51
|
Beckers P, Belo Do Nascimento I, Charlier M, Desmet N, Massie A, Hermans E. Implication of system x c- in neuroinflammation during the onset and maintenance of neuropathic pain. J Neuroinflammation 2024; 21:117. [PMID: 38715127 PMCID: PMC11077843 DOI: 10.1186/s12974-024-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.
Collapse
Affiliation(s)
- Pauline Beckers
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Inês Belo Do Nascimento
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Mathilde Charlier
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Nathalie Desmet
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium.
| |
Collapse
|
52
|
Kang JWM, Davanzo OI, Emvalomenos GM, Mychasiuk R, Henderson LA, Keay KA. Infraorbital nerve injury triggers sex-specific neuroimmune responses in the peripheral trigeminal pathway and common pain behaviours. Brain Behav Immun 2024; 118:480-498. [PMID: 38499209 DOI: 10.1016/j.bbi.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Trigeminal neuropathic pain is emotionally distressing and disabling. It presents with allodynia, hyperalgesia and dysaesthesia. In preclinical models it has been assumed that cephalic nerve constriction injury shows identical molecular, cellular, and sex dependent neuroimmune changes as observed in extra-cephalic injury models. This study sought empirical evidence for such assumptions using the infraorbital nerve chronic constriction model (ION-CCI). We compared the behavioural consequences of nerve constriction with: (i) the temporal patterns of recruitment of macrophages and T-lymphocytes at the site of nerve injury and in the trigeminal ganglion; and (ii) the degree of demyelination and axonal reorganisation in the injured nerve. Our data demonstrated that simply testing for allodynia and hyperalgesia as is done in extra-cephalic neuropathic pain models does not provide access to the range of injury-specific nociceptive responses and behaviours reflective of the experience of trigeminal neuropathic pain. Similarly, trigeminal neuroimmune changes evoked by nerve injury are not the same as those identified in models of extra-cephalic neuropathy. Specifically, the timing, magnitude, and pattern of ION-CCI evoked macrophage and T-lymphocyte activity differs between the sexes.
Collapse
Affiliation(s)
- James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Olivia I Davanzo
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
53
|
Denaro S, Pasquinucci L, Turnaturi R, Alberghina C, Longhitano L, Giallongo S, Costanzo G, Spoto S, Grasso M, Zappalà A, Li Volti G, Tibullo D, Vicario N, Parenti R, Parenti C. Sigma-1 Receptor Inhibition Reduces Mechanical Allodynia and Modulate Neuroinflammation in Chronic Neuropathic Pain. Mol Neurobiol 2024; 61:2672-2685. [PMID: 37922065 PMCID: PMC11043107 DOI: 10.1007/s12035-023-03717-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2023]
Abstract
Neuropathic pain is one of the most debilitating forms of chronic pain, resulting from an injury or disease of the somatosensory nervous system, which induces abnormal painful sensations including allodynia and hyperalgesia. Available treatments are limited by severe side-effects and reduced efficacy in the chronic phase of the disease. Sigma-1 receptor (σ1R) has been identified as a chaperone protein, which modulate opioid receptors activities and the functioning of several ion channels, exerting a role in pain transmission. As such, it represents a druggable target to treat neuropathic pain. This study aims at investigating the therapeutic potential of the novel compound (+)-2R/S-LP2, a σ1R antagonist, in reducing painful behaviour and modulating the neuroinflammatory environment. We showed that repeated administration of the compound significantly inhibited mechanical allodynia in neuropathic rats, increasing the withdrawal threshold as compared to CCI-vehicle rats. Moreover, we found that (+)-2R/S-LP2-mediated effects resolve the neuroinflammatory microenvironment by reducing central gliosis and pro-inflammatory cytokines expression levels. This effect was coupled with a significant reduction of connexin 43 (Cx43) expression levels and gap junctions/hemichannels mediated microglia-to-astrocyte communication. These results suggest that inhibition of σ1R significantly attenuates neuropathic pain chronicization, thus representing a viable effective strategy.
Collapse
Affiliation(s)
- Simona Denaro
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Lorella Pasquinucci
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Rita Turnaturi
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Cristiana Alberghina
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuliana Costanzo
- Section of Medicinal Chemistry, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Salvatore Spoto
- Section of Pharmacology and Toxicology, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| | - Margherita Grasso
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Carmela Parenti
- Section of Pharmacology and Toxicology, Department of Drug and Health Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
54
|
Ye Y, Cheng H, Wang Y, Sun Y, Zhang LD, Tang J. Macrophage: A key player in neuropathic pain. Int Rev Immunol 2024; 43:326-339. [PMID: 38661566 DOI: 10.1080/08830185.2024.2344170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Research on the relationship between macrophages and neuropathic pain has flourished in the past two decades. It has long been believed that macrophages are strong immune effector cells that play well-established roles in tissue homeostasis and lesions, such as promoting the initiation and progression of tissue injury and improving wound healing and tissue remodeling in a variety of pathogenesis-related diseases. They are also heterogeneous and versatile cells that can switch phenotypically/functionally in response to the micro-environment signals. Apart from microglia (resident macrophages of both the spinal cord and brain), which are required for the neuropathic pain processing of the CNS, neuropathic pain signals in PNS are influenced by the interaction of tissue-resident macrophages and BM infiltrating macrophages with primary afferent neurons. And the current review looks at new evidence that suggests sexual dimorphism in neuropathic pain are caused by variations in the immune system, notably macrophages, rather than the neurological system.
Collapse
Affiliation(s)
- Ying Ye
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hao Cheng
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Yan Wang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Sun
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Li-Dong Zhang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
55
|
Smith PA. BDNF in Neuropathic Pain; the Culprit that Cannot be Apprehended. Neuroscience 2024; 543:49-64. [PMID: 38417539 DOI: 10.1016/j.neuroscience.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
56
|
Liu Y, Liu F, Li Y, Li Y, Feng Y, Zhao J, Zhou C, Li C, Shen J, Zhang Y. LncRNA Anxa10-203 enhances Mc1r mRNA stability to promote neuropathic pain by recruiting DHX30 in the trigeminal ganglion. J Headache Pain 2024; 25:28. [PMID: 38433184 PMCID: PMC10910797 DOI: 10.1186/s10194-024-01733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Trigeminal nerve injury is one of the most serious complications in oral clinics, and the subsequent chronic orofacial pain is a consumptive disease. Increasing evidence demonstrates long non-coding RNAs (lncRNAs) play an important role in the pathological process of neuropathic pain. This study aims to explore the function and mechanism of LncRNA Anxa10-203 in the development of orofacial neuropathic pain. METHODS A mouse model of orofacial neuropathic pain was established by chronic constriction injury of the infraorbital nerve (CCI-ION). The Von Frey test was applied to evaluate hypersensitivity of mice. RT-qPCR and/or Western Blot were performed to analyze the expression of Anxa10-203, DHX30, and MC1R. Cellular localization of target genes was verified by immunofluorescence and RNA fluorescence in situ hybridization. RNA pull-down and RNA immunoprecipitation were used to detect the interaction between the target molecules. Electrophysiology was employed to assess the intrinsic excitability of TG neurons (TGNs) in vitro. RESULTS Anxa10-203 was upregulated in the TG of CCI-ION mice, and knockdown of Anxa10-203 relieved neuropathic pain. Structurally, Anxa10-203 was located in the cytoplasm of TGNs. Mechanistically, Mc1r expression was positively correlated with Anxa10-203 and was identified as the functional target of Anxa10-203. Besides, Anxa10-203 recruited RNA binding protein DHX30 and formed the Anxa10-203/DHX30 complex to enhance the stability of Mc1r mRNA, resulting in the upregulation of MC1R, which contributed to the enhancement of the intrinsic activity of TGNs in vitro and orofacial neuropathic pain in vivo. CONCLUSIONS LncRNA Anxa10-203 in the TG played an important role in orofacial neuropathic pain and mediated mechanical allodynia in CCI-ION mice by binding with DHX30 to upregulate MC1R expression.
Collapse
Affiliation(s)
- YaJing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YiKe Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YueLing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YuHeng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - JiaShuo Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - ChunJie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - JieFei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - YanYan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
57
|
Calabria E, Canfora F, Leuci S, Coppola N, Pecoraro G, Giudice A, Antonelli A, Aria M, D'Aniello L, Mignogna MD, Adamo D. Gender differences in pain perception among burning mouth syndrome patients: a cross-sectional study of 242 men and 242 women. Sci Rep 2024; 14:3340. [PMID: 38336850 PMCID: PMC10858236 DOI: 10.1038/s41598-024-53074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Several orofacial painful conditions are influenced by gender-related factors, but no studies are available with regard to Burning Mouth Syndrome (BMS). The present study aimed at investigating gender differences among BMS patients and their influence on pain perception. 242 BMS males (BMSm) and 242 BMS females (BMSf) matched for age were consecutively enrolled. Sociodemographic and clinical characteristics were recorded and the numeric rating scale (NRS), the Total Pain Rating Index (T-PRI), the Hamilton rating scale for anxiety and depression (HAM-A, HAM-D), the Pittsburgh sleep quality index (PSQI) and the Epworth sleepiness scale (ESS) were administered. The BMSm presented statistically significant higher levels of education and rate of employment compared to the BMSf (p-values: 0.001**). Moreover, the BMSm were greater consumers of alcohol and had a higher BMI than the BMSf (p-values: < 0.001**, 0.034*). With respect to systemic comorbidities, cardiovascular diseases were statistically more prevalent among the BMSm, while hypothyroidism was more frequent in the BMSf (p-vales: < 0.001**). No differences were noted between the two groups in terms of oral symptoms and in the median scores of NRS, T-PRI, HAM-A, HAM-D, PSQI and ESS. Interestingly, the multivariate regression analysis revealed that, while anxiety, high BMI, poor sleep and high level of T-PRI were correlated to the intensity of pain (NRS) in both groups, low education was additional predictor of pain in BMSf. Further, depression, alcohol and intensity of pain were factors positively associated to the quality of pain (T-PRI) in the BMSm, whereas low education, non-married status and NRS were correlated to the T-PRI, in the BMSf. Surprisingly, smoking was inversely correlated to the intensity of pain and quality of pain respectively in BMSf and BMSm. Sociodemographic and risk factors were found to differently influence pain perception in BMSm and BMSf. Therefore, clinicians should take into account gender differences in the assessment of BMS patients to better tailor the overall pain management.
Collapse
Affiliation(s)
- Elena Calabria
- Department of Health Sciences, School of Dentistry, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Federica Canfora
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini N°5, 80131, Naples, Italy.
| | - Stefania Leuci
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini N°5, 80131, Naples, Italy
| | - Noemi Coppola
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini N°5, 80131, Naples, Italy
| | - Giuseppe Pecoraro
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini N°5, 80131, Naples, Italy
| | - Amerigo Giudice
- Department of Health Sciences, School of Dentistry, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alessandro Antonelli
- Department of Health Sciences, School of Dentistry, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples Federico II, Naples, Italy
| | - Luca D'Aniello
- Department of Social Sciences, University of Naples Federico II, Naples, Italy
| | - Michele Davide Mignogna
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini N°5, 80131, Naples, Italy
| | - Daniela Adamo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini N°5, 80131, Naples, Italy
| |
Collapse
|
58
|
Huang Z, Zhang Y, Wang S, Qi R, Tao Y, Sun Y, Jiang D, Jiang X, Tao J. FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain via m 6A-dependent stabilization of 5-HT3A mRNA in sensory neurons. Proc Natl Acad Sci U S A 2024; 121:e2312861121. [PMID: 38285939 PMCID: PMC10861880 DOI: 10.1073/pnas.2312861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
The N6-methyladenosine (m6A) modification of RNA is an emerging epigenetic regulatory mechanism that has been shown to participate in various pathophysiological processes. However, its involvement in modulating neuropathic pain is still poorly understood. In this study, we elucidate a functional role of the m6A demethylase alkylation repair homolog 5 (ALKBH5) in modulating trigeminal-mediated neuropathic pain. Peripheral nerve injury selectively upregulated the expression level of ALKBH5 in the injured trigeminal ganglion (TG) of rats. Blocking this upregulation in injured TGs alleviated trigeminal neuropathic pain, while mimicking the upregulation of ALKBH5 in intact TG neurons sufficiently induced pain-related behaviors. Mechanistically, histone deacetylase 11 downregulation induced by nerve injury increases histone H3 lysine 27 acetylation (H3K27ac), facilitating the binding of the transcription factor forkhead box protein D3 (FOXD3) to the Alkbh5 promoter and promoting Alkbh5 transcription. The increased ALKBH5 erases m6A sites in Htr3a messenger RNA (mRNA), resulting in an inability of YT521-B homology domain 2 (YTHDF2) to bind to Htr3a mRNA, thus causing an increase in 5-HT3A protein expression and 5-HT3 channel currents. Conversely, blocking the increased expression of ALKBH5 in the injured TG destabilizes nerve injury-induced 5-HT3A upregulation and reverses mechanical allodynia, and the effect can be blocked by 5-HT3A knockdown. Together, FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain through m6A-dependent stabilization of Htr3a mRNA in TG neurons. This mechanistic understanding may advance the discovery of new therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Zitong Huang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yuan Zhang
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou215004, People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou215123, People’s Republic of China
| | - Shoupeng Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Renfei Qi
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yu Tao
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Yufang Sun
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich81377, Germany
| | - Xinghong Jiang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
| | - Jin Tao
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
- Centre for Ion Channelopathy, Soochow University, Suzhou215123, People’s Republic of China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou215123, People’s Republic of China
- Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou215123, People’s Republic of China
| |
Collapse
|
59
|
Chen J, Mark S, Mackin L, Paul SM, Cooper BA, Hammer MJ, Conley YP, Levine JD, Miaskowski C. Increased Stress Is Associated With Severe Pain and Decrements in Cognitive Function in Patients Receiving Chemotherapy. Semin Oncol Nurs 2024; 40:151577. [PMID: 38245388 DOI: 10.1016/j.soncn.2023.151577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/18/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
OBJECTIVES Purposes were to identify subgroups of adult oncology patients (n = 1342) with distinct joint profiles of worst pain and cognitive function (CF) and evaluate for differences in demographic and clinical characteristics, as well as the severity of three distinct types of stress, resilience, and coping. DATA SOURCES Measures of pain and CF were evaluated six times over two cycles of chemotherapy. The other measures of demographic and clinical characteristics, stress, resilience, and coping were completed at enrollment (ie, prior to the second or third cycle of chemotherapy). RESULTS Using latent profile analysis, four distinct profiles were identified (ie, no pain + moderate CF [27.6%], moderate pain + high CF [22.4%] moderate pain and moderate CF [32.4%, both moderate], severe pain and low CF [17.5%, both severe]). Both moderate and both severe classes reported higher global, cancer-specific, and cumulative life stress, lower levels of resilience, and greater use of disengagement coping strategies. The Both severe class had higher occurrence rates for a number of adverse childhood experiences (ie, family violence in childhood, physical abuse at <16 years, forced sex at <16 years). Risk factors associated with membership in the two worst profiles included: being female, having a lower annual income, having a higher comorbidity burden, and having a poorer functional status. CONCLUSION Findings suggest that 72.4% of the patients reported pain scores in the moderate to severe range and 77.6% reported low to moderate levels of CF. Clinicians need to assess for both symptoms and various types of stress on a routine basis.
Collapse
Affiliation(s)
- Jacqueline Chen
- School of Nursing, University of California, San Francisco, CA
| | - Sueann Mark
- School of Nursing, University of California, San Francisco, CA
| | - Lynda Mackin
- School of Nursing, University of California, San Francisco, CA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco, CA
| | | | | | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA
| | - Christine Miaskowski
- School of Nursing, University of California, San Francisco, CA; School of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
60
|
Estivill-Torrús G, Martínez-Padilla AB, Sánchez-Salido L, Evercooren ABV, García-Díaz B. The dorsal root ganglion as a target for neurorestoration in neuropathic pain. Neural Regen Res 2024; 19:296-301. [PMID: 37488881 PMCID: PMC10503598 DOI: 10.4103/1673-5374.374655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 07/26/2023] Open
Abstract
Neuropathic pain is a severe and chronic condition widely found in the general population. The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients. During the processing of pain, the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation. Furthermore, the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies. Here, we will review the complex interplay between cells (satellite glial cells and inflammatory cells) and factors (cytokines, neurotrophic factors and genetic factors) that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain. More importantly, we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anne Baron-Van Evercooren
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Beatriz García-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
61
|
Zhan Z, Li R, Fu D, Han H, Wu Y, Meng B. Clinical efficacy and influencing factors of percutaneous kyphoplasty for osteoporotic vertebral compression fractures: a 10-year follow-up study. BMC Surg 2024; 24:29. [PMID: 38238715 PMCID: PMC10797895 DOI: 10.1186/s12893-024-02322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND To date, few reports have evaluated the long-term outcome of percutaneous kyphoplasty (PKP) for osteoporotic vertebral compression fractures (OVCFs) and the factors influencing the long-term outcome of this procedure are uncertain. METHODS A total of 91 patients underwent PKP for thoracolumbar OVCFs from June 2012 to December 2012. Pain Visual Analogue Scores (VAS) and Oswestry Disability Index (ODI) were recorded preoperatively and after 10-year follow-up. Factors that may affect surgical outcome, such as gender, age, height, weight, hypertension, diabetes, cause of injury, fracture segment, length of hospitalization, history of previous spinal surgery, preoperative bone mineral density (BMD), preoperative VAS and ODI scores, length of surgery, bone cement dosage, postoperative standardized anti-osteoporosis treatment, and other new vertebral fractures, were analyzed by multiple linear regression with VAS and ODI scores at the last follow-up. The correlation factors affecting the efficacy were analyzed. RESULTS The preoperative and final follow-up pain VAS was 7.9 ± 1.1 and 2.2 ± 1.1. ODI scores were 30.4 ± 4.2 and 10.7 ± 2.6. The difference was statistically significant (P < 0.05). Most of the patients were females aged 65-75 years who suffered low-energy injuries, with most of the fracture segments in the thoracolumbar region (T11-L2). At the final follow-up visit, 12 cases (13.19%) developed other new vertebral fractures, and 33 cases (36.26%) continued to adhere to anti-osteoporosis treatment after discharge. Multiple linear regression analysis showed that there was a statistical difference between gender and VAS score at the last follow-up (P < 0.05), and between age, cause of injury and postoperative standardized anti-osteoporosis treatment and ODI at the last follow-up (P < 0.05). There were no statistically significant differences between the other factors and the final follow-up VAS and ODI scores (P > 0.05). CONCLUSION The long-term outcome after PKP is satisfactory. Age, gender, cause of injury, and standardized postoperative anti-osteoporosis treatment may be factors affecting the long-term outcome.
Collapse
Affiliation(s)
- Zihao Zhan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China, No.899 Pinghai Road
| | - Ran Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China, No.899 Pinghai Road
| | - Dongming Fu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China, No.899 Pinghai Road
| | - Hao Han
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China, No.899 Pinghai Road
| | - Yiang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China, No.899 Pinghai Road
| | - Bin Meng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China, No.899 Pinghai Road.
| |
Collapse
|
62
|
Ge H, Zhou H, Song L, Tao Y, Hu L. Mitochondrial dysfunction and disulfidptosis co-regulate neuronal cell in neuropathic pain based on bioinformatics analysis. Mol Pain 2024; 20:17448069241290114. [PMID: 39323309 PMCID: PMC11468000 DOI: 10.1177/17448069241290114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Neuropathic pain (NP) affects approximately 6.9-10% of the world's population and necessitates the development of novel treatments. Mitochondria are essential in the regulation of cell death. Neuroimmune mechanisms are implicated in various forms of cell death associated with NP. However, the specific involvement of mitochondrial dysfunction and disulfidptosis in NP remains uncertain. Further research is required to gain a better understanding of their combined contribution. Our comprehensive study employs a variety of bioinformatic analysis methods, including differential gene analysis, weighted gene co-expression network analysis, machine learning, functional enrichment analysis, immune infiltration, sub-cluster analysis, single-cell dimensionality reduction and cell-cell communication to gain insight into the molecular mechanisms behind these processes. Our study rationally defines a list of key gene sets for mitochondrial dysfunction and disulfidptosis. 6 hub mitochondrial genes and 3 disulfidptosis-related genes (DRGs) were found to be associated with NP. The key genes were predominantly expressed in neurons and were lowly expressed in the NP group compared to SHAM. In addition, our macrophages used the APP (Amyloid precursor protein)-CD74 (MHC class II invariant chain) pathway to interact with neurons. These results suggest that NP is interconnected with the mechanistic processes of mitochondrial dysfunction and disulfidptosis, which may contribute to clinically targeted therapies.
Collapse
Affiliation(s)
- Hejia Ge
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Liuyi Song
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Yuqing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Li Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| |
Collapse
|
63
|
Elliott J, Sloan G, Stevens L, Selvarajah D, Cruccu G, Gandhi RA, Kempler P, Fuller JH, Chaturvedi N, Tesfaye S. Female sex is a risk factor for painful diabetic peripheral neuropathy: the EURODIAB prospective diabetes complications study. Diabetologia 2024; 67:190-198. [PMID: 37870649 PMCID: PMC10709240 DOI: 10.1007/s00125-023-06025-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023]
Abstract
AIMS/HYPOTHESIS While the risk factors for diabetic peripheral neuropathy (DPN) are now well recognised, the risk factors for painful DPN remain unknown. We performed analysis of the EURODIAB Prospective Complications Study data to elucidate the incidence and risk factors of painful DPN. METHODS The EURODIAB Prospective Complications Study recruited 3250 participants with type 1 diabetes who were followed up for 7.3±0.6 (mean ± SD) years. To evaluate DPN, a standardised protocol was used, including clinical assessment, quantitative sensory testing and autonomic function tests. Painful DPN (defined as painful neuropathic symptoms in the legs in participants with confirmed DPN) was assessed at baseline and follow-up. RESULTS At baseline, 234 (25.2%) out of 927 participants with DPN had painful DPN. At follow-up, incident DPN developed in 276 (23.5%) of 1172 participants. Of these, 41 (14.9%) had incident painful DPN. Most of the participants who developed incident painful DPN were female (73% vs 48% painless DPN p=0.003) and this remained significant after adjustment for duration of diabetes and HbA1c (OR 2.69 [95% CI 1.41, 6.23], p=0.004). The proportion of participants with macro- or microalbuminuria was lower in those with painful DPN compared with painless DPN (15% vs 34%, p=0.02), and this association remained after adjusting for HbA1c, diabetes duration and sex (p=0.03). CONCLUSIONS/INTERPRETATION In this first prospective study to investigate the risk factors for painful DPN, we definitively demonstrate that female sex is a risk factor for painful DPN. Additionally, there is less evidence of diabetic nephropathy in incident painful, compared with painless, DPN. Thus, painful DPN is not driven by cardiometabolic factors traditionally associated with microvascular disease. Sex differences may therefore play an important role in the pathophysiology of neuropathic pain in diabetes. Future studies need to look at psychosocial, genetic and other factors in the development of painful DPN.
Collapse
Affiliation(s)
- Jackie Elliott
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Lynda Stevens
- Department of Epidemiology and Public Health, University College, London, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Giorgio Cruccu
- Department of Neurological Sciences, La Sapienza University, Rome, Italy
| | - Rajiv A Gandhi
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Peter Kempler
- First Department of Medicine, Semmelweis University, Budapest, Hungary
| | - John H Fuller
- Epidemiology and Public Health, Imperial College of Science, Technology & Medicine, London, UK
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health & Ageing at UCL, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield, UK.
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|
64
|
Ghazisaeidi S, Muley MM, Tu Y, Finn DP, Kolahdouzan M, Pitcher GM, Kim D, Sengar AS, Ramani AK, Brudno M, Salter MW. Conserved transcriptional programming across sex and species after peripheral nerve injury predicts treatments for neuropathic pain. Br J Pharmacol 2023; 180:2822-2836. [PMID: 37336547 DOI: 10.1111/bph.16168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic pain is a devastating problem affecting one in five individuals around the globe, with neuropathic pain the most debilitating and poorly treated type of chronic pain. Advances in transcriptomics have contributed to cataloguing diverse cellular pathways and transcriptomic alterations in response to peripheral nerve injury but have focused on phenomenology and classifying transcriptomic responses. EXPERIMENTAL APPROACH To identifying new types of pain-relieving agents, we compared transcriptional reprogramming changes in the dorsal spinal cord after peripheral nerve injury cross-sex and cross-species, and imputed commonalities, as well as differences in cellular pathways and gene regulation. KEY RESULTS We identified 93 transcripts in the dorsal horn that were increased by peripheral nerve injury in male and female mice and rats. Following gene ontology and transcription factor analyses, we constructed a pain interactome for the proteins encoded by the differentially expressed genes, discovering new, conserved signalling nodes. We investigated the interactome with the Drug-Gene database to predict FDA-approved medications that may modulate key nodes within the network. The top hit from the analysis was fostamatinib, the molecular target of which is the non-receptor spleen associated tyrosine kinase (Syk), which our analysis had identified as a key node in the interactome. We found that intrathecally administrating the active metabolite of fostamatinib, R406 and another Syk inhibitor P505-15, significantly reversed pain hypersensitivity in both sexes. CONCLUSIONS AND IMPLICATIONS Thus, we have identified and shown the efficacy of an agent that could not have been previously predicted to have analgesic properties.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - YuShan Tu
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Centre for Pain Research, University of Galway, Galway, Ireland
| | - Mahshad Kolahdouzan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Graham M Pitcher
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Doyeon Kim
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ameet S Sengar
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Michael Brudno
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Techna Institute, University Health Network, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Michael W Salter
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
65
|
Zhou WM, Lei ZY, Shi YQ, Gong CY, Kai Z, Wei N, Wang LN, Zhang CJ, Zhang HH. Intrathecal Injection of Botulinum Toxin Type A has an Analgesic Effect in Male Rats CCI Model by Inhibiting the Activation of Spinal P2X4R. Neurochem Res 2023; 48:3099-3112. [PMID: 37336823 DOI: 10.1007/s11064-023-03969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Purinergic receptor P2X4 (P2X4R) plays an essential role in neuropathic pain. However, the specific mechanism needs to be clarified. Botulinum toxin type A is a neurotoxin produced by Clostridium botulinum type A. This study found that intrathecal injection of botulinum toxin type A produced an excellent analgesic effect in a rat model of chronic constriction sciatic nerve injury and inhibited the activation of P2X4R, microglia, and astrocytes. The administration of a P2X4R activator can up-regulate the expression of P2X4R and eliminate the analgesic effect of intrathecal injection of botulinum toxin type A. In addition, we found that microglia and astrocytes in the spinal cord of rats injected with botulinum toxin type A were reactivated after administration of the P2X4R activator. Our results suggest that intrathecal injection of botulinum toxin type A has an analgesic effect in a rat model of chronic constriction sciatic nerve injury by inhibiting the activation of P2X4R in the spinal cord.
Collapse
Affiliation(s)
- Wen-Ming Zhou
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Ze-Yuan Lei
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Chao-Yang Gong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Zhang Kai
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Nan Wei
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Lin-Na Wang
- Lanzhou Biotechnique Development Co., LTD, Lanzhou, 730000, People's Republic of China
| | - Cheng-Jun Zhang
- Lanzhou Biotechnique Development Co., LTD, Lanzhou, 730000, People's Republic of China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
66
|
Montigné E, Balayssac D. Exploring Cholinergic Compounds for Peripheral Neuropathic Pain Management: A Comprehensive Scoping Review of Rodent Model Studies. Pharmaceuticals (Basel) 2023; 16:1363. [PMID: 37895835 PMCID: PMC10609809 DOI: 10.3390/ph16101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain affects about 7-8% of the population, and its management still poses challenges with unmet needs. Over the past decades, researchers have explored the cholinergic system (muscarinic and nicotinic acetylcholine receptors: mAChR and nAChR) and compounds targeting these receptors as potential analgesics for neuropathic pain management. This scoping review aims to provide an overview of studies on peripheral neuropathic pain (PNP) in rodent models, exploring compounds targeting cholinergic neurotransmission. The inclusion criteria were original articles on PNP in rodent models that explored the use of compounds directly targeting cholinergic neurotransmission and reported results of nociceptive behavioral assays. The literature search was performed in the PubMed and Web of Science databases (1 January 2000-22 April 2023). The selection process yielded 82 publications, encompassing 62 compounds. The most studied compounds were agonists of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR, along with those increasing acetylcholine and targeting mAChRs. Studies mainly reported antinociceptive effects in traumatic PNP models, and to a lesser extent, chemotherapy-induced neuropathy or diabetic models. These preclinical studies underscore the considerable potential of cholinergic compounds in the management of PNP, warranting the initiation of clinical trials.
Collapse
Affiliation(s)
- Edouard Montigné
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - David Balayssac
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
67
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
68
|
Abbasi Z, Baluchnejadmojarad T, Roghani M, Susanabadi A, Farbin M, Mehrabi S. Acamprosate effect on neuropathic pain in rats: With emphasis on the role of ERK/MAPK pathway and SCN9A sodium channel. J Chem Neuroanat 2023; 131:102282. [PMID: 37142001 DOI: 10.1016/j.jchemneu.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Neuropathic pain is a chronic pain owing to nerve damage or diseases of the central nervous system (CNS). The expression of SCN9A, which encodes the Nav1.7 voltage-gated sodium channel and ERK have been found to change significantly in many cases of neuropathic pain. Here, we investigated effects of acamprosate on neuropathic pain, taking into account the crucial roles of SCN9A, the ERK signaling pathway, and inflammatory markers in a rat model of chronic constriction injury (CCI). METHODS Acamprosate (300 mg/kg) was injected intraperitoneally (i.p.) for 14 days. The tail-immersion, acetone, and formalin tests were used to determine behavioral tests such as heat allodynia, cold allodynia, and chemical hyperalgesia, respectively. Lumbar spinal cord was extracted and processed for Nissl staining. The amount of spinal SCN9A expression and ERK phosphorylation were examined using ELISA assay. RESULTS The expression of SCN9A, ERK, inflammatory cytokines (IL-6 and TNF-α), allodynia and hyperalgesia significantly increased on days 7 and 14 following CCI. The treatment not only reduced neuropathic pain but also blocked CCI's effects on SCN9A upregulation and ERK phosphorylation. CONCLUSION This research demonstrated that acamprosate reduces the neuropathic pain induced by CCI of the sciatic nerve in rats by preventing cell loss, inhibiting spinal SCN9A expression, ERK phosphorylation, and inflammatory cytokines, suggesting potential therapeutic implications of acamprosate administration for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zeinab Abbasi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tourandokht Baluchnejadmojarad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Alireza Susanabadi
- Department of Anesthesia and pain medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mitra Farbin
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
69
|
Gianò M, Franco C, Castrezzati S, Rezzani R. Involvement of Oxidative Stress and Nutrition in the Anatomy of Orofacial Pain. Int J Mol Sci 2023; 24:13128. [PMID: 37685933 PMCID: PMC10487620 DOI: 10.3390/ijms241713128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Pain is a very important problem of our existence, and the attempt to understand it is one the oldest challenges in the history of medicine. In this review, we summarize what has been known about pain, its pathophysiology, and neuronal transmission. We focus on orofacial pain and its classification and features, knowing that is sometimes purely subjective and not well defined. We consider the physiology of orofacial pain, evaluating the findings on the main neurotransmitters; in particular, we describe the roles of glutamate as approximately 30-80% of total peripheric neurons associated with the trigeminal ganglia are glutamatergic. Moreover, we describe the important role of oxidative stress and its association with inflammation in the etiogenesis and modulation of pain in orofacial regions. We also explore the warning and protective function of orofacial pain and the possible action of antioxidant molecules, such as melatonin, and the potential influence of nutrition and diet on its pathophysiology. Hopefully, this will provide a solid background for future studies that would allow better treatment of noxious stimuli and for opening new avenues in the management of pain.
Collapse
Affiliation(s)
- Marzia Gianò
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Stefania Castrezzati
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
70
|
Duff IT, Krolick KN, Mahmoud HM, Chidambaran V. Current Evidence for Biological Biomarkers and Mechanisms Underlying Acute to Chronic Pain Transition across the Pediatric Age Spectrum. J Clin Med 2023; 12:5176. [PMID: 37629218 PMCID: PMC10455285 DOI: 10.3390/jcm12165176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic pain is highly prevalent in the pediatric population. Many factors are involved in the transition from acute to chronic pain. Currently, there are conceptual models proposed, but they lack a mechanistically sound integrated theory considering the stages of child development. Objective biomarkers are critically needed for the diagnosis, risk stratification, and prognosis of the pathological stages of pain chronification. In this article, we summarize the current evidence on mechanisms and biomarkers of acute to chronic pain transitions in infants and children through the developmental lens. The goal is to identify gaps and outline future directions for basic and clinical research toward a developmentally informed theory of pain chronification in the pediatric population. At the outset, the importance of objective biomarkers for chronification of pain in children is outlined, followed by a summary of the current evidence on the mechanisms of acute to chronic pain transition in adults, in order to contrast with the developmental mechanisms of pain chronification in the pediatric population. Evidence is presented to show that chronic pain may have its origin from insults early in life, which prime the child for the development of chronic pain in later life. Furthermore, available genetic, epigenetic, psychophysical, electrophysiological, neuroimaging, neuroimmune, and sex mechanisms are described in infants and older children. In conclusion, future directions are discussed with a focus on research gaps, translational and clinical implications. Utilization of developmental mechanisms framework to inform clinical decision-making and strategies for prevention and management of acute to chronic pain transitions in children, is highlighted.
Collapse
Affiliation(s)
- Irina T. Duff
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Kristen N. Krolick
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| | - Hana Mohamed Mahmoud
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| |
Collapse
|
71
|
Barcelon E, Chung S, Lee J, Lee SJ. Sexual Dimorphism in the Mechanism of Pain Central Sensitization. Cells 2023; 12:2028. [PMID: 37626838 PMCID: PMC10453375 DOI: 10.3390/cells12162028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
It has long been recognized that men and women have different degrees of susceptibility to chronic pain. Greater recognition of the sexual dimorphism in chronic pain has resulted in increasing numbers of both clinical and preclinical studies that have identified factors and mechanisms underlying sex differences in pain sensitization. Here, we review sexually dimorphic pain phenotypes in various research animal models and factors involved in the sex difference in pain phenotypes. We further discuss putative mechanisms for the sexual dimorphism in pain sensitization, which involves sex hormones, spinal cord microglia, and peripheral immune cells. Elucidating the sexually dimorphic mechanism of pain sensitization may provide important clinical implications and aid the development of sex-specific therapeutic strategies to treat chronic pain.
Collapse
Affiliation(s)
- Ellane Barcelon
- Department of Physiology and Neuroscience, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (E.B.); (S.C.); (J.L.)
| | - Seohyun Chung
- Department of Physiology and Neuroscience, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (E.B.); (S.C.); (J.L.)
| | - Jaesung Lee
- Department of Physiology and Neuroscience, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (E.B.); (S.C.); (J.L.)
- Department of Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (E.B.); (S.C.); (J.L.)
- Department of Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
72
|
Vila-Pueyo M, Gliga O, Gallardo VJ, Pozo-Rosich P. The Role of Glial Cells in Different Phases of Migraine: Lessons from Preclinical Studies. Int J Mol Sci 2023; 24:12553. [PMID: 37628733 PMCID: PMC10454125 DOI: 10.3390/ijms241612553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a complex and debilitating neurological disease that affects 15% of the population worldwide. It is defined by the presence of recurrent severe attacks of disabling headache accompanied by other debilitating neurological symptoms. Important advancements have linked the trigeminovascular system and the neuropeptide calcitonin gene-related peptide to migraine pathophysiology, but the mechanisms underlying its pathogenesis and chronification remain unknown. Glial cells are essential for the correct development and functioning of the nervous system and, due to its implication in neurological diseases, have been hypothesised to have a role in migraine. Here we provide a narrative review of the role of glia in different phases of migraine through the analysis of preclinical studies. Current evidence shows that astrocytes and microglia are involved in the initiation and propagation of cortical spreading depolarization, the neurophysiological correlate of migraine aura. Furthermore, satellite glial cells within the trigeminal ganglia are implicated in the initiation and maintenance of orofacial pain, suggesting a role in the headache phase of migraine. Moreover, microglia in the trigeminocervical complex are involved in central sensitization, suggesting a role in chronic migraine. Taken altogether, glial cells have emerged as key players in migraine pathogenesis and chronification and future therapeutic strategies could be focused on targeting them to reduce the burden of migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Otilia Gliga
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
- Headache Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
73
|
Zhang ZL, Wang ZT, Shi J, Pu XP, Zhai SD. Tetrandrine attenuates SNI-induced mechanical allodynia by inhibiting spinal CKLF1. Neuropharmacology 2023:109673. [PMID: 37517461 DOI: 10.1016/j.neuropharm.2023.109673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Neuropathic pain (NP) is a prevalent clinical problem for which satisfactory treatment options are unavailable. Tetrandrine (TET), a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra S. Moore, possesses anti-inflammatory and immune-modulatory properties. Chemokine-like factor 1 (CKLF1) is known to play a crucial role in both peripheral and central inflammatory processes. This study aimed to investigate the potential anti-NP effects of TET and the involvement of CKLF1 in the action of TET. A male C57BL/6J mice model of NP caused by spared nerve injury (SNI) was established and mechanical withdrawal thresholds were measured using von Frey filaments. The results showed that TET improved mechanical allodynia in SNI mice and the propofol-induced sleep assay demonstrated that the TET group did not exhibit central inhibition, while the pregabalin (PGB) group showed significant central inhibition. Western blotting and immunofluorescence staining showed that TET significantly inhibited spinal protein expression levels of CKLF1, p-NF-κB/NF-κB, p-IKK/IKK, pro-inflammatory cytokines IL-1β and TNF-α, and increased protein expression levels of the anti-inflammatory cytokine IL-10, while inhibiting the expression levels of microglia and astrocyte markers IBA-1 and GFAP of SNI mice. Moreover, immunofluorescence double-labeling results revealed that CKLF1 was predominantly colocalized with microglia of the spinal cord (SC) in SNI mice. C19 (an antagonism peptide of CKLF1) alleviated SNI-induced mechanical pain hypersensitivity, while C27 (an analog peptide of CKLF1) induced mechanical allodynia in normal mice. TET significantly attenuated mechanical allodynia induced by C27 in mice. TET may effectively alleviate NP by reducing neuroinflammation and decreasing CKLF1.
Collapse
Affiliation(s)
- Zhi-Ling Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Zhi-Tong Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Suo-Di Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
74
|
Rangel-Galván M, Rangel-Galván V, Rangel-Huerta A. T-type calcium channel modulation by hydrogen sulfide in neuropathic pain conditions. Front Pharmacol 2023; 14:1212800. [PMID: 37529702 PMCID: PMC10387653 DOI: 10.3389/fphar.2023.1212800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
Neuropathic pain can appear as a direct or indirect nerve damage lesion or disease that affects the somatosensory nervous system. If the neurons are damaged or indirectly stimulated, immune cells contribute significantly to inflammatory and neuropathic pain. After nerve injury, peripheral macrophages/spinal microglia accumulate around damaged neurons, producing endogenous hydrogen sulfide (H2S) through the cystathionine-γ-lyase (CSE) enzyme. H2S has a pronociceptive modulation on the Cav3.2 subtype, the predominant Cav3 isoform involved in pain processes. The present review provides relevant information about H2S modulation on the Cav3.2 T-type channels in neuropathic pain conditions. We have discussed that the dual effect of H2S on T-type channels is concentration-dependent, that is, an inhibitory effect is seen at low concentrations of 10 µM and an augmentation effect on T-current at 100 µM. The modulation mechanism of the Cav3.2 channel by H2S involves the direct participation of the redox/Zn2+ affinity site located in the His191 in the extracellular loop of domain I of the channel, involving a group of extracellular cysteines, comprising C114, C123, C128, and C1333, that can modify the local redox environment. The indirect interaction pathways involve the regulation of the Cav3.2 channel through cytokines, kinases, and post-translational regulators of channel expression. The findings conclude that the CSE/H2S/Cav3.2 pathway could be a promising therapeutic target for neuropathic pain disorders.
Collapse
Affiliation(s)
- Maricruz Rangel-Galván
- Biothecnology Department, Metropolitan Polytechnic University of Puebla, Puebla, Puebla, Mexico
| | - Violeta Rangel-Galván
- Nursing and Physiotherapy Department, University of Professional Development, Tijuana, Baja California, Mexico
| | - Alejandro Rangel-Huerta
- Faculty of Computer Science, Meritorious Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
75
|
Mokhtar N, Doly S, Courteix C. Diabetic Neuropathic Pain and Serotonin: What Is New in the Last 15 Years? Biomedicines 2023; 11:1924. [PMID: 37509563 PMCID: PMC10377435 DOI: 10.3390/biomedicines11071924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is involved in numerous physiological functions and plays a key role in pain modulation including neuropathic pain. Diabetic neuropathy is a common complication of diabetes mellitus often accompanied by chronic neuropathic pain. Animal models of diabetes offer relevant tools for studying the pathophysiological mechanisms and pharmacological sensitivity of diabetic neuropathic pain and for identifying new therapeutic targets. In this review, we report data from preclinical work published over the last 15 years on the analgesic activity of drugs acting on the serotonergic system, such as serotonin and noradrenaline reuptake inhibitor (SNRI) antidepressants, and on the involvement of certain serotonin receptors-in particular 5-HT1A, 5-HT2A/2c and 5-HT6 receptors-in rodent models of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Nazarine Mokhtar
- NEURO-DOL, INSERM (Institut National de la Santé et de la Recherche Médicale), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Stephane Doly
- NEURO-DOL, INSERM (Institut National de la Santé et de la Recherche Médicale), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Christine Courteix
- NEURO-DOL, INSERM (Institut National de la Santé et de la Recherche Médicale), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
76
|
Tsuda M, Masuda T, Kohno K. Microglial diversity in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00124-8. [PMID: 37244781 DOI: 10.1016/j.tins.2023.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Microglia play pivotal roles in controlling CNS functions in diverse physiological and pathological contexts, including neuropathic pain, a chronic pain condition caused by lesions or diseases of the somatosensory nervous system. In this review article, we summarize evidence primarily from basic research on the role of microglia in the development and remission of neuropathic pain. The identification of a subset of microglia that emerged after pain development and that was necessary for remission of neuropathic pain highlights the highly divergent and dynamic nature of microglia in the course of neuropathic pain. Understanding microglial diversity in terms of gene expression, physiological states, and functional roles could lead to new strategies that aid in the diagnosis and management of neuropathic pain, and that may not have been anticipated from the viewpoint of targeting all microglia uniformly.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Kyushu University Institute for Advanced Study, Fukuoka, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keita Kohno
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
77
|
De Sario GD, Haider CR, Maita KC, Torres-Guzman RA, Emam OS, Avila FR, Garcia JP, Borna S, McLeod CJ, Bruce CJ, Carter RE, Forte AJ. Using AI to Detect Pain through Facial Expressions: A Review. Bioengineering (Basel) 2023; 10:548. [PMID: 37237618 PMCID: PMC10215219 DOI: 10.3390/bioengineering10050548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Pain assessment is a complex task largely dependent on the patient's self-report. Artificial intelligence (AI) has emerged as a promising tool for automating and objectifying pain assessment through the identification of pain-related facial expressions. However, the capabilities and potential of AI in clinical settings are still largely unknown to many medical professionals. In this literature review, we present a conceptual understanding of the application of AI to detect pain through facial expressions. We provide an overview of the current state of the art as well as the technical foundations of AI/ML techniques used in pain detection. We highlight the ethical challenges and the limitations associated with the use of AI in pain detection, such as the scarcity of databases, confounding factors, and medical conditions that affect the shape and mobility of the face. The review also highlights the potential impact of AI on pain assessment in clinical practice and lays the groundwork for further study in this area.
Collapse
Affiliation(s)
| | - Clifton R. Haider
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Karla C. Maita
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Omar S. Emam
- Division of AI in Health Sciences, University of Louisville, Louisville, KY 40292, USA
| | | | - John P. Garcia
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sahar Borna
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Charles J. Bruce
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rickey E. Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Antonio J. Forte
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
78
|
Alshehri FS. Tapentadol: A Review of Experimental Pharmacology Studies, Clinical Trials, and Recent Findings. Drug Des Devel Ther 2023; 17:851-861. [PMID: 36974332 PMCID: PMC10039632 DOI: 10.2147/dddt.s402362] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Tapentadol is an analgesic compound that acts centrally to attenuate pain. Previous studies have shown that tapentadol has dual mechanisms of action as a mu-opioid receptor agonist and noradrenaline re-uptake inhibition. Therefore, tapentadol provides a great advantage over classic opioids in pain management from nociceptive to neuropathic. Cumulative evidence from in vitro data suggests that tapentadol effect of norepinephrine re-uptake could be a new target that overcomes other classic opioids in chronic neuropathic pain. Compared to tramadol and other opioids, tapentadol is associated with fewer adverse effects than tramadol. Tapentadol is a new alternative to treat acute, chronic, and neuropathic pain. Thus, this review article was focused on understanding the studies that led to the development of tapentadol as a novel analgesic drug and its advantages over conventional opioids. Thus, tapentadol is a good alternative with fewer adverse effects and is available for human use.
Collapse
Affiliation(s)
- Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Correspondence: Fahad S Alshehri, Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al‑ Qura University, Makkah, 24382, Saudi Arabia, Email
| |
Collapse
|