51
|
Mirahmadizadeh A, Yaghobi R, Soleimanian S. Viral ecosystem: An epidemiological hypothesis. Rev Med Virol 2019; 29:e2053. [PMID: 31206234 DOI: 10.1002/rmv.2053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
Viruses are incomplete elements that require other organisms to survive and multiply, hence constantly mutate during its evolution, resulting from adaptations in response to environmental changes such as the immune response of the host. In this line, they are responsible for many diseases, but today, there is evidence that viruses have many benefits and even have a unique ecosystem to control the different species or strain of themselves. While highlighting the benefits of some viruses and the undesirable effects of their eradication, the present review expresses the idea of the viral ecosystem and its importance, which has been supported in several studies. There are countless articles about virus-related illnesses and the undesirable effects of therapeutic interventions in eliminating the less pathogenic viruses or manipulating viral ecosystems. By simulating the viral ecosystem with an ecosystem found among the snakes, it can be assumed that the viruses have concentric zones, which its inner zone includes the most dangerous viruses for humans and each zone is surrounded and controlled by an outer zone of less dangerous viruses for humans. The outermost zone consists of viruses that are least dangerous to humans such as common cold that protect humans and possibly other living organisms against more dangerous viruses in inner zone, causing the activation of immune system by playing a unique and pivotal role in the ecosystems. Therefore, manipulating the ecosystem and disrupting the balance might have epidemics and harmful consequences for the plants, animals, and human.
Collapse
Affiliation(s)
- Alireza Mirahmadizadeh
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
52
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
53
|
Roossinck MJ. Evolutionary and ecological links between plant and fungal viruses. THE NEW PHYTOLOGIST 2019; 221:86-92. [PMID: 30084143 DOI: 10.1111/nph.15364] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 86 I. Introduction 86 II. Lineages shared by plant and fungal viruses 87 III. Virus transmission between plants and fungi 90 IV. Additional plant virus families identified in fungi by metagenomics 91 Acknowledgements 91 References 91 SUMMARY: Plants and microorganisms have been interacting in both positive and negative ways for millions of years. They are also frequently infected with viruses that can have positive or negative impacts. A majority of virus families with members that infect fungi have counterparts that infect plants, and in some cases the phylogenetic analyses of these virus families indicate transmission between the plant and fungal kingdoms. These similarities reflect the host relationships; fungi are evolutionarily more closely related to animals than to plants but share very few viral signatures with animal viruses. The details of several of these interactions are described, and the evolutionary implications of viral cross-kingdom interactions and horizontal gene transfer are proposed.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
54
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
55
|
Obbard DJ. Expansion of the metazoan virosphere: progress, pitfalls, and prospects. Curr Opin Virol 2018; 31:17-23. [PMID: 30237139 DOI: 10.1016/j.coviro.2018.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/15/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
Metagenomic sequencing has led to a recent and rapid expansion of the animal virome. It has uncovered a multitude of new virus lineages from under-sampled host groups, including many that break up long branches in the virus tree, and many that display unexpected genome sizes and structures. Although there are challenges to inferring the existence of a virus from a `virus-like sequence', in the absence of an isolate the analysis of nucleic acid (including small RNAs) and sequence data can provide considerable confidence. As a consequence, this period of molecular natural history is helping to reshape our views of deep virus evolution.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| |
Collapse
|
56
|
Benoit RM. Botulinum Neurotoxin Diversity from a Gene-Centered View. Toxins (Basel) 2018; 10:E310. [PMID: 30071587 PMCID: PMC6115791 DOI: 10.3390/toxins10080310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) rank amongst the most potent toxins known. The factors responsible for the emergence of the many known and yet unknown BoNT variants remain elusive. It also remains unclear why anaerobic bacteria that are widely distributed in our environment and normally do not pose a threat to humans, produce such deadly toxins. Even the possibility of accidental toxicity to humans has not been excluded. Here, I review the notion that BoNTs may have specifically evolved to target vertebrates. Considering the extremely complex molecular architecture of the toxins, which enables them to reach the bloodstream, to recognize and enter neurons, and to block neurotransmitter release, it seems highly unlikely that BoNT toxicity to vertebrates is a coincidence. The carcass⁻maggot cycle provides a plausible explanation for a natural role of the toxins: to enable mass reproduction of bacteria, spores, and toxins, using toxin-unaffected invertebrates, such as fly maggots, as the vectors. There is no clear correlation between toxigenicity and a selective advantage of clostridia in their natural habitat. Possibly, non-toxigenic strains profit from carcasses resulting from the action of toxigenic strains. Alternatively, a gene-centered view of toxin evolution would also explain this observation. Toxin-coding mobile genetic elements may have evolved as selfish genes, promoting their own propagation, similar to commensal viruses, using clostridia and other bacteria as the host. Research addressing the role of BoNTs in nature and the origin of toxin variability goes hand in hand with the identification of new toxin variants and the design of improved toxin variants for medical applications. These research directions may also reveal yet unknown natural antidotes against these extremely potent neurotoxins.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen CH-5232, Switzerland.
| |
Collapse
|
57
|
A virus-acquired host cytokine controls systemic aging by antagonizing apoptosis. PLoS Biol 2018; 16:e2005796. [PMID: 30036358 PMCID: PMC6072105 DOI: 10.1371/journal.pbio.2005796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/02/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Aging is characterized by degeneration of unique tissues. However, dissecting the interconnectedness of tissue aging remains a challenge. Here, we employ a muscle-specific DNA damage model in Drosophila to reveal secreted factors that influence systemic aging in distal tissues. Utilizing this model, we uncovered a cytokine—Diedel—that, when secreted from muscle or adipose, can attenuate age-related intestinal tissue degeneration by promoting proliferative homeostasis of stem cells. Diedel is both necessary and sufficient to limit tissue degeneration and regulate lifespan. Secreted homologs of Diedel are also found in viruses, having been acquired from host genomes. Focusing on potential mechanistic overlap between cellular aging and viral-host cell interactions, we found that Diedel is an inhibitor of apoptosis and can act as a systemic rheostat to modulate cell death during aging. These results highlight a key role for secreted antagonists of apoptosis in the systemic coordination of tissue aging. Aging in multicellular organisms is characterized by a progressive decline in the proper function of organs. This deterioration of organ function is a risk factor for many diseases. However, it is unlikely that organs age in isolation, as damage in one organ can presumably impact aging of other organs through either beneficial or detrimental cross-talk. Our work attempts to explore this aspect of aging using fruit flies as a model system. We uncovered that damaged fly muscle can protect against aging in other organs, such as the intestine, through the secretion of a blood-borne factor named Diedel. This blood-borne factor presumably allows damaged organs to communicate with each other during aging. Related factors are also found in certain viruses, which have been hijacked from insect genomes to promote viral spreading during infection. Using this information, we found that viral Diedel inhibits death of infected cells, allowing viruses to spread. Similarly, host (insect) Diedel also blocks cell death in organs during aging, thus limiting deterioration of organ function and extending the organism’s lifespan.
Collapse
|
58
|
Cross ST, Kapuscinski ML, Perino J, Maertens BL, Weger-Lucarelli J, Ebel GD, Stenglein MD. Co-Infection Patterns in Individual Ixodes scapularis Ticks Reveal Associations between Viral, Eukaryotic and Bacterial Microorganisms. Viruses 2018; 10:E388. [PMID: 30037148 PMCID: PMC6071216 DOI: 10.3390/v10070388] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 11/18/2022] Open
Abstract
Ixodes scapularis ticks harbor a variety of microorganisms, including eukaryotes, bacteria and viruses. Some of these can be transmitted to and cause disease in humans and other vertebrates. Others are not pathogenic, but may impact the ability of the tick to harbor and transmit pathogens. A growing number of studies have examined the influence of bacteria on tick vector competence but the influence of the tick virome remains less clear, despite a surge in the discovery of tick-associated viruses. In this study, we performed shotgun RNA sequencing on 112 individual adult I. scapularis collected in Wisconsin, USA. We characterized the abundance, prevalence and co-infection rates of viruses, bacteria and eukaryotic microorganisms. We identified pairs of tick-infecting microorganisms whose observed co-infection rates were higher or lower than would be expected, or whose RNA levels were positively correlated in co-infected ticks. Many of these co-occurrence and correlation relationships involved two bunyaviruses, South Bay virus and blacklegged tick phlebovirus-1. These viruses were also the most prevalent microorganisms in the ticks we sampled, and had the highest average RNA levels. Evidence of associations between microbes included a positive correlation between RNA levels of South Bay virus and Borrelia burgdorferi, the Lyme disease agent. These findings contribute to the rationale for experimental studies on the impact of viruses on tick biology and vector competence.
Collapse
Affiliation(s)
- Shaun T Cross
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Marylee L Kapuscinski
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jacquelyn Perino
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernadette L Maertens
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
59
|
Tarakhovsky A, Prinjha RK. Drawing on disorder: How viruses use histone mimicry to their advantage. J Exp Med 2018; 215:1777-1787. [PMID: 29934321 PMCID: PMC6028506 DOI: 10.1084/jem.20180099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Humans carry trillions of viruses that thrive because of their ability to exploit the host. In this exploitation, viruses promote their own replication by suppressing the host antiviral response and by inducing changes in host biosynthetic processes, often with extremely small genomes of their own. In the review, we discuss the phenomenon of histone mimicry by viral proteins and how this mimicry allows the virus to dial in to the cell's transcriptional processes and establish a cell state that promotes infection. We suggest that histone mimicry is part of a broader viral strategy to use intrinsic protein disorder as a means to overcome the size limitations of its own genome and to maximize its impact on host protein networks. In particular, we discuss how intrinsic protein disorder may enable viral proteins to interfere with phase-separated host protein condensates, including those that contribute to chromatin-mediated control of gene expression.
Collapse
Affiliation(s)
- Alexander Tarakhovsky
- Laboratory of the Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY
| | - Rab K Prinjha
- Epigenetics DPU, Oncology and Immuno-inflammation TA Units, GlaxoSmithKline Medicines Research Centre, Stevenage, England, UK
| |
Collapse
|
60
|
Wang P, Li J, Gong P, Wang W, Ai Y, Zhang X. An OTU deubiquitinating enzyme in Eimeria tenella interacts with Eimeria tenella virus RDRP. Parasit Vectors 2018; 11:74. [PMID: 29386062 PMCID: PMC5793433 DOI: 10.1186/s13071-018-2626-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Background Chicken coccidiosis, a disease caused by seven species of Eimeria (Apicomplexa: Coccidia), inflicts severe economic losses on the poultry industry. Eimeria tenella is the one of the most virulent species pathogenic to chickens. Many parasitic protozoans are parasitised by double-stranded (ds) RNA viruses, and the influence of protozoan viruses on parasitic protozoans has been extensively reported. E. tenella RNA virus 1 (Etv) was identified in E. tenella, and the complete genome sequence of Etv was analysed. Here, we screened Etv-RNA-dependent RNA polymerase (RDRP)-interacting host protein E. tenella ovarian tumour (OTU) protein-like cysteine protease (Et-OTU) using a yeast two-hybrid system with pGBKT7-RDRP plasmid serving as bait. A previous study demonstrated that Et-OTU could regulate the telomerase activity of E. tenella, indicating that Et-OTU affects E. tenella proliferation. However, whether Etv-RDRP affects the molecular biological characteristics of E. tenella by interacting with OTU remains unclear. Results We obtained seven positive clones from the initial screen, and six of the seven preys were identified as false-positives. Finally, we identified an RDRP-associated protein predicted to be an E. tenella OTU protein. A α-galactosidase assay showed that the bait vector did not activate the GAL4 reporter gene, indicating no autoactivation activity from the RDRP bait fusion. Pull-down and co-immunoprecipitation assays verified the interaction between Et-OTU and Etv-RDRP both intracellularly and extracellularly. Additionally, Et-OTU was able to deconjugate K48- and K6-linked di-ubiquitin (di-Ub) chains in vitro but not K63-, K11-, K29-, or K33-linked di-Ub chains. The C239A and H351A mutations eliminated the deubiquitinase (DUB) activity of Et-OTU, whereas the D236A mutation did not. Additionally, when combined with RDRP, the DUB activity of Et-OTU towards K48- and K6-linked chains was significantly enhanced. Conclusion Etv-RDRP interacts with Et-OTU both intracellularly and extracellularly. Etv-RDRP enhances the hydrolysis of Et-OTU to K6- or K48-linked ubiquitin chains. This study lays the foundation for further research on the relationship between E. tenella and Etv.
Collapse
Affiliation(s)
- Pu Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Weirong Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun, 130062, China.
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
61
|
Herath D, Jayasundara D, Ackland D, Saeed I, Tang SL, Halgamuge S. Assessing Species Diversity Using Metavirome Data: Methods and Challenges. Comput Struct Biotechnol J 2017; 15:447-455. [PMID: 29085573 PMCID: PMC5650650 DOI: 10.1016/j.csbj.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Assessing biodiversity is an important step in the study of microbial ecology associated with a given environment. Multiple indices have been used to quantify species diversity, which is a key biodiversity measure. Measuring species diversity of viruses in different environments remains a challenge relative to measuring the diversity of other microbial communities. Metagenomics has played an important role in elucidating viral diversity by conducting metavirome studies; however, metavirome data are of high complexity requiring robust data preprocessing and analysis methods. In this review, existing bioinformatics methods for measuring species diversity using metavirome data are categorised broadly as either sequence similarity-dependent methods or sequence similarity-independent methods. The former includes a comparison of DNA fragments or assemblies generated in the experiment against reference databases for quantifying species diversity, whereas estimates from the latter are independent of the knowledge of existing sequence data. Current methods and tools are discussed in detail, including their applications and limitations. Drawbacks of the state-of-the-art method are demonstrated through results from a simulation. In addition, alternative approaches are proposed to overcome the challenges in estimating species diversity measures using metavirome data.
Collapse
Affiliation(s)
- Damayanthi Herath
- Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
- Department of Computer Engineering, University of Peradeniya, Prof. E. O. E. Pereira Mawatha, Peradeniya, 20400, Sri Lanka
| | - Duleepa Jayasundara
- School of Public Health and Community Medicine, University of New South Wales, Randwick, NSW 2052, Australia
| | - David Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
| | - Isaam Saeed
- Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Nan-Kang, Taipei 11529, Taiwan
| | - Saman Halgamuge
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, ACT, Australia
| |
Collapse
|