51
|
Abstract
UNLABELLED Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously. Surprisingly, these DNA-less cells, termed DLCs, did not lyse immediately and exhibited normal cellular morphology for a period of at least 5 h after DNA loss. This cellular integrity was manifested by their capacity to maintain an intact membrane and membrane potential and cell wall architecture similar to those of wild-type cells. Unlike growing cells that exhibit a dynamic profile of macromolecules, DLCs displayed steady protein and RNA reservoirs. Remarkably, following DLCs by time lapse microscopy revealed that they succeeded in synthesizing proteins, elongating, and dividing, apparently forming de novo Z rings at the midcell position. Taken together, the persistence of key cellular events in DLCs indicates that the information to carry out lengthy processes is harbored within the remaining molecular components. IMPORTANCE Perturbing bacterial growth by the use of antibiotics targeting replication, transcription, or translation has been a subject of study for many years; however, the consequences of a more dramatic event, in which the entire bacterial chromosome is lost, have not been described. Here, we followed the fate of bacterial cells encountering an abrupt loss of their entire genome. Surprisingly, the cells preserved an intact envelope and functioning macromolecules. Furthermore, cells lacking their genome could still elongate and divide hours after the loss of DNA. Our data suggest that the information stored in the transient reservoir of macromolecules is sufficient to carry out complex and lengthy processes even in the absence of the chromosome. Based on our study, the formation of DNA-less bacteria could serve as a novel vaccination strategy, enabling an efficient induction of the immune system without the risk of bacterial propagation within the host.
Collapse
|
52
|
Wang Y, Yan M, Ma R, Ma S. Synthesis and antibacterial activity of novel 4-bromo-1H-indazole derivatives as FtsZ inhibitors. Arch Pharm (Weinheim) 2015; 348:266-74. [PMID: 25773717 DOI: 10.1002/ardp.201400412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 11/09/2022]
Abstract
A series of novel 4-bromo-1H-indazole derivatives as filamentous temperature-sensitive protein Z (FtsZ) inhibitors were designed, synthesized, and assayed for their in vitro antibacterial activity against various phenotypes of Gram-positive and Gram-negative bacteria and their cell division inhibitory activity. The results indicated that this series showed better antibacterial activity against Staphylococcus epidermidis and penicillin-susceptible Streptococcus pyogenes than the other tested strains. Among them, compounds 12 and 18 exhibited 256-fold and 256-fold more potent activity than 3-methoxybenzamide (3-MBA) against penicillin-resistant Staphylococcus aureus, and compound 18 showed 64-fold better activity than 3-MBA but 4-fold weaker activity than ciprofloxacin in the inhibition of S. aureus ATCC29213. Particularly, compound 9 presented the best activity (4 µg/mL) against S. pyogenes PS, being 32-fold, 32-fold, and 2-fold more active than 3-MBA, curcumin, and ciprofloxacin, respectively, but it was four times less active than oxacillin sodium. In addition, some synthesized compounds displayed moderate inhibition of cell division against S. aureus ATCC25923, Escherichia coli ATCC25922, and Pseudomonas aeruginosa ATCC27853, sharing a minimum cell division concentration of 128 µg/mL.
Collapse
Affiliation(s)
- Yi Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | | | | | | |
Collapse
|
53
|
Matsui H, Fukiya S, Kodama-Akaboshi C, Eguchi M, Yamamoto T. Mouse models for assessing the cross-protective efficacy of oral non-typhoidal Salmonella vaccine candidates harbouring in-frame deletions of the ATP-dependent protease lon and other genes. J Med Microbiol 2015; 64:295-302. [PMID: 25589672 DOI: 10.1099/jmm.0.000014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In BALB/c mouse models of Salmonella enterica serovar Typhimurium infection, a single oral immunization with a mutant strain with an insertion of the chloramphenicol resistance gene into the ATP-dependent protease clpP or lon gene decreased the number of salmonellae in each tissue sample 5 days after oral challenge with virulent S. Typhimurium at weeks 26 and 54 post-immunization. These data suggested that an oral immunization with the ClpP- or Lon-disrupted S. Typhimurium strain could provide long-term protection against oral challenge with virulent S. Typhimurium. Accordingly, recombinant oral non-typhoidal Salmonella (NTS) vaccines were constructed by incorporating mutants of both S. Typhimurium and S. enterica serovar Enteritidis harbouring stable in-frame markerless deletions of the clpP-lon-sulA (suppressor of lon), lon-sulA or lon-msbB (acyltransferase) genes. Amongst these orally administered vaccine candidates, those with the lon-sulA gene deletion mutants of S. Typhimurium and S. Enteritidis protected BALB/c and C57BL/6J mice against oral challenge with both virulent S. Typhimurium and virulent S. Enteritidis. Therefore, the in-frame markerless lon-sulA gene deletion mutant of S. Typhimurium or S. Enteritidis could be a promising cross-protective NTS live vaccine candidate for practical use in humans.
Collapse
Affiliation(s)
- Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoru Fukiya
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Chie Kodama-Akaboshi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tomoko Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
54
|
Inhibition of RND-type efflux pumps confers the FtsZ-directed prodrug TXY436 with activity against Gram-negative bacteria. Biochem Pharmacol 2014; 89:321-8. [DOI: 10.1016/j.bcp.2014.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/07/2014] [Accepted: 03/07/2014] [Indexed: 02/03/2023]
|
55
|
Crystal structure of FtsA fromStaphylococcus aureus. FEBS Lett 2014; 588:1879-85. [DOI: 10.1016/j.febslet.2014.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/22/2022]
|
56
|
Haeusser DP, Hoashi M, Weaver A, Brown N, Pan J, Sawitzke JA, Thomason LC, Court DL, Margolin W. The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genet 2014; 10:e1004217. [PMID: 24651041 PMCID: PMC3961180 DOI: 10.1371/journal.pgen.1004217] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA.
Collapse
Affiliation(s)
- Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Marina Hoashi
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Anna Weaver
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Nathan Brown
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James Pan
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James A. Sawitzke
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Lynn C. Thomason
- Frederick National Laboratory for Cancer Research, Leidos Biomedical, Inc., Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Donald L. Court
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
57
|
Park HC, Gedi V, Cho JH, Hyun JW, Lee KJ, Kang J, So B, Yoon MY. Characterization and in vitro inhibition studies of Bacillus anthracis FtsZ: a potential antibacterial target. Appl Biochem Biotechnol 2014; 172:3263-70. [PMID: 24510482 DOI: 10.1007/s12010-014-0752-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
FtsZ is an essential bacterial cell division protein that is an attractive target for the development of antibacterial agents. FtsZ is a homologue of eukaryotic tubulin, has GTPase activity, and forms a ring-type structure to initiate cell division. In this study, the FtsZ of Bacillus anthracis was cloned into a bacterial expression vector and overexpressed into Escherichia coli BL21 (DE3) cells. The overexpressed B. anthracis FtsZ was soluble and purified to homogeneity using Ni-His-tag affinity chromatography. Like other known FtsZs, the recombinant B. anthracis FtsZ also showed GTP-dependent polymerization, which was analyzed using both spectrophotometric and Transmission Electronic Microscopic (TEM) analysis. Using the purified FtsZ, we screened a naturally extracted chemical library to identify potent and novel inhibitors. The screening yielded three chemicals, SA-011, SA-059, and SA-069, that inhibited the in vitro polymerization activity of FtsZ in the micromolar range (IC50 of 55-168 μM). The inhibition potency was significantly comparable with that of berberine, a known potential inhibitor of FtsZ. Understanding the biochemical basis of the effect of these inhibitors on B. anthracis growth would provide a promising path for the development of new antianthracis drugs.
Collapse
Affiliation(s)
- Hae-Chul Park
- Department of Chemistry and Institute of Natural Science, Hanyang University, Seoul, 133-791, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Kaul M, Mark L, Zhang Y, Parhi AK, LaVoie EJ, Pilch DS. Pharmacokinetics and in vivo antistaphylococcal efficacy of TXY541, a 1-methylpiperidine-4-carboxamide prodrug of PC190723. Biochem Pharmacol 2013; 86:1699-707. [PMID: 24148278 DOI: 10.1016/j.bcp.2013.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022]
Abstract
The benzamide derivative PC190723 was among the first of a promising new class of FtsZ-directed antibacterial agents to be identified that exhibit potent antistaphylococcal activity. However, the compound is associated with poor drug-like properties. As part of an ongoing effort to develop FtsZ-targeting antibacterial agents with increased potential for clinical utility, we describe herein the pharmacodynamics, pharmacokinetics, in vivo antistaphylococcal efficacy, and mammalian cytotoxicity of TXY541, a novel 1-methylpiperidine-4-carboxamide prodrug of PC190723. TXY541 was found to be 143-times more soluble than PC190723 in an aqueous acidic vehicle (10mM citrate, pH 2.6) suitable for both oral and intravenous in vivo administration. In staphylococcal growth media, TXY541 converts to PC190723 with a half-life of approximately 8h. In 100% mouse serum, the TXY541-to-PC190723 conversion was much more rapid (with a half-life of approximately 3min), suggesting that the conversion of the prodrug in serum is predominantly enzyme-catalyzed. Pharmacokinetic analysis of both orally and intravenously administered TXY541 in mice yielded a half-life for the PC190723 conversion product of 0.56h and an oral bioavailability of 29.6%. Whether administered orally or intravenously, TXY541 was found to be efficacious in vivo in mouse models of systemic infection with both methicillin-sensitive and methicillin-resistant S. aureus. Toxicological assessment of TXY541 against mammalian cells revealed minimal detectable cytotoxicity. The results presented here highlight TXY541 as a potential therapeutic agent that warrants further pre-clinical development.
Collapse
Affiliation(s)
- Malvika Kaul
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, United States
| | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Ran S, He Z, Liang J. Survival of Enterococcus faecalis during alkaline stress: changes in morphology, ultrastructure, physiochemical properties of the cell wall and specific gene transcripts. Arch Oral Biol 2013; 58:1667-76. [PMID: 24112733 DOI: 10.1016/j.archoralbio.2013.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/19/2013] [Accepted: 08/28/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this investigation was to study the biochemical mechanisms employed by the endodontic pathogen Enterococcus faecalis to survive alkaline environment during biofilm formation. DESIGN E. faecalis ATCC33186 was inoculated in media at pH 7, 9, 10 and 11 for biofilm formation. The morphology and ultrastructure of biofilm cells were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physiochemical properties of the cell wall were investigated by measuring the hydrophobicity and Na(+)K(+)-ATPase and H(+)K(+)-ATPase activity. The expression of stress and virulence genes was quantified by real-time quantitative polymerase chain reaction. RESULTS E. faecalis grown in alkaline medium developed an irregular shape and asymmetrical septation. The activity of Na(+)K(+)-ATPase increased dramatically with rising pH, whereas the activity of H(+)K(+)-ATPase exhibited no increase, except at pH 10. A marked increase in cell surface hydrophobicity was also observed with increased pH and time. In addition, transcription of most of the genes tested increased 2- to 15-fold at pH 9 or 10 compared with pH 7 and increased more than 50-fold at pH 11, which is generally recognised as nearly lethal stress. CONCLUSIONS E. faecalis survival and biofilm formation under alkaline stress was unrelated to H(+)K(+)-ATPase but was correlated with an increase in Na(+)K(+)-ATPase activity and cell-surface hydrophobicity in addition to the up-regulation of genes involved in stress response and biofilm formation. These characteristics may explain why E. faecalis resists alkaline root canal medications.
Collapse
Affiliation(s)
- Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhizaoju Road, Shanghai 200011, China
| | | | | |
Collapse
|
61
|
Almendro-Vedia VG, Monroy F, Cao FJ. Mechanics of constriction during cell division: a variational approach. PLoS One 2013; 8:e69750. [PMID: 23990888 PMCID: PMC3749217 DOI: 10.1371/journal.pone.0069750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of [Formula: see text], we calculate constriction forces in the range [Formula: see text]. The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of [Formula: see text], thus evidencing that cells need a robust mechanism to stabilize constriction at midcell.
Collapse
Affiliation(s)
- Victor G. Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear and Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco J. Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| |
Collapse
|
62
|
Gorelova OA, Baulina OI, Rasmussen U, Koksharova OA. The pleiotropic effects of ftn2 and ftn6 mutations in cyanobacterium Synechococcus sp. PCC 7942: an ultrastructural study. PROTOPLASMA 2013; 250:931-942. [PMID: 23306433 DOI: 10.1007/s00709-012-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/24/2012] [Indexed: 06/01/2023]
Abstract
Two cell division mutants (Ftn2 and Ftn6) of the cyanobacterium Synechococcus sp. PCC 7942 were studied using scanning electron microscopy and transmission electron microscopy methods. This included negative staining and ultrathin section analysis. Different morphological and ultrastructural features of mutant cells were identified. Ftn2 and Ftn6 mutants exhibited particularly elongated cells characterized by significantly changed shape in comparison with the wild type. There was irregular bending, curving, spiralization, and bulges as well as cell branching. Elongated mutant cells were able to initiate cytokinesis simultaneously in several division sites which were localized irregularly along the cell. Damaged rigidity of the cell wall was typical of many cells for both mutants. Thylakoids of mutants showed modified arrangement and ultrastructural organization. Carboxysome-like structures without a shell and/or without accurate polyhedral packing protein particles were often detected in the mutants. However, in the case of Ftn2 and Ftn6, the average number of carboxysomes per section was less than in the wild type by a factor of 4 and 2, respectively. These multiple morphological and ultrastructural changes in mutant cells evinced pleiotropic responses which were induced by mutations in cell division genes ftn2 and ftn6. Ultrastructural abnormalities of Ftn2 and Ftn6 mutants were consistent with differences in their proteomes. These results could support the significance of FTN2 and FTN6 proteins for both cyanobacterial cell division and cellular physiology.
Collapse
Affiliation(s)
- O A Gorelova
- Biological Faculty, Moscow State University, 119992 Moscow, Russia.
| | | | | | | |
Collapse
|
63
|
Tran ENH, Doyle MT, Morona R. LPS unmasking of Shigella flexneri reveals preferential localisation of tagged outer membrane protease IcsP to septa and new poles. PLoS One 2013; 8:e70508. [PMID: 23936222 PMCID: PMC3723647 DOI: 10.1371/journal.pone.0070508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022] Open
Abstract
The Shigella flexneri outer membrane (OM) protease IcsP (SopA) is a member of the enterobacterial Omptin family of proteases which cleaves the polarly localised OM protein IcsA that is essential for Shigella virulence. Unlike IcsA however, the specific localisation of IcsP on the cell surface is unknown. To determine the distribution of IcsP, a haemagglutinin (HA) epitope was inserted into the non-essential IcsP OM loop 5 using Splicing by Overlap Extension (SOE) PCR, and IcsP(HA) was characterised. Quantum Dot (QD) immunofluorescence (IF) surface labelling of IcsP(HA) was then undertaken. Quantitative fluorescence analysis of S. flexneri 2a 2457T treated with and without tunicaymcin to deplete lipopolysaccharide (LPS) O antigen (Oag) showed that IcsP(HA) was asymmetrically distributed on the surface of septating and non-septating cells, and that this distribution was masked by LPS Oag in untreated cells. Double QD IF labelling of IcsP(HA) and IcsA showed that IcsP(HA) preferentially localised to the new pole of non-septating cells and to the septum of septating cells. The localisation of IcsP(HA) in a rough LPS S. flexneri 2457T strain (with no Oag) was also investigated and a similar distribution of IcsP(HA) was observed. Complementation of the rough LPS strain with rmlD resulted in restored LPS Oag chain expression and loss of IcsP(HA) detection, providing further support for LPS Oag masking of surface proteins. Our data presents for the first time the distribution for the Omptin OM protease IcsP, relative to IcsA, and the effect of LPS Oag masking on its detection.
Collapse
Affiliation(s)
- Elizabeth Ngoc Hoa Tran
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Matthew Thomas Doyle
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Renato Morona
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| |
Collapse
|
64
|
Novel expression system for Corynebacterium acetoacidophilum and Escherichia coli based on the T7 RNA polymerase-dependent promoter. Appl Microbiol Biotechnol 2013; 97:7755-66. [PMID: 23624684 DOI: 10.1007/s00253-013-4900-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
The industrially important species of corynebacteria viz. Corynebacterium acetoacidophilum appear to be alternative hosts for recombinant protein production; despite many efforts, a strong promoter-based system in corynebacteria has not been established so far. Described here is a T7 promoter-based expression system which was functional in both gram-positive C. acetoacidophilum and gram-negative Escherichia coli in an external inducer independent manner. This is the very first report of a T7 expression system for Corynebacterium sp. Also, it is a useful addition in the existing T7 expression systems of E. coli.
Collapse
|
65
|
Abstract
The perspective of the cytoskeleton as a feature unique to eukaryotic organisms was overturned when homologs of the eukaryotic cytoskeletal elements were identified in prokaryotes and implicated in major cell functions, including growth, morphogenesis, cell division, DNA partitioning, and cell motility. FtsZ and MreB were the first identified homologs of tubulin and actin, respectively, followed by the discovery of crescentin as an intermediate filament-like protein. In addition, new elements were identified which have no apparent eukaryotic counterparts, such as the deviant Walker A-type ATPases, bactofilins, and several novel elements recently identified in streptomycetes, highlighting the unsuspected complexity of cytostructural components in bacteria. In vivo multidimensional fluorescence microscopy has demonstrated the dynamics of the bacterial intracellular world, and yet we are only starting to understand the role of cytoskeletal elements. Elucidating structure-function relationships remains challenging, because core cytoskeletal protein motifs show remarkable plasticity, with one element often performing various functions and one function being performed by several types of elements. Structural imaging techniques, such as cryo-electron tomography in combination with advanced light microscopy, are providing the missing links and enabling scientists to answer many outstanding questions regarding prokaryotic cellular architecture. Here we review the recent advances made toward understanding the different roles of cytoskeletal proteins in bacteria, with particular emphasis on modern imaging approaches.
Collapse
|
66
|
Zhang Y, Giurleo D, Parhi A, Kaul M, Pilch DS, LaVoie EJ. Substituted 1,6-diphenylnaphthalenes as FtsZ-targeting antibacterial agents. Bioorg Med Chem Lett 2013; 23:2001-6. [PMID: 23481648 DOI: 10.1016/j.bmcl.2013.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/04/2013] [Indexed: 01/25/2023]
Abstract
Bacterial cell division occurs in conjunction with the formation of a cytokinetic Z-ring structure comprised of FtsZ subunits. Agents that disrupt Z-ring formation have the potential, through this unique mechanism, to be effective against several of the newly emerging multidrug-resistant strains of infectious bacteria. Several 1-phenylbenzo[c]phenanthridines exhibit notable antibacterial activity. Based upon their structural similarity to these compounds, a distinct series of substituted 1,6-diphenylnaphthalenes were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis. In addition, the effect of select 1,6-diphenylnaphthalenes on the polymerization dynamics of S. aureus FtsZ and mammalian β-tubulin was also assessed. The presence of a basic functional group or a quaternary ammonium substituent on the 6-phenylnaphthalene was required for significant antibacterial activity. Diphenylnaphthalene derivatives that were active as antibiotics, did exert a pronounced effect on bacterial FtsZ polymerization and do not appear to cross-react with mammalian tubulin to any significant degree.
Collapse
|
67
|
Basak I, Møller SG. Emerging facets of plastid division regulation. PLANTA 2013; 237:389-98. [PMID: 22965912 DOI: 10.1007/s00425-012-1743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/19/2012] [Indexed: 05/08/2023]
Abstract
Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process.
Collapse
Affiliation(s)
- Indranil Basak
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, NY 11439, USA
| | | |
Collapse
|
68
|
Dow CE, Rodger A, Roper DI, van den Berg HA. A model of membrane contraction predicting initiation and completion of bacterial cell division. Integr Biol (Camb) 2013; 5:778-95. [DOI: 10.1039/c3ib20273a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Lederer FL, Günther TJ, Weinert U, Raff J, Pollmann K. Development of functionalised polyelectrolyte capsules using filamentous Escherichia coli cells. Microb Cell Fact 2012; 11:163. [PMID: 23259586 PMCID: PMC3546914 DOI: 10.1186/1475-2859-11-163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/19/2012] [Indexed: 12/03/2022] Open
Abstract
Background Escherichia coli is one of the best studied microorganisms and finds multiple applications especially as tool in the heterologous production of interesting proteins of other organisms. The heterologous expression of special surface (S-) layer proteins caused the formation of extremely long E. coli cells which leave transparent tubes when they divide into single E. coli cells. Such natural structures are of high value as bio-templates for the development of bio-inorganic composites for many applications. In this study we used genetically modified filamentous Escherichia coli cells as template for the design of polyelectrolyte tubes that can be used as carrier for functional molecules or particles. Diversity of structures of biogenic materials has the potential to be used to construct inorganic or polymeric superior hybrid materials that reflect the form of the bio-template. Such bio-inspired materials are of great interest in diverse scientific fields like Biology, Chemistry and Material Science and can find application for the construction of functional materials or the bio-inspired synthesis of inorganic nanoparticles. Results Genetically modified filamentous E. coli cells were fixed in 2% glutaraldehyde and coated with alternating six layers of the polyanion polyelectrolyte poly(sodium-4styrenesulfonate) (PSS) and polycation polyelectrolyte poly(allylamine-hydrochloride) (PAH). Afterwards we dissolved the E. coli cells with 1.2% sodium hypochlorite, thus obtaining hollow polyelectrolyte tubes of 0.7 μm in diameter and 5–50 μm in length. For functionalisation the polyelectrolyte tubes were coated with S-layer protein polymers followed by metallisation with Pd(0) particles. These assemblies were analysed with light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. Conclusion The thus constructed new material offers possibilities for diverse applications like novel catalysts or metal nanowires for electrical devices. The novelty of this work is the use of filamentous E. coli templates and the use of S-layer proteins in a new material construct.
Collapse
Affiliation(s)
- Franziska L Lederer
- Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01314, Dresden, Germany.
| | | | | | | | | |
Collapse
|
70
|
Pieraccini S, Rendine S, Jobichen C, Domadia P, Sivaraman J, Francescato P, Speranza G, Sironi M. Computer aided design of FtsZ targeting oligopeptides †. RSC Adv 2012; 3:1739-1743. [PMID: 30405903 DOI: 10.1039/c2ra21886k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FtsZ is a protein involved in the bacterial division process and is thus an emerging target for antibacterial drugs. The network of interactions between FtsZ monomers necessary for exploitation of its biological function are studied here with molecular dynamics and free energy calculations. The results obtained led to the design of FtsZ targeting peptides which exhibited activity against the function of FtsZ in vitro.
Collapse
Affiliation(s)
- Stefano Pieraccini
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.,Istituto di Scienze e tecnologie molecolari del CNR (CNR-ISTM), Via Golgi 19, 20133, Milano, Italy. ;
| | - Stefano Rendine
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Chacko Jobichen
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Prerna Domadia
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - J Sivaraman
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Pierangelo Francescato
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Giovanna Speranza
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.,Istituto di Scienze e tecnologie molecolari del CNR (CNR-ISTM), Via Golgi 19, 20133, Milano, Italy. ;
| | - Maurizio Sironi
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.,Istituto di Scienze e tecnologie molecolari del CNR (CNR-ISTM), Via Golgi 19, 20133, Milano, Italy. ;
| |
Collapse
|
71
|
Antimicrobial activity of various 4- and 5-substituted 1-phenylnaphthalenes. Eur J Med Chem 2012; 60:395-409. [PMID: 23314053 DOI: 10.1016/j.ejmech.2012.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/27/2022]
Abstract
Bacterial cell division occurs in conjunction with the formation of a cytokinetic Z-ring structure comprised of FtsZ subunits. Agents that can disrupt Z-ring formation have the potential, through this unique mechanism, to be effective against several of the newly emerging multi-drug resistant strains of infectious bacteria. 1- and 12-Aryl substituted benzo[c]phenanthridines have been identified as antibacterial agents that could exert their activity by disruption of Z-ring formation. Substituted 4- and 5-amino-1-phenylnaphthalenes represent substructures within the pharmacophore of these benzo[c]phenanthridines. Several 4- and 5-substituted 1-phenylnaphthalenes were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis. The impact of select compounds on the polymerization dynamics of S. aureus FtsZ was also assessed.
Collapse
|
72
|
Kelley C, Zhang Y, Parhi A, Kaul M, Pilch DS, LaVoie EJ. 3-Phenyl substituted 6,7-dimethoxyisoquinoline derivatives as FtsZ-targeting antibacterial agents. Bioorg Med Chem 2012; 20:7012-29. [PMID: 23127490 PMCID: PMC3947851 DOI: 10.1016/j.bmc.2012.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/01/2012] [Accepted: 10/10/2012] [Indexed: 11/30/2022]
Abstract
The emergence of multidrug-resistant bacteria has created an urgent need for antibiotics with a novel mechanism of action. The bacterial cell division protein FtsZ is an attractive target for the development of novel antibiotics. The benzo[c]phenanthridinium sanguinarine and the dibenzo[a,g]quinolizin-7-ium berberine are two structurally similar plant alkaloids that alter FtsZ function. The presence of a hydrophobic functionality at either the 1-position of 5-methylbenzo[c]phenanthridinium derivatives or the 2-position of dibenzo[a,g]quinolizin-7-ium derivatives is associated with significantly enhanced antibacterial activity. 3-Phenylisoquinoline represents a subunit within the ring-systems of both of these alkaloids. Several 3-phenylisoquinolines and 3-phenylisoquinolinium derivatives have been synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis, including multidrug-resistant strains of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). A number of derivatives were found to have activity against both MRSA and VRE. The binding of select compounds to S. aureus FtsZ (SaFtsZ) was demonstrated and characterized using fluorescence spectroscopy. In addition, the compounds were shown to act as stabilizers of SaFtsZ polymers and concomitant inhibitors of SaFtsZ GTPase activity. Toxicological assessment of select compounds revealed minimal cross-reaction mammalian β-tubulin as well as little or no human cytotoxicity.
Collapse
Affiliation(s)
- Cody Kelley
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | | - Ajit Parhi
- TAXIS Pharmaceuticals Inc., North Brunswick, NJ 08902, USA
| | - Malvika Kaul
- Department of Pharmacology, The University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Daniel S. Pilch
- Department of Pharmacology, The University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Edmond J. LaVoie
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
73
|
Papanastasiou M, Orfanoudaki G, Koukaki M, Kountourakis N, Sardis MF, Aivaliotis M, Karamanou S, Economou A. The Escherichia coli peripheral inner membrane proteome. Mol Cell Proteomics 2012; 12:599-610. [PMID: 23230279 DOI: 10.1074/mcp.m112.024711] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher.
Collapse
|
74
|
Parhi A, Lu S, Kelley C, Kaul M, Pilch DS, LaVoie EJ. Antibacterial activity of substituted dibenzo[a,g]quinolizin-7-ium derivatives. Bioorg Med Chem Lett 2012; 22:6962-6. [PMID: 23058886 PMCID: PMC3947829 DOI: 10.1016/j.bmcl.2012.08.123] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/20/2012] [Accepted: 08/28/2012] [Indexed: 02/03/2023]
Abstract
Berberine is a substituted dibenzo[a,g]quinolizin-7-ium derivative whose modest antibiotic activity is derived from its disruptive impact on the function of the essential bacterial cell division protein FtsZ. The present study reveals that the presence of a biphenyl substituent at either the 2- or 12-position of structurally-related dibenzo[a,g]quinolizin-7-ium derivatives significantly enhances antibacterial potency versus Staphylococcus aureus and Enterococcus faecalis. Studies with purified S. aureus FtsZ demonstrate that both 2- and 12-biphenyl dibenzo[a,g]quinolizin-7-ium derivatives act as enhancers of FtsZ self-polymerization.
Collapse
Affiliation(s)
- Ajit Parhi
- TAXIS Pharmaceuticals Inc., North Brunswick, NJ 08092, USA
| | - Songfeng Lu
- TAXIS Pharmaceuticals Inc., North Brunswick, NJ 08092, USA
| | - Cody Kelley
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Malvika Kaul
- Department of Pharmacology, The University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Daniel S. Pilch
- Department of Pharmacology, The University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Edmond J. LaVoie
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
75
|
Popp D, Narita A, Lee LJ, Larsson M, Robinson RC. Microtubule-like properties of the bacterial actin homolog ParM-R1. J Biol Chem 2012; 287:37078-88. [PMID: 22908230 DOI: 10.1074/jbc.m111.319491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In preparation for mammalian cell division, microtubules repeatedly probe the cytoplasm to capture chromosomes and assemble the mitotic spindle. Critical features of this microtubule system are the formation of radial arrays centered at the centrosomes and dynamic instability, leading to persistent cycles of polymerization and depolymerization. Here, we show that actin homolog, ParM-R1 that drives segregation of the R1 multidrug resistance plasmid from Escherichia coli, can also self-organize in vitro into asters, which resemble astral microtubules. ParM-R1 asters grow from centrosome-like structures consisting of interconnected nodes related by a pseudo 8-fold symmetry. In addition, we show that ParM-R1 is able to perform persistent microtubule-like oscillations of assembly and disassembly. In vitro, a whole population of ParM-R1 filaments is synchronized between phases of growth and shrinkage, leading to prolonged synchronous oscillations even at physiological ParM-R1 concentrations. These results imply that the selection pressure to reliably segregate DNA during cell division has led to common mechanisms within diverse segregation machineries.
Collapse
Affiliation(s)
- David Popp
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, 138673, Singapore.
| | | | | | | | | |
Collapse
|
76
|
Characterization of osmotically induced filaments of Salmonella enterica. Appl Environ Microbiol 2012; 78:6704-13. [PMID: 22798362 DOI: 10.1128/aem.01784-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica forms aseptate filaments with multiple nucleoids when cultured in hyperosmotic conditions. These osmotic-induced filaments are viable and form single colonies on agar plates even though they contain multiple genomes and have the potential to divide into multiple daughter cells. Introducing filaments that are formed during osmotic stress into culture conditions without additional humectants results in the formation of septa and their division into individual cells, which could present challenges to retrospective analyses of infectious dose and risk assessments. We sought to characterize the underlying mechanisms of osmotic-induced filament formation. The concentration of proteins and chromosomal DNA in filaments and control cells was similar when standardized by biomass. Furthermore, penicillin-binding proteins in the membrane of salmonellae were active in vitro. The activity of penicillin-binding protein 2 was greater in filaments than in control cells, suggesting that it may have a role in osmotic-induced filament formation. Filaments contained more ATP than did control cells in standardized cell suspensions, though the levels of two F(0)F(1)-ATP synthase subunits were reduced. Furthermore, filaments could septate and divide within 8 h in 0.2 × Luria-Bertani broth at 23°C, while nonfilamentous control cells did not replicate. Based upon the ability of filaments to septate and divide in this diluted broth, a method was developed to enumerate by plate count the number of individual, viable cells within a population of filaments. This method could aid in retrospective analyses of infectious dose of filamented salmonellae.
Collapse
|
77
|
Sun H, Tawa G, Wallqvist A. Classification of scaffold-hopping approaches. Drug Discov Today 2012; 17:310-24. [PMID: 22056715 PMCID: PMC3328312 DOI: 10.1016/j.drudis.2011.10.024] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
The general goal of drug discovery is to identify novel compounds that are active against a preselected biological target with acceptable pharmacological properties defined by marketed drugs. Scaffold hopping has been widely applied by medicinal chemists to discover equipotent compounds with novel backbones that have improved properties. In this article we classify scaffold hopping into four major categories, namely heterocycle replacements, ring opening or closure, peptidomimetics and topology-based hopping. We review the structural diversity of original and final scaffolds with respect to each category. We discuss the advantages and limitations of small, medium and large-step scaffold hopping. Finally, we summarize software that is frequently used to facilitate different kinds of scaffold-hopping methods.
Collapse
Affiliation(s)
- Hongmao Sun
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Frederick, MD 21702, USA.
| | | | | |
Collapse
|
78
|
Popp D, Robinson RC. Supramolecular cellular filament systems: how and why do they form? Cytoskeleton (Hoboken) 2012; 69:71-87. [PMID: 22232062 DOI: 10.1002/cm.21006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/14/2011] [Accepted: 12/31/2011] [Indexed: 11/11/2022]
Abstract
All cells, from simple bacteria to complex human tissues, rely on extensive networks of protein fibers to help maintain their proper form and function. These filament systems usually do not operate as single filaments, but form complex suprastructures, which are essential for specific cellular functions. Here, we describe the progress in determining the architectures of molecular filamentous suprastructures, the principles leading to their formation, and the mechanisms by which they may facilitate function. The complex eukaryotic cytoskeleton is tightly regulated by a large number of actin- or microtubule-associated proteins. In contrast, recently discovered bacterial actins and tubulins have few associated regulatory proteins. Hence, the quest to find basic principles that govern the formation of filamentous suprastructures is simplified in bacteria. Three common principles, which have been probed extensively during evolution, can be identified that lead to suprastructures formation: cationic counterion fluctuations; self-association into liquid crystals; and molecular crowding. The underlying physics of these processes will be discussed with respect to physiological circumstance.
Collapse
Affiliation(s)
- David Popp
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673.
| | | |
Collapse
|
79
|
Bulmer DM, Kharraz L, Grant AJ, Dean P, Morgan FJE, Karavolos MH, Doble AC, McGhie EJ, Koronakis V, Daniel RA, Mastroeni P, Anjam Khan CM. The bacterial cytoskeleton modulates motility, type 3 secretion, and colonization in Salmonella. PLoS Pathog 2012; 8:e1002500. [PMID: 22291596 PMCID: PMC3266929 DOI: 10.1371/journal.ppat.1002500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 12/07/2011] [Indexed: 11/26/2022] Open
Abstract
Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC. Salmonella are major global pathogens responsible for causing food-borne disease. In recent years the existence of a cytoskeleton in prokaryotes has received much attention. In this study the Salmonella cytoskeleton has been genetically disrupted, causing changes in morphology, motility and expression of key virulence factors. We provide evidence that the sensory protein RcsC detects changes at the cell surface caused by the disintegration of the bacterial cytoskeleton and modulates expression of key virulence factors. This study provides insights into the importance of the integrity of the bacterial cytoskeleton in the ability of Salmonella to cause disease, and thus may provide a novel target for antimicrobial drugs or vaccines.
Collapse
Affiliation(s)
- David M. Bulmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Lubna Kharraz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Dean
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Fiona J. E. Morgan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michail H. Karavolos
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Anne C. Doble
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Emma J. McGhie
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Richard A. Daniel
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - C. M. Anjam Khan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
- * E-mail:
| |
Collapse
|
80
|
ZipA binds to FtsZ with high affinity and enhances the stability of FtsZ protofilaments. PLoS One 2011; 6:e28262. [PMID: 22164258 PMCID: PMC3229571 DOI: 10.1371/journal.pone.0028262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0) pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.
Collapse
|
81
|
Modell JW, Hopkins AC, Laub MT. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes Dev 2011; 25:1328-43. [PMID: 21685367 DOI: 10.1101/gad.2038911] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Following DNA damage, cells typically delay cell cycle progression and inhibit cell division until their chromosomes have been repaired. The bacterial checkpoint systems responsible for these DNA damage responses are incompletely understood. Here, we show that Caulobacter crescentus responds to DNA damage by coordinately inducing an SOS regulon and inhibiting the master regulator CtrA. Included in the SOS regulon is sidA (SOS-induced inhibitor of cell division A), a membrane protein of only 29 amino acids that helps to delay cell division following DNA damage, but is dispensable in undamaged cells. SidA is sufficient, when overproduced, to block cell division. However, unlike many other regulators of bacterial cell division, SidA does not directly disrupt the assembly or stability of the cytokinetic ring protein FtsZ, nor does it affect the recruitment of other components of the cell division machinery. Instead, we provide evidence that SidA inhibits division by binding directly to FtsW to prevent the final constriction of the cytokinetic ring.
Collapse
Affiliation(s)
- Joshua W Modell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | | | | |
Collapse
|
82
|
Abstract
The emergence of multidrug-resistant Mycobacterium tuberculosis strains has made many of the currently available anti-tuberculosis (TB) drugs ineffective. Accordingly, there is a pressing need to identify new drug targets. Filamentous temperature-sensitive protein Z (FtsZ), a bacterial tubulin homologue, is an essential cell-division protein that polymerizes in a GTP-dependent manner, forming a highly dynamic cytokinetic ring, designated as the Z ring, at the septum site. Other cell-division proteins are recruited to the Z ring and, upon resolution of the septum, two daughter cells are produced. Since inactivation of FtsZ or alteration of FtsZ assembly results in the inhibition of Z-ring and septum formation, FtsZ is a very promising target for novel antimicrobial drug development. This review describes the function and dynamic behaviors of FtsZ and the recent development of FtsZ inhibitors as potential anti-TB agents.
Collapse
|
83
|
Cationic lipid enhances assembly of bacterial cell division protein FtsZ: a possible role of bacterial membrane in FtsZ assembly dynamics. Int J Biol Macromol 2011; 49:737-41. [PMID: 21782843 DOI: 10.1016/j.ijbiomac.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 02/04/2023]
Abstract
The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.
Collapse
|
84
|
Koksharova OA, Babykin MM. Cyanobacterial cell division: Genetics and comparative genomics of cyanobacterial cell division. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
85
|
Albarracín Orio AG, Piñas GE, Cortes PR, Cian MB, Echenique J. Compensatory evolution of pbp mutations restores the fitness cost imposed by β-lactam resistance in Streptococcus pneumoniae. PLoS Pathog 2011; 7:e1002000. [PMID: 21379570 PMCID: PMC3040684 DOI: 10.1371/journal.ppat.1002000] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/10/2010] [Indexed: 11/19/2022] Open
Abstract
The prevalence of antibiotic resistance genes in pathogenic bacteria is a major challenge to treating many infectious diseases. The spread of these genes is driven by the strong selection imposed by the use of antibacterial drugs. However, in the absence of drug selection, antibiotic resistance genes impose a fitness cost, which can be ameliorated by compensatory mutations. In Streptococcus pneumoniae, β-lactam resistance is caused by mutations in three penicillin-binding proteins, PBP1a, PBP2x, and PBP2b, all of which are implicated in cell wall synthesis and the cell division cycle. We found that the fitness cost and cell division defects conferred by pbp2b mutations (as determined by fitness competitive assays in vitro and in vivo and fluorescence microscopy) were fully compensated by the acquisition of pbp2x and pbp1a mutations, apparently by means of an increased stability and a consequent mislocalization of these protein mutants. Thus, these compensatory combinations of pbp mutant alleles resulted in an increase in the level and spectrum of β-lactam resistance. This report describes a direct correlation between antibiotic resistance increase and fitness cost compensation, both caused by the same gene mutations acquired by horizontal transfer. The clinical origin of the pbp mutations suggests that this intergenic compensatory process is involved in the persistence of β-lactam resistance among circulating strains. We propose that this compensatory mechanism is relevant for β-lactam resistance evolution in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Andrea G. Albarracín Orio
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Germán E. Piñas
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Echenique
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
86
|
Medema MH, Zhou M, van Hijum SAFT, Gloerich J, Wessels HJCT, Siezen RJ, Strous M. A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis. BMC Genomics 2010; 11:299. [PMID: 20459862 PMCID: PMC2881027 DOI: 10.1186/1471-2164-11-299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/12/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anaerobic ammonium-oxidizing (anammox) bacteria perform a key step in global nitrogen cycling. These bacteria make use of an organelle to oxidize ammonia anaerobically to nitrogen (N2) and so contribute approximately 50% of the nitrogen in the atmosphere. It is currently unknown which proteins constitute the organellar proteome and how anammox bacteria are able to specifically target organellar and cell-envelope proteins to their correct final destinations. Experimental approaches are complicated by the absence of pure cultures and genetic accessibility. However, the genome of the anammox bacterium Candidatus "Kuenenia stuttgartiensis" has recently been sequenced. Here, we make use of these genome data to predict the organellar sub-proteome and address the molecular basis of protein sorting in anammox bacteria. RESULTS Two training sets representing organellar (30 proteins) and cell envelope (59 proteins) proteins were constructed based on previous experimental evidence and comparative genomics. Random forest (RF) classifiers trained on these two sets could differentiate between organellar and cell envelope proteins with ~89% accuracy using 400 features consisting of frequencies of two adjacent amino acid combinations. A physicochemically distinct organellar sub-proteome containing 562 proteins was predicted with the best RF classifier. This set included almost all catabolic and respiratory factors encoded in the genome. Apparently, the cytoplasmic membrane performs no catabolic functions. We predict that the Tat-translocation system is located exclusively in the organellar membrane, whereas the Sec-translocation system is located on both the organellar and cytoplasmic membranes. Canonical signal peptides were predicted and validated experimentally, but a specific (N- or C-terminal) signal that could be used for protein targeting to the organelle remained elusive. CONCLUSIONS A physicochemically distinct organellar sub-proteome was predicted from the genome of the anammox bacterium K. stuttgartiensis. This result provides strong in silico support for the existing experimental evidence for the existence of an organelle in this bacterium, and is an important step forward in unravelling a geochemically relevant case of cytoplasmic differentiation in bacteria. The predicted dual location of the Sec-translocation system and the apparent absence of a specific N- or C-terminal signal in the organellar proteins suggests that additional chaperones may be necessary that act on an as-yet unknown property of the targeted proteins.
Collapse
Affiliation(s)
- Marnix H Medema
- Department of Microbiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
87
|
Okuno T, Ogoh M, Tanina H, Funasaki N, Kogure K. Direct monitoring of interaction between Escherichia coli proteins, MinC and monomeric FtsZ, in solution. Biol Pharm Bull 2010; 32:1473-5. [PMID: 19652393 DOI: 10.1248/bpb.32.1473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MinC plays an important role in regulation of the cell division site in Escherichia coli. Previous studies using sedimentation and electron microscopic methods suggested that MinC interacts with the FtsZ polymer and inhibits further FtsZ polymerization. However, it is difficult to clarify details regarding specific molecular interactions by such static analytic methods. In this study, a fluorescence resonance energy transfer (FRET) method was developed to directly observe the interaction between Cy3-labeled MinC and Cy5-labeled FtsZ in solution. FRET analysis indicated that MinC interacts with monomeric rather than polymeric FtsZ in solution. This suggests that interactions between monomeric FtsZ and MinC are important for controlling of FtsZ polymerization by MinC.
Collapse
Affiliation(s)
- Takashi Okuno
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | | | | | | | | |
Collapse
|
88
|
Varela C, Mauriaca C, Paradela A, Albar JP, Jerez CA, Chávez FP. New structural and functional defects in polyphosphate deficient bacteria: a cellular and proteomic study. BMC Microbiol 2010; 10:7. [PMID: 20067623 PMCID: PMC2817675 DOI: 10.1186/1471-2180-10-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/12/2010] [Indexed: 12/15/2022] Open
Abstract
Background Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.
Collapse
Affiliation(s)
- Cristian Varela
- Department of Biology, Faculty of Sciences, Laboratory of Molecular Microbiology and Biotechnology & Millennium Institute of Cell Dynamics and Biotechnology, University of Chile, Las Palmeras 3425, Nuñoa, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
89
|
Shimotohno KW, Kawamura F, Natori Y, Nanamiya H, Magae J, Ogata H, Endo T, Suzuki T, Yamaki H. Inhibition of Septation in Bacillus subtilis by a Peptide Antibiotic, Edeine B1. Biol Pharm Bull 2010; 33:568-71. [DOI: 10.1248/bpb.33.568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Fujio Kawamura
- Department of Life Science, College of Science, Rikkyo University
| | - Yousuke Natori
- Department of Life Science, College of Science, Rikkyo University
| | - Hideaki Nanamiya
- Department of Life Science, College of Science, Rikkyo University
| | - Junji Magae
- Department of Biotechnology, Institute of Research and Innovation
| | | | | | | | - Hiroshi Yamaki
- Faculty of Pharmacy, Keio University
- Department of Biotechnology, Institute of Research and Innovation
| |
Collapse
|
90
|
Kuchibhatla A, Abdul Rasheed AS, Narayanan J, Bellare J, Panda D. An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3775-3785. [PMID: 19708152 DOI: 10.1021/la8036605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.
Collapse
Affiliation(s)
- Anuradha Kuchibhatla
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400 076
| | | | | | | | | |
Collapse
|
91
|
In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP 2. J Bacteriol 2009; 191:3526-33. [PMID: 19346310 DOI: 10.1128/jb.01812-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the cytoplasmic proteins MreB and FtsZ play crucial roles in ensuring that new muropeptide subunits are inserted into the cell wall in a spatially correct way during elongation and division. In particular, to retain a constant diameter and overall shape, new material must be inserted into the wall uniformly around the cell's perimeter. Current thinking is that MreB accomplishes this feat through intermediary proteins that tether peptidoglycan synthases to the outer face of the inner membrane. We tested this idea in E. coli by using a DD-carboxypeptidase mutant that accumulates pentapeptides in its peptidoglycan, allowing us to visualize new muropeptide incorporation. Surprisingly, inhibiting MreB with the antibiotic A22 did not result in uneven insertion of new wall, although the cells bulged and lost their rod shapes. Instead, uneven (clustered) incorporation occurred only if MreB and FtsZ were inactivated simultaneously, providing the first evidence in E. coli that FtsZ can direct murein incorporation into the lateral cell wall independently of MreB. Inhibiting penicillin binding protein 2 (PBP 2) alone produced the same clustered phenotype, implying that MreB and FtsZ tether peptidoglycan synthases via a common mechanism that includes PBP 2. However, cell shape was determined only by the presence or absence of MreB and not by the even distribution of new wall material as directed by FtsZ.
Collapse
|
92
|
Srivastava RK, Jaiswal R, Panda D, Wangikar PP. Megacell phenotype and its relation to metabolic alterations in transketolase deficient strain ofBacillus pumilus. Biotechnol Bioeng 2009; 102:1387-97. [DOI: 10.1002/bit.22184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
93
|
A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus. J Bacteriol 2009; 191:3108-19. [PMID: 19251845 DOI: 10.1128/jb.01737-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a prokaryotic model system for the study of multicellular development and the response to blue light. The previous analyses of these processes and the characterization of new genes would benefit from a robust system for controlled gene expression, which has been elusive so far for this bacterium. Here, we describe a system for conditional expression of genes in M. xanthus based on our recent finding that vitamin B12 and CarH, a MerR-type transcriptional repressor, together downregulate a photoinducible promoter. Using this system, we confirmed that M. xanthus rpoN, encoding sigma(54), is an essential gene, as reported earlier. We then tested it with ftsZ and dksA. In most bacteria, ftsZ is vital due to its role in cell division, whereas null mutants of dksA, whose product regulates the stringent response via transcriptional control of rRNA and amino acid biosynthesis promoters, are viable but cause pleiotropic effects. As with rpoN, it was impossible to delete endogenous ftsZ or dksA in M. xanthus except in a merodiploid background carrying another functional copy, which indicates that these are essential genes. B12-based conditional expression of ftsZ was insufficient to provide the high intracellular FtsZ levels required. With dksA, as with rpoN, cells were viable under permissive but not restrictive conditions, and depletion of DksA or sigma(54) produced filamentous, aberrantly dividing cells. dksA thus joins rpoN in a growing list of genes dispensable in many bacteria but essential in M. xanthus.
Collapse
|
94
|
Drew DA, Koch GA, Vellante H, Talati R, Sanchez O. Analyses of mechanisms for force generation during cell septation in Escherichia coli. Bull Math Biol 2009; 71:980-1005. [PMID: 19229658 DOI: 10.1007/s11538-008-9390-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
Escherichia coli is a rod-shaped bacterium that divides at its midplane, partitioning its cellular material into two roughly equal parts. At the appropriate time, a septum forms, creating the two daughter cells. Septum formation starts with the appearance of a ring of FtsZ proteins on the cell membrane at midplane. This Z-ring causes an invagination in the membrane, which is followed by growth of two new endcaps for the daughter cells. Invagination occurs against a cell overpressure of several atmospheres. A model is presented for the shape of the cell as determined by the tension in the Z-ring. This model allows the calculation of the force required for invagination. Then three possible models to generate the force necessary to achieve invagination are presented and analyzed. These models are based on converting GTP-bound FtsZ polymeric structures to GDP-bound FtsZ structures, which then leave the polymer. Each model is able to generate the force by relating the hydrolyzation to an irreversible molecular binding event, resulting in a net motion of putative anchors for the structures. All three models show that cross-linking the FtsZ protofilaments into a polymer structure allows the removal of GDP-FtsZ without interrupting the structure during force generation, as would happen for a simple polymeric chain.
Collapse
Affiliation(s)
- Donald A Drew
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| | | | | | | | | |
Collapse
|
95
|
Quantitative analysis of time-series fluorescence microscopy using a spot tracking method: application to Min protein dynamics. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0013-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
96
|
Lutkenhaus J. Min Oscillation in Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 641:49-61. [DOI: 10.1007/978-0-387-09794-7_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
97
|
Abstract
FtsZ is a tubulin homolog essential for prokaryotic cell division. In living bacteria, FtsZ forms a ringlike structure (Z-ring) at the cell midpoint. Cell division coincides with a gradual contraction of the Z-ring, although the detailed molecular structure of the Z-ring is unknown. To reveal the structural properties of FtsZ, an understanding of FtsZ filament and bundle formation is needed. We develop a kinetic model that describes the polymerization and bundling mechanism of FtsZ filaments. The model reveals the energetics of the FtsZ filament formation and the bundling energy between filaments. A weak lateral interaction between filaments is predicted by the model. The model is able to fit the in vitro polymerization kinetics data of another researcher, and explains the cooperativity observed in FtsZ kinetics and the critical concentration in different buffer media. The developed model is also applicable for understanding the kinetics and energetics of other bundling biopolymer filaments.
Collapse
|
98
|
Affiliation(s)
- Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
99
|
Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 2008; 95:2009-16. [PMID: 18390602 DOI: 10.1529/biophysj.108.128751] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using photoactivatable fluorescent protein as an intracellular protein label for single-molecule tracking offers several advantages over the traditional methods. Here we demonstrate the technique of photoactivation single-molecule tracking by investigating the mobility dynamics of intracellular FtsZ protein molecules in live Escherichia coli cells. FtsZ is a prokaryotic cytoskeleton protein (a homolog of tubulin) and plays important roles in cytokinesis. We demonstrate two heterogeneous subpopulations of FtsZ molecules with distinct diffusional dynamics. The FtsZ molecules forming the Z-rings near the center of the cell were mostly stationary, consistent with the assumption that they are within polymeric filamentous structures. The rest of the FtsZ molecules, on the other hand, undergo Brownian motion spanning the whole cell length. Surprisingly, the diffusion of FtsZ is spatially restricted to helical-shaped regions, implying an energy barrier for free diffusion. Consistently, the measured mean-square displacements of FtsZ showed anomalous diffusion characteristics. These results demonstrated the feasibility and advantages of photoactivation single-molecule tracking, and suggested new levels of complexity in the prokaryotic membrane organization.
Collapse
|
100
|
Maple J, Mateo* A, Møller SG. Plastid Division Regulation and Interactions with the Environment. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|