hens, thus providing a potential mechanism related to ERα and inflammation.
Collapse
Affiliation(s)
- Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yufan Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Nobuhle Hyacinth Mhlambi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
80
|
Shen J, Ma H, Wang C. Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:533-543. [PMID: 34697264 PMCID: PMC8552823 DOI: 10.4196/kjpp.2021.25.6.533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
Myocardial fibrosis (MF) is the result of persistent and repeated aggravation of myocardial ischemia and hypoxia, leading to the gradual development of heart failure of chronic ischemic heart disease. Triptolide (TPL) is identified to be involved in the treatment for MF. This study aims to explore the mechanism of TPL in the treatment of MF. The MF rat model was established, subcutaneously injected with isoproterenol and treated by subcutaneous injection of TPL. The cardiac function of each group was evaluated, including LVEF, LVFS, LVES, and LVED. The expressions of ANP, BNP, inflammatory related factors (IL-1β, IL-18, TNF-α, MCP-1, VCAM-1), NLRP3 inflammasome factors (NLRP3, ASC) and fibrosis related factors (TGF-β1, COL1, and COL3) in rats were dete cted. H&E staining and Masson staining were used to observe myocardial cell inflammation and fibrosis of rats. Western blot was used to detect the p-P65 and t-P65 levels in nucleoprotein of rat myocardial tissues. LVED and LVES of MF group were significantly upregulated, LVEF and LVFS were significantly downregulated, while TPL treatment reversed these trends; TPL treatment downregulated the tissue injury and improved the pathological damage of MF rats. TPL treatment downregulated the levels of inflammatory factors and fibrosis factors, and inhibited the activation of NLRP3 inflammasome. Activation of NLRP3 inflammasome or NF-κB pathway reversed the effect of TPL on MF. Collectively, TPL inhibited the activation of NLRP3 inflammasome by inhibiting NF-κB pathway, and improved MF in MF rats.
Collapse
Affiliation(s)
- Jianyao Shen
- Department of Cardiology, The Central Hospital Affiliated to Shaoxing University, Shaoxing 312030, China
| | - Hailiang Ma
- Department of Cardiology, The Central Hospital Affiliated to Shaoxing University, Shaoxing 312030, China
| | - Chaoquan Wang
- Department of Cardiology, The Central Hospital Affiliated to Shaoxing University, Shaoxing 312030, China
| |
Collapse
|
81
|
Rühl-Muth AC, Maler MD, Esser PR, Martin SF. Feeding of a fat-enriched diet causes the loss of resistance to contact hypersensitivity. Contact Dermatitis 2021; 85:398-406. [PMID: 34218443 DOI: 10.1111/cod.13927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Low-molecular weight chemicals or metal ions can cause allergic contact dermatitis, an inflammatory skin disease. Mice lacking Toll-like receptors 2 and 4 (TLR2/4 mice) are resistant to contact hypersensitivity (CHS). In the Western population obesity is increasing, which is known to have a proinflammatory impact. OBJECTIVES The aim of this study was to investigate the impact of a high-fat diet (HFD) on the sensitization and elicitation of CHS. We hypothesized that a proinflammatory micromilieu can be caused by an increase in adipose tissue, which might be sufficient to break the resistance of TLR2/4 mice. METHODS Four weeks prior to sensitization, wild-type (wt) or TLR2/4 mice were fed normal chow (NC), control diet (CD), or HFD. The effects on CHS and inflammation were analysed by measuring the ear swelling response, using flow cytometry and enzyme-linked immunosorbent assay. RESULTS The reaction of wt mice to 2,4,6-trinitro-1-chlorobenzene (TNCB) was increased by HFD. While NC-fed TLR2/4 mice were still resistant to CHS, HFD and, unexpectedly, CD feeding broke the resistance of TLR2/4 mice to TNCB. CONCLUSIONS These experiments suggest that the increased fat content or the different fatty acid composition of the diets increases inflammation and, therefore, the likelihood of developing CHS.
Collapse
Affiliation(s)
- Anne-Catherine Rühl-Muth
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Mareike D Maler
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg
| |
Collapse
|
82
|
Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells 2021; 10:cells10102562. [PMID: 34685542 PMCID: PMC8533838 DOI: 10.3390/cells10102562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.
Collapse
|
83
|
Li Y, Zhang D, Li L, Han Y, Dong X, Yang L, Li X, Li W, Li W. Ginsenoside Rg1 ameliorates aging‑induced liver fibrosis by inhibiting the NOX4/NLRP3 inflammasome in SAMP8 mice. Mol Med Rep 2021; 24:801. [PMID: 34523690 PMCID: PMC8456316 DOI: 10.3892/mmr.2021.12441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Aging is often accompanied by liver injury and fibrosis, eventually leading to the decline in liver function. However, the mechanism of aging‑induced liver injury and fibrosis is still not fully understood, to the best of our knowledge, and there are currently no effective treatment options available for liver aging. Ginsenoside Rg1 (Rg1) has been reported to exert potent anti‑aging effects due to its potential antioxidant and anti‑inflammatory activity. The present study aimed to investigate the protective effect and underlying mechanism of action of Rg1 in aging‑induced liver injury and fibrosis in senescence‑accelerated mouse prone 8 (SAMP8) mice treated for 9 weeks. The histopathological results showed that the arrangement of hepatocytes was disordered, vacuole‑like degeneration occurred in the majority of cells, and collagen IV and TGF‑β1 expression levels, that were detected via immunohistochemistry, were also significantly upregulated in the SAMP8 group. Rg1 treatment markedly improved aging‑induced liver injury and fibrosis, and significantly downregulated the expression levels of collagen IV and TGF‑β1. In addition, the dihydroethylene staining and western blotting results showed that Rg1 treatment significantly reduced the levels of reactive oxygen species (ROS) and IL‑1β, and downregulated the expression levels of NADPH oxidase 4 (NOX4), p47phox, p22phox, phosphorylated‑NF‑κB, caspase‑1, apoptosis‑associated speck‑like protein containing a C‑terminal caspase recruitment domain and the NLR family pyrin domain containing 3 (NLRP3) inflammasome, which were significantly upregulated in the liver tissues of elderly SAMP8 mice. In conclusion, the findings of the present study suggested that Rg1 may attenuate aging‑induced liver injury and fibrosis by reducing NOX4‑mediated ROS oxidative stress and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Duoduo Zhang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lan Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liu Yang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xuewang Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weiping Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
84
|
Lu C, Wang C, Xiao H, Chen M, Yang Z, Liang Z, Wang H, Liu Y, Yang Y, Wang Q. Ethyl pyruvate: A newly discovered compound against ischemia-reperfusion injury in multiple organs. Pharmacol Res 2021; 171:105757. [PMID: 34302979 DOI: 10.1016/j.phrs.2021.105757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a process whereby an initial ischemia injury and subsequent recovery of blood flow, which leads to the propagation of an innate immune response and the changes of structural and functional of multiple organs. Therefore, IRI is considered to be a great challenge in clinical treatment such as organ transplantation or coronary angioplasty. In recent years, ethyl pyruvate (EP), a derivative of pyruvate, has received great attention because of its stability and low toxicity. Previous studies have proved that EP has various pharmacological activities, including anti-inflammation, anti-oxidative stress, anti-apoptosis, and anti-fibrosis. Compelling evidence has indicated EP plays a beneficial role in a variety of acute injury models, such as brain IRI, myocardial IRI, renal IRI, and hepatic IRI. Moreover, EP can not only effectively inhibit multiple IRI-induced pathological processes, but also improve the structural and functional lesion of tissues and organs. In this study, we review the recent progress in the research on EP and discuss their implications for a better understanding of multiple organ IRI, and the prospects of targeting the EP for therapeutic intervention.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Haoxiang Xiao
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Mengfan Chen
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhi Yang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, China
| | - Haiying Wang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China
| | - Yonglin Liu
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China
| | - Yang Yang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Qiang Wang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China.
| |
Collapse
|
85
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
86
|
Del Cornò M, Varì R, Scazzocchio B, Varano B, Masella R, Conti L. Dietary Fatty Acids at the Crossroad between Obesity and Colorectal Cancer: Fine Regulators of Adipose Tissue Homeostasis and Immune Response. Cells 2021; 10:cells10071738. [PMID: 34359908 PMCID: PMC8304920 DOI: 10.3390/cells10071738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the major threatening diseases worldwide, being the third most common cancer, and a leading cause of death, with a global incidence expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is a major risk factor for the development of several tumours, including CRC, and represents an important indicator of incidence, survival, prognosis, recurrence rates, and response to therapy. The obesity-associated low-grade chronic inflammation is thought to be a key determinant in CRC development, with the adipocytes and the adipose tissue (AT) playing a significant role in the integration of diet-related endocrine, metabolic, and inflammatory signals. Furthermore, AT infiltrating immune cells contribute to local and systemic inflammation by affecting immune and cancer cell functions through the release of soluble mediators. Among the factors introduced with diet and enriched in AT, fatty acids (FA) represent major players in inflammation and are able to deeply regulate AT homeostasis and immune cell function through gene expression regulation and by modulating the activity of several transcription factors (TF). This review summarizes human studies on the effects of dietary FA on AT homeostasis and immune cell functions, highlighting the molecular pathways and TF involved. The relevance of FA balance in linking diet, AT inflammation, and CRC is also discussed. Original and review articles were searched in PubMed without temporal limitation up to March 2021, by using fatty acid as a keyword in combination with diet, obesity, colorectal cancer, inflammation, adipose tissue, immune cells, and transcription factors.
Collapse
|
87
|
Pathogenetic mechanisms of nonalcoholic fatty liver disease and inhibition of the inflammasome as a new therapeutic target. Clin Res Hepatol Gastroenterol 2021; 45:101710. [PMID: 33930586 DOI: 10.1016/j.clinre.2021.101710] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and its incidence is increasing. Nonalcoholic steatohepatitis (NASH), the progressive form of the disease, can lead to end-stage liver disease. The pathogenesis of the disease is not fully understood, and there is currently no specific treatment. Therefore, an effective and reliable treatment modality is needed. In recent years, the inflammasome has been shown to play a vital role in many stages of NAFLD pathogenesis. In particular, the detection, by toll-like receptors, of pathogen-associated molecular patterns induced by the gut-liver axis triggers the formation of the NLRP3 (NLR family pyrin domain-containing protein 3) inflammasome. Stimulation of damage-associated molecular patterns also activates the NLRP3 inflammasome. The activated inflammasome has caspase-1 activity, which leads to the release of interleukin (IL)-1 and IL-18 and formation of pores in the cell wall. This process spreads the inflammatory process to the outside of the cell and induces inflammatory cell death (pyroptosis). Subsequent progression of the inflammatory process leads to fibrosis. Recent evidence suggests that the NLRP3 inflammasome may be a potential target for the treatment of NASH. The discovery of specific NLRP3 inflammasome blockers in recent years and evidence of their positive effects in experimental models support this therapeutic approach. In this article, we discuss recent evidence on the pathogenesis of NAFLD, the role of the inflammasome in the pathogenesis of NAFLD, and the potential effects of inhibition of the inflammasome.
Collapse
|
88
|
Luo H, Xu N, Wu J, Gan Y, Chen L, Guan F, Li M, Li Y, Chen J, Su Z, Liu Y. β-patchoulene protects against non-alcoholic steatohepatitis via interrupting the vicious circle among oxidative stress, histanoxia and lipid accumulation in rats. Int Immunopharmacol 2021; 98:107915. [PMID: 34198236 DOI: 10.1016/j.intimp.2021.107915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH), an extreme progressive subtype of metabolic associated fatty liver disease, is well characterized by hepatic steatosis, injury and inflammation. It causes irreversible hepatic damage and there are no approved interventions for it. β-PAE, a representatively pharmacological active substance isolated from Pogostemon cablin, has been indicated to alleviate hepatic steatosis and injury through modulating lipid metabolism in rats with simple steatosis. However, its protection against NASH remains unclear. Here, this study explored the potential effect of β-PAE against high-fat diet-induced NASH in rats. The results displayed that β-PAE significantly reduced the gains of body weight and epididymal adipose tissue, liver index and attenuated liver histological damages in NASH rats. It also markedly alleviated hepatic inflammation by inhibiting NLRP3 inflammasome activation. In NASH, the active NLRP3 inflammasome is caused by hepatic lipid abnormal accumulation-induced oxidative stress. Excessive oxidative stress results in hepatic histanoxia, which exacerbates lipid metabolism disorders by elevating CD36 to suppress AMPK signalling pathways. Moreover, the lipid accumulation led by lipid metabolism dysfunction intensifies oxidative stress. A vicious circle is formed among oxidative stress, histanoxia and lipid accumulation, eventually, but β-PAE effectively interrupted it. Interestingly, soluble CD36 (sCD36) was tightly associated not only with hepatic steatosis and injury but also with inflammation. Collectively, β-PAE exerted a positive effect against NASH by interrupting the vicious circle among oxidative stress, histanoxia and lipid accumulation, and sCD36 may be a promising non-invasive tool for NASH diagnosis.
Collapse
Affiliation(s)
- Huijuan Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Nan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiazhen Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuxuan Gan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Fengkun Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mengyao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan 523808, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan 523808, China.
| |
Collapse
|
89
|
The mechanism of increased intestinal palmitic acid absorption and its impact on hepatic stellate cell activation in nonalcoholic steatohepatitis. Sci Rep 2021; 11:13380. [PMID: 34183709 PMCID: PMC8239050 DOI: 10.1038/s41598-021-92790-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary palmitic acid (PA) promotes liver fibrosis in patients with nonalcoholic steatohepatitis (NASH). Herein, we clarified the intestinal absorption kinetics of dietary PA and effect of trans-portal PA on the activation of hepatic stellate cells (HSCs) involved in liver fibrosis in NASH. Blood PA levels after meals were significantly increased in patients with NASH compared to those in the control. Expression of genes associated with fat absorption and chylomicron formation, such as CD36 and MTP, was significantly increased in the intestine of NASH model rats compared with that in the controls. Plasma levels of glucagon-like peptide-2, involved in the upregulation of CD36 expression, were elevated in NASH rats compared with those in the controls. Furthermore, portal PA levels after meals in NASH rats were significantly higher than those in control and nonalcoholic fatty liver rats. Moreover, PA injection into the portal vein to the liver in control rats increased the mRNA levels associated with the activation of HSCs. Increased intestinal absorption of diet-derived PA was observed in NASH. Thus, the rapid increase in PA levels via the portal vein to the liver may activate HSCs and affect the development of liver fibrosis in NASH.
Collapse
|
90
|
Liu J, Jia Z, Gong W. Circulating Mitochondrial DNA Stimulates Innate Immune Signaling Pathways to Mediate Acute Kidney Injury. Front Immunol 2021; 12:680648. [PMID: 34248963 PMCID: PMC8264283 DOI: 10.3389/fimmu.2021.680648] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunction is increasingly considered as a critical contributor to the occurrence and progression of acute kidney injury (AKI). However, the mechanisms by which damaged mitochondria mediate AKI progression are multifactorial and complicated. Mitochondrial DNA (mtDNA) released from damaged mitochondria could serve as a danger-associated molecular pattern (DAMP) and activate the innate immune system through STING, TLR9, NLRP3, and some other adaptors, and further mediate tubular cell inflammation and apoptosis. Accumulating evidence has demonstrated the important role of circulating mtDNA and its related pathways in the progression of AKI, and regulating the proteins involved in these pathways may be an effective strategy to reduce renal tubular injury and alleviate AKI. Here, we aim to provide a comprehensive overview of recent studies on mtDNA-mediated renal pathological events to provide new insights in the setting of AKI.
Collapse
Affiliation(s)
- Jiaye Liu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
91
|
Microglia in Neurodegenerative Events-An Initiator or a Significant Other? Int J Mol Sci 2021; 22:ijms22115818. [PMID: 34072307 PMCID: PMC8199265 DOI: 10.3390/ijms22115818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
A change in microglia structure, signaling, or function is commonly associated with neurodegeneration. This is evident in the patient population, animal models, and targeted in vitro assays. While there is a clear association, it is not evident that microglia serve as an initiator of neurodegeneration. Rather, the dynamics imply a close interaction between the various cell types and structures in the brain that orchestrate the injury and repair responses. Communication between microglia and neurons contributes to the physiological phenotype of microglia maintaining cells in a surveillance state and allows the cells to respond to events occurring in their environment. Interactions between microglia and astrocytes is not as well characterized, nor are interactions with other members of the neurovascular unit; however, given the influence of systemic factors on neuroinflammation and disease progression, such interactions likely represent significant contributes to any neurodegenerative process. In addition, they offer multiple target sites/processes by which environmental exposures could contribute to neurodegenerative disease. Thus, microglia at least play a role as a significant other with an equal partnership; however, claiming a role as an initiator of neurodegeneration remains somewhat controversial.
Collapse
|
92
|
Xiao H, Zhang QN, Sun QX, Li LD, Xu SY, Li CQ. Effects of Mycobacterium vaccae Aerosol Inhalation on Airway Inflammation in Asthma Mouse Model. J Aerosol Med Pulm Drug Deliv 2021; 34:374-382. [PMID: 33945334 DOI: 10.1089/jamp.2021.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Mycobacterium vaccae vaccine, a composition of Mycobacterium proteins, has been known to have bidirectional immunomodulatory functions. Recent studies have shown that M. vaccae has a therapeutic potential for treating asthma. However, little is known regarding the effect of M. vaccae aerosol inhalation during allergen sensitization or challenge on asthma. The purpose of this study was to explore the effect and the underlying mechanism of M. vaccae aerosol inhalation during allergen sensitization or challenge on airway inflammation in an asthma mouse model. Methods: Asthma mouse models were established. Mice received aerosol inhalation with M. vaccae once daily during allergen sensitization or challenge for 5 days successively. Airway responsiveness, bronchoalveolar lavage fluid (BALF) cell count, histology, and cytokine concentrations (IL-4, IFN-γ, IL-10, and IL-17) were measured. The relative mRNA expression of ASC, caspase-1, TNF-α, and IL-1β was also determined. Expression of pulmonary NLRP3 and nuclear factor kappa B (NF-κB) protein was measured using immunohistochemistry and Western blot. Results: M. vaccae aerosol inhalation suppressed airway hyperresponsiveness and inflammation, reduced levels of IL-4, upregulated expression of IFN-γ and IL-10 in BALF, inhibited mRNA expression of pulmonary ASC, caspase-1, TNF-α, and IL-1β, and also inhibited expression of pulmonary NLRP3 and NF-κB protein during allergen sensitization or challenge. Conclusion: M. vaccae aerosol inhalation can suppress airway hyperresponsiveness and inflammation during allergen sensitization or challenge, and may be a promising approach for asthma therapy.
Collapse
Affiliation(s)
- Huan Xiao
- Department of Emergency and The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian-Nan Zhang
- Department of Emergency and The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi-Xiang Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lao-Dong Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Si-Yue Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Qian Li
- Department of Emergency and The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
93
|
Quezada N, Valencia I, Torres J, Maturana G, Cerda J, Arab JP, Fuentes JJ, Pinto C, Turiel D, Cortés V. Insulin resistance and liver histopathology in metabolically unhealthy subjects do not correlate with the hepatic abundance of NLRP3 inflammasome nor circulating IL-1β levels. BMJ Open Diabetes Res Care 2021; 9:9/1/e001975. [PMID: 33941551 PMCID: PMC8098916 DOI: 10.1136/bmjdrc-2020-001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/17/2021] [Accepted: 04/03/2021] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Systemic chronic low-grade inflammation has been linked to insulin resistance (IR) and non-alcoholic steatohepatitis (NASH). NOD-like receptor protein 3 (NLRP3) inflammasome and its final product, interleukin (IL)-1β, exert detrimental effects on insulin sensitivity and promote liver inflammation in murine models. Evidence linking hepatic NLRP3 inflammasome, systemic IR and NASH has been scarcely explored in humans. Herein, we correlated the hepatic abundance of NLRP3 inflammasome components and IR and NASH in humans. RESEARCH DESIGN AND METHODS Metabolically healthy (MH) (n=11) and metabolically unhealthy (MUH) (metabolic syndrome, n=21, and type 2 diabetes, n=14) subjects were recruited. Insulin sensitivity (homeostatic model assessment of IR (HOMA-IR) and Oral Glucose Sensitivity (OGIS120)), glycemic (glycated hemoglobin), and lipid parameters were determined by standard methods. Plasma cytokines were quantified by Magpix. Hepatic NLRP3 inflammasome components were determined at the mRNA and protein levels by reverse transcription-quantitative PCR and western blot, respectively. Liver damage was assessed by histological analysis (Non-alcoholic Fatty Liver Disease Activity Score (NAS) and Steatosis, Inflammatory Activity, and Fibrosis (SAF) scores). IR and liver histopathology were correlated with NLRP3 inflammasome components as well as with liver and plasma IL-1β levels. RESULTS Body Mass Index, waist circumference, and arterial hypertension frequency were significantly higher in MUH subjects. These patients also had increased high-sensitivity C reactive protein levels compared with MH subjects. No differences in the plasma levels of IL-1β nor the hepatic content of Nlrp3, apoptosis-associated speck-like (Asc), Caspase-1, and IL-1β were detected between MUH and MH individuals. MUH subjects had significantly higher NAS and SAF scores, indicating more severe liver damage. However, histological severity did not correlate with the hepatic content of NLRP3 inflammasome components nor IL-1β levels. CONCLUSION Our results suggest that NLRP3 inflammasome activation is linked neither to IR nor to the inflammatory status of the liver in MUH patients.
Collapse
Affiliation(s)
- Nicolas Quezada
- Department of Digestive Surgery, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Ilse Valencia
- Service of Anatomic Pathology, Hospital San Juan, Ministry of Health, Santiago, Chile
| | - Javiera Torres
- Department of Anatomic Pathology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Gregorio Maturana
- Surgery Resident, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Jaime Cerda
- Department of Public Health, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Juan Pablo Arab
- Department Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Juan José Fuentes
- Department of Digestive Surgery, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Claudio Pinto
- Department Nutrition, Diabetes and Metabolism, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Dannae Turiel
- Department of Digestive Surgery, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Victor Cortés
- Department Nutrition, Diabetes and Metabolism, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| |
Collapse
|
94
|
Childers GM, Perry CA, Blachut B, Martin N, Bortner CD, Sieber S, Li JL, Fessler MB, Harry GJ. Assessing the Association of Mitochondrial Function and Inflammasome Activation in Murine Macrophages Exposed to Select Mitotoxic Tri-Organotin Compounds. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47015. [PMID: 33929904 PMCID: PMC8086801 DOI: 10.1289/ehp8314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mitochondrial function is implicated as a target of environmental toxicants and found in disease or injury models, contributing to acute and chronic inflammation. One mechanism by which mitochondrial damage can propagate inflammation is via activation of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing receptor (NLRP)3 inflammasome, a protein complex that processes mature interleukin (IL)-1β. IL-1β plays an important role in the innate immune response and dysregulation is associated with autoinflammatory disorders. OBJECTIVE The objective was to evaluate whether mitochondrial toxicants recruit inflammasome activation and IL-1β processing. METHOD Murine macrophages (RAW 264.7) exposed to tri-organotins (triethyltin bromide (TETBr), trimethyltin hydroxide (TMTOH), triphenyltin hydroxide (TPTOH), bis(tributyltin)oxide) [Bis(TBT)Ox] were examined for pro-inflammatory cytokine induction. TMTOH and TETBr were examined in RAW 264.7 and bone marrow-derived macrophages for mitochondrial bioenergetics, reactive oxygen species (ROS) production, and inflammasome activation via visualization of aggregate formation, caspase-1 flow cytometry, IL-1β enzyme-linked immunosorbent assay and Western blots, and microRNA (miRNA) and mRNA arrays. RESULTS TETBr and TMTOH induced inflammasome aggregate formation and IL-1β release in lipopolysaccharide (LPS)-primed macrophages. Mitochondrial bioenergetics and mitochondrial ROS were suppressed. Il1a and Il1b induction with LPS or LPS+ATP challenge was diminished. Differential miRNA and mRNA profiles were observed. Lower miR-151-3p targeted cyclic adenosine monophosphate (cAMP)-mediated and AMP-activated protein kinase signaling pathways; higher miR-6909-5p, miR-7044-5p, and miR-7686-5p targeted Wnt beta-catenin signaling, retinoic acid receptor activation, apoptosis, signal transducer and activator of transcription 3, IL-22, IL-12, and IL-10 signaling. Functional enrichment analysis identified apoptosis and cell survival canonical pathways. CONCLUSION Select mitotoxic tri-organotins disrupted murine macrophage transcriptional response to LPS, yet triggered inflammasome activation. The differential response pattern suggested unique functional changes in the inflammatory response that may translate to suppressed host defense or prolong inflammation. We posit a framework to examine immune cell effects of environmental mitotoxic compounds for adverse health outcomes. https://doi.org/10.1289/EHP8314.
Collapse
Affiliation(s)
- Gabrielle M. Childers
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Caroline A. Perry
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Barbara Blachut
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Negin Martin
- Laboratory of Neurobiology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Carl D. Bortner
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Stella Sieber
- Molecular Genomics Core Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Michael B. Fessler
- Immunity, Inflammation, and Disease Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - G. Jean Harry
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
95
|
Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev 2021; 60:61-75. [PMID: 33773897 DOI: 10.1016/j.cytogfr.2021.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Cases of inflammatory bowel disease (IBD), a debilitating intestinal disorder with complex pathological mechanisms, have been increasing in recent years, straining the capacity of healthcare systems. Thus, novel therapeutic targets and innovative agents must be developed. Notably, the NLRP3 inflammasome is upregulated in patients with IBD and/or in animal experimental models. As an innate immune supramolecular assembly, the NLRP3 inflammasome is persistently activated during the pathogenesis of IBD by multiple stimuli. Moreover, this protein complex regulates pro-inflammatory cytokines. Thus, targeting this multiprotein oligomer may offer a feasible way to relieve IBD symptoms and improve clinical outcomes. The mechanisms by which the NLRP3 inflammasome is activated, its role in IBD pathogenesis, and the drugs administered to target this protein complex are reviewed herein. This review establishes that the use of inflammasome-targeting drugs are effective for IBD treatment. Moreover, this review suggests that the value and potential of naturally sourced or derived medicines for IBD treatment must be recognized and appreciated.
Collapse
|
96
|
Ye G, Yang BC, Gao H, Wu Z, Chen J, Ai XY, Huang Q. Metabolomics Insights into Oleate-Induced Disorders of Phospholipid Metabolism in Macrophages. J Nutr 2021; 151:503-512. [PMID: 33571370 DOI: 10.1093/jn/nxaa411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diet-induced disordered phospholipid metabolism and disturbed macrophage metabolism contribute to the pathogenesis of metabolic diseases. However, the effects of oleate, a main dietary fatty acid, on macrophage phospholipid metabolism are unclear. OBJECTIVES We aimed to discover oleate-induced disorders of macrophage phospholipid metabolism and potential therapeutic targets for treating diet-related metabolic diseases. METHODS RAW 264.7 cells were exposed to 65 μg oleate/mL, within the blood concentration range of humans and mice, to trigger disorders of phospholipid metabolism. Meanwhile, WY-14643 and pioglitazone, 2 drugs widely used for treating metabolic diseases, were employed to prevent oleate-induced disorders of macrophage phospholipid metabolism. Subsequently, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry was used to discover relevant metabolic disorders and potential therapeutic targets. RESULTS We showed that 196 metabolites involved in phospholipid metabolism were altered upon oleate treatment and interventions of WY-14643 and pioglitazone (P < 0.05, 2-tailed Mann-Whitney U test). Notably, most lysophospholipids were decreased, whereas most phospholipids were increased in oleate-treated macrophages. Phosphatidylethanolamines accumulated most among phospholipids, and their acyl chain polyunsaturation increased in oleate-treated macrophages. Additionally, saturated fatty acids were decreased, whereas polyunsaturated fatty acids were increased in oleate-treated macrophages. Furthermore, changes in phosphatidylglycerols, phosphatidylinositols, cardiolipins, phosphatidates, lysophosphatidylglycerols, and acylcarnitines in oleate-treated macrophages could be attenuated or even abolished by WY-14643 and/or pioglitazone treatment. CONCLUSIONS Oleate induced accumulation of various phospholipids, increased acyl chain polyunsaturation of phosphatidylethanolamines, and decreased lysophospholipids in RAW 264.7 macrophages. This study suggests macrophage phospholipid and fatty acid metabolism as potential therapeutic targets for intervening diet-related metabolic diseases.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Bi-Cheng Yang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zeming Wu
- iPhenome Biotechnology (Dalian), Inc., Dalian, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xiao-Yan Ai
- iPhenome Biotechnology (Dalian), Inc., Dalian, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
97
|
Russo GL, Siani A, Fogliano V, Geleijnse JM, Giacco R, Giampaoli S, Iacoviello L, Kromhout D, Lionetti L, Naska A, Pellegrini N, Riccardi G, Sofi F, Vitale M, Strazzullo P. The Mediterranean diet from past to future: Key concepts from the second "Ancel Keys" International Seminar. Nutr Metab Cardiovasc Dis 2021; 31:717-732. [PMID: 33558092 DOI: 10.1016/j.numecd.2020.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
The year 2020 celebrated the tenth anniversary of the recognition of the Mediterranean Diet as Intangible Cultural Heritage of Humanity by the UNESCO Intergovernmental Committee. This event represented a milestone in the history of nutrition, as the Mediterranean diet was the first traditional food practice to receive such award. Since then, a lot has been discussed not only on the beneficial aspects of the Mediterranean diet, but also on its complex role as a lifestyle model that includes a set of skills, knowledge and intercultural dialogue. This process ended up with the recognition in 2019 of Mediterranean diet as a possibly universal model of healthy diet from the EAT-Lancet Commission. These concepts were widely debated at the 2019 "Ancel Keys" International Seminar, held in Ascea (Italy) (for more information see: www.mediterraneandietseminar.org) with the aim to stimulate interest and awareness of a young group of participants on the current problems inherent to the effective implementation of the Mediterranean diet. The present article collects the contributions of several lecturers at the Seminar on key issues such as methodological and experimental approach, sustainability, molecular aspects in disease prevention, future exploitation, without neglecting a historical view of the Seven Countries Study. From the Seminar conclusions emerged a still vibrant and modern role of Mediterranean diet. The years to come will see national and international efforts to reduce the barriers that limit adherence to Mediterranean diet in order to plan for multi-factorial and targeted interventions that would guide our populations to a sustainable healthy living.
Collapse
Affiliation(s)
- Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Alfonso Siani
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Vincenzo Fogliano
- Food Quality Design Group, Wageningen University, Wageningen, the Netherlands
| | - Johanna M Geleijnse
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rosalba Giacco
- Institute of Food Sciences, National Research Council, Avellino, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Simona Giampaoli
- Former director of the Department of Cardiovascular, Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daan Kromhout
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lillà Lionetti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (Salerno), Italy
| | - Androniki Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Nicoletta Pellegrini
- Food Quality Design Group, Wageningen University, Wageningen, the Netherlands; Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
98
|
Alatshan A, Benkő S. Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Front Immunol 2021; 12:630569. [PMID: 33717162 PMCID: PMC7952630 DOI: 10.3389/fimmu.2021.630569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are important bridges between lipid signaling molecules and transcription responses. Beside their role in several developmental and physiological processes, many of these receptors have been shown to regulate and determine the fate of immune cells, and the outcome of immune responses under physiological and pathological conditions. While NLRP3 inflammasome is assumed as key regulator for innate and adaptive immune responses, and has been associated with various pathological events, the precise impact of the nuclear receptors on the function of inflammasome is hardly investigated. A wide variety of factors and conditions have been identified as modulators of NLRP3 inflammasome activation, and at the same time, many of the nuclear receptors are known to regulate, and interact with these factors, including cellular metabolism and various signaling pathways. Nuclear receptors are in the focus of many researches, as these receptors are easy to manipulate by lipid soluble molecules. Importantly, nuclear receptors mediate regulatory mechanisms at multiple levels: not only at transcription level, but also in the cytosol via non-genomic effects. Their importance is also reflected by the numerous approved drugs that have been developed in the past decade to specifically target nuclear receptors subtypes. Researches aiming to delineate mechanisms that regulate NLRP3 inflammasome activation draw a wide range of attention due to their unquestionable importance in infectious and sterile inflammatory conditions. In this review, we provide an overview of current reports and knowledge about NLRP3 inflammasome regulation from the perspective of nuclear receptors, in order to bring new insight to the potentially therapeutic aspect in targeting NLRP3 inflammasome and NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Ahmad Alatshan
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
99
|
Braga TT, Davanso MR, Mendes D, de Souza TA, de Brito AF, Cruz MC, Hiyane MI, de Lima DS, Nunes V, de Fátima Giarola J, Souto DEP, Próchnicki T, Lauterbach M, Biscaia SMP, de Freitas RA, Curi R, Pontillo A, Latz E, Camara NOS. Sensing soluble uric acid by Naip1-Nlrp3 platform. Cell Death Dis 2021; 12:158. [PMID: 33547278 PMCID: PMC7864962 DOI: 10.1038/s41419-021-03445-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
Uric acid (UA), a product of purine nucleotide degradation able to initiate an immune response, represents a breakpoint in the evolutionary history of humans, when uricase, the enzyme required for UA cleavage, was lost. Despite being inert in human cells, UA in its soluble form (sUA) can increase the level of interleukin-1β (IL-1β) in murine macrophages. We, therefore, hypothesized that the recognition of sUA is achieved by the Naip1-Nlrp3 inflammasome platform. Through structural modelling predictions and transcriptome and functional analyses, we found that murine Naip1 expression in human macrophages induces IL-1β expression, fatty acid production and an inflammation-related response upon sUA stimulation, a process reversed by the pharmacological and genetic inhibition of Nlrp3. Moreover, molecular interaction experiments showed that Naip1 directly recognizes sUA. Accordingly, Naip may be the sUA receptor lost through the human evolutionary process, and a better understanding of its recognition may lead to novel anti-hyperuricaemia therapies.
Collapse
Affiliation(s)
- Tarcio Teodoro Braga
- Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil.
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil.
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany.
| | - Mariana Rodrigues Davanso
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
- Department of Physiology and Biophysics, Institute of Biomedical Sciences I, University of Sao Paulo, São Paulo, SP, Brazil
| | - Davi Mendes
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, São Paulo, SP, Brazil
| | - Tiago Antonio de Souza
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, São Paulo, SP, Brazil
| | | | - Mario Costa Cruz
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | - Meire Ioshie Hiyane
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | - Dhemerson Souza de Lima
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | - Vinicius Nunes
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | | | - Denio Emanuel Pires Souto
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
- Department of Chemistry, Federal University of Parana, Curitiba, PR, Brazil
| | - Tomasz Próchnicki
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
| | - Mario Lauterbach
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
| | | | | | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences I, University of Sao Paulo, São Paulo, SP, Brazil
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Alessandra Pontillo
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- Centre for Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
- Nephrology Division, Federal University of São Paulo, São Paulo, SP, Brazil
- Renal Physiopathology Laboratory, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
100
|
Ruigrok SR, Abbink MR, Geertsema J, Kuindersma JE, Stöberl N, van der Beek EM, Lucassen PJ, Schipper L, Korosi A. Effects of Early-Life Stress, Postnatal Diet Modulation and Long-Term Western-Style Diet on Peripheral and Central Inflammatory Markers. Nutrients 2021; 13:288. [PMID: 33498469 PMCID: PMC7909521 DOI: 10.3390/nu13020288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ES) exposure increases the risk of developing obesity. Breastfeeding can markedly decrease this risk, and it is thought that the physical properties of the lipid droplets in human milk contribute to this benefit. A concept infant milk formula (IMF) has been developed that mimics these physical properties of human milk (Nuturis®, N-IMF). Previously, we have shown that N-IMF reduces, while ES increases, western-style diet (WSD)-induced fat accumulation in mice. Peripheral and central inflammation are considered to be important for obesity development. We therefore set out to test the effects of ES, Nuturis® and WSD on adipose tissue inflammatory gene expression and microglia in the arcuate nucleus of the hypothalamus. ES was induced in mice by limiting the nesting and bedding material from postnatal day (P) 2 to P9. Mice were fed a standard IMF (S-IMF) or N-IMF from P16 to P42, followed by a standard diet (STD) or WSD until P230. ES modulated adipose tissue inflammatory gene expression early in life, while N-IMF had lasting effects into adulthood. Centrally, ES led to a higher microglia density and more amoeboid microglia at P9. In adulthood, WSD increased the number of amoeboid microglia, and while ES exposure increased microglia coverage, Nuturis® reduced the numbers of amoeboid microglia upon the WSD challenge. These results highlight the impact of the early environment on central and peripheral inflammatory profiles, which may be key in the vulnerability to develop metabolic derangements later in life.
Collapse
Affiliation(s)
- Silvie R. Ruigrok
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Maralinde R. Abbink
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Jorine Geertsema
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Jesse E. Kuindersma
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Nina Stöberl
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Eline M. van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Paul J. Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | | | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| |
Collapse
|