51
|
De Vita E, Lucy D, Tate EW. Beyond targeted protein degradation: LD·ATTECs clear cellular lipid droplets. Cell Res 2021; 31:945-946. [PMID: 34354256 PMCID: PMC8410825 DOI: 10.1038/s41422-021-00546-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elena De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Daniel Lucy
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
52
|
Powell M, Blaskovich MAT, Hansford KA. Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery? ACS Infect Dis 2021; 7:2050-2067. [PMID: 34259518 DOI: 10.1021/acsinfecdis.1c00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted protein degradation aims to hijack endogenous protein quality control systems to achieve direct knockdown of protein targets. This exciting technology utilizes event-based pharmacology to produce therapeutic outcomes, a feature that distinguishes it from classical occupancy-based inhibitor agents. Early degrader candidates display resilience to mutations while possessing potent nanomolar activity and high target specificity. Paired with the rapid advancement of our knowledge in the factors driving targeted degradation, the expansion of this style of therapeutic agent to a range of disease indications is eagerly awaited. In particular, the area of antibiotic discovery is sorely lacking in novel approaches, with the Antimicrobial Resistance (AMR) crisis looming as the next potential global health calamity. Here, the current advances in targeted protein degradation are highlighted, and potential approaches for designing novel antimicrobial protein degraders are proposed, ranging from adaptations of current strategies to completely novel approaches to targeted protein degradation.
Collapse
Affiliation(s)
- Matthew Powell
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
53
|
Liang JJ, Xie H, Yang RH, Wang N, Zheng ZJ, Zhou C, Wang YL, Wang ZJ, Liu HM, Shan LH, Ke Y. Designed, synthesized and biological evaluation of proteolysis targeting chimeras (PROTACs) as AR degraders for prostate cancer treatment. Bioorg Med Chem 2021; 45:116331. [PMID: 34364224 DOI: 10.1016/j.bmc.2021.116331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
As a continuation of our research on developing potent and potentially safe androgen receptor (AR) degrader, a series of novel proteolysis targeting chimeras (PROTACs) containing the phthalimide degrons with different linker were designed, synthesized and evaluated for their AR degradation activity against LNCaP (AR+) cell line. Most of the synthesized compounds displayed moderate to satisfactory AR binding affinity and might lead to antagonist activity against AR. Among them, compound A16 exhibited the best AR binding affinity (85%) and degradation activity against AR. Due to the strong fluorescence properties of pomalidomide derivatives, B10 was found to be effectively internalized and visualized in LNCaP (AR + ) cells than PC-3 (AR-) cells. Moreover, the molecular docking of A16 with AR and the active site of DDB1-CRBN E3 ubiquitin ligase complex provides guidance to design new PROTAC degrons targeting AR for prostate cancer therapy. These results represent a step toward the development of novel and improved AR PROTACs.
Collapse
Affiliation(s)
- Jian-Jia Liang
- School of Pharmacy, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Hang Xie
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Rui-Hua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Ni Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Zi-Jun Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Chen Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Ya-Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Zhi-Jia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China.
| | - Li-Hong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China.
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China.
| |
Collapse
|
54
|
Gama-Brambila R, Chen J, Dabiri Y, Tascher G, Němec V, Münch C, Song G, Knapp S, Cheng X. A Chemical Toolbox for Labeling and Degrading Engineered Cas Proteins. JACS AU 2021; 1:777-785. [PMID: 34467332 PMCID: PMC8395650 DOI: 10.1021/jacsau.1c00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 06/01/2023]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats and their associated proteins (Cas) has revolutionized the field of genome and epigenome editing. A number of new methods have been developed to precisely control the function and activity of Cas proteins, including fusion proteins and small-molecule modulators. Proteolysis-targeting chimeras (PROTACs) represent a new concept using the ubiquitin-proteasome system to degrade a protein of interest, highlighting the significance of chemically induced protein-E3 ligase interaction in drug discovery. Here, we engineered Cas proteins (Cas9, dCas9, Cas12, and Cas13) by inserting a Phe-Cys-Pro-Phe (FCPF) amino acid sequence (known as the π-clamp system) and demonstrate that the modified CasFCPF proteins can be (1) labeled in live cells by perfluoroaromatics carrying the fluorescein or (2) degraded by a perfluoroaromatics-functionalized PROTAC (PROTAC-FCPF). A proteome-wide analysis of PROTAC-FCPF-mediated Cas9FCPF protein degradation revealed a high target specificity, suggesting a wide range of applications of perfluoroaromatics-induced proximity in the regulation of stability, activity, and functionality of any FCPF-tagging protein.
Collapse
Affiliation(s)
- Rodrigo
A. Gama-Brambila
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
| | - Jie Chen
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
| | - Yasamin Dabiri
- Institute
of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Georg Tascher
- Institute
of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Václav Němec
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
| | - Christian Münch
- Institute
of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Guangqi Song
- Department
of Gastroenterology, Zhongshan Hospital
of Fudan University, 180 Fenglin Road, Xuhui District, 200032 Shanghai, China
| | - Stefan Knapp
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
- Institute
of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
55
|
Barghout SH. Targeted Protein Degradation: An Emerging Therapeutic Strategy in Cancer. Anticancer Agents Med Chem 2021; 21:214-230. [PMID: 32275492 DOI: 10.2174/1871520620666200410082652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Drug discovery in the scope of cancer therapy has been focused on conventional agents that nonselectively induce DNA damage or selectively inhibit the activity of key oncogenic molecules without affecting their protein levels. An emerging therapeutic strategy that garnered attention in recent years is the induction of Targeted Protein Degradation (TPD) of cellular targets by hijacking the intracellular proteolysis machinery. This novel approach offers several advantages over conventional inhibitors and introduces a paradigm shift in several pharmacological aspects of drug therapy. While TPD has been found to be the major mode of action of clinically approved anticancer agents such as fulvestrant and thalidomide, recent years have witnessed systematic endeavors to expand the repertoire of proteins amenable to therapeutic ablation by TPD. Such endeavors have led to three major classes of agents that induce protein degradation, including molecular glues, Proteolysis Targeting Chimeras (PROTACs) and Hydrophobic Tag (HyT)-based degraders. Here, we briefly highlight agents in these classes and key advances made in the field with a focus on clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
56
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
57
|
Zhuo C, Zhang J, Lee JH, Jiao J, Cheng D, Liu L, Kim HW, Tao Y, Li M. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct Target Ther 2021; 6:238. [PMID: 34148061 PMCID: PMC8214627 DOI: 10.1038/s41392-021-00645-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) gene editing technology, as a revolutionary breakthrough in genetic engineering, offers a promising platform to improve the treatment of various genetic and infectious diseases because of its simple design and powerful ability to edit different loci simultaneously. However, failure to conduct precise gene editing in specific tissues or cells within a certain time may result in undesirable consequences, such as serious off-target effects, representing a critical challenge for the clinical translation of the technology. Recently, some emerging strategies using genetic regulation, chemical and physical strategies to regulate the activity of CRISPR/Cas9 have shown promising results in the improvement of spatiotemporal controllability. Herein, in this review, we first summarize the latest progress of these advanced strategies involving cell-specific promoters, small-molecule activation and inhibition, bioresponsive delivery carriers, and optical/thermal/ultrasonic/magnetic activation. Next, we highlight the advantages and disadvantages of various strategies and discuss their obstacles and limitations in clinical translation. Finally, we propose viewpoints on directions that can be explored to further improve the spatiotemporal operability of CRISPR/Cas9.
Collapse
Grants
- the Guangdong Province Science and Technology Innovation Special Fund (International Scientific Cooperation, 2018A050506035), the National Natural Science Foundation of China (51903256).
- the National Key Research and Development Program of China (2016YFE0117100), the National Natural Science Foundation of China (21875289 and U1501243), the Guangdong-Hong Kong Joint Innovation Project (2016A050503026), the Major Project on the Integration of Industry, Education and Research of Guangzhou City (201704030123), the Science and Technology Program of Guangzhou (201704020016), the Guangdong Innovative and Entrepreneurial Research Team Program (2013S086)
- National Research Foundation, Republic of Korea (2015K1A1A2032163, 2018K1A4A3A01064257, 2018R1A2B3003446)
- the National Key Research and Development Program of China (2019YFA0111300, 2016YFE0117100), the National Natural Science Foundation of China (21907113), the Guangdong Provincial Pearl River Talents Program (2019QN01Y131), the Thousand Talents Plan.
Collapse
Affiliation(s)
- Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Li Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| |
Collapse
|
58
|
Gama-Brambila RA, Chen J, Zhou J, Tascher G, Münch C, Cheng X. A PROTAC targets splicing factor 3B1. Cell Chem Biol 2021; 28:1616-1627.e8. [PMID: 34048672 DOI: 10.1016/j.chembiol.2021.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/14/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
The proteolysis-targeting chimeras (PROTACs) are a new technology to degrade target proteins. However, their clinical application is limited currently by lack of chemical binders to target proteins. For instance, it is still unknown whether splicing factor 3B subunit 1 (SF3B1) is targetable by PROTACs. We recently identified a 2-aminothiazole derivative (herein O4I2) as a promoter in the generation of human pluripotent stem cells. In this work, proteomic analysis on the biotinylated O4I2 revealed that O4I2 targeted SF3B1 and positively regulated RNA splicing. Fusing thalidomide-the ligand of the cereblon ubiquitin ligase-to O4I2 led to a new PROTAC-O4I2, which selectively degraded SF3B1 and induced cellular apoptosis in a CRBN-dependent manner. In a Drosophila intestinal tumor model, PROTAC-O4I2 increased survival by interference with the maintenance and proliferation of stem cell. Thus, our finding demonstrates that SF3B1 is PROTACable by utilizing noninhibitory chemicals, which expands the list of PROTAC target proteins.
Collapse
Affiliation(s)
- Rodrigo A Gama-Brambila
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
| | - Jie Chen
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
| | - Jun Zhou
- Division Signaling and Functional Genomics, Department for Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center and Heidelberg University, 69120 Heidelberg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
59
|
Sharma R, Srivastava T, Pandey AR, Mishra T, Gupta B, Reddy SS, Singh SP, Narender T, Tripathi A, Chandramouli B, Sashidhara KV, Priya S, Kumar N. Identification of Natural Products as Potential Pharmacological Chaperones for Protein Misfolding Diseases. ChemMedChem 2021; 16:2146-2156. [PMID: 33760394 DOI: 10.1002/cmdc.202100147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/12/2023]
Abstract
Defective protein folding and accumulation of misfolded proteins is associated with neurodegenerative, cardiovascular, secretory, and metabolic disorders. Efforts are being made to identify small-molecule modulators or structural-correctors for conformationally destabilized proteins implicated in various protein aggregation diseases. Using a metastable-reporter-based primary screen, we evaluated pharmacological chaperone activity of a diverse class of natural products. We found that a flavonoid glycoside (C-10, chrysoeriol-7-O-β-D-glucopyranoside) stabilizes metastable proteins, prevents its aggregation, and remodels the oligomers into protease-sensitive species. Data was corroborated with additional secondary screen with disease-specific pathogenic protein. In vitro and cell-based experiments showed that C-10 inhibits α-synuclein aggregation which is implicated in synucleinopathies-related neurodegeneration. C-10 interferes in its structural transition into β-sheeted fibrils and mitigates α-synuclein aggregation-associated cytotoxic effects. Computational modeling suggests that C-10 binds to unique sites in α-synuclein which may interfere in its aggregation amplification. These findings open an avenue for comprehensive SAR development for flavonoid glycosides as pharmacological chaperones for metastable and aggregation-prone proteins implicated in protein conformational diseases.
Collapse
Affiliation(s)
- Richa Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tulika Srivastava
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Alka Raj Pandey
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Tripti Mishra
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Bhagyashri Gupta
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Suriya P Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tadigoppula Narender
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aradhya Tripathi
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Koneni V Sashidhara
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Smriti Priya
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
60
|
Lin H, Yan Y, Luo Y, So WY, Wei X, Zhang X, Yang X, Zhang J, Su Y, Yang X, Zhang B, Zhang K, Jiang N, Chow BKC, Han W, Wang F, Rao F. IP 6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion. Nat Commun 2021; 12:2461. [PMID: 33911083 PMCID: PMC8080631 DOI: 10.1038/s41467-021-22941-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
COP1 and COP9 signalosome (CSN) are the substrate receptor and deneddylase of CRL4 E3 ligase, respectively. How they functionally interact remains unclear. Here, we uncover COP1–CSN antagonism during glucose-induced insulin secretion. Heterozygous Csn2WT/K70E mice with partially disrupted binding of IP6, a CSN cofactor, display congenital hyperinsulinism and insulin resistance. This is due to increased Cul4 neddylation, CRL4COP1 E3 assembly, and ubiquitylation of ETV5, an obesity-associated transcriptional suppressor of insulin secretion. Hyperglycemia reciprocally regulates CRL4-CSN versus CRL4COP1 assembly to promote ETV5 degradation. Excessive ETV5 degradation is a hallmark of Csn2WT/K70E, high-fat diet-treated, and ob/ob mice. The CRL neddylation inhibitor Pevonedistat/MLN4924 stabilizes ETV5 and remediates the hyperinsulinemia and obesity/diabetes phenotypes of these mice. These observations were extended to human islets and EndoC-βH1 cells. Thus, a CRL4COP1-ETV5 proteolytic checkpoint licensing GSIS is safeguarded by IP6-assisted CSN-COP1 competition. Deregulation of the IP6-CSN-CRL4COP1-ETV5 axis underlies hyperinsulinemia and can be intervened to reduce obesity and diabetic risk. Mediators of insulin signalling are targets of cullin-RING ubiquitin ligases (CRL) that mediate protein degradation, but the role of protein degradation in insulin signalling is incompletely understood. Here, the authors identified a glucose-responsive CRL4-COP1-ETV5 proteolytic axis that promotes insulin secretion, and is inhibited under hypoglycemia.
Collapse
Affiliation(s)
- Hong Lin
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuan Yan
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Luo
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wing Yan So
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Xiayun Wei
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaozhe Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoli Yang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jun Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bobo Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kangjun Zhang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Feng Rao
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
61
|
Bazzazi H, Shahraz A. A mechanistic systems pharmacology modeling platform to investigate the effect of PD-L1 expression heterogeneity and dynamics on the efficacy of PD-1 and PD-L1 blocking antibodies in cancer. J Theor Biol 2021; 522:110697. [PMID: 33794288 DOI: 10.1016/j.jtbi.2021.110697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Tumors have developed multitude of ways to evade immune response and suppress cytotoxic T cells. Programed cell death protein 1 (PD-1) and programed cell death ligand 1 (PD-L1) are immune checkpoints that when activated, rapidly inactivate the cytolytic activity of T cells. Expression heterogeneity of PD-L1 and the surface receptor dynamics of both PD-1 and PD-L1 may be important parameters in modulating the immune response. PD-L1 is expressed on both tumor and non-tumor immune cells and this differential expression reflects different aspects of anti-tumor immunity. Here, we developed a mechanistic computational model to investigate the role of PD-1 and PD-L1 dynamics in modulating the efficacy of PD-1 and PD-L1 blocking antibodies. Our model incorporates immunological synapse restricted interaction of PD-1 and PD-L1, basal parameters for receptor dynamics, and T cell interaction with tumor and non-tumor immune cells. Simulations predict the existence of a threshold in PD-1 expression above which there is no efficacy for both anti-PD-1 and anti-PD-L1. Model also predicts that anti-tumor response is more sensitive to PD-L1 expression on non-tumor immune cells than tumor cells. New combination strategies are suggested that may enhance efficacy in resistant cases such as combining anti-PD-1 with a low dose of anti-PD-L1 or with inhibitors of PD-L1 recycling and synthesis. Another combination strategy suggested by the model is the combination of anti-PD-1 and anti-PD-L1 with enhancers of PD-L1 degradation rate. Virtual patients are then generated to test specific biomarkers of response. Intriguing predictions that emerge from the virtual patient simulations are that PD-1 blocking antibody results in higher response rate than PD-L1 blockade and that PD-L1 expression density on non-tumor immune cells rather than tumor cells is a predictor of response.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Millenium Pharmaceuticals, a wholly-owned subsidiary of Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Azar Shahraz
- Simulations Plus Inc., Lancaster, CA, United States
| |
Collapse
|
62
|
Zhang X, Luukkonen LM, Eissler CL, Crowley VM, Yamashita Y, Schafroth MA, Kikuchi S, Weinstein DS, Symons KT, Nordin BE, Rodriguez JL, Wucherpfennig TG, Bauer LG, Dix MM, Stamos D, Kinsella TM, Simon GM, Baltgalvis KA, Cravatt BF. DCAF11 Supports Targeted Protein Degradation by Electrophilic Proteolysis-Targeting Chimeras. J Am Chem Soc 2021; 143:5141-5149. [PMID: 33783207 DOI: 10.1021/jacs.1c00990] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ligand-induced protein degradation has emerged as a compelling approach to promote the targeted elimination of proteins from cells by directing these proteins to the ubiquitin-proteasome machinery. So far, only a limited number of E3 ligases have been found to support ligand-induced protein degradation, reflecting a dearth of E3-binding compounds for proteolysis-targeting chimera (PROTAC) design. Here, we describe a functional screening strategy performed with a focused library of candidate electrophilic PROTACs to discover bifunctional compounds that degrade proteins in human cells by covalently engaging E3 ligases. Mechanistic studies revealed that the electrophilic PROTACs act through modifying specific cysteines in DCAF11, a poorly characterized E3 ligase substrate adaptor. We further show that DCAF11-directed electrophilic PROTACs can degrade multiple endogenous proteins, including FBKP12 and the androgen receptor, in human prostate cancer cells. Our findings designate DCAF11 as an E3 ligase capable of supporting ligand-induced protein degradation via electrophilic PROTACs.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Lena M Luukkonen
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Christie L Eissler
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Vincent M Crowley
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Yu Yamashita
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States.,Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Michael A Schafroth
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Shota Kikuchi
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - David S Weinstein
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Kent T Symons
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Brian E Nordin
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Joe L Rodriguez
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Thomas G Wucherpfennig
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Ludwig G Bauer
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Melissa M Dix
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Dean Stamos
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Todd M Kinsella
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Gabriel M Simon
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Kristen A Baltgalvis
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| |
Collapse
|
63
|
Kaur R, Chaudhary G, Kaur A, Singh P, Longowal GD, Sapkale GP, Arora S. PROTACs: A Hope for Breast Cancer Patients? Anticancer Agents Med Chem 2021; 22:406-417. [PMID: 33687888 DOI: 10.2174/1871520621666210308100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast Cancer (BC) is the most widely recognized disease in women. A massive number of women are diagnosed with breast cancer and many lost their lives every year. Cancer is the subsequent driving reason for dying, giving rise to it one of the current medication's most prominent difficulties. OBJECTIVES The main objective of the study is to examine and explore novel therapy (PROTAC) and its effectiveness against breast cancer. METHODS The literature search was done across Medline, Cochrane, ScienceDirect, Wiley Online, Google Scholar, PubMed, Bentham Sciences from 2001 to 2020. The articles were collected; screened, segregated, and selected papers were included for writing the review article. RESULTS AND CONCLUSION A novel innovation emerged around two decades ago that has great potential to not only overcome the limitations but also can provide future direction for the treatment of many diseases which has presently not many therapeutic options available and regarded as incurable with traditional techniques; that innovation is called PROTAC (Proteolysis Targeting Chimera) and able to efficaciously ubiquitinate and debase cancer encouraging proteins by noncovalent interaction. PROTACs are constituted of two active regions isolated by a linker and equipped for eliminating explicit undesirable protein. It is empowering greater sensitivity to "drug-resistant targets" as well as a more prominent opportunity to influence non-enzymatic function. PROTACs have been demonstrated to show better target selectivity contrasted with traditional small-molecule inhibitors. So far, the most investigation into PROTACs possesses particularly concentrated on applications to cancer treatment including breast cancer, the treatment of different ailments may profit from this blossoming innovation.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Gaurav Chaudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Amritpal Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Pargat Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | | | - Gayatri P Sapkale
- Fortis Flt. Lt. Rajan Dhall Hospital, Aruna Asaf Ali Marg, Pocket 1, Sector B, Vasant Kunj, New Delhi-110070. India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| |
Collapse
|
64
|
Faust TB, Donovan KA, Yue H, Chamberlain PP, Fischer ES. Small-Molecule Approaches to Targeted Protein Degradation. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-051420-114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many essential biological processes are regulated through proximity, from membrane receptor signaling to transcriptional activity. The ubiquitin-proteasome system controls protein degradation, with ubiquitin ligases as the rate-limiting step. Ubiquitin ligases are commonly controlled at the level of substrate recruitment and, therefore, by proximity. There are natural and synthetic small molecules that also operate through induced proximity. For example, thalidomide is effective in treating multiple myeloma and functions as a molecular glue that stabilizes novel protein-protein interactions between a ubiquitin ligase and proteins not otherwise targeted by the ligase, leading to neo-substrate degradation. Emerging data on new degrader molecules have uncovered diverse mechanisms distinct from molecular glues, which often mirror the regulatory mechanisms that control substrate-ligase proximity in nature. In this review, we summarize our current understanding of biological and synthetic regulation of protein degradation and share our view on how these diverse mechanisms have inspired novel therapeutic directions.
Collapse
Affiliation(s)
- Tyler B. Faust
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
65
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
66
|
Zhang X, Thielert M, Li H, Cravatt BF. SPIN4 Is a Principal Endogenous Substrate of the E3 Ubiquitin Ligase DCAF16. Biochemistry 2021; 60:637-642. [PMID: 33636084 DOI: 10.1021/acs.biochem.1c00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DCAF16 is a substrate recognition component of Cullin-RING E3 ubiquitin ligases that can be targeted by electrophilic PROTACs (proteolysis targeting chimeras) to promote the nuclear-restricted degradation of proteins. The endogenous protein substates of DCAF16 remain unknown. In this study, we compared the protein content of DCAF16-wild type and DCAF16-knockout (KO) cells by untargeted mass spectrometry-based proteomics, identifying the Tudor domain-containing protein Spindlin-4 (SPIN4) as a protein with a level that was substantially increased in cells lacking DCAF16. Very few other proteomic changes were found in DCAF16-KO cells, pointing to a specific relationship between DCAF16 and SPIN4. Consistent with this hypothesis, we found that DCAF16 interacts with and ubiquitinates SPIN4, but not other related SPIN proteins, and identified a conserved lysine residue unique to SPIN4 that is involved in DCAF16 binding. Finally, we provide evidence that SPIN4 preferentially binds trimethylated histone H3K4 over other modified histone modifications. These results, taken together, indicate that DCAF16 and SPIN4 form a dedicated E3 ligase-substrate complex that regulates the turnover and presumed functions of SPIN4 in human cells.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92307, United States
| | - Marvin Thielert
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92307, United States
| | - Haoxin Li
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92307, United States
| | - Benjamin F Cravatt
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92307, United States
| |
Collapse
|
67
|
Veale CGL. Into the Fray! A Beginner's Guide to Medicinal Chemistry. ChemMedChem 2021; 16:1199-1225. [PMID: 33591595 DOI: 10.1002/cmdc.202000929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/31/2022]
Abstract
Modern medicinal chemistry is a complex, multidimensional discipline that operates at the interface of the chemical and biological sciences. The medicinal chemistry contribution to drug discovery is typically described in the context of the well-recited linear progression of the drug discovery pipeline. However, compound optimization is idiosyncratic to each project, and clear definitions of hit and lead molecules and the subsequent progress along the pipeline becomes easily blurred. In addition, this description lacks insight into the entangled relationship between chemical and pharmacological properties, and thus provides limited guidance on how innovative medicinal chemistry strategies can be applied to solve optimization problems, regardless of the stage in the pipeline. Through discussion and illustrative examples, this article seeks to provide insights into the finesse of medicinal chemistry and the subtlety of balancing chemical properties pharmacology. In so doing, it aims to serve as an accessible and simple-to-digest guide for anyone who wishes to learn about the underlying principles of medicinal chemistry, in a context that has been decoupled from the pipeline description.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, Scottsville, 3209, South Africa
| |
Collapse
|
68
|
Luo M, Spradlin JN, Boike L, Tong B, Brittain SM, McKenna JM, Tallarico JA, Schirle M, Maimone TJ, Nomura DK. Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. Cell Chem Biol 2021; 28:559-566.e15. [PMID: 33513350 DOI: 10.1016/j.chembiol.2021.01.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
The translation of functionally active natural products into fully synthetic small-molecule mimetics has remained an important process in medicinal chemistry. We recently discovered that the terpene natural product nimbolide can be utilized as a covalent recruiter of the E3 ubiquitin ligase RNF114 for use in targeted protein degradation-a powerful therapeutic modality within modern-day drug discovery. Using activity-based protein profiling-enabled covalent ligand-screening approaches, here we report the discovery of fully synthetic RNF114-based recruiter molecules that can also be exploited for PROTAC applications, and demonstrate their utility in degrading therapeutically relevant targets, such as BRD4 and BCR-ABL, in cells. The identification of simple and easily manipulated drug-like scaffolds that can mimic the function of a complex natural product is beneficial in further expanding the toolbox of E3 ligase recruiters, an area of great importance in drug discovery and chemical biology.
Collapse
Affiliation(s)
- Mai Luo
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA
| | - Jessica N Spradlin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA
| | - Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA
| | - Bingqi Tong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA
| | - Scott M Brittain
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jeffrey M McKenna
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - John A Tallarico
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Markus Schirle
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA.
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Cambridge, MA 02139, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, Univerity of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
69
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
70
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
71
|
Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell 2020; 183:1714-1731.e10. [DOI: 10.1016/j.cell.2020.10.038] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/09/2020] [Accepted: 10/22/2020] [Indexed: 01/11/2023]
|
72
|
Phillips RE, Soshnev AA, Allis CD. Epigenomic Reprogramming as a Driver of Malignant Glioma. Cancer Cell 2020; 38:647-660. [PMID: 32916125 PMCID: PMC8248764 DOI: 10.1016/j.ccell.2020.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are central nervous system tumors and remain among the most treatment-resistant cancers. Exome sequencing has revealed significant heterogeneity and important insights into the molecular pathogenesis of gliomas. Mutations in chromatin modifiers-proteins that shape the epigenomic landscape through remodeling and regulation of post-translational modifications on chromatin-are very frequent and often define specific glioma subtypes. This suggests that epigenomic reprogramming may be a fundamental driver of glioma. Here, we describe the key chromatin regulatory pathways disrupted in gliomas, delineating their physiological function and our current understanding of how their dysregulation may contribute to gliomagenesis.
Collapse
Affiliation(s)
- Richard E Phillips
- Department of Neurology and Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
73
|
Gao Y, Yuan X, Zhu Z, Wang D, Liu Q, Gu W. Research and prospect of peptides for use in obesity treatment (Review). Exp Ther Med 2020; 20:234. [PMID: 33149788 DOI: 10.3892/etm.2020.9364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its related diseases, such as type 2 diabetes, hypertension and cardiovascular disease, are steadily increasing worldwide. Over the past few decades, numerous studies have focused on the differentiation and function of brown and beige fat, providing evidence for their therapeutic potential in treating obesity. However, no specific novel drug has been developed to treat obesity in this way. Peptides are a class of chemically active substances, which are linked together by amino acids using peptide bonds. They have specific physiological activities, including browning of white fat. As signal molecules regulated by the neuroendocrine system, the role of polypeptides, such as neuropeptide Y, brain-gut peptide and glucagon-like peptide in obesity and its related complications has been revealed. Notably, with the rapid development of peptidomics, peptide drugs have been widely used in the prevention and treatment of metabolic diseases, due to their short half-life, small apparent distribution volume, low toxicity and low side effects. The present review summarizes the progress and the new trend of peptide research, which may provide novel targets for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xuewen Yuan
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Dandan Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
74
|
Liu X, Li W, Bai S, Cui Y, Sun G. Off-label use of old drug: A 3-hydroxythalidomide-based fluorescent probe for the detection of hydrogen sulfide (H2S) and bioimaging in HeLa cells. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
75
|
Tong B, Luo M, Xie Y, Spradlin JN, Tallarico JA, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Bardoxolone conjugation enables targeted protein degradation of BRD4. Sci Rep 2020; 10:15543. [PMID: 32968148 PMCID: PMC7511954 DOI: 10.1038/s41598-020-72491-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Targeted protein degradation (TPD) has emerged as a powerful tool in drug discovery for the perturbation of protein levels using heterobifunctional small molecules. E3 ligase recruiters remain central to this process yet relatively few have been identified relative to the ~ 600 predicted human E3 ligases. While, initial recruiters have utilized non-covalent chemistry for protein binding, very recently covalent engagement to novel E3's has proven fruitful in TPD application. Herein we demonstrate efficient proteasome-mediated degradation of BRD4 by a bifunctional small molecule linking the KEAP1-Nrf2 activator bardoxolone to a BRD4 inhibitor JQ1.
Collapse
Affiliation(s)
- Bingqi Tong
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Mai Luo
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Yi Xie
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Jessica N Spradlin
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - John A Tallarico
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Jeffrey M McKenna
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Markus Schirle
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Departments of Molecular and Cell Biology and Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
76
|
Simpson LM, Macartney TJ, Nardin A, Fulcher LJ, Röth S, Testa A, Maniaci C, Ciulli A, Ganley IG, Sapkota GP. Inducible Degradation of Target Proteins through a Tractable Affinity-Directed Protein Missile System. Cell Chem Biol 2020; 27:1164-1180.e5. [PMID: 32668203 PMCID: PMC7505680 DOI: 10.1016/j.chembiol.2020.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023]
Abstract
The affinity-directed protein missile (AdPROM) system utilizes specific polypeptide binders of intracellular proteins of interest (POIs) conjugated to an E3 ubiquitin ligase moiety to enable targeted proteolysis of the POI. However, a chemically tuneable AdPROM system is more desirable. Here, we use Halo-tag/VHL-recruiting proteolysis-targeting chimera (HaloPROTAC) technology to develop a ligand-inducible AdPROM (L-AdPROM) system. When we express an L-AdPROM construct consisting of an anti-GFP nanobody conjugated to the Halo-tag, we achieve robust degradation of GFP-tagged POIs only upon treatment of cells with the HaloPROTAC. For GFP-tagged POIs, ULK1, FAM83D, and SGK3 were knocked in with a GFP-tag using CRISPR/Cas9. By substituting the anti-GFP nanobody for a monobody that binds H- and K-RAS, we achieve robust degradation of unmodified endogenous RAS proteins only in the presence of the HaloPROTAC. Through substitution of the polypeptide binder, the highly versatile L-AdPROM system is useful for the inducible degradation of potentially any intracellular POI.
Collapse
Affiliation(s)
- Luke M Simpson
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alice Nardin
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Luke J Fulcher
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Sascha Röth
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andrea Testa
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Amphista Therapeutics Ltd, Bo'Ness Road, Newhouse ML1 5UH, UK
| | - Chiara Maniaci
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; School of Natural & Environmental Sciences, Chemistry Bedson Building, Kings Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Alessio Ciulli
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ian G Ganley
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
77
|
PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chem Biol 2020; 27:998-1014. [DOI: 10.1016/j.chembiol.2020.07.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
|
78
|
Wang DG, Paddock MN, Lundquist MR, Sun JY, Mashadova O, Amadiume S, Bumpus TW, Hodakoski C, Hopkins BD, Fine M, Hill A, Yang TJ, Baskin JM, Dow LE, Cantley LC. PIP4Ks Suppress Insulin Signaling through a Catalytic-Independent Mechanism. Cell Rep 2020; 27:1991-2001.e5. [PMID: 31091439 PMCID: PMC6619495 DOI: 10.1016/j.celrep.2019.04.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/06/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin stimulates the conversion of phosphatidylino-sitol-4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), which mediates downstream cellular responses. PI(4,5)P2 is produced by phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phos-phate 4-kinases (PIP4Ks). Here, we show that the loss of PIP4Ks (PIP4K2A, PIP4K2B, and PIP4K2C) in vitro results in a paradoxical increase in PI(4,5)P2 and a concomitant increase in insulin-stimulated production of PI(3,4,5)P3. The reintroduction of either wild-type or kinase-dead mutants of the PIP4Ks restored cellular PI(4,5)P2 levels and insulin stimulation of the PI3K pathway, suggesting a catalytic-independent role of PIP4Ks in regulating PI(4,5)P2 levels. These effects are explained by an increase in PIP5K activity upon the deletion of PIP4Ks, which normally suppresses PIP5K activity through a direct binding interaction mediated by the N-terminal motif VMLϕFPDD of PIP4K. Our work uncovers an allosteric function of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5)P3 and suggests that the pharmacological depletion of PIP4K enzymes could represent a strategy for enhancing insulin signaling. PI(4,5)P2 is produced by both phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). Wang et al. report an allosteric function of a conserved N-terminal motif of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5) P3. This non-catalytic role has implications for the development of PIP4K targeted therapies.
Collapse
Affiliation(s)
- Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Janet Y Sun
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Oksana Mashadova
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Solomon Amadiume
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Timothy W Bumpus
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cindy Hodakoski
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Matthew Fine
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amanda Hill
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
79
|
Roberts BL, Ma ZX, Gao A, Leisten ED, Yin D, Xu W, Tang W. Two-Stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders. ACS Chem Biol 2020; 15:1487-1496. [PMID: 32255606 DOI: 10.1021/acschembio.0c00140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteolysis targeting chimeras (PROTACs) have emerged as useful chemical probes and potential therapeutics by taking advantage of the ubiquitin-proteasome system to degrade intracellular disease-associated proteins. PROTACs are heterobifunctional molecules composed of a target protein ligand, E3 ubiquitin ligase ligand, and a linker between them. The generation of efficient PROTACs requires screening of many parameters, especially the lengths and types of the linkers. We report our proof-of-concept study using a two-stage strategy to facilitate the development of PROTACs against the estrogen receptor (ER). In stage one, a library of close to 100 PROTACs was synthesized by simply mixing a library of ERα ligands containing a hydrazide functional group at different positions with a preassembled library of E3 ligase ligands bearing different types and lengths of linkers with a terminal aldehyde group in a 1:1 ratio. Cell-based screening occurred without further purification, because the formation of the acylhydrazone linkage is highly efficient and produces water as the only byproduct. Compound A3 was the most potent ER degrader in two ER+ cell lines (DC50= ∼ 10 nM, Dmax= ≥ 95%). Stage two involved transformation to a more stable amide linker to generate a more drug-like molecule. The new compound, AM-A3, showed comparable biological activity (DC50 = 1.1 nM, Dmax = 98%) and induced potent antiproliferation (IC50= 13.2 nM, Imax= 69%) in MCF-7. This proof-of -concept study demonstrates that the two-stage strategy can significantly facilitate the development of PROTACs against ER without the tedious process of making large numbers of PROTACs one by one. It has the potential to be expanded to many other targets.
Collapse
Affiliation(s)
- Brett L. Roberts
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zhi-Xiong Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ang Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Eric D. Leisten
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dan Yin
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
80
|
Bensimon A, Pizzagalli MD, Kartnig F, Dvorak V, Essletzbichler P, Winter GE, Superti-Furga G. Targeted Degradation of SLC Transporters Reveals Amenability of Multi-Pass Transmembrane Proteins to Ligand-Induced Proteolysis. Cell Chem Biol 2020; 27:728-739.e9. [PMID: 32386596 PMCID: PMC7303955 DOI: 10.1016/j.chembiol.2020.04.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023]
Abstract
With more than 450 members, the solute carrier (SLC) group of proteins represents the largest class of transporters encoded in the human genome. Their several-pass transmembrane domain structure and hydrophobicity contribute to the orphan status of many SLCs, devoid of known cargos or chemical inhibitors. We report that SLC proteins belonging to different families and subcellular compartments are amenable to induced degradation by heterobifunctional ligands. Engineering endogenous alleles via the degradation tag (dTAG) technology enabled chemical control of abundance of the transporter protein, SLC38A2. Moreover, we report the design of d9A-2, a chimeric compound engaging several members of the SLC9 family and leading to their degradation. d9A-2 impairs cellular pH homeostasis and promotes cell death in a range of cancer cell lines. These findings open the era of SLC-targeting chimeric degraders and demonstrate potential access of multi-pass transmembrane proteins of different subcellular localizations to the chemically exploitable degradation machinery.
Collapse
Affiliation(s)
- Ariel Bensimon
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Mattia D Pizzagalli
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
81
|
Wu HQ, Baker D, Ovaa H. Small molecules that target the ubiquitin system. Biochem Soc Trans 2020; 48:479-497. [PMID: 32196552 PMCID: PMC7200645 DOI: 10.1042/bst20190535] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Eukaryotic life depends upon the interplay between vast networks of signaling pathways composed of upwards of 109-1010 proteins per cell. The integrity and normal operation of the cell requires that these proteins act in a precise spatial and temporal manner. The ubiquitin system is absolutely central to this process and perturbation of its function contributes directly to the onset and progression of a wide variety of diseases, including cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infectious diseases, and muscle dystrophies. Whilst the individual components and the overall architecture of the ubiquitin system have been delineated in some detail, how ubiquitination might be successfully targeted, or harnessed, to develop novel therapeutic approaches to the treatment of disease, currently remains relatively poorly understood. In this review, we will provide an overview of the current status of selected small molecule ubiquitin system inhibitors. We will further discuss the unique challenges of targeting this ubiquitous and highly complex machinery, and explore and highlight potential ways in which these challenges might be met.
Collapse
Affiliation(s)
- Hai Qiu Wu
- Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - David Baker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Huib Ovaa
- Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
82
|
Abstract
Selective RNA degradation is a powerful strategy to combat diseases or study specific RNA function. In this issue of Cell Chemical Biology, Costales et al. (2019) develop a small molecule that mediates selective RNA degradation with the potential for cancer therapeutics.
Collapse
Affiliation(s)
- Sourav K Dey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
83
|
Lin H, Zhang X, Liu L, Fu Q, Zang C, Ding Y, Su Y, Xu Z, He S, Yang X, Wei X, Mao H, Cui Y, Wei Y, Zhou C, Du L, Huang N, Zheng N, Wang T, Rao F. Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome. Proc Natl Acad Sci U S A 2020; 117:4117-4124. [PMID: 32047038 PMCID: PMC7049131 DOI: 10.1073/pnas.1911998117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Cullin-RING ligases (CRLs) are the largest family of ubiquitin E3s activated by neddylation and regulated by the deneddylase COP9 signalosome (CSN). The inositol polyphosphate metabolites promote the formation of CRL-CSN complexes, but with unclear mechanism of action. Here, we provide structural and genetic evidence supporting inositol hexakisphosphate (IP6) as a general CSN cofactor recruiting CRLs. We determined the crystal structure of IP6 in complex with CSN subunit 2 (CSN2), based on which we identified the IP6-corresponding electron density in the cryoelectron microscopy map of a CRL4A-CSN complex. IP6 binds to a cognate pocket formed by conserved lysine residues from CSN2 and Rbx1/Roc1, thereby strengthening CRL-CSN interactions to dislodge the E2 CDC34/UBE2R from CRL and to promote CRL deneddylation. IP6 binding-deficient Csn2K70E/K70E knockin mice are embryonic lethal. The same mutation disabled Schizosaccharomyces pombe Csn2 from rescuing UV-hypersensitivity of csn2-null yeast. These data suggest that CRL transition from the E2-bound active state to the CSN-bound sequestered state is critically assisted by an interfacial IP6 small molecule, whose metabolism may be coupled to CRL-CSN complex dynamics.
Collapse
Affiliation(s)
- Hong Lin
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiaozhe Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Li Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Qiuyu Fu
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Chuanlong Zang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, 300071 Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071 Tianjin, China
| | - Yan Ding
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Yang Su
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Zhixue Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Sining He
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiaoli Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiayun Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Haibin Mao
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195
| | - Yasong Cui
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Yi Wei
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, 300071 Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071 Tianjin, China
| | - Lilin Du
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Ning Zheng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195
| | - Tao Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China;
| | - Feng Rao
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China;
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| |
Collapse
|
84
|
Reply to Tran et al.: Dimeric KRAS protein-protein interaction stabilizers. Proc Natl Acad Sci U S A 2020; 117:3365-3367. [PMID: 32047042 PMCID: PMC7035485 DOI: 10.1073/pnas.1921236117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
85
|
Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10:207-238. [PMID: 32082969 PMCID: PMC7016280 DOI: 10.1016/j.apsb.2019.08.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Blocking the biological functions of scaffold proteins and aggregated proteins is a challenging goal. PROTAC proteolysis-targeting chimaera (PROTAC) technology may be the solution, considering its ability to selectively degrade target proteins. Recent progress in the PROTAC strategy include identification of the structure of the first ternary eutectic complex, extra-terminal domain-4-PROTAC-Von-Hippel-Lindau (BRD4-PROTAC-VHL), and PROTAC ARV-110 has entered clinical trials for the treatment of prostate cancer in 2019. These discoveries strongly proved the value of the PROTAC strategy. In this perspective, we summarized recent meaningful research of PROTAC, including the types of degradation proteins, preliminary biological data in vitro and in vivo, and new E3 ubiquitin ligases. Importantly, the molecular design, optimization strategy and clinical application of candidate molecules are highlighted in detail. Future perspectives for development of advanced PROTAC in medical fields have also been discussed systematically.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
86
|
Abstract
The dynamic nature of histone post-translational modifications such as methylation or acetylation makes possible the alteration of disease associated epigenetic states through the manipulation of the associated epigenetic machinery. One approach is through small molecule perturbation. Chemical probes of epigenetic reader domains have been critical in improving our understanding of the biological consequences of modulating their targets, while also enabling the development of novel probe-based reagents. By appending a functional handle to a reader domain probe, a chemical toolbox of reagents can be created to facilitate chemiprecipitation of epigenetic complexes, evaluate probe selectivity, develop in vitro screening assays, visualize cellular target localization, enable target degradation and recruit epigenetic machinery to a site within the genome in a highly controlled fashion.
Collapse
|
87
|
Rao F, Lin H, Su Y. Cullin-RING Ligase Regulation by the COP9 Signalosome: Structural Mechanisms and New Physiologic Players. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:47-60. [PMID: 31898221 DOI: 10.1007/978-981-15-1025-0_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Cullin-RING E3 ligases (CRLs) are major ubiquitylation machineries regulated by reversible cycles of neddylation and deneddylation. The deneddylase COP9 Signalosome (CSN) terminates CRL catalytic cycle. CSN also provides a docking platform for several kinases and deubiquitinases that might play a role in regulating CRL. Recently, remarkable progress has been made in elucidating the biochemical principles and physiological implications of such exquisite regulation. The cryo-EM structures of CRL-CSN complexes provide the biochemical basis of their cognate interactions and reveal potential regulatory mechanisms during complex disassembly. Moreover, novel players beyond the canonical eight subunits of CSN were identified. This includes CSNAP, a potential 9th CSN subunit with regulatory functions, and the metabolite inositol hexakisphosphate (IP6), which enhances CRL-CSN complex formation, with IP6-metabolizing enzymes possibly instilling dynamics to the CRL-CSN system. Here, we review and summarize these new mechanistic insights along with progress in understanding CSN biology based on model organisms with genetically edited CSN subunits.
Collapse
Affiliation(s)
- Feng Rao
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Hong Lin
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
88
|
Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:317-347. [DOI: 10.1007/978-981-15-1025-0_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
89
|
Zeng M, Xiong Y, Safaee N, Nowak RP, Donovan KA, Yuan CJ, Nabet B, Gero TW, Feru F, Li L, Gondi S, Ombelets LJ, Quan C, Jänne PA, Kostic M, Scott DA, Westover KD, Fischer ES, Gray NS. Exploring Targeted Degradation Strategy for Oncogenic KRAS G12C. Cell Chem Biol 2019; 27:19-31.e6. [PMID: 31883964 DOI: 10.1016/j.chembiol.2019.12.006] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
KRAS is the most frequently mutated oncogene found in pancreatic, colorectal, and lung cancers. Although it has been challenging to identify targeted therapies for cancers harboring KRAS mutations, KRASG12C can be targeted by small-molecule inhibitors that form covalent bonds with cysteine 12 (C12). Here, we designed a library of C12-directed covalent degrader molecules (PROTACs) and subjected them to a rigorous evaluation process to rapidly identify a lead compound. Our lead degrader successfully engaged CRBN in cells, bound KRASG12Cin vitro, induced CRBN/KRASG12C dimerization, and degraded GFP-KRASG12C in reporter cells in a CRBN-dependent manner. However, it failed to degrade endogenous KRASG12C in pancreatic and lung cancer cells. Our data suggest that inability of the lead degrader to effectively poly-ubiquitinate endogenous KRASG12C underlies the lack of activity. We discuss challenges for achieving targeted KRASG12C degradation and proposed several possible solutions which may lead to efficient degradation of endogenous KRASG12C.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nozhat Safaee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christine J Yuan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas W Gero
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Frederic Feru
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Lincoln J Ombelets
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chunshan Quan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology and the Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Milka Kostic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
90
|
Zhou H, Bai L, Xu R, Zhao Y, Chen J, McEachern D, Chinnaswamy K, Wen B, Dai L, Kumar P, Yang CY, Liu Z, Wang M, Liu L, Meagher JL, Yi H, Sun D, Stuckey JA, Wang S. Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein. J Med Chem 2019; 62:11280-11300. [PMID: 31747516 DOI: 10.1021/acs.jmedchem.9b01530] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor and an attractive therapeutic target for cancer and other human diseases. Despite 20 years of persistent research efforts, targeting STAT3 has been very challenging. We report herein the structure-based discovery of potent small-molecule STAT3 degraders based upon the proteolysis targeting chimera (PROTAC) concept. We first designed SI-109 as a potent, small-molecule inhibitor of the STAT3 SH2 domain. Employing ligands for cereblon/cullin 4A E3 ligase and SI-109, we obtained a series of potent PROTAC STAT3 degraders, exemplified by SD-36. SD-36 induces rapid STAT3 degradation at low nanomolar concentrations in cells and fails to degrade other STAT proteins. SD-36 achieves nanomolar cell growth inhibitory activity in leukemia and lymphoma cell lines with high levels of phosphorylated STAT3. A single dose of SD-36 results in complete STAT3 protein degradation in xenograft tumor tissue and normal mouse tissues. SD-36 achieves complete and long-lasting tumor regression in the Molm-16 xenograft tumor model at well-tolerated dose-schedules. SD-36 is a potent, selective, and efficacious STAT3 degrader.
Collapse
|
91
|
Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat Chem Biol 2019; 16:15-23. [DOI: 10.1038/s41589-019-0411-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023]
|
92
|
Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem 2019; 187:111952. [PMID: 31846828 DOI: 10.1016/j.ejmech.2019.111952] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
Cyclin-dependent kinase (CDK) family members are promising molecular targets in discovering potent inhibitors in disease settings, they function differentially. CDK2, CDK4 and CDK6, directly regulate the cell cycle, while CDK9 primarily modulates the transcription regulation. In discovering inhibitors of these CDKs, toxicity associated with off-target effect on other CDK homologs often posts as a clinical issue and hinders their further therapeutic development. To improve efficacy and reduce toxicity, here, using the Proteolysis Targeted Chimeras (PROTACs) approach, we design and further optimize small molecule degraders targeting multiple CDKs. We showed that heterobifunctional compound A9 selectively degraded CDK2. We also identified a dual-degrader, compound F3, which potently induced degradation of both CDK2 (DC50: 62 nM) and CDK9 (DC50: 33 nM). In human prostate cancer PC-3 cells, compound F3 potently inhibits cell proliferation by effectively blocking the cell cycle in S and G2/M phases. Our preliminary data suggests that PROTAC-oriented CDK2/9 degradation is potentially an effective therapeutic approach.
Collapse
|
93
|
Han X, Zhao L, Xiang W, Qin C, Miao B, Xu T, Wang M, Yang CY, Chinnaswamy K, Stuckey J, Wang S. Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands. J Med Chem 2019; 62:11218-11231. [PMID: 31804827 DOI: 10.1021/acs.jmedchem.9b01393] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Androgen receptor (AR) is a validated therapeutic target for the treatment of metastatic castration-resistant prostate cancer (mCRPC). We report herein our design, synthesis, and biological characterization of highly potent small-molecule proteolysis targeting chimera (PROTAC) AR degraders using a potent AR antagonist and E3 ligase ligands with weak binding affinities to VHL protein. Our study resulted in the discovery of 11 (ARD-266), which effectively induces degradation of AR protein in AR-positive (AR+) LNCaP, VCaP, and 22Rv1 prostate cancer cell lines with DC50 values of 0.2-1 nM. ARD-266 is capable of reducing the AR protein level by >95% in these AR+ prostate cancer cell lines and effectively reduces AR-regulated gene expression suppression. For the first time, we demonstrated that an E3 ligand with micromolar binding affinity to its E3 ligase complex can be successfully employed for the design of highly potent and efficient PROTAC degraders and this finding may have a significant implication for the field of PROTAC research.
Collapse
Affiliation(s)
| | - Lijie Zhao
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development , Zhengzhou University , Zhengzhou 450001 , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, Chen J, Yang CY, Liu Z, Wang M, Liu L, Jiang H, Wen B, Kumar P, Meagher JL, Sun D, Stuckey JA, Wang S. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell 2019; 36:498-511.e17. [PMID: 31715132 PMCID: PMC6880868 DOI: 10.1016/j.ccell.2019.10.002] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/14/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Here we report the discovery of SD-36, a small-molecule degrader of STAT3. SD-36 potently induces the degradation of STAT3 protein in vitro and in vivo and demonstrates high selectivity over other STAT members. Induced degradation of STAT3 results in a strong suppression of its transcription network in leukemia and lymphoma cells. SD-36 inhibits the growth of a subset of acute myeloid leukemia and anaplastic large-cell lymphoma cell lines by inducing cell-cycle arrest and/or apoptosis. SD-36 achieves complete and long-lasting tumor regression in multiple xenograft mouse models at well-tolerated dose schedules. Degradation of STAT3 protein, therefore, is a promising cancer therapeutic strategy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/pathology
- Mice
- Proteolysis/drug effects
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Longchuan Bai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haibin Zhou
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Renqi Xu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yujun Zhao
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Donna McEachern
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianyong Chen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chao-Yie Yang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhaomin Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mi Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liu Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Jiang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Praveen Kumar
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeanne A Stuckey
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
95
|
Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov 2019; 18:949-963. [PMID: 31666732 DOI: 10.1038/s41573-019-0047-y] [Citation(s) in RCA: 579] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) and related molecules that induce targeted protein degradation by the ubiquitin-proteasome system represent a new therapeutic modality and are the focus of great interest, owing to potential advantages over traditional occupancy-based inhibitors with respect to dosing, side effects, drug resistance and modulating 'undruggable' targets. However, the technology is still maturing, and the design elements for successful PROTAC-based drugs are currently being elucidated. Importantly, fewer than 10 of the more than 600 E3 ubiquitin ligases have so far been exploited for targeted protein degradation, and expansion of knowledge in this area is a key opportunity. Here, we briefly discuss lessons learned about targeted protein degradation in chemical biology and drug discovery and systematically review the expression profile, domain architecture and chemical tractability of human E3 ligases that could expand the toolbox for PROTAC discovery.
Collapse
|
96
|
Reyes-Garau D, Ribeiro ML, Roué G. Pharmacological Targeting of BET Bromodomain Proteins in Acute Myeloid Leukemia and Malignant Lymphomas: From Molecular Characterization to Clinical Applications. Cancers (Basel) 2019; 11:cancers11101483. [PMID: 31581671 PMCID: PMC6826405 DOI: 10.3390/cancers11101483] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Alterations in protein-protein and DNA-protein interactions and abnormal chromatin remodeling are a major cause of uncontrolled gene transcription and constitutive activation of critical signaling pathways in cancer cells. Multiple epigenetic regulators are known to be deregulated in several hematologic neoplasms, by somatic mutation, amplification, or deletion, allowing the identification of specific epigenetic signatures, but at the same time providing new therapeutic opportunities. While these vulnerabilities have been traditionally addressed by hypomethylating agents or histone deacetylase inhibitors, pharmacological targeting of bromodomain-containing proteins has recently emerged as a promising approach in a number of lymphoid and myeloid malignancies. Indeed, preclinical and clinical studies highlight the relevance of targeting the bromodomain and extra-terminal (BET) family as an efficient strategy of target transcription irrespective of the presence of epigenetic mutations. Here we will summarize the main advances achieved in the last decade regarding the preclinical and clinical evaluation of BET bromodomain inhibitors in hematologic cancers, either as monotherapies or in combinations with standard and/or experimental agents. A mention will finally be given to the new concept of the protein degrader, and the perspective it holds for the design of bromodomain-based therapies.
Collapse
Affiliation(s)
- Diana Reyes-Garau
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
| | - Marcelo L Ribeiro
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo 12916-900, Brazil.
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
97
|
Abstract
Proteolysis-targeting chimeras (PROTACs) have received much attention for their promising therapeutic intervention in recent years. These molecules, with the mechanism of simultaneous recruitment of target protein and an E3 ligase, can trigger the cellular ubiquitin–proteasome system to degrade the target proteins. This article systematically introduces the mechanism of small-molecule PROTACs, and summarized the research progress of small-molecule PROTACs. The prospect for further application and the problems to be solved are also discussed.
Collapse
|
98
|
Groppe JC. Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy. Expert Opin Drug Discov 2019; 14:1237-1253. [DOI: 10.1080/17460441.2019.1660641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jay C. Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
99
|
Dokla EME, Fang CS, Abouzid KAM, Chen CS. 1,2,4-Oxadiazole derivatives targeting EGFR and c-Met degradation in TKI resistant NSCLC. Eur J Med Chem 2019; 182:111607. [PMID: 31446247 DOI: 10.1016/j.ejmech.2019.111607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 11/15/2022]
Abstract
Development of small-molecule agents with the ability to facilitate oncoprotein degradation has emerged as a promising strategy for cancer therapy. Since EGFR and c-Met are both implicated in oncogenesis and tumor progression, we initiated a screening program by using an in-house library to identify agents capable of inducing the concomitant suppression of EGFR and c-Met expression, which led to the identification of compound 1, a 1,2,4-oxadiazole derivative. Based on the scaffold of 1, we developed a series of derivatives to assess their efficacies in facilitating the downregulation of EGFR and c-Met, among which compound 48 represented the optimal agent. 48 showed equipotent antiproliferative activity against a panel of five NSCLC cell lines with different EGFR mutational status (IC50 = 0.2-0.6 μM), while the same panel exhibited differential sensitivity to different EGFR kinase inhibitors tested. Cell cycle analysis indicated that the antiproliferative activity of 48 was associated with its ability to cause G2/M arrest and, to a lesser extent, apoptosis. Western blot and RT-PCR analyses revealed that 48 facilitated the downregulation of EGFR and c-Met at the protein level. In vivo data showed that oral administration of 48 was effective in suppressing gefitinib-resistant H1975 xenograft tumor growth in nude mice, and at a suboptimal dose, could sensitize H1975 tumors to gefitinib. Based on these findings, 48 represents a promising candidate for further development to target EGFR TKI-resistant NSCLC via dual inhibition of EGFR and c-Met oncoproteins.
Collapse
Affiliation(s)
- Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Chun-Sheng Fang
- Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt.
| | - Ching S Chen
- Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan.
| |
Collapse
|
100
|
Are Inositol Polyphosphates the Missing Link in Dynamic Cullin RING Ligase Regulation by the COP9 Signalosome? Biomolecules 2019; 9:biom9080349. [PMID: 31394817 PMCID: PMC6722667 DOI: 10.3390/biom9080349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/26/2022] Open
Abstract
The E3 ligase activity of Cullin RING Ligases (CRLs) is controlled by cycles of neddylation/deneddylation and intimately regulated by the deneddylase COP9 Signalosome (CSN), one of the proteasome lid-CSN-initiation factor 3 (PCI) domain-containing “Zomes” complex. Besides catalyzing the removal of stimulatory Cullin neddylation, CSN also provides a docking platform for other proteins that might play a role in regulating CRLs, notably protein kinases and deubiquitinases. During the CRL activity cycle, CRL–CSN complexes are dynamically assembled and disassembled. Mechanisms underlying complex dynamics remain incompletely understood. Recently, the inositol polyphosphate metabolites (IP6, IP7) and their metabolic enzymes (IP5K, IP6K) have been discovered to participate in CRL–CSN complex formation as well as stimulus-dependent dissociation. Here we discuss these mechanistic insights in light of recent advances in elucidating structural basis of CRL–CSN complexes.
Collapse
|