51
|
Nguyen TK, Ueno T. Engineering of protein assemblies within cells. Curr Opin Struct Biol 2018; 51:1-8. [PMID: 29316472 DOI: 10.1016/j.sbi.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/04/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022]
Abstract
Recent achievements in development of protein assembles within cells have extended biosupramolecular composites into a new era with versatile applications in the fields of biomaterial and biotechnology. Using methods with biological and physicochemical routes has made this era of research more interesting and challenging. Further advances in protein engineering have facilitated efficient fabrication of supramolecular complexes within living cells. Here, we provide a review of recent efforts to engineer protein assemblies within cells and describe the promising properties of these assemblies.
Collapse
Affiliation(s)
- Tien K Nguyen
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takafumi Ueno
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
52
|
Azuma Y, Edwardson TGW, Hilvert D. Tailoring lumazine synthase assemblies for bionanotechnology. Chem Soc Rev 2018; 47:3543-3557. [DOI: 10.1039/c8cs00154e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cage-forming protein lumazine synthase is readily modified, evolved and assembled with other components.
Collapse
Affiliation(s)
- Yusuke Azuma
- Laboratory of Organic Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| | | | - Donald Hilvert
- Laboratory of Organic Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
53
|
Rodriguez-Ramos J, Faulkner M, Liu LN. Nanoscale Visualization of Bacterial Microcompartments Using Atomic Force Microscopy. Methods Mol Biol 2018; 1814:373-383. [PMID: 29956244 DOI: 10.1007/978-1-4939-8591-3_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial microcompartments (BMCs) are polyhedral protein organelles in many prokaryotes, playing significant roles in metabolic enhancement. Due to their self-assembly and modularity nature, BMCs have gained increased interest in recent years, with the intent of constructing new nanobioreactors and scaffolding to promote cellular metabolisms and molecule delivery. In this chapter, we describe the technique of atomic force microscopy (AFM) as a method to study the self-assembly dynamics and physical properties of BMCs. We focus on the sample preparation, the measurement procedure, and the data analysis for high-speed AFM imaging and nanoindentation-based spectroscopy, which were used to determine the assembly dynamics of BMC shell proteins and the nanomechanics of intact BMC structures, respectively. The described methods could be applied to the study of other types of self-assembling biological organelles.
Collapse
Affiliation(s)
| | - Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
54
|
Krupovic M, Koonin EV. Cellular origin of the viral capsid-like bacterial microcompartments. Biol Direct 2017; 12:25. [PMID: 29132422 PMCID: PMC5683377 DOI: 10.1186/s13062-017-0197-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/06/2017] [Indexed: 11/10/2022] Open
Abstract
ᅟ: Bacterial microcompartments (BMC) are proteinaceous organelles that structurally resemble viral capsids, but encapsulate enzymes that perform various specialized biochemical reactions in the cell cytoplasm. The BMC are constructed from two major shell proteins, BMC-H and BMC-P, which form the facets and vertices of the icosahedral assembly, and are functionally equivalent to the major and minor capsid proteins of viruses, respectively. This equivalence notwithstanding, neither of the BMC proteins displays structural similarity to known capsid proteins, rendering the origins of the BMC enigmatic. Here, using structural and sequence comparisons, we show that both BMC-H and BMC-P, most likely, were exapted from bona fide cellular proteins, namely, PII signaling protein and OB-fold domain-containing protein, respectively. This finding is in line with the hypothesis that many major viral structural proteins have been recruited from cellular proteomes. REVIEWERS This article was reviewed by Igor Zhulin, Jeremy Selengut and Narayanaswamy Srinivasan. For complete reviews, see the Reviewers' reports section.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
55
|
Slininger Lee MF, Jakobson CM, Tullman-Ercek D. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering. ACS Synth Biol 2017; 6:1880-1891. [PMID: 28585808 DOI: 10.1021/acssynbio.7b00042] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.
Collapse
Affiliation(s)
- Marilyn F. Slininger Lee
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Christopher M. Jakobson
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Systems Biology, Stanford University, Stanford, California, 94305, United States
| | - Danielle Tullman-Ercek
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Chemistry
of Life Processes Institute, Northwestern University, 2170 Campus
Drive, Evanston, Illinois 60208-3120, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
56
|
Faulkner M, Rodriguez-Ramos J, Dykes GF, Owen SV, Casella S, Simpson DM, Beynon RJ, Liu LN. Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes. NANOSCALE 2017; 9:10662-10673. [PMID: 28616951 PMCID: PMC5708340 DOI: 10.1039/c7nr02524f] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carboxysomes are proteinaceous organelles that play essential roles in enhancing carbon fixation in cyanobacteria and some proteobacteria. These self-assembling organelles encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase using a protein shell structurally resembling an icosahedral viral capsid. The protein shell serves as a physical barrier to protect enzymes from the cytosol and a selectively permeable membrane to mediate transport of enzyme substrates and products. The structural and mechanical nature of native carboxysomes remain unclear. Here, we isolate functional β-carboxysomes from the cyanobacterium Synechococcus elongatus PCC7942 and perform the first characterization of the macromolecular architecture and inherent physical mechanics of single β-carboxysomes using electron microscopy, atomic force microscopy (AFM) and proteomics. Our results illustrate that the intact β-carboxysome comprises three structural domains, a single-layered icosahedral shell, an inner layer and paracrystalline arrays of interior Rubisco. We also observe the protein organization of the shell and partial β-carboxysomes that likely serve as the β-carboxysome assembly intermediates. Furthermore, the topography and intrinsic mechanics of functional β-carboxysomes are determined in native conditions using AFM and AFM-based nanoindentation, revealing the flexible organization and soft mechanical properties of β-carboxysomes compared to rigid viruses. Our study provides new insights into the natural characteristics of β-carboxysome organization and nanomechanics, which can be extended to diverse bacterial microcompartments and are important considerations for the design and engineering of functional carboxysomes in other organisms to supercharge photosynthesis. It offers an approach for inspecting the structural and mechanical features of synthetic metabolic organelles and protein scaffolds in bioengineering.
Collapse
Affiliation(s)
- Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | | | - Gregory F Dykes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Siân V Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Selene Casella
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Deborah M Simpson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Robert J Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
57
|
Young EJ, Burton R, Mahalik JP, Sumpter BG, Fuentes-Cabrera M, Kerfeld CA, Ducat DC. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications. Front Microbiol 2017; 8:1441. [PMID: 28824573 PMCID: PMC5534457 DOI: 10.3389/fmicb.2017.01441] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as "building blocks" for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.
Collapse
Affiliation(s)
- Eric J. Young
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| | - Rodney Burton
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| | - Jyoti P. Mahalik
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Bobby G. Sumpter
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Miguel Fuentes-Cabrera
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Cheryl A. Kerfeld
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley National Laboratory, BerkeleyCA, United States
| | - Daniel C. Ducat
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| |
Collapse
|
58
|
Nichols RJ, Cassidy-Amstutz C, Chaijarasphong T, Savage DF. Encapsulins: molecular biology of the shell. Crit Rev Biochem Mol Biol 2017. [DOI: 10.1080/10409238.2017.1337709] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert J. Nichols
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA, USA
| | | | | | - David F. Savage
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA, USA
- Department of Chemistry, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
59
|
Bhaskar S, Lim S. Engineering protein nanocages as carriers for biomedical applications. NPG ASIA MATERIALS 2017; 9:e371. [PMID: 32218880 PMCID: PMC7091667 DOI: 10.1038/am.2016.128] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 05/02/2023]
Abstract
Protein nanocages have been explored as potential carriers in biomedicine. Formed by the self-assembly of protein subunits, the caged structure has three surfaces that can be engineered: the interior, the exterior and the intersubunit. Therapeutic and diagnostic molecules have been loaded in the interior of nanocages, while their external surfaces have been engineered to enhance their biocompatibility and targeting abilities. Modifications of the intersubunit interactions have been shown to modulate the self-assembly profile with implications for tuning the molecular release. We review natural and synthetic protein nanocages that have been modified using chemical and genetic engineering techniques to impart non-natural functions that are responsive to the complex cellular microenvironment of malignant cells while delivering molecular cargos with improved efficiencies and minimal toxicity.
Collapse
Affiliation(s)
- Sathyamoorthy Bhaskar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
60
|
Venkata Mohan S, Nikhil GN, Chiranjeevi P, Nagendranatha Reddy C, Rohit MV, Kumar AN, Sarkar O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. BIORESOURCE TECHNOLOGY 2016; 215:2-12. [PMID: 27068056 DOI: 10.1016/j.biortech.2016.03.130] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 05/11/2023]
Abstract
Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India.
| | - G N Nikhil
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - P Chiranjeevi
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - C Nagendranatha Reddy
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - M V Rohit
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - A Naresh Kumar
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - Omprakash Sarkar
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| |
Collapse
|
61
|
Frey R, Mantri S, Rocca M, Hilvert D. Bottom-up Construction of a Primordial Carboxysome Mimic. J Am Chem Soc 2016; 138:10072-5. [DOI: 10.1021/jacs.6b04744] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Raphael Frey
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Shiksha Mantri
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marco Rocca
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
62
|
Snijder J, Kononova O, Barbu IM, Uetrecht C, Rurup WF, Burnley RJ, Koay MST, Cornelissen JJLM, Roos WH, Barsegov V, Wuite GJL, Heck AJR. Assembly and Mechanical Properties of the Cargo-Free and Cargo-Loaded Bacterial Nanocompartment Encapsulin. Biomacromolecules 2016; 17:2522-9. [DOI: 10.1021/acs.biomac.6b00469] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
| | - Olga Kononova
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Moscow Institute
of Physics
and Technology, Moscow Region, Russia 141700
| | - Ioana M. Barbu
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Charlotte Uetrecht
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - W. Frederik Rurup
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Rebecca J. Burnley
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Melissa S. T. Koay
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Department
of Biomolecular Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter H. Roos
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
- Moleculaire
Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Valeri Barsegov
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Moscow Institute
of Physics
and Technology, Moscow Region, Russia 141700
| | - Gijs J. L. Wuite
- Natuur-
en Sterrenkunde and LaserLab, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
63
|
Genome Sequence of the Autotrophic Acetogen Clostridium magnum DSM 2767. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00464-16. [PMID: 27284147 PMCID: PMC4901216 DOI: 10.1128/genomea.00464-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report the draft genome sequence (6.6 Mbp) of the type strain Clostridium magnum, an acetogen with two operons coding for two separate Rnf complexes. C. magnum grows on a broad range of organic substrates and converts CO2 and H2 to acetate using the Wood-Ljungdahl pathway.
Collapse
|
64
|
Sun Y, Casella S, Fang Y, Huang F, Faulkner M, Barrett S, Liu LN. Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow. PLANT PHYSIOLOGY 2016; 171:530-41. [PMID: 26956667 PMCID: PMC4854705 DOI: 10.1104/pp.16.00107] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/06/2016] [Indexed: 05/08/2023]
Abstract
Cyanobacteria have evolved effective adaptive mechanisms to improve photosynthesis and CO2 fixation. The central CO2-fixing machinery is the carboxysome, which is composed of an icosahedral proteinaceous shell encapsulating the key carbon fixation enzyme, Rubisco, in the interior. Controlled biosynthesis and ordered organization of carboxysomes are vital to the CO2-fixing activity of cyanobacterial cells. However, little is known about how carboxysome biosynthesis and spatial positioning are physiologically regulated to adjust to dynamic changes in the environment. Here, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore the biosynthesis and subcellular localization of β-carboxysomes within a model cyanobacterium, Synechococcus elongatus PCC7942, in response to light variation. We demonstrated that β-carboxysome biosynthesis is accelerated in response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating a close coordination between β-carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organization of carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. This study provides essential knowledge for us to modulate the β-carboxysome biosynthesis and function in cyanobacteria. In translational terms, the knowledge is instrumental for design and synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis performance and CO2 fixation.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Selene Casella
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Yi Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Steve Barrett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| |
Collapse
|
65
|
McManus JJ, Charbonneau P, Zaccarelli E, Asherie N. The physics of protein self-assembly. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.02.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
66
|
Jorda J, Leibly DJ, Thompson MC, Yeates TO. Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 2016; 52:5041-4. [PMID: 26988700 DOI: 10.1039/c6cc00851h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the crystal structure of a novel 60-subunit dodecahedral cage that results from self-assembly of a re-engineered version of a natural protein (PduA) from the Pdu microcompartment shell. Biophysical data illustrate the dependence of assembly on solution conditions, opening up new applications in microcompartment studies and nanotechnology.
Collapse
Affiliation(s)
- J Jorda
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
67
|
Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC. Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Mechanism of Four-Coordinate Co(II)Cbl Formation. J Am Chem Soc 2016; 138:3694-704. [PMID: 26886077 DOI: 10.1021/jacs.5b11708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
EutT from Salmonella enterica is a member of a class of enzymes termed ATP:Co(I)rrinoid adenosyltransferases (ACATs), implicated in the biosynthesis of adenosylcobalamin (AdoCbl). In the presence of cosubstrate ATP, ACATs raise the Co(II)/Co(I) reduction potential of their cob(II)alamin [Co(II)Cbl] substrate by >250 mV via the formation of a unique four-coordinate (4c) Co(II)Cbl species, thereby facilitating the formation of a "supernucleophilic" cob(I)alamin intermediate required for the formation of the AdoCbl product. Previous kinetic studies of EutT revealed the importance of a HX11CCX2C(83) motif for catalytic activity and have led to the proposal that residues in this motif serve as the binding site for a divalent transition metal cofactor [e.g., Fe(II) or Zn(II)]. This motif is absent in other ACAT families, suggesting that EutT employs a distinct mechanism for AdoCbl formation. To assess how metal ion binding to the HX11CCX2C(83) motif affects the relative yield of 4c Co(II)Cbl generated in the EutT active site, we have characterized several enzyme variants by using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our results indicate that Fe(II) or Zn(II) binding to the HX11CCX2C(83) motif of EutT is required for promoting the formation of 4c Co(II)Cbl. Intriguingly, our spectroscopic data also reveal the presence of an equilibrium between five-coordinate "base-on" and "base-off" Co(II)Cbl species bound to the EutT active site at low ATP concentrations, which shifts in favor of "base-off" Co(II)Cbl in the presence of excess ATP, suggesting that the base-off species serves as a precursor to 4c Co(II)Cbl.
Collapse
Affiliation(s)
- Ivan G Pallares
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Theodore C Moore
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
68
|
Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans. Sci Rep 2016; 6:22108. [PMID: 26899032 PMCID: PMC4762007 DOI: 10.1038/srep22108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022] Open
Abstract
The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.
Collapse
|
69
|
Frey R, Hayashi T, Hilvert D. Enzyme-mediated polymerization inside engineered protein cages. Chem Commun (Camb) 2016; 52:10423-6. [DOI: 10.1039/c6cc05301g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Engineered variants of the capsid-forming enzyme lumazine synthase, AaLS, were used as nanoreactors for an enzyme-mediated polymerization.
Collapse
Affiliation(s)
- Raphael Frey
- Laboratory of Organic Chemistry
- ETH Zürich
- 8093 Zürich
- Switzerland
| | | | - Donald Hilvert
- Laboratory of Organic Chemistry
- ETH Zürich
- 8093 Zürich
- Switzerland
| |
Collapse
|
70
|
Chaijarasphong T, Nichols RJ, Kortright KE, Nixon CF, Teng PK, Oltrogge LM, Savage DF. Programmed Ribosomal Frameshifting Mediates Expression of the α-Carboxysome. J Mol Biol 2016; 428:153-164. [DOI: 10.1016/j.jmb.2015.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 01/24/2023]
|
71
|
Yokoo R, Hood RD, Savage DF. Live-cell imaging of cyanobacteria. PHOTOSYNTHESIS RESEARCH 2015; 126:33-46. [PMID: 25366827 DOI: 10.1007/s11120-014-0049-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria are a diverse bacterial phylum whose members possess a high degree of ultrastructural organization and unique gene regulatory mechanisms. Unraveling this complexity will require the use of live-cell fluorescence microscopy, but is impeded by the inherent fluorescent background associated with light-harvesting pigments and the need to feed photosynthetic cells light. Here, we outline a roadmap for overcoming these challenges. Specifically, we show that although basic cyanobacterial biology creates challenging experimental constraints, these restrictions can be mitigated by the careful choice of fluorophores and microscope instrumentation. Many of these choices are motivated by recent successful live-cell studies. We therefore also highlight how live-cell imaging has advanced our understanding of bacterial microcompartments, circadian rhythm, and the organization and segregation of the bacterial nucleoid.
Collapse
Affiliation(s)
- Rayka Yokoo
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rachel D Hood
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - David F Savage
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
72
|
Bioinformatic characterization of glycyl radical enzyme-associated bacterial microcompartments. Appl Environ Microbiol 2015; 81:8315-29. [PMID: 26407889 DOI: 10.1128/aem.02587-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022] Open
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles encapsulating enzymes that catalyze sequential reactions of metabolic pathways. BMCs are phylogenetically widespread; however, only a few BMCs have been experimentally characterized. Among them are the carboxysomes and the propanediol- and ethanolamine-utilizing microcompartments, which play diverse metabolic and ecological roles. The substrate of a BMC is defined by its signature enzyme. In catabolic BMCs, this enzyme typically generates an aldehyde. Recently, it was shown that the most prevalent signature enzymes encoded by BMC loci are glycyl radical enzymes, yet little is known about the function of these BMCs. Here we characterize the glycyl radical enzyme-associated microcompartment (GRM) loci using a combination of bioinformatic analyses and active-site and structural modeling to show that the GRMs comprise five subtypes. We predict distinct functions for the GRMs, including the degradation of choline, propanediol, and fuculose phosphate. This is the first family of BMCs for which identification of the signature enzyme is insufficient for predicting function. The distinct GRM functions are also reflected in differences in shell composition and apparently different assembly pathways. The GRMs are the counterparts of the vitamin B12-dependent propanediol- and ethanolamine-utilizing BMCs, which are frequently associated with virulence. This study provides a comprehensive foundation for experimental investigations of the diverse roles of GRMs. Understanding this plasticity of function within a single BMC family, including characterization of differences in permeability and assembly, can inform approaches to BMC bioengineering and the design of therapeutics.
Collapse
|
73
|
Gleaton J, Chmielewski J. Thermally Controlled Collagen Peptide Cages for Biopolymer Delivery. ACS Biomater Sci Eng 2015; 1:1002-1008. [PMID: 33429531 DOI: 10.1021/acsbiomaterials.5b00241] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jeremy Gleaton
- Department of Chemistry, Purdue University, 560 Oval
Drive, West Lafayette, Indiana 47907, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval
Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
74
|
Poust S, Piety J, Bar-Even A, Louw C, Baker D, Keasling JD, Siegel JB. Mechanistic Analysis of an Engineered Enzyme that Catalyzes the Formose Reaction. Chembiochem 2015; 16:1950-1954. [PMID: 26109266 DOI: 10.1002/cbic.201500228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 11/08/2022]
Abstract
An enzyme that catalyzes the formose reaction, termed "formolase", was recently engineered through a combination of computational protein design and directed evolution. We have investigated the kinetic role of the computationally designed residues and further characterized the enzyme's product profile. Kinetic studies illustrated that the computationally designed mutations were synergistic in their contributions towards enhancing activity. Mass spectrometry revealed that the engineered enzyme produces two products of the formose reaction-dihydroxyacetone and glycolaldehyde-with the product profile dependent on the formaldehyde concentration. We further explored the effects of this product profile on the thermodynamics and yield of the overall carbon assimilation from the formolase pathway to help guide future efforts to engineer this pathway.
Collapse
Affiliation(s)
- Sean Poust
- Department of Chemical and Biomolecular Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462 (USA).,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608 (USA)
| | - James Piety
- Department of Chemical and Biomolecular Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462 (USA).,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608 (USA)
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
| | - Catherine Louw
- Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195 (USA)
| | - David Baker
- Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195 (USA)
| | - Jay D Keasling
- Department of Chemical and Biomolecular Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462 (USA).,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608 (USA)
| | - Justin B Siegel
- Departments of Chemistry and Biochemistry and Molecular Medicine, Genome Center, University of California, 451 Health Sciences Drive, Davis, CA 95616 (USA).,Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195 (USA)
| |
Collapse
|
75
|
Chessher A, Breitling R, Takano E. Bacterial Microcompartments: Biomaterials for Synthetic Biology-Based Compartmentalization Strategies. ACS Biomater Sci Eng 2015; 1:345-351. [DOI: 10.1021/acsbiomaterials.5b00059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ashley Chessher
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
76
|
Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production. Metab Eng 2015; 29:76-85. [DOI: 10.1016/j.ymben.2015.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/15/2015] [Accepted: 03/02/2015] [Indexed: 11/18/2022]
|
77
|
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
|
78
|
Jorda J, Liu Y, Bobik TA, Yeates TO. Exploring bacterial organelle interactomes: a model of the protein-protein interaction network in the Pdu microcompartment. PLoS Comput Biol 2015; 11:e1004067. [PMID: 25646976 PMCID: PMC4315436 DOI: 10.1371/journal.pcbi.1004067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/01/2014] [Indexed: 01/03/2023] Open
Abstract
Bacterial microcompartments (MCPs) are protein-bound organelles that carry out diverse metabolic pathways in a wide range of bacteria. These supramolecular assemblies consist of a thin outer protein shell, reminiscent of a viral capsid, which encapsulates sequentially acting enzymes. The most complex MCP elucidated so far is the propanediol utilizing (Pdu) microcompartment. It contains the reactions for degrading 1,2-propanediol. While several experimental studies on the Pdu system have provided hints about its organization, a clear picture of how all the individual components interact has not emerged yet. Here we use co-evolution-based methods, involving pairwise comparisons of protein phylogenetic trees, to predict the protein-protein interaction (PPI) network governing the assembly of the Pdu MCP. We propose a model of the Pdu interactome, from which selected PPIs are further inspected via computational docking simulations. We find that shell protein PduA is able to serve as a “universal hub” for targeting an array of enzymes presenting special N-terminal extensions, namely PduC, D, E, L and P. The varied N-terminal peptides are predicted to bind in the same cleft on the presumptive luminal face of the PduA hexamer. We also propose that PduV, a protein of unknown function with remote homology to the Ras-like GTPase superfamily, is likely to localize outside the MCP, interacting with the protruding β-barrel of the hexameric PduU shell protein. Preliminary experiments involving a bacterial two-hybrid assay are presented that corroborate the existence of a PduU-PduV interaction. This first systematic computational study aimed at characterizing the interactome of a bacterial microcompartment provides fresh insight into the organization of the Pdu MCP. Many bacteria produce giant proteinaceous structures within their cells, which they use to carry out special metabolic reactions in their interior. Much has been learned recently about the individual components—shell proteins and encapsulated enzymes—that assemble together, thousands of subunits in all, to make these bacterial microcompartments or MCPs. However, in order to carry out their biological functions, these systems must be highly organized through specific protein-protein interactions, and such a higher level understanding of organization in MCP systems is lacking. In this study, we use genomic data and phylogenetic analysis to predict the network of interactions between the approximately 20 different kinds of proteins and enzymes present in the Pdu MCP. Then, we use computational docking to examine a subset of those that are predicted to involve enzymes bound to the interior surface of the shell proteins, and show that the results are consistent with recent experimental data. We further provide new experimental evidence for one of the predicted protein-protein interactions. This study expands our understanding of a complex system of proteins serving as a metabolic organelle in bacterial cells, and provides a foundation for further experimental investigations.
Collapse
Affiliation(s)
- Julien Jorda
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, United States of America
| | - Yu Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Todd O. Yeates
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
79
|
Thompson MC, Crowley CS, Kopstein J, Bobik TA, Yeates TO. Structure of a bacterial microcompartment shell protein bound to a cobalamin cofactor. Acta Crystallogr F Struct Biol Commun 2014; 70:1584-90. [PMID: 25484204 PMCID: PMC4259218 DOI: 10.1107/s2053230x1402158x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/30/2014] [Indexed: 03/10/2023] Open
Abstract
The EutL shell protein is a key component of the ethanolamine-utilization microcompartment, which serves to compartmentalize ethanolamine degradation in diverse bacteria. The apparent function of this shell protein is to facilitate the selective diffusion of large cofactor molecules between the cytoplasm and the lumen of the microcompartment. While EutL is implicated in molecular-transport phenomena, the details of its function, including the identity of its transport substrate, remain unknown. Here, the 2.1 Å resolution X-ray crystal structure of a EutL shell protein bound to cobalamin (vitamin B12) is presented and the potential relevance of the observed protein-ligand interaction is briefly discussed. This work represents the first structure of a bacterial microcompartment shell protein bound to a potentially relevant cofactor molecule.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S. Crowley
- Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey Kopstein
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
80
|
Production of bacterial microcompartments. Methods Mol Biol 2014. [PMID: 25358774 DOI: 10.1007/978-1-4939-2131-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bacterial microcompartments (BMCs) are protein-based organelles that allow specific metabolic steps to be sequestered from the cytoplasmic environment. Compartmentalization of enzymes and pathway intermediates can increase flux through a metabolic pathway and protect the cell from toxic intermediates. BMCs thus offer the potential to increase the efficiency of engineered metabolic pathways. Moreover, as protein cages, BMCs may enable various other applications in biotechnology. These future applications of BMCs will require the ability to rapidly and efficiently produce BMCs for physical characterization and protein engineering. This chapter presents an analysis of approaches to expression and purification of BMCs and outlines a generalized strategy based on these approaches that can be used as a starting point for production of new BMCs.
Collapse
|
81
|
Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol 2014; 32:1011-8. [PMID: 25262299 DOI: 10.1038/nbt.3018] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 08/13/2014] [Indexed: 01/18/2023]
Abstract
We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation.
Collapse
|
82
|
Thompson MC, Wheatley NM, Jorda J, Sawaya MR, Gidaniyan SD, Ahmed H, Yang Z, McCarty KN, Whitelegge JP, Yeates TO. Identification of a unique Fe-S cluster binding site in a glycyl-radical type microcompartment shell protein. J Mol Biol 2014; 426:3287-3304. [PMID: 25102080 PMCID: PMC4175982 DOI: 10.1016/j.jmb.2014.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/01/2014] [Accepted: 07/20/2014] [Indexed: 12/15/2022]
Abstract
Recently, progress has been made toward understanding the functional diversity of bacterial microcompartment (MCP) systems, which serve as protein-based metabolic organelles in diverse microbes. New types of MCPs have been identified, including the glycyl-radical propanediol (Grp) MCP. Within these elaborate protein complexes, BMC-domain shell proteins [bacterial microcompartment (in reference to the shell protein domain)] assemble to form a polyhedral barrier that encapsulates the enzymatic contents of the MCP. Interestingly, the Grp MCP contains a number of shell proteins with unusual sequence features. GrpU is one such shell protein whose amino acid sequence is particularly divergent from other members of the BMC-domain superfamily of proteins that effectively defines all MCPs. Expression, purification, and subsequent characterization of the protein showed, unexpectedly, that it binds an iron-sulfur cluster. We determined X-ray crystal structures of two GrpU orthologs, providing the first structural insight into the homohexameric BMC-domain shell proteins of the Grp system. The X-ray structures of GrpU, both obtained in the apo form, combined with spectroscopic analyses and computational modeling, show that the metal cluster resides in the central pore of the BMC shell protein at a position of broken 6-fold symmetry. The result is a structurally polymorphic iron-sulfur cluster binding site that appears to be unique among metalloproteins studied to date.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Nicole M Wheatley
- Molecular Biology Interdepartmental Ph.D. Program, University of California, Los Angeles, CA 90095, USA
| | - Julien Jorda
- University of California, Los Angeles-Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Michael R Sawaya
- University of California, Los Angeles-Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Soheil D Gidaniyan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Hoda Ahmed
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Zhongyu Yang
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Krystal N McCarty
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
83
|
Patterson D, Edwards E, Douglas T. Hybrid Nanoreactors: Coupling Enzymes and Small-Molecule Catalysts within Virus-Like Particles. Isr J Chem 2014. [DOI: 10.1002/ijch.201400092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
84
|
Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 2014. [PMID: 25184561 DOI: 10.1128/mmbr.00009–14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sharmistha Sinha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sunny Chun
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Todd O Yeates
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, USA Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
85
|
Sachdeva G, Garg A, Godding D, Way JC, Silver PA. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res 2014; 42:9493-503. [PMID: 25034694 PMCID: PMC4132732 DOI: 10.1093/nar/gku617] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/05/2023] Open
Abstract
Co-localization of biochemical processes plays a key role in the directional control of metabolic fluxes toward specific products in cells. Here, we employ in vivo scaffolds made of RNA that can bind engineered proteins fused to specific RNA binding domains. This allows proteins to be co-localized on RNA scaffolds inside living Escherichia coli. We assembled a library of eight aptamers and corresponding RNA binding domains fused to partial fragments of fluorescent proteins. New scaffold designs could co-localize split green fluorescent protein fragments to produce activity as measured by cell-based fluorescence. The scaffolds consisted of either single bivalent RNAs or RNAs designed to polymerize in one or two dimensions. The new scaffolds were used to increase metabolic output from a two-enzyme pentadecane production pathway that contains a fatty aldehyde intermediate, as well as three and four enzymes in the succinate production pathway. Pentadecane synthesis depended on the geometry of enzymes on the scaffold, as determined through systematic reorientation of the acyl-ACP reductase fusion by rotation via addition of base pairs to its cognate RNA aptamer. Together, these data suggest that intra-cellular scaffolding of enzymatic reactions may enhance the direct channeling of a variety of substrates.
Collapse
Affiliation(s)
- Gairik Sachdeva
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA Wyss Institute for Biologically Inspired Engineering, 3 Blackfan St., Boston, MA 02115, USA
| | - Abhishek Garg
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - David Godding
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan St., Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA Wyss Institute for Biologically Inspired Engineering, 3 Blackfan St., Boston, MA 02115, USA
| |
Collapse
|
86
|
Lawrence AD, Frank S, Newnham S, Lee MJ, Brown IR, Xue WF, Rowe ML, Mulvihill DP, Prentice MB, Howard MJ, Warren MJ. Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor. ACS Synth Biol 2014; 3:454-465. [PMID: 24933391 DOI: 10.1021/sb4001118] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol.
Collapse
Affiliation(s)
- Andrew D. Lawrence
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | - Stefanie Frank
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | - Sarah Newnham
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | - Matthew J. Lee
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | - Ian R. Brown
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | - Wei-Feng Xue
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | - Michelle L. Rowe
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | - Daniel P. Mulvihill
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | | | - Mark J. Howard
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| | - Martin J. Warren
- School
of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, U.K
| |
Collapse
|
87
|
Contreras H, Joens MS, McMath LM, Le VP, Tullius MV, Kimmey JM, Bionghi N, Horwitz MA, Fitzpatrick JAJ, Goulding CW. Characterization of a Mycobacterium tuberculosis nanocompartment and its potential cargo proteins. J Biol Chem 2014; 289:18279-89. [PMID: 24855650 PMCID: PMC4140288 DOI: 10.1074/jbc.m114.570119] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/19/2014] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium tuberculosis has evolved various mechanisms by which the bacterium can maintain homeostasis under numerous environmental assaults generated by the host immune response. M. tuberculosis harbors enzymes involved in the oxidative stress response that aid in survival during the production of reactive oxygen species in activated macrophages. Previous studies have shown that a dye-decolorizing peroxidase (DyP) is encapsulated by a bacterial nanocompartment, encapsulin (Enc), whereby packaged DyP interacts with Enc via a unique C-terminal extension. M. tuberculosis also harbors an encapsulin homolog (CFP-29, Mt-Enc), within an operon with M. tuberculosis DyP (Mt-DyP), which contains a C-terminal extension. Together these observations suggest that Mt-DyP interacts with Mt-Enc. Furthermore, it has been suggested that DyPs may function as either a heme-dependent peroxidase or a deferrochelatase. Like Mt-DyP, M. tuberculosis iron storage ferritin protein, Mt-BfrB, and an M. tuberculosis protein involved in folate biosynthesis, 7,8-dihydroneopterin aldolase (Mt-FolB), have C-terminal tails that could also interact with Mt-Enc. For the first time, we show by co-purification and electron microscopy that mycobacteria via Mt-Enc can encapsulate Mt-DyP, Mt-BfrB, and Mt-FolB. Functional studies of free or encapsulated proteins demonstrate that they retain their enzymatic activity within the Mt-Enc nanocompartment. Mt-DyP, Mt-FolB, and Mt-BfrB all have antioxidant properties, suggesting that if these proteins are encapsulated by Mt-Enc, then this nanocage may play a role in the M. tuberculosis oxidative stress response. This report provides initial structural and biochemical clues regarding the molecular mechanisms that utilize compartmentalization by which the mycobacterial cell may aid in detoxification of the local environment to ensure long term survival.
Collapse
Affiliation(s)
- Heidi Contreras
- From the Departments of Molecular Biology and Biochemistry and
| | - Matthew S Joens
- the Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California 92037, and
| | - Lisa M McMath
- From the Departments of Molecular Biology and Biochemistry and
| | - Vincent P Le
- From the Departments of Molecular Biology and Biochemistry and
| | - Michael V Tullius
- the Division of Infectious Diseases, Department of Medicine, School of Medicine, UCLA, Los Angeles, California 90095
| | - Jaqueline M Kimmey
- the Division of Infectious Diseases, Department of Medicine, School of Medicine, UCLA, Los Angeles, California 90095
| | - Neda Bionghi
- the Division of Infectious Diseases, Department of Medicine, School of Medicine, UCLA, Los Angeles, California 90095
| | - Marcus A Horwitz
- the Division of Infectious Diseases, Department of Medicine, School of Medicine, UCLA, Los Angeles, California 90095
| | - James A J Fitzpatrick
- the Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California 92037, and
| | - Celia W Goulding
- From the Departments of Molecular Biology and Biochemistry and Pharmaceutical Sciences, University of California, Irvine, California 92697,
| |
Collapse
|
88
|
Whitehead L, Long BM, Price GD, Badger MR. Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria. PLANT PHYSIOLOGY 2014; 165:398-411. [PMID: 24642960 PMCID: PMC4012598 DOI: 10.1104/pp.114.237941] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/10/2014] [Indexed: 05/19/2023]
Abstract
The carbon dioxide (CO2)-concentrating mechanism of cyanobacteria is characterized by the occurrence of Rubisco-containing microcompartments called carboxysomes within cells. The encapsulation of Rubisco allows for high-CO2 concentrations at the site of fixation, providing an advantage in low-CO2 environments. Cyanobacteria with Form-IA Rubisco contain α-carboxysomes, and cyanobacteria with Form-IB Rubisco contain β-carboxysomes. The two carboxysome types have arisen through convergent evolution, and α-cyanobacteria and β-cyanobacteria occupy different ecological niches. Here, we present, to our knowledge, the first direct comparison of the carboxysome function from α-cyanobacteria (Cyanobium spp. PCC7001) and β-cyanobacteria (Synechococcus spp. PCC7942) with similar inorganic carbon (Ci; as CO2 and HCO3-) transporter systems. Despite evolutionary and structural differences between α-carboxysomes and β-carboxysomes, we found that the two strains are remarkably similar in many physiological parameters, particularly the response of photosynthesis to light and external Ci and their modulation of internal ribulose-1,5-bisphosphate, phosphoglycerate, and Ci pools when grown under comparable conditions. In addition, the different Rubisco forms present in each carboxysome had almost identical kinetic parameters. The conclusions indicate that the possession of different carboxysome types does not significantly influence the physiological function of these species and that similar carboxysome function may be possessed by each carboxysome type. Interestingly, both carboxysome types showed a response to cytosolic Ci, which is of higher affinity than predicted by current models, being saturated by 5 to 15 mm Ci. This finding has bearing on the viability of transplanting functional carboxysomes into the C3 chloroplast.
Collapse
Affiliation(s)
- Lynne Whitehead
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia
| | - Benedict M. Long
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia
| | - G. Dean Price
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia
| | - Murray R. Badger
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia
| |
Collapse
|
89
|
Lassila JK, Bernstein SL, Kinney JN, Axen SD, Kerfeld CA. Assembly of Robust Bacterial Microcompartment Shells Using Building Blocks from an Organelle of Unknown Function. J Mol Biol 2014; 426:2217-28. [DOI: 10.1016/j.jmb.2014.02.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 01/24/2023]
|
90
|
Petrovska I, Nüske E, Munder MC, Kulasegaran G, Malinovska L, Kroschwald S, Richter D, Fahmy K, Gibson K, Verbavatz JM, Alberti S. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. eLife 2014; 3:eLife.02409. [PMID: 24771766 PMCID: PMC4011332 DOI: 10.7554/elife.02409] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/10/2014] [Indexed: 01/20/2023] Open
Abstract
One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell.
Collapse
Affiliation(s)
- Ivana Petrovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Matthias C Munder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sonja Kroschwald
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology, Helmholtz Institute Dresden-Rossendorf, Dresden, Germany
| | - Kimberley Gibson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
91
|
Proteomic analysis of the purple sulfur bacterium Candidatus “Thiodictyon syntrophicum” strain Cad16T isolated from Lake Cadagno. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2013.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
92
|
Kamke J, Rinke C, Schwientek P, Mavromatis K, Ivanova N, Sczyrba A, Woyke T, Hentschel U. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features. PLoS One 2014; 9:e87353. [PMID: 24498082 PMCID: PMC3909097 DOI: 10.1371/journal.pone.0087353] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/19/2013] [Indexed: 01/02/2023] Open
Abstract
The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.
Collapse
Affiliation(s)
- Janine Kamke
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Rinke
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Patrick Schwientek
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kostas Mavromatis
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Alexander Sczyrba
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Ute Hentschel
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
93
|
Grima R, Walter NG, Schnell S. Single-molecule enzymology à la Michaelis-Menten. FEBS J 2014; 281:518-30. [DOI: 10.1111/febs.12663] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/30/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Ramon Grima
- School of Biological Sciences and SynthSys; University of Edinburgh; UK
| | - Nils G. Walter
- Department of Chemistry and Single Molecule Analysis in Real-Time (SMART) Center; University of Michigan; Ann Arbor MI USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology; Department of Computational Medicine & Bioinformatics and Brehm Center for Diabetes Research; University of Michigan Medical School; Ann Arbor MI USA
| |
Collapse
|
94
|
Thompson MC, Yeates TO. A challenging interpretation of a hexagonally layered protein structure. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:203-8. [PMID: 24419393 PMCID: PMC4030663 DOI: 10.1107/s139900471302422x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022]
Abstract
The carboxysome is a giant protein complex that acts as a metabolic organelle in cyanobacteria and some chemoautotrophs. Its outer structure is formed by the assembly of thousands of copies of hexameric shell protein subunits into a molecular layer. The structure determination of a CcmK1 shell protein mutant (L11K) from the β-carboxysome of the cyanobacterium Synechocystis PCC6803 led to challenges in structure determination. Twinning, noncrystallographic symmetry and packing of hexameric units in a special arrangement led to initial difficulties in space-group assignment. The correct space group was clarified after initial model refinement revealed additional symmetry. This study provides an instructive example in which broken symmetry requires a new choice of unit-cell origin in order to identify the highest symmetry space group. An additional observation related to the packing arrangement of molecules in this crystal suggests that these hexameric shell proteins might have lower internal symmetry than previously believed.
Collapse
Affiliation(s)
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
95
|
Carboxysomes – Sequestering RubisCO for Efficient Carbon Fixation. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
96
|
Abstract
Cyanobacteria and some chemoautotrophic bacteria enhance their carbon fixation efficiency by actively concentrating bicarbonate within their cytosol. However, converting bicarbonate into carbon dioxide - the form required by RubisCO - would result in its rapid escape through cellular membranes. These organisms resolve this dilemma by sequestering RubisCO behind a semi-permeable protein shell; the resulting large insoluble bodies are known as carboxysomes. For the carbon concentrating mechanism to function, there is an absolute requirement for carbonic anhydrase activity within the carboxysome to convert the bicarbonate to cabon dioxide, and a simultaneous requirement that minimal carbonic anhydrase activity be found within the cystol. Carboxysomal carbomic anhydrases therefore contain additional motifs and domains that generally mediate protein-protein interactions, or encapsulation dependent activation mechanisms. Carboxysomes are found in two deeply divergent varieties. Alpha-Carboxysomes contain a β-carbonic anhydrase, CsoSCA, which is so divergent from canonical β-carbonic anhydrases that it was originally thought to be the founding member of a new class. Beta carboxysomes have CcmM whose N-terminal domain is an active γ-carbonic ahydrase in some strains, but in others has lost all activity and functions primarily as a protein complex assembly scaffold; in addition, a subset of β-carboxysomes also contain the β-carbonic anhydrase CcaA - either in addition to, or instead of, an active CcmM. Here we explore the structures, activities and interactions mediated by the three known carboxysomal carbonic anhydrases, and discuss the mechanisms by which they are recruited to the carboxysome.
Collapse
|
97
|
Schreiber A, Schiller SM. Nanobiotechnology of protein-based compartments: steps toward nanofactories. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.13.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
98
|
The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio 2013; 4:e00443-13. [PMID: 24129255 PMCID: PMC3812706 DOI: 10.1128/mbio.00443-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. Despite their tiny size and the scarcity of membrane-bounded organelles, bacteria are capable of sorting macromolecules to distinct subcellular domains, thus optimizing functionality of vital processes. Understanding the cues that organize bacterial cells should provide novel insights into the complex organization of higher organisms. Previously, we have shown that the general proteins of the phosphotransferase system (PTS) signaling system, which governs utilization of carbon sources in bacteria, localize to the poles of Escherichia coli cells. Here, we show that geometric cues, i.e., strong negative membrane curvature, mediate positioning of the PTS proteins. Furthermore, localization to negatively curved regions seems to support the PTS functionality.
Collapse
|
99
|
Ferrer-Miralles N, Rodríguez-Carmona E, Corchero JL, García-Fruitós E, Vázquez E, Villaverde A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit Rev Biotechnol 2013; 35:209-21. [DOI: 10.3109/07388551.2013.833163] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
100
|
Chen AH, Robinson-Mosher A, Savage DF, Silver PA, Polka JK. The bacterial carbon-fixing organelle is formed by shell envelopment of preassembled cargo. PLoS One 2013; 8:e76127. [PMID: 24023971 PMCID: PMC3762834 DOI: 10.1371/journal.pone.0076127] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cyanobacteria play a significant role in the global carbon cycle. In Synechococcuselongatus, the carbon-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is concentrated into polyhedral, proteinaceous compartments called carboxysomes. METHODOLOGY/PRINCIPAL FINDINGS Using live cell fluorescence microscopy, we show that carboxysomes are first detected as small seeds of RuBisCO that colocalize with existing carboxysomes. These seeds contain little or no shell protein, but increase in RuBisCO content over several hours, during which time they are exposed to the solvent. The maturing seed is then enclosed by shell proteins, a rapid process that seals RuBisCO from the cytosol to establish a distinct, solvent-protected microenvironment that is oxidizing relative to the cytosol. These closure events can be spatially and temporally coincident with the appearance of a nascent daughter RuBisCO seed. CONCLUSIONS/SIGNIFICANCE Carboxysomes assemble in a stepwise fashion, inside-to-outside, revealing that cargo is the principle organizer of this compartment's biogenesis. Our observations of the spatial relationship of seeds to previously formed carboxysomes lead us to propose a model for carboxysome replication via sequential fission, polymerization, and encapsulation of their internal cargo.
Collapse
Affiliation(s)
- Anna H. Chen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Avi Robinson-Mosher
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - David F. Savage
- Department of Molecular and Cell Biology, Department of Chemistry and Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Jessica K. Polka
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|