51
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
52
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
53
|
Gulati S, Palczewski K. Structural view of G protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem Sci 2023; 48:172-186. [PMID: 36163145 PMCID: PMC9868064 DOI: 10.1016/j.tibs.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology and Biophysics, Department of Chemistry, Molecular Biology, and Biochemistry, University of California Irvine, 850 Health Sciences Road, Irvine, CA 92697-4375, USA.
| |
Collapse
|
54
|
Ultrafast spectra and kinetics of human green-cone visual pigment at room temperature. Proc Natl Acad Sci U S A 2023; 120:e2214276120. [PMID: 36577071 PMCID: PMC9910472 DOI: 10.1073/pnas.2214276120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin is the pigment that enables night vision, whereas cone opsins are the pigments responsible for color vision in bright-light conditions. Despite their importance for vision, cone opsins are poorly characterized at the molecular level compared to rhodopsin. Spectra and kinetics of the intermediate states of human green-cone visual pigment (mid-wavelength sensitive, or MWS opsin) were measured and compared with the intermediates and kinetics of bovine rhodopsin. All the major intermediates of the MWS opsin were recorded in the picosecond to millisecond time range. Several intermediates in MWS opsin appear to have characteristics similar to the intermediates of bovine rhodopsin; however, there are some marked differences. One of the most striking differences is in their kinetics, where the kinetics of the MWS opsin intermediates are slower compared to those of the bovine rhodopsin intermediates.
Collapse
|
55
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
56
|
Mizuno Y, Katayama K, Imai H, Kandori H. Early Proton Transfer Reaction in a Primate Blue-Sensitive Visual Pigment. Biochemistry 2022; 61:2698-2708. [PMID: 36399519 PMCID: PMC9730847 DOI: 10.1021/acs.biochem.2c00483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/19/2022] [Indexed: 11/19/2022]
Abstract
The proton transfer reaction belongs to one of the key triggers for the functional expression of membrane proteins. Rod and cone opsins are light-sensitive G-protein-coupled receptors (GPCRs) that undergo the cis-trans isomerization of the retinal chromophore in response to light. The isomerization event initiates a conformational change in the opsin protein moiety, which propagates the downstream effector signaling. The final step of receptor activation is the deprotonation of the retinal Schiff base, a proton transfer reaction which has been believed to be identical among the cone opsins. Here, we report an unexpected proton transfer reaction occurring in the early photoreaction process of primate blue-sensitive pigment (MB). By using low-temperature UV-visible spectroscopy, we found that the Lumi intermediate of MB formed in transition from the BL intermediate shows an absorption maximum in the UV region, indicating the deprotonation of the retinal Schiff base. Comparison of the light-induced difference FTIR spectra of Batho, BL, and Lumi showed significant α-helical backbone C=O stretching and protonated carboxylate C=O stretching vibrations only in the Lumi intermediate. The transition from BL to Lumi thus involves dramatic changes in protein environment with a proton transfer reaction between the Schiff base and the counterion resulting in an absorption maximum in the UV region.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan
Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroo Imai
- Center
for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
57
|
High-performance optical control of GPCR signaling by bistable animal opsins MosOpn3 and LamPP in a molecular property-dependent manner. Proc Natl Acad Sci U S A 2022; 119:e2204341119. [PMID: 36417444 PMCID: PMC9889881 DOI: 10.1073/pnas.2204341119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Optical control of G protein-coupled receptor (GPCR) signaling is a highly valuable approach for comprehensive understanding of GPCR-based physiologies and controlling them precisely. However, optogenetics for GPCR signaling is still developing and requires effective and versatile tools with performance evaluation from their molecular properties. Here, we systematically investigated performance of two bistable opsins that activate Gi/Go-type G protein (mosquito Opn3 (MosOpn3) and lamprey parapinopsin (LamPP)) in optical control in vivo using Caenorhabditis elegans. Transgenic worms expressing MosOpn3, which binds 13-cis retinal to form photopigments, in nociceptor neurons showed light-induced avoidance responses in the presence of all-trans retinal, a retinal isomer ubiquitously present in every tissue, like microbial rhodopsins and unlike canonical vertebrate opsins. Remarkably, transgenic worms expressing MosOpn3 were ~7,000 times more sensitive to light than transgenic worms expressing ChR2 in this light-induced behavior, demonstrating the advantage of MosOpn3 as a light switch. LamPP is a UV-sensitive bistable opsin having complete photoregenerative ability by green light. Accordingly, transgenic worms expressing LamPP in cholinergic motor neurons stopped moving upon violet light illumination and restored coordinate movement upon green light illumination, demonstrating color-dependent control of behavior using LamPP. Furthermore, we applied molecular engineering to produce MosOpn3-based tools enabling light-dependent upregulation of cAMP or Ca2+ levels and LamPP-based tool enabling clamping cAMP levels color dependently and context independently, extending their usability. These findings define the capacity of two bistable opsins with similar retinal requirement as ChR2, providing numerous strategies for optical control of various GPCR-based physiologies as well as GPCR signaling itself.
Collapse
|
58
|
Picarazzi F, Zuanon M, Pasqualetto G, Cammarone S, Romeo I, Young MT, Brancale A, Bassetto M, Mori M. Identification of Small Molecular Chaperones Binding P23H Mutant Opsin through an In Silico Structure-Based Approach. J Chem Inf Model 2022; 62:5794-5805. [PMID: 36367985 DOI: 10.1021/acs.jcim.2c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
N-terminal P23H opsin mutation accounts for most of retinitis pigmentosa (RP) cases. P23H functions and folding can be rescued by small chaperone ligands, which contributes to validate mutant opsin as a suitable target for pharmacological treatment of RP. However, the lack of structural details on P23H mutant opsin strongly impairs drug design, and new chemotypes of effective chaperones of P23H opsin are in high demand. Here, a computational-boosted workflow combining homology modeling with molecular dynamics (MD) simulations and virtual screening was used to select putative P23H opsin chaperones among different libraries through a structure-based approach. In vitro studies corroborated the reliability of the structural model generated in this work and identified a number of novel chemotypes of safe and effective chaperones able to promote P23H opsin trafficking to the outer cell membrane.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marika Zuanon
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Gaia Pasqualetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Silvia Cammarone
- Dipartimento di Chimica e Tecnologie del Farmaco, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Isabella Romeo
- Dipartimento di Chimica e Tecnologie del Farmaco, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Mark T Young
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK.,Vysoká Škola Chemicko-Technologiká v Praze, Prague 166 28, Czech Republic
| | - Marcella Bassetto
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
59
|
Chromophore hydrolysis and release from photoactivated rhodopsin in native membranes. Proc Natl Acad Sci U S A 2022; 119:e2213911119. [PMID: 36322748 PMCID: PMC9659404 DOI: 10.1073/pnas.2213911119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all-trans-retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11-cis-retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography-mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of N-retinylidene-phosphatidylethanolamine (N-ret-PE) adducts with the released all-trans-retinal, and the reduction of all-trans-retinal to all-trans-retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all-trans-retinal. In the absence of NADPH, free all-trans-retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of N-ret-PE (∼40% of total all-trans-retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, N-ret-PE formation was highly attenuated by NADPH-dependent reduction of all-trans-retinal to all-trans-retinol. Neither N-ret-PE formation nor all-trans-retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all-trans-retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies.
Collapse
|
60
|
Human cone elongation responses can be explained by photoactivated cone opsin and membrane swelling and osmotic response to phosphate produced by RGS9-catalyzed GTPase. Proc Natl Acad Sci U S A 2022; 119:e2202485119. [PMID: 36122241 PMCID: PMC9522364 DOI: 10.1073/pnas.2202485119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical coherence tomography has established that human cone photoreceptor outer segments elongate in response to stimuli bleaching large fractions of their visual pigment. Elongation responses are completely described over their 200-fold bleaching range as the sum of two exponentially rising components differing 13-fold in time constants and 4-fold in light sensitivity. Bleaching measurements of individual cones with adaptive optics scanning laser ophthalmoscopy (SLO) suggest that component 2 arises from cone opsin and disk membrane swelling triggered by photoactivation. Application of a model of phototransduction suggests that component 1 corresponds to free phosphate generated by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in the α-subunit of G protein complexed with phosphodiesterase. Human cone outer segment (COS) length changes in response to stimuli bleaching up to 99% of L- and M-cone opsins were measured with high resolution, phase-resolved optical coherence tomography (OCT). Responses comprised a fast phase (∼5 ms), during which COSs shrink, and two slower phases (1.5 s), during which COSs elongate. The slower components saturated in amplitude (∼425 nm) and initial rate (∼3 nm ms−1) and are well described over the 200-fold bleaching range as the sum of two exponentially rising functions with time constants of 80 to 90 ms (component 1) and 1,000 to 1,250 ms (component 2). Measurements with adaptive optics reflection densitometry revealed component 2 to be linearly related to cone pigment bleaching, and the hypothesis is proposed that it arises from cone opsin and disk membrane swelling triggered by isomerization and rate-limited by chromophore hydrolysis and its reduction to membrane-localized all-trans retinol. The light sensitivity and kinetics of component 1 suggested that the underlying mechanism is an osmotic response to an amplified soluble by-product of phototransduction. The hypotheses that component 1 corresponds to G-protein subunits dissociating from the membrane, metabolites of cyclic guanosine monophosphate (cGMP) hydrolysis, or by-products of activated guanylate cyclase are rejected, while the hypothesis that it corresponds to phosphate produced by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in G protein–phosphodiesterase complexes was found to be consistent with the results. These results provide a basis for the assessment with optoretinography of phototransduction in individual cone photoreceptors in health and during disease progression and therapeutic interventions.
Collapse
|
61
|
Fasciani I, Carli M, Petragnano F, Colaianni F, Aloisi G, Maggio R, Scarselli M, Rossi M. GPCRs in Intracellular Compartments: New Targets for Drug Discovery. Biomolecules 2022; 12:1343. [PMID: 36291552 PMCID: PMC9599219 DOI: 10.3390/biom12101343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 08/02/2023] Open
Abstract
The architecture of eukaryotic cells is defined by extensive membrane-delimited compartments, which entails separate metabolic processes that would otherwise interfere with each other, leading to functional differences between cells. G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors, and their signal transduction is traditionally viewed as a chain of events initiated from the plasma membrane. Furthermore, their intracellular trafficking, internalization, and recycling were considered only to regulate receptor desensitization and cell surface expression. On the contrary, accumulating data strongly suggest that GPCRs also signal from intracellular compartments. GPCRs localize in the membranes of endosomes, nucleus, Golgi and endoplasmic reticulum apparatuses, mitochondria, and cell division compartments. Importantly, from these sites they have shown to orchestrate multiple signals that regulate different cell pathways. In this review, we summarize the current knowledge of this fascinating phenomenon, explaining how GPCRs reach the intracellular sites, are stimulated by the endogenous ligands, and their potential physiological/pathophysiological roles. Finally, we illustrate several mechanisms involved in the modulation of the compartmentalized GPCR signaling by drugs and endogenous ligands. Understanding how GPCR signaling compartmentalization is regulated will provide a unique opportunity to develop novel pharmaceutical approaches to target GPCRs and potentially lead the way towards new therapeutic approaches.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Carli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesco Colaianni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
62
|
Lewin AS, Smith WC. Gene Therapy for Rhodopsin Mutations. Cold Spring Harb Perspect Med 2022; 12:a041283. [PMID: 35940643 PMCID: PMC9435570 DOI: 10.1101/cshperspect.a041283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in RHO, the gene for rhodopsin, account for a large fraction of autosomal-dominant retinitis pigmentosa (adRP). Patients fall into two clinical classes, those with early onset, pan retinal photoreceptor degeneration, and those who experience slowly progressive disease. The latter class of patients are candidates for photoreceptor-directed gene therapy, while former may be candidates for delivery of light-responsive proteins to interneurons or retinal ganglion cells. Gene therapy for RHO adRP may be targeted to the mutant gene at the DNA or RNA level, while other therapies preserve the viability of photoreceptors without addressing the underlying mutation. Correcting the RHO gene and replacing the mutant RNA show promise in animal models, while sustaining viable photoreceptors has the potential to delay the loss of central vision and may preserve photoreceptors for gene-directed treatments.
Collapse
Affiliation(s)
- Alfred S Lewin
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - W Clay Smith
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
63
|
Takatani N, Beppu F, Yamano Y, Maoka T, Miyashita K, Hosokawa M. Preparation of Apoastaxanthinals and Evaluation of Their Anti-inflammatory Action against Lipopolysaccharide-Stimulated Macrophages and Adipocytes. ACS OMEGA 2022; 7:22341-22350. [PMID: 35811858 PMCID: PMC9260902 DOI: 10.1021/acsomega.2c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Apocarotenoids are carotenoid derivatives in which the polyene chain is cleaved via enzymatic or nonenzymatic action. They are found in animal tissues and carotenoid-containing foods. However, limited information on the biological functions of apocarotenoids is available. Here, we prepared apocarotenoids from astaxanthin via chemical oxidation and evaluated their anti-inflammatory action against macrophages and adipocytes. A series of astaxanthin-derived apoastaxanthinals, apo-11-, apo-15-, apo-14'-, apo-12'-, apo-10'-, and apo-8'-astaxanthinals, were successfully characterized by chromatography and spectroscopic analysis. The apoastaxanthinals inhibited inflammatory cytokine production and mRNA expression against lipopolysaccharide-stimulated RAW 264.7 macrophages. Apoastaxanthinals suppressed interleukin-6 overexpression in an in vitro model with macrophages and adipocytes in the following cultures: (1) contact coculture of 3T3-L1 adipocytes and RAW264.7 macrophages and (2) 3T3-L1 adipocytes in a RAW264.7-derived conditioned media. These results indicate that the apoastaxanthinals have the potential for regulation of adipose tissue inflammation observed in obesity.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty
of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Fumiaki Beppu
- Faculty
of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yumiko Yamano
- Comprehensive
Education and Research Center, Kobe Pharmaceutical
University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Takashi Maoka
- Research
Institute for Production and Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| | - Kazuo Miyashita
- Faculty
of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Masashi Hosokawa
- Faculty
of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
64
|
Shi WJ, Long XB, Li SY, Ma DD, Liu F, Zhang JG, Lu ZJ, Ying GG. Dydrogesterone and levonorgestrel at environmentally relevant concentrations have antagonist effects with rhythmic oscillation in brain and eyes of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106177. [PMID: 35512552 DOI: 10.1016/j.aquatox.2022.106177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Synthetic progestins levonorgestrel (LNG) and dydrogesterone (DDG) are frequency detected in surface water. Combined effects of LNG and DDG on gonad differentiation are similar to LNG single exposure in juvenile zebrafish. However, LNG and DDG mixtures have stronger effects on spermatogenesis in testes of adult zebrafish, which show variable at different life stage. Effects of LNG and DDG mixtures on eyes and brain remain unknown. Here we investigated effects of LNG, DDG and their mixtures on eyes and brain. Zebrafish were exposed to LNG, DDG and their mixtures from 2 hpf to 144 dpf. Rhythm and vision related biological processes were enriched in eyes and brain in LNG and DDG treatments, which indicated rhythmic oscillation in eyes and brain. The qPCR data revealed that both LNG and DDG decreased transcription of arntl2 and clocka, while increased transcription of per1a, per1b, rpe65a and tefa in eyes and brain. However, DDG and LNG mixtures had slight effect on transcription of genes related to rhythm and vision. In addition, LNG and DDG reduced the thickness of inner nuclear layer in the eyes. Bliss independent model revealed that LNG and DDG had antagonist effects on transcription and histology in eyes and brain. Moreover, LNG and DDG formed the same hydrogen bonds with green-sensitive opsin-4 and rhodopsin kinase GRK7a. Taken together, LNG and DDG competed with each other for the same binding residues resulting in antagonist effect in their mixtures treatments, and have significant ecological implications to assess combined effects of progestins mixtures on fish in different organs.
Collapse
Affiliation(s)
- Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fang Liu
- School of Geography, South China Normal University, Guangzhou 510631, China.
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
65
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
66
|
Mercey O, Kostic C, Bertiaux E, Giroud A, Sadian Y, Gaboriau DCA, Morrison CG, Chang N, Arsenijevic Y, Guichard P, Hamel V. The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biol 2022; 20:e3001649. [PMID: 35709082 PMCID: PMC9202906 DOI: 10.1371/journal.pbio.3001649] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa. Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. Ultrastructure expansion microscopy on mouse retina reveals the presence of a novel structure inside the photoreceptor connecting cilium, the inner scaffold, that protects the outer segment against degeneration.
Collapse
Affiliation(s)
- Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Eloïse Bertiaux
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Alexia Giroud
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yashar Sadian
- CryoGenic Facility, University of Geneva, Geneva, Switzerland
| | - David C. A. Gaboriau
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Ning Chang
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (PG); (VH)
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (PG); (VH)
| |
Collapse
|
67
|
Manoj KM, Tamagawa H, Bazhin N, Jaeken L, Nirusimhan V, Faraci F, Gideon DA. Murburn model of vision: Precepts and proof of concept. J Cell Physiol 2022; 237:3338-3355. [PMID: 35662017 DOI: 10.1002/jcp.30786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/08/2022]
Abstract
The classical paradigm of visual physiology comprises of the following features: (i) rod/cone cells located at the rear end of the retina serve as the primary transducers of incoming photo-information, (ii) cis-trans retinal (C20 H28 O) transformations on rhodopsin act as the transduction switch to generate a transmittable signal, (iii) signal amplification occurs via GDP-GTP exchange at transducin, and (iv) the amplified signal is relayed (as an action potential) as a flux-based ripple of Na-K ions along the axons of neurons. Fundamental physical principles, chemical kinetics, and awareness of architecture of eye/retina prompt a questioning of these classical assumptions. In lieu, based on experimental and in silico findings, a simple space-time resolved murburn model for the physiology of phototransduction in the retina is presented wherein molecular oxygen plays key roles. It is advocated that: (a) photo-induced oxygen to superoxide conversion serves as the key step in signal transduction in the visual cycle, (b) all photoactive cells of the retina serve as photoreceptors and rods/cones serve as the ultimate electron source in the retina (deriving oxygen and nutrients from retinal pigmented epithelium), (c) signal amplification is through superoxide mediated phosphorylation of GDP bound to inactive transducin, thereby activating a GDP-based cascade (a new mechanism for trimeric G-proteins), and (d) signal relay is primarily an electron movement along the neuron, from dendritic source to synaptic sink. In particular, we specify the roles for the various modules of transducin and GDP-based activation of phosphodiesterase-6 in the physiology of visual transduction.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad District, Kerala, India
| | | | - Nikolai Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | - Laurent Jaeken
- Karel de Grote-Hogeschool, Association University and High Schools Antwerp, Antwerpen, Belgium
| | - Vijay Nirusimhan
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad District, Kerala, India
| | - Federico Faraci
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad District, Kerala, India
| | - Daniel A Gideon
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad District, Kerala, India
| |
Collapse
|
68
|
Jahagirdar D, Yadav S, Gore M, Korpale V, Mathpati CS, Chidambaram S, Majumder A, Jain R, Dandekar P. Compartmentalized microfluidic device for in vitro co‐culture of retinal cells. Biotechnol J 2022; 17:e2100530. [DOI: 10.1002/biot.202100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Devashree Jahagirdar
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai 400019 India
| | - Shital Yadav
- Department of Chemical Engineering Indian Institute of Technology Mumbai 400076 India
| | - Manish Gore
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai 400019 India
| | - Vikram Korpale
- Department of Chemical Engineering Institute of Chemical Technology Mumbai 400019 India
| | - C S Mathpati
- Department of Chemical Engineering Institute of Chemical Technology Mumbai 400019 India
| | - Subbulakshmi Chidambaram
- Dept. of Biochemistry and Molecular Biology Pondicherry Central University Puducherry 605014 India
| | - Abhijit Majumder
- Department of Chemical Engineering Indian Institute of Technology Mumbai 400076 India
| | - Ratnesh Jain
- Department of Chemical Engineering Institute of Chemical Technology Mumbai 400019 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai 400019 India
| |
Collapse
|
69
|
Robichaux MA, Nguyen V, Chan F, Kailasam L, He F, Wilson JH, Wensel TG. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. Dis Model Mech 2022; 15:274688. [PMID: 35275162 PMCID: PMC9092655 DOI: 10.1242/dmm.049336] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The P23H mutation in rhodopsin (Rho), the rod visual pigment, is the most common allele associated with autosomal-dominant retinitis pigmentosa (adRP). The fate of misfolded mutant Rho in rod photoreceptors has yet to be elucidated. We generated a new mouse model, in which the P23H-Rho mutant allele is fused to the fluorescent protein Tag-RFP-T (P23HhRhoRFP). In heterozygotes, outer segments formed, and wild-type (WT) rhodopsin was properly localized, but mutant P23H-Rho protein was mislocalized in the inner segments. Heterozygotes exhibited slowly progressing retinal degeneration. Mislocalized P23HhRhoRFP was contained in greatly expanded endoplasmic reticulum (ER) membranes. Quantification of mRNA for markers of ER stress and the unfolded protein response revealed little or no increases. mRNA levels for both the mutant human rhodopsin allele and the WT mouse rhodopsin were reduced, but protein levels revealed selective degradation of the mutant protein. These results suggest that the mutant rods undergo an adaptative process that prolongs survival despite unfolded protein accumulation in the ER. The P23H-Rho-RFP mouse may represent a useful tool for the future study of the pathology and treatment of P23H-Rho and adRP. This article has an associated First Person interview with the first author of the paper. Summary: A mouse line with a knock-in of the human rhodopsin gene altered to contain the P23H mutation and a red fluorescent protein fusion provides a new model for autosomal-dominant retinitis pigmentosa.
Collapse
Affiliation(s)
- Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Departments of Ophthalmology and Biochemistry, West Virginia University, 108 Biomedical Road, Morgantown, WV 26506, USA
| | - Vy Nguyen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Lavanya Kailasam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - John H Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
70
|
Chen S, Getter T, Salom D, Wu D, Quetschlich D, Chorev DS, Palczewski K, Robinson CV. Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature 2022; 604:384-390. [PMID: 35388214 PMCID: PMC9007743 DOI: 10.1038/s41586-022-04547-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell-surface receptors that respond to various stimuli to induce signalling pathways across cell membranes. Recent progress has yielded atomic structures of key intermediates1,2 and roles for lipids in signalling3,4. However, capturing signalling events of a wild-type receptor in real time, across a native membrane to its downstream effectors, has remained elusive. Here we probe the archetypal class A GPCR, rhodopsin, directly from fragments of native disc membranes using mass spectrometry. We monitor real-time photoconversion of dark-adapted rhodopsin to opsin, delineating retinal isomerization and hydrolysis steps, and further showing that the reaction is significantly slower in its native membrane than in detergent micelles. Considering the lipids ejected with rhodopsin, we demonstrate that opsin can be regenerated in membranes through photoisomerized retinal-lipid conjugates, and we provide evidence for increased association of rhodopsin with unsaturated long-chain phosphatidylcholine during signalling. Capturing the secondary steps of the signalling cascade, we monitor light activation of transducin (Gt) through loss of GDP to generate an intermediate apo-trimeric G protein, and observe Gαt•GTP subunits interacting with PDE6 to hydrolyse cyclic GMP. We also show how rhodopsin-targeting compounds either stimulate or dampen signalling through rhodopsin-opsin and transducin signalling pathways. Our results not only reveal the effect of native lipids on rhodopsin signalling and regeneration but also enable us to propose a paradigm for GPCR drug discovery in native membrane environments.
Collapse
Affiliation(s)
- Siyun Chen
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Tamar Getter
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - David Salom
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - Di Wu
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Daniel Quetschlich
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Dror S Chorev
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
71
|
Dhankhar D, Nagpal A, Tachibanaki S, Li R, Cesario TC, Rentzepis PM. Comparison of Bovine and Carp Fish Visual Pigment Photo-Intermediates at Room Temperature. Photochem Photobiol 2022; 98:1303-1311. [PMID: 35313014 DOI: 10.1111/php.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
This paper presents room temperature nanoseconds to milliseconds time-resolved spectra and kinetics of the intermediate states and species of bovine and carp fish rhodopsin visual pigments, which also contained ~5% cone pigments. The nanoseconds to milliseconds range cover all the major intermediates in the visual phototransduction process except the formation of bathorhodopsin intermediate which occurs at the femtosecond time scale. The dynamics of these visual pigment intermediates are initiated by excitation with a 532 nm nanosecond laser pulse. The recorded differences between bovine and carp rhodopsin time-resolved spectra of the formation and decay kinetics of their intermediates are presented and discussed. The data show that the carp samples batho intermediate decays faster, nearly by a factor of three, compared to the bovine samples. The formation and decay spectra and kinetics of rhodopsin outer segments and extracted rhodopsin inserted in buffer solution were found to be identical, with very small differences between them in the decay lifetimes of bathorhodopsin and formation of lumirhodopsin.
Collapse
Affiliation(s)
- Dinesh Dhankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Anushka Nagpal
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Runze Li
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | | | - Peter M Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
72
|
Ortega JT, Parmar T, Carmena-Bargueño M, Pérez-Sánchez H, Jastrzebska B. Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice. J Neurosci Res 2022; 100:1063-1083. [PMID: 35165923 PMCID: PMC9615108 DOI: 10.1002/jnr.25021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022]
Abstract
The balanced homeostasis of the G protein-coupled receptor (GPCR), rhodopsin (Rho), is required for vision. Misfolding mutations in Rho cause photoreceptor death, leading to retinitis pigmentosa (RP) and consequently blindness. With no cure currently available, the development of efficient therapy for RP is an urgent need. Pharmacological supplementation with molecular chaperones, including flavonoids, improves stability, folding, and membrane targeting of the RP Rho mutants in vitro. Thus, we hypothesized that flavonoids by binding to P23H Rho and enhancing its conformational stability could mitigate detrimental effects of this mutation on retinal health. In this work, we evaluated the pharmacological potential of two model flavonoids, quercetin and myricetin, by using in silico, in vitro, and in vivo models of P23H Rho. Our computational analysis showed that quercetin could interact within the orthosteric binding pocket of P23H Rho and shift the conformation of its N-terminal loop toward the wild type (WT)-like state. Quercetin added to the NIH-3T3 cells stably expressing P23H Rho increased the stability of this receptor and improved its function. Systemic administration of quercetin to P23H Rho knock-in mice substantially improved retinal morphology and function, which was associated with an increase in levels of Rho and cone opsins. In addition, treatment with quercetin resulted in downregulation of the UPR signaling and oxidative stress-related markers. This study unravels the pharmacological potential of quercetin to slow down the progression of photoreceptor death in Rho-related RP and highlights its prospective as a lead compound to develop a novel therapeutic remedy to counter RP pathology.
Collapse
Affiliation(s)
- Joseph Thomas Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
73
|
Wales SM, Morris DTJ, Clayden J. Reversible Capture and Release of a Ligand Mediated by a Long-Range Relayed Polarity Switch in a Urea Oligomer. J Am Chem Soc 2022; 144:2841-2846. [PMID: 35142216 PMCID: PMC9097480 DOI: 10.1021/jacs.1c11928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Ethylene-bridged
oligoureas characterized by a continuous, switchable
chain of hydrogen bonds and carrying a binding site (an N,N′-disubstituted
urea) for a hydrogen-bond-accepting ligand (a phosphine oxide) were
synthesized. These oligomers show stronger ligand binding when the
binding site is located at the hydrogen-bond-donating terminus than
when the same binding site is at the hydrogen-bond-accepting terminus.
An acidic group at the terminus remote from the binding site allows
hydrogen bond polarity, and hence ligand binding ability, to be controlled
remotely by a deprotonation/reprotonation cycle. Addition of base
induces a remote conformational change that is relayed through up
to five urea linkages, reducing the ability of the binding site to
retain an intermolecular association to its ligand, which is consequently
released into solution. Reprotonation returns the polarity of the
oligomer to its original directionality, restoring the function of
the remote binding site, which consequently recaptures the ligand.
This is the first example of a synthetic molecular structure that
relays intermolecular binding information, and these “dynamic
foldamer” structures are prototypes of components for chemical
systems capable of controlling chemical function from a distance.
Collapse
Affiliation(s)
- Steven M Wales
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - David T J Morris
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
74
|
Sander CL, Luu J, Kim K, Furkert D, Jang K, Reichenwallner J, Kang M, Lee HJ, Eger BT, Choe HW, Fiedler D, Ernst OP, Kim YJ, Palczewski K, Kiser PD. Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure 2022; 30:263-277.e5. [PMID: 34678158 PMCID: PMC8818024 DOI: 10.1016/j.str.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Collapse
Affiliation(s)
- Christopher L Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Jennings Luu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kiyoung Jang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - MinSoung Kang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Daejeon 34114, Republic of Korea
| | - Ho-Jun Lee
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hui-Woog Choe
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yong Ju Kim
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Krzysztof Palczewski
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
75
|
Zhou Y, Tian W, Jiang X, Yang H, Jiang Z, Li X, Jiang D, Sun K, Yang Y, Liu W, Zhu X. Deletion of Asrgl1 Leads to Photoreceptor Degeneration in Mice. Front Cell Dev Biol 2022; 9:783547. [PMID: 35118070 PMCID: PMC8805730 DOI: 10.3389/fcell.2021.783547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
The asparaginase and isoaspartyl peptidase 1 (ASRGL1) is an L-asparaginase and beta-aspartyl peptidase enzyme that may be involved in the formation of L-aspartate, a neurotransmitter that can operate as an excitatory neurotransmitter in some brain regions. Although variants in ASRGL1 have been reported in retinitis pigmentosa (RP) patients, the in vivo functions and mechanisms of ASRGL in RP remains unknown due to the lack of suitable disease models. To explore the role of ASRGL in RP, we generated an Asrgl1 knockout mouse model (Asrgl1 KO) using the CRISPR/Cas9 technique. Asrgl1 ablation in mice led to an attenuated electroretinogram (ERG) response around 8 months. The thickness of the outer nuclei layer (ONL) started to decrease around 9 months in Asrgl1 KO mice and gradually intensified at 12 and 15 months. Immunostaining revealed thinner inner segment (IS) and thinner outer segment (OS) as well as the progressive degeneration of rod and cone cells in Asrgl1 KO mice. One hundred forty-nine transcriptional differentially expressed genes (DEGs) were found by RNA-seq in Asrgl1 KO retina. These DEGs were linked to a number of biological processes that were considerably enriched, including gastrointestinal disease and organismal injury and abnormalities. By analysis of canonical pathways, glucocorticoid receptor signaling was the most significant canonical pathway altered in Asrgl1 KO retina. Several molecules, including NFE2L2, IL-4, Foxp3, and Fos, were in the central nodes of the interaction network in Asrgl1 KO retina. In summary, our study provided a knockout mouse model for a better understanding of the molecular mechanism for ASRGL1-related RP.
Collapse
Affiliation(s)
- Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yu Zhou, ; Wenjing Liu, ; Xianjun Zhu,
| | - Wanli Tian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xiaoyan Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xiao Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Dan Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Wenjing Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yu Zhou, ; Wenjing Liu, ; Xianjun Zhu,
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Ophthalmology, First People’s Hospital of Shangqiu, Shangqiu, China
- *Correspondence: Yu Zhou, ; Wenjing Liu, ; Xianjun Zhu,
| |
Collapse
|
76
|
New insights into the molecular mechanism of rhodopsin retinitis pigmentosa from the biochemical and functional characterization of G90V, Y102H and I307N mutations. Cell Mol Life Sci 2022; 79:58. [PMID: 34997336 PMCID: PMC8741697 DOI: 10.1007/s00018-021-04086-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Mutations in the photoreceptor protein rhodopsin are known as one of the leading causes of retinal degeneration in humans. Two rhodopsin mutations, Y102H and I307N, obtained in chemically mutagenized mice, are currently the subject of increased interest as relevant models for studying the process of retinal degeneration in humans. Here, we report on the biochemical and functional characterization of the structural and functional alterations of these two rhodopsin mutants and we compare them with the G90V mutant previously analyzed, as a basis for a better understanding of in vivo studies. This mechanistic knowledge is fundamental to use it for developing novel therapeutic approaches for the treatment of inherited retinal degeneration in retinitis pigmentosa. We find that Y102H and I307N mutations affect the inactive–active equilibrium of the receptor. In this regard, the mutations reduce the stability of the inactive conformation but increase the stability of the active conformation. Furthermore, the initial rate of the functional activation of transducin, by the I307N mutant is reduced, but its kinetic profile shows an unusual increase with time suggesting a profound effect on the signal transduction process. This latter effect can be associated with a change in the flexibility of helix 7 and an indirect effect of the mutation on helix 8 and the C-terminal tail of rhodopsin, whose potential role in the functional activation of the receptor has been usually underestimated. In the case of the Y102H mutant, the observed changes can be associated with conformational alterations affecting the folding of the rhodopsin intradiscal domain, and its presumed involvement in the retinal binding process by the receptor.
Collapse
|
77
|
Xi Y, Chen Y. Pharmacological strategies for treating misfolded rhodopsin-associated autosomal dominant retinitis pigmentosa. Neural Regen Res 2022; 17:110-112. [PMID: 34100444 PMCID: PMC8451548 DOI: 10.4103/1673-5374.314306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yibo Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
78
|
Grünbein ML, Kovacs GN, Kloos M, Gorel A, Doak RB, Shoeman RL, Barends TRM, Schlichting I. Crystallographic Studies of Rhodopsins: Structure and Dynamics. Methods Mol Biol 2022; 2501:147-168. [PMID: 35857227 DOI: 10.1007/978-1-0716-2329-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crystal structures have provided detailed insight in the architecture of rhodopsin photoreceptors. Of particular interest are the protein-chromophore interactions that govern the light-induced retinal isomerization and ultimately induce the large structural changes important for the various biological functions of the family. The reaction intermediates occurring along the rhodopsin photocycle have vastly differing lifetimes, from hundreds of femtoseconds to milliseconds. Detailed insight at high spatial and temporal resolution can be obtained by time-resolved crystallography using pump-probe approaches at X-ray free-electron lasers. Alternatively, cryotrapping approaches can be used. Both the approaches are described, including illumination and sample delivery. The importance of appropriate photoexcitation avoiding multiphoton absorption is stressed.
Collapse
Affiliation(s)
| | | | - Marco Kloos
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexander Gorel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - R Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | |
Collapse
|
79
|
Jeong H, Clark S, Goehring A, Dehghani-Ghahnaviyeh S, Rasouli A, Tajkhorshid E, Gouaux E. Structures of the TMC-1 complex illuminate mechanosensory transduction. Nature 2022; 610:796-803. [PMID: 36224384 PMCID: PMC9605866 DOI: 10.1038/s41586-022-05314-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023]
Abstract
The initial step in the sensory transduction pathway underpinning hearing and balance in mammals involves the conversion of force into the gating of a mechanosensory transduction channel1. Despite the profound socioeconomic impacts of hearing disorders and the fundamental biological significance of understanding mechanosensory transduction, the composition, structure and mechanism of the mechanosensory transduction complex have remained poorly characterized. Here we report the single-particle cryo-electron microscopy structure of the native transmembrane channel-like protein 1 (TMC-1) mechanosensory transduction complex isolated from Caenorhabditis elegans. The two-fold symmetric complex is composed of two copies each of the pore-forming TMC-1 subunit, the calcium-binding protein CALM-1 and the transmembrane inner ear protein TMIE. CALM-1 makes extensive contacts with the cytoplasmic face of the TMC-1 subunits, whereas the single-pass TMIE subunits reside on the periphery of the complex, poised like the handles of an accordion. A subset of complexes additionally includes a single arrestin-like protein, arrestin domain protein (ARRD-6), bound to a CALM-1 subunit. Single-particle reconstructions and molecular dynamics simulations show how the mechanosensory transduction complex deforms the membrane bilayer and suggest crucial roles for lipid-protein interactions in the mechanism by which mechanical force is transduced to ion channel gating.
Collapse
Affiliation(s)
- Hanbin Jeong
- grid.433851.80000 0004 0608 3919Vollum Institute, Oregon Health and Science University, Portland, OR USA
| | - Sarah Clark
- grid.433851.80000 0004 0608 3919Vollum Institute, Oregon Health and Science University, Portland, OR USA
| | - April Goehring
- grid.433851.80000 0004 0608 3919Vollum Institute, Oregon Health and Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR USA
| | - Sepehr Dehghani-Ghahnaviyeh
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Ali Rasouli
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Emad Tajkhorshid
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Eric Gouaux
- grid.433851.80000 0004 0608 3919Vollum Institute, Oregon Health and Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR USA
| |
Collapse
|
80
|
Church JR, Olsen JMH, Schapiro I. The Impact of Retinal Configuration on the Protein-Chromophore Interactions in Bistable Jumping Spider Rhodopsin-1. Molecules 2021; 27:71. [PMID: 35011302 PMCID: PMC8746357 DOI: 10.3390/molecules27010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Bistable rhodopsins have two stable forms that can be interconverted by light. Due to their ability to act as photoswitches, these proteins are considered as ideal candidates for applications such as optogenetics. In this work, we analyze a recently crystalized bistable rhodopsin, namely the jumping spider rhodopsin-1 (JSR1). This rhodopsin exhibits identical absorption maxima for the parent and the photoproduct form, which impedes its broad application. We performed hybrid QM/MM simulations to study three isomers of the retinal chromophore: the 9-cis, 11-cis and all-trans configurations. The main aim was to gain insight into the specific interactions of each isomer and their impact on the absorption maximum in JSR1. The absorption spectra were computed using sampled snapshots from QM/MM molecular dynamics trajectories and compared to their experimental counterparts. The chromophore-protein interactions were analyzed by visualizing the electrostatic potential of the protein and projecting it onto the chromophore. It was found that the distance between a nearby tyrosine (Y126) residue plays a larger role in the predicted absorption maximum than the primary counterion (E194). Geometric differences between the isomers were also noted, including a structural change in the polyene chain of the chromophore, as well as changes in the nearby hydrogen bonding network.
Collapse
Affiliation(s)
- Jonathan R. Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | | | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| |
Collapse
|
81
|
Trifonov L, Rothstein A, Korshin EE, Viskind O, Afri M, Leitus G, Palczewski K, Gruzman A. Straightforward Access to Terminally Disubstituted Electron‐Deficient Alkylidene Cyclopent‐2‐en‐4‐ones through Olefination with α‐Carbonyl and α‐Cyano Secondary Alkyl Sulfones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lena Trifonov
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Ayelet Rothstein
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Edward E. Korshin
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Olga Viskind
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Michal Afri
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Gregory Leitus
- Department of Chemical Research Support the Weizmann Institute of Science Rehovot 76100 Israel
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute Department of Ophthalmology and Departments of Physiology and Biophysics and Chemistry and Molecular Biology and Biochemistry, University of California Irvine CA 92697 USA
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| |
Collapse
|
82
|
Pöge M, Mahamid J, Imanishi SS, Plitzko JM, Palczewski K, Baumeister W. Determinants shaping the nanoscale architecture of the mouse rod outer segment. eLife 2021; 10:e72817. [PMID: 34931611 PMCID: PMC8758146 DOI: 10.7554/elife.72817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
The unique membrane organization of the rod outer segment (ROS), the specialized sensory cilium of rod photoreceptor cells, provides the foundation for phototransduction, the initial step in vision. ROS architecture is characterized by a stack of identically shaped and tightly packed membrane disks loaded with the visual receptor rhodopsin. A wide range of genetic aberrations have been reported to compromise ROS ultrastructure, impairing photoreceptor viability and function. Yet, the structural basis giving rise to the remarkably precise arrangement of ROS membrane stacks and the molecular mechanisms underlying genetically inherited diseases remain elusive. Here, cryo-electron tomography (cryo-ET) performed on native ROS at molecular resolution provides insights into key structural determinants of ROS membrane architecture. Our data confirm the existence of two previously observed molecular connectors/spacers which likely contribute to the nanometer-scale precise stacking of the ROS disks. We further provide evidence that the extreme radius of curvature at the disk rims is enforced by a continuous supramolecular assembly composed of peripherin-2 (PRPH2) and rod outer segment membrane protein 1 (ROM1) oligomers. We suggest that together these molecular assemblies constitute the structural basis of the highly specialized ROS functional architecture. Our Cryo-ET data provide novel quantitative and structural information on the molecular architecture in ROS and substantiate previous results on proposed mechanisms underlying pathologies of certain PRPH2 mutations leading to blindness.
Collapse
Affiliation(s)
- Matthias Pöge
- Max Planck Institute of Biochemistry, Department of Molecular Structural BiologyMartinsriedGermany
| | - Julia Mahamid
- Max Planck Institute of Biochemistry, Department of Molecular Structural BiologyMartinsriedGermany
| | - Sanae S Imanishi
- Eugene and Marilyn Glick Eye Institute and the Department of Ophthalmology, Indiana University School of MedicineyIndianapolisUnited States
| | - Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Department of Molecular Structural BiologyMartinsriedGermany
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology & Biophysics, Department of Chemistry, Department of Molecular Biology and BiochemistryIrvineUnited States
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Department of Molecular Structural BiologyMartinsriedGermany
| |
Collapse
|
83
|
Pasqualetto G, Pileggi E, Schepelmann M, Varricchio C, Rozanowska M, Brancale A, Bassetto M. Ligand-based rational design, synthesis and evaluation of novel potential chemical chaperones for opsin. Eur J Med Chem 2021; 226:113841. [PMID: 34555613 DOI: 10.1016/j.ejmech.2021.113841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/01/2022]
Abstract
Inherited blinding diseases retinitis pigmentosa (RP) and a subset of Leber's congenital amaurosis (LCA) are caused by the misfolding and mistrafficking of rhodopsin molecules, which aggregate and accumulate in the endoplasmic reticulum (ER), leading to photoreceptor cell death. One potential therapeutic strategy to prevent the loss of photoreceptors in these conditions is to identify opsin-binding compounds that act as chemical chaperones for opsin, aiding its proper folding and trafficking to the outer cell membrane. Aiming to identify novel compounds with such effect, a rational ligand-based approach was applied to the structure of the visual pigment chromophore, 11-cis-retinal, and its locked analogue 11-cis-6mr-retinal. Following molecular docking studies on the main chromophore binding site of rhodopsin, 49 novel compounds were synthesized according to optimized one-to seven-step synthetic routes. These agents were evaluated for their ability to compete for the chromophore binding site of opsin, and their capacity to increase the trafficking of the P23H opsin mutant from the ER to the cell membrane. Different new molecules displayed an effect in at least one assay, acting either as chemical chaperones or as stabilizers of the 9-cis-retinal-rhodopsin complex. These compounds could provide the basis to develop novel therapeutics for RP and LCA.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Elisa Pileggi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria; School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK; Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff, CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Marcella Bassetto
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
84
|
Bozovic O, Jankovic B, Hamm P. Using azobenzene photocontrol to set proteins in motion. Nat Rev Chem 2021; 6:112-124. [PMID: 37117294 DOI: 10.1038/s41570-021-00338-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Controlling the activity of proteins with azobenzene photoswitches is a potent tool for manipulating their biological function. With the help of light, it is possible to change binding affinities, control allostery or manipulate complex biological processes, for example. Additionally, owing to their intrinsically fast photoisomerization, azobenzene photoswitches can serve as triggers that initiate out-of-equilibrium processes. Such switching of the activity initiates a cascade of conformational events that can be accessed with time-resolved methods. In this Review, we show how the potency of azobenzene photoswitching can be combined with transient spectroscopic techniques to disclose the order of events and experimentally observe biomolecular interactions in real time. This strategy will further our understanding of how a protein can accommodate, adapt and readjust its structure to answer an incoming signal, revealing more of the dynamical character of proteins.
Collapse
|
85
|
Felline A, Schiroli D, Comitato A, Marigo V, Fanelli F. Structure network-based landscape of rhodopsin misfolding by mutations and algorithmic prediction of small chaperone action. Comput Struct Biotechnol J 2021; 19:6020-6038. [PMID: 34849206 PMCID: PMC8605067 DOI: 10.1016/j.csbj.2021.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/09/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022] Open
Abstract
Failure of a protein to achieve its functional structural state and normal cellular location contributes to the etiology and pathology of heritable human conformational diseases. The autosomal dominant form of retinitis pigmentosa (adRP) is an incurable blindness largely linked to mutations of the membrane protein rod opsin. While the mechanisms underlying the noxious effects of the mutated protein are not completely understood, a common feature is the functional protein conformational loss. Here, the wild type and 39 adRP rod opsin mutants were subjected to mechanical unfolding simulations coupled to the graph theory-based protein structure network analysis. A robust computational model was inferred and in vitro validated in its ability to predict endoplasmic reticulum retention of adRP mutants, a feature linked to the mutation-caused misfolding. The structure-based approach could also infer the structural determinants of small chaperone action on misfolded protein mutants with therapeutic implications. The approach is exportable to conformational diseases linked to missense mutations in any membrane protein.
Collapse
Affiliation(s)
- Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Davide Schiroli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy.,Center for Neuroscience and Neurotechnology, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.,Center for Neuroscience and Neurotechnology, Italy
| |
Collapse
|
86
|
Contreras E, Nobleman AP, Robinson PR, Schmidt TM. Melanopsin phototransduction: beyond canonical cascades. J Exp Biol 2021; 224:273562. [PMID: 34842918 PMCID: PMC8714064 DOI: 10.1242/jeb.226522] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Alexis P. Nobleman
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Phyllis R. Robinson
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Authors for correspondence (; )
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL 60611, USA,Authors for correspondence (; )
| |
Collapse
|
87
|
Costil R, Holzheimer M, Crespi S, Simeth NA, Feringa BL. Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function. Chem Rev 2021; 121:13213-13237. [PMID: 34533944 PMCID: PMC8587610 DOI: 10.1021/acs.chemrev.1c00340] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/26/2022]
Abstract
Molecular photoactuators can control shape and chemical or physical properties of the responsive system they are embedded in. These effects are usually mediated by supramolecular interactions and can be amplified to perform work at the micro- and macroscopic scale, for instance, in materials and biomimetic systems. While many studies focus on the observable outcome of these events, photoresponsive structures can also translate their conformational change to molecular components and perform work against random Brownian motion. Stereochemical cascades can amplify light-generated motion to a distant moiety of the same molecule or molecular assembly, via conformationally restricted stereogenic elements. Being able to control the conformation or motion of molecular systems remotely provides prospects for the design of the smallest machines imaginable. This Focus Review emphasizes the emergence of directed, coupled motion of remote functionalities triggered by light-powered switches and motors as a tool to control molecular topology and function.
Collapse
Affiliation(s)
| | | | - Stefano Crespi
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nadja A. Simeth
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
88
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
89
|
Kojima K. [Biophysical and Biochemical Research of Animal Rhodopsins]. YAKUGAKU ZASSHI 2021; 141:1155-1160. [PMID: 34602512 DOI: 10.1248/yakushi.21-00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opsins (also called animal rhodopsins) are universal photoreceptive proteins that provide the molecular basis of visual and nonvisual photoreception in animals, including humans. Opsins consist of seven helical α-transmembrane domains and use retinal, a derivative of vitamin A, as a chromophore. In many opsins, light absorption triggers photo-isomerization from 11-cis retinal to all-trans retinal, resulting in activation via dynamic structural changes in the protein moiety. Activated opsins stimulate cognate trimeric G proteins to induce signal transduction cascades in cells. Recently, molecular and physiological analyses of diverse opsins have progressively advanced. This review introduces the molecular basis and physiological functions of opsins. Based on the functions of opsins, I will discuss the potential of opsins as target molecules to treat and prevent visual and nonvisual diseases such as sleep disorder and depression.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
90
|
Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog Retin Eye Res 2021; 88:101013. [PMID: 34607013 PMCID: PMC8975950 DOI: 10.1016/j.preteyeres.2021.101013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Vertebrate vision critically depends on an 11-cis-retinoid renewal system known as the visual cycle. At the heart of this metabolic pathway is an enzyme known as retinal pigment epithelium 65 kDa protein (RPE65), which catalyzes an unusual, possibly biochemically unique, reaction consisting of a coupled all-trans-retinyl ester hydrolysis and alkene geometric isomerization to produce 11-cis-retinol. Early work on this isomerohydrolase demonstrated its membership to the carotenoid cleavage dioxygenase superfamily and its essentiality for 11-cis-retinal production in the vertebrate retina. Three independent studies published in 2005 established RPE65 as the actual isomerohydrolase instead of a retinoid-binding protein as previously believed. Since the last devoted review of RPE65 enzymology appeared in this journal, major advances have been made in a number of areas including our understanding of the mechanistic details of RPE65 isomerohydrolase activity, its phylogenetic origins, the relationship of its membrane binding affinity to its catalytic activity, its role in visual chromophore production for rods and cones, its modulation by macromolecules and small molecules, and the involvement of RPE65 mutations in the development of retinal diseases. In this article, I will review these areas of progress with the goal of integrating results from the varied experimental approaches to provide a comprehensive picture of RPE65 biochemistry. Key outstanding questions that may prove to be fruitful future research pursuits will also be highlighted.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA; Department of Ophthalmology and Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.
| |
Collapse
|
91
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
92
|
Ogawa Y, Corbo JC. Partitioning of gene expression among zebrafish photoreceptor subtypes. Sci Rep 2021; 11:17340. [PMID: 34462505 PMCID: PMC8405809 DOI: 10.1038/s41598-021-96837-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate photoreceptors are categorized into two broad classes, rods and cones, responsible for dim- and bright-light vision, respectively. While many molecular features that distinguish rods and cones are known, gene expression differences among cone subtypes remain poorly understood. Teleost fishes are renowned for the diversity of their photoreceptor systems. Here, we used single-cell RNA-seq to profile adult photoreceptors in zebrafish, a teleost. We found that in addition to the four canonical zebrafish cone types, there exist subpopulations of green and red cones (previously shown to be located in the ventral retina) that express red-shifted opsin paralogs (opn1mw4 or opn1lw1) as well as a unique combination of cone phototransduction genes. Furthermore, the expression of many paralogous phototransduction genes is partitioned among cone subtypes, analogous to the partitioning of the phototransduction paralogs between rods and cones seen across vertebrates. The partitioned cone-gene pairs arose via the teleost-specific whole-genome duplication or later clade-specific gene duplications. We also discovered that cone subtypes express distinct transcriptional regulators, including many factors not previously implicated in photoreceptor development or differentiation. Overall, our work suggests that partitioning of paralogous gene expression via the action of differentially expressed transcriptional regulators enables diversification of cone subtypes in teleosts.
Collapse
Affiliation(s)
- Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
93
|
Sander CL, Sears AE, Pinto AF, Choi EH, Kahremany S, Gao F, Salom D, Jin H, Pardon E, Suh S, Dong Z, Steyaert J, Saghatelian A, Skowronska-Krawczyk D, Kiser PD, Palczewski K. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol 2021; 220:e202101063. [PMID: 34132745 PMCID: PMC8240855 DOI: 10.1083/jcb.202101063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors rely on distinct membrane compartments to support their specialized function. Unlike protein localization, identification of critical differences in membrane content has not yet been expanded to lipids, due to the difficulty of isolating domain-specific samples. We have overcome this by using SMA to coimmunopurify membrane proteins and their native lipids from two regions of photoreceptor ROS disks. Each sample's copurified lipids were subjected to untargeted lipidomic and fatty acid analysis. Extensive differences between center (rhodopsin) and rim (ABCA4 and PRPH2/ROM1) samples included a lower PC to PE ratio and increased LC- and VLC-PUFAs in the center relative to the rim region, which was enriched in shorter, saturated FAs. The comparatively few differences between the two rim samples likely reflect specific protein-lipid interactions. High-resolution profiling of the ROS disk lipid composition gives new insights into how intricate membrane structure and protein activity are balanced within the ROS, and provides a model for future studies of other complex cellular structures.
Collapse
Affiliation(s)
- Christopher L. Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Avery E. Sears
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Antonio F.M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Elliot H. Choi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Shirin Kahremany
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Fangyuan Gao
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Hui Jin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Els Pardon
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Susie Suh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Jan Steyaert
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Philip D. Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Department of Chemistry, University of California, Irvine, Irvine, CA
| |
Collapse
|
94
|
Abstract
Nanobodies have emerged as useful tools to study G protein-coupled receptor (GPCR) structure, dynamic, and subcellular localization. Initially, several nanobodies have been developed as chaperones to facilitate GPCR crystallization. To explore their potential as biosensors to monitor receptor activation and dynamics, we here described protocols to characterize nanobody's interaction with GPCRs and their application as probes for protein identification and visualization on the cellular level. We also introduced a chimeric approach to enable a kappa-opioid receptor derived nanobody to bind to other GPCRs, including orphan GPCRs whose endogenous ligand or intracellular transducers are unknown. This approach provides a reporter assay to identify tool molecules to study the function of orphan GPCRs.
Collapse
Affiliation(s)
- Amal El Daibani
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
95
|
Abstract
The four vertebrate arrestins play a key role in the desensitization and internalization of G protein-coupled receptors (GPCRs) and also mediate receptor-dependent signaling. Recent work has shown that bias for arrestin vs G protein signaling could offer certain therapeutic advantages (or disadvantages) in different systems, making assays that measure arrestin binding to receptors important for drug discovery efforts. Herein, we briefly review several commonly used techniques for measuring arrestin binding to receptors, as well as provide an in-depth and methodologically focused review of two methods that do not require receptor modification. The first approach measures direct binding between purified arrestin and rhodopsin, and the second measures the recruitment of arrestin to receptors in living cells.
Collapse
|
96
|
Lingam M. Theoretical Constraints Imposed by Gradient Detection and Dispersal on Microbial Size in Astrobiological Environments. ASTROBIOLOGY 2021; 21:813-830. [PMID: 33902321 DOI: 10.1089/ast.2020.2392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to sense gradients efficiently and acquire information about the ambient environment confers many advantages such as facilitating movement toward nutrient sources or away from toxic chemicals. The amplified dispersal evinced by organisms endowed with motility is possibly beneficial in related contexts. Hence, the connections between information acquisition, motility, and microbial size are explored from an explicitly astrobiological standpoint. By using prior theoretical models, the constraints on organism size imposed by gradient detection and motility are elucidated in the form of simple heuristic scaling relations. It is argued that environments such as alkaline hydrothermal vents, which are distinguished by the presence of steep gradients, might be conducive to the existence of "small" microbes (with radii of ≳0.1 μm) in principle, when only the above two factors are considered; other biological functions (e.g., metabolism and genetic exchange) could, however, regulate the lower bound on microbial size and elevate it. The derived expressions are potentially applicable to a diverse array of settings, including those entailing solvents other than water; for example, the lakes and seas of Titan. The article concludes with a brief exposition of how this formalism may be of practical and theoretical value to astrobiology.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Science, Florida Institute of Technology, Melbourne, Florida, USA
- Institute for Theory and Computation, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
97
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
98
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
99
|
Pitch SG, Yao W, Szundi I, Fay J, Chen E, Shumate A, Kliger DS, Farrens DL. Functional integrity of membrane protein rhodopsin solubilized by styrene-maleic acid copolymer. Biophys J 2021; 120:3508-3515. [PMID: 34022241 DOI: 10.1016/j.bpj.2021.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022] Open
Abstract
Membrane proteins often require solubilization to study their structure or define the mechanisms underlying their function. In this study, the functional properties of the membrane protein rhodopsin in its native lipid environment were investigated after being solubilized with styrene-maleic acid (SMA) copolymer. The static absorption spectra of rhodopsin before and after the addition of SMA were recorded at room temperature to quantify the amount of membrane protein solubilized. The samples were then photobleached to analyze the functionality of rhodopsin upon solubilization. Samples with low or high SMA/rhodopsin ratios were compared to find a threshold in which the maximal amount of active rhodopsin was solubilized from membrane suspensions. Interestingly, whereas the highest SMA/rhodopsin ratios yielded the most solubilized rhodopsin, the rhodopsin produced under these conditions could not reach the active (Meta II) state upon photoactivation. The results confirm that SMA is a useful tool for membrane protein research, but SMA added in excess can interfere with the dynamics of protein activation.
Collapse
Affiliation(s)
- Stephanie G Pitch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Weekie Yao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Jonathan Fay
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - David L Farrens
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
100
|
Pilecky M, Závorka L, Arts MT, Kainz MJ. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences - implications for systemic changes in trophic interactions. Biol Rev Camb Philos Soc 2021; 96:2127-2145. [PMID: 34018324 DOI: 10.1111/brv.12747] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
In recent decades, much conceptual thinking in trophic ecology has been guided by theories of nutrient limitation and the flow of elements, such as carbon and nitrogen, within and among ecosystems. More recently, ecologists have also turned their attention to examining the value of specific dietary nutrients, in particular polyunsaturated fatty acids (PUFA), among which the omega-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play a central role as essential components of neuronal cell membranes in many organisms. This review focuses on a new neuro-ecological approach stemming from the biochemical (mechanistic) and physiological (functional) role of DHA in neuronal cell membranes, in particular in conjunction with G-protein coupled receptors (GPCRs). We link the co-evolution of these neurological functions to metabolic dependency on dietary omega-3 PUFA. We outline ways in which deficiencies in dietary DHA supply may affect, cognition, vision, and behaviour, and ultimately, the biological fitness of consumers. We then review emerging evidence that changes in access to dietary omega-3 PUFA may ultimately have profound impacts on trophic interactions leading to potential changes in community structure and ecosystem functioning that, in turn, may affect the supply of DHA within and across ecosystems, including the supply for human consumption.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| | - Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| |
Collapse
|