51
|
Hoppe R, Frank H, Breer H, Strotmann J. The clustered olfactory receptor gene family 262: genomic organization, promotor elements, and interacting transcription factors. Genome Res 2004; 13:2674-85. [PMID: 14656972 PMCID: PMC403809 DOI: 10.1101/gr.1372203] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For six mouse olfactory receptor genes from family 262 which are expressed in clustered populations of olfactory sensory neurons, the genomic as well as cDNA structures were deciphered. All genes contained several exons which in some cases were alternatively spliced. Immediately upstream of the transcription start sites, sequence motif blocks were identified that are highly conserved among olfactory receptor (OR) genes which are expressed in clustered neuronal populations. By means of electrophoretic mobility shift assays, it was demonstrated that segments of the motif block region interact with proteins extracted from nuclear fractions of the olfactory epithelium. Yeast one-hybrid screenings of an olfactory cDNA library led to the identification of a set of transcription factors that specifically bind to particular elements of the motif block region. The identified factors can be categorized into two types: One group is known to be involved in transcriptional initiation, and the second group represents factors involved in pattern formations. The identified components may contribute to govern the precise topographic expression pattern of olfactory receptor genes.
Collapse
Affiliation(s)
- Reiner Hoppe
- Institute of Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
52
|
Amadou C, Younger RM, Sims S, Matthews LH, Rogers J, Kumanovics A, Ziegler A, Beck S, Lindahl KF. Co-duplication of olfactory receptor and MHC class I genes in the mouse major histocompatibility complex. Hum Mol Genet 2003; 12:3025-40. [PMID: 14506126 DOI: 10.1093/hmg/ddg317] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the 897 kb sequence of a cluster of olfactory receptor (OR) genes located at the distal end of the major histocompatibility complex (MHC) class I region on mouse chromosome 17 of strain 129/SvJ (H2bc). With additional information from the mouse genome draft sequence, we identified 59 OR loci (approximately 20% pseudogenes) in contrast to only 25 OR loci (approximately 50% pseudogenes) in the corresponding centromeric OR cluster that is part of the 'extended MHC class I region' on human chromosome 6. Comparative analysis leads to three major observations: (i) most of the OR subfamilies have evolved independently in the two species, expanding more in the mouse, and resulting in co-orthologs--subfamilies of highly similar paralogs that keep orthologous relationships with their human counterparts; (ii) three of the mouse OR subfamilies have no orthologs in humans; and (iii) MHC class I loci are interspersed in the OR cluster in mouse but not in human, and were subjected to co-duplication with OR genes. Screening of our sequence against the available sequences of other strains/haplotypes revealed that most of the OR loci are polymorphic and that the number of OR loci may vary among strains/haplotypes. Our findings that MHC-linked OR loci share duplication with MHC class I loci, have duplicated extensively and are polymorphic revives questions about potential reciprocal influences acting on the dynamics and evolution of the H2 region and the H2-linked OR loci.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Chromosome Mapping
- Chromosomes, Human, Pair 6
- Chromosomes, Mammalian
- Consensus Sequence
- Evolution, Molecular
- Gene Duplication
- Genes, MHC Class I
- Haplotypes
- Histocompatibility Antigens Class II/genetics
- Humans
- Major Histocompatibility Complex/genetics
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- Mutation
- Phylogeny
- Polymorphism, Genetic
- Protein Structure, Tertiary
- Receptors, Odorant/chemistry
- Receptors, Odorant/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Species Specificity
Collapse
Affiliation(s)
- Claire Amadou
- Howard Hughes Medical Institute and Center for Immunology, University of Texas Southwestern Medical Center, Dallas, 75390-9050, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Charlesworth D, Mable BK, Schierup MH, Bartolomé C, Awadalla P. Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata. Genetics 2003; 164:1519-35. [PMID: 12930757 PMCID: PMC1462643 DOI: 10.1093/genetics/164.4.1519] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report studies of seven members of the S-domain gene family in Arabidopsis lyrata, a member of the Brassicaceae that has a sporophytic self-incompatibility (SI) system. Orthologs for five loci are identifiable in the self-compatible relative A. thaliana. Like the Brassica stigmatic incompatibility protein locus (SRK), some of these genes have kinase domains. We show that several of these genes are unlinked to the putative A. lyrata SRK, Aly13. These genes have much lower nonsynonymous and synonymous polymorphism than Aly13 in the S-domains within natural populations, and differentiation between populations is higher, consistent with balancing selection at the Aly13 locus. One gene (Aly8) is linked to Aly13 and has high diversity. No departures from neutrality were detected for any of the loci. Comparing different loci within A. lyrata, sites corresponding to hypervariable regions in the Brassica S-loci (SLG and SRK) and in comparable regions of Aly13 have greater replacement site divergence than the rest of the S-domain. This suggests that the high polymorphism in these regions of incompatibility loci is due to balancing selection acting on sites within or near these regions, combined with low selective constraints.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Arabidopsis/genetics
- Base Sequence/genetics
- Cloning, Molecular
- Evolution, Molecular
- Genes, Plant
- Genetic Linkage
- Genetic Variation
- Genetics, Population
- Genome, Plant
- Haplotypes
- Linkage Disequilibrium
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Polymorphism, Genetic
- Recombination, Genetic
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH9 3JT, Scotland, UK.
| | | | | | | | | |
Collapse
|
54
|
Ganguly I, Mackay TFC, Anholt RRH. Scribble is essential for olfactory behavior in Drosophila melanogaster. Genetics 2003; 164:1447-57. [PMID: 12930751 PMCID: PMC1462661 DOI: 10.1093/genetics/164.4.1447] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The ability to discriminate and respond to chemical signals from the environment is an almost universal prerequisite for survival. Here, we report that the scaffold protein Scribble is essential for odor-guided behavior in Drosophila. Previously, we identified a P-element insert line with generalized sexually dimorphic smell impairment, smi97B. We found that the transposon in this line is located between the predicted promoter region and the transcription initiation site of scrib. A deficiency in this region, Df(3R)Tl-X, and two scrib null alleles fail to complement the smell-impaired phenotype of smi97B. Wild-type behavior is restored by precise excision of the P element, scrib mRNA levels correspond with mutant and wild-type phenotypes, and introduction of a full-length scrib transgene in the smi97B mutant rescues the olfactory deficit. Expression of Scrib is widespread in olfactory organs and the central nervous system. Finally, alternative splicing of scrib generates transcripts that differ in the number of leucine-rich repeats and PDZ domains.
Collapse
Affiliation(s)
- Indrani Ganguly
- The W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
55
|
Bajgrowicz JA, Berg-Schultz K, Brunner G. Substituted hepta-1,6-dien-3-ones with green/fruity odours green/galbanum olfactophore model. Bioorg Med Chem 2003; 11:2931-46. [PMID: 12788363 DOI: 10.1016/s0968-0896(03)00189-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Following an analysis of available SAR data on green/galbanum-smelling molecules, a series of new 2-substituted hepta-1,6-dien-3-ones and their analogues were prepared and their olfactory properties evaluated. The study allowed to select efficient new odourants-potential substitutes for natural galbanum oil-and to generate an olfactophore model for the green/galbanum note.
Collapse
Affiliation(s)
- Jerzy A Bajgrowicz
- Givaudan Schweiz AG, Fragrance Research, Uberlandstrasse 138, CH-8600 Dübendorf, Switzerland.
| | | | | |
Collapse
|
56
|
Conte C, Ebeling M, Marcuz A, Nef P, Andres-Barquin PJ. Evolutionary relationships of the Tas2r receptor gene families in mouse and human. Physiol Genomics 2003; 14:73-82. [PMID: 12734386 DOI: 10.1152/physiolgenomics.00060.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The early molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCRs) encoded by the Tas2r family of taste receptor genes. The identification of the complete TAS2R receptor family repertoire in mouse and a comparative study of the Tas2r gene families in mouse and human might help to better understand bitter taste perception. We have identified, cloned, and characterized 13 new mouse Tas2r sequences, 9 of which encode putative functional bitter taste receptors. The encoded proteins are between 293 and 333 amino acids long and share between 18% and 54% sequence identity with other mouse TAS2R proteins. Including the 13 sequences identified, the mouse Tas2r family contains approximately 30% more genes and 60% fewer pseudogenes than the human TAS2R family. Sequence and phylogenetic analyses of the proteins encoded by all mouse and human Tas2r genes indicate that TAS2R proteins present a lower degree of sequence conservation in mouse than in human and suggest a classification in five groups that may reflect a specialization in their functional activity to detect bitter compounds. Tas2r genes are organized in clusters in both mouse and human genomes, and an analysis of these clusters and phylogenetic analyses indicates that the five TAS2R protein groups were present prior to the divergence of the primate and rodent lineages. However, differences in subsequent evolutionary processes, including local duplications, interchromosomal duplications, divergence, and deletions, gave rise to species-specific sequences and shaped the diversity of the current TAS2R receptor families during mouse and human evolution.
Collapse
Affiliation(s)
- Caroline Conte
- Neuroscience, Pharma Research, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | | | | | | | | |
Collapse
|
57
|
|
58
|
Volz A, Ehlers A, Younger R, Forbes S, Trowsdale J, Schnorr D, Beck S, Ziegler A. Complex transcription and splicing of odorant receptor genes. J Biol Chem 2003; 278:19691-701. [PMID: 12637542 DOI: 10.1074/jbc.m212424200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human major histocompatibility (human leucocyte antigen (HLA)) complex-linked odorant receptor (OR) genes are among the best characterized OR genes in the human genome. In addition to their functions as odorant receptors in olfactory epithelium, they have been suggested to play a role in the fertilization process. Here, we report the first in-depth analysis of their expression and regulation within testicular tissue. Sixteen HLA-linked OR and three non-HLA-linked OR were analyzed. One OR gene (hs6M1-16, in positive transcriptional orientation) exhibited six different transcriptional start sites combined with extensive alternative splicing within the 5'-untranslated region, the coding exon, and the 3'-untranslated region. Long distance splicing, exon sharing, and premature polyadenylation were features of another three OR loci (hs6M1-18, -21, and -27, all upstream of hs6M1-16, but in negative transcriptional orientation). Determination of the transcriptional start sites of these OR genes identified a region of 81 bp with potential bi-directional transcriptional activity. The results demonstrate that HLA-linked OR genes are subject to unusually complex transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Armin Volz
- Institut für Immungenetik, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Spandauer Damm 130, Germany
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Vanti WB, Nguyen T, Cheng R, Lynch KR, George SR, O'Dowd BF. Novel human G-protein-coupled receptors. Biochem Biophys Res Commun 2003; 305:67-71. [PMID: 12732197 DOI: 10.1016/s0006-291x(03)00709-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
G-protein-coupled receptors (GPCRs) are important mediators of signal transduction and targets for pharmacological therapeutics. Novel receptor-ligand systems have been discovered through the identification and analysis of orphan GPCRs (oGPCRs). Here we describe the discovery of seven novel human genes encoding oGPCRs. Each novel oGPCR gene was discovered using customized searches of the GenBank genomic databases with previously known GPCR-encoding sequences. The expressed genes can now be used in assays to determine endogenous and pharmacological ligands. GPR133, GPR134, GPR135, GPR136, and GPR137 share identities with a prostate-specific odorant-like GPCR-encoding gene (PSGR). GPR138 and GPR139 share identities with an odorant-like gene derived from human erythroid cells. Transcripts encoding GPR133, GPR134, GPR135, GPR136, and GPR137 were detected in various CNS tissues. The expression of odorant-like genes in non-olfactory tissues requires further clarification, which may be achieved through the search for endogenous cognate ligands for these and other oGPCRs.
Collapse
Affiliation(s)
- William B Vanti
- Department of Pharmacology, Medical Sciences Building, Room 4352, University of Toronto, 1 King's College Circle, Toronto, Ont, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
60
|
Conte C, Ebeling M, Marcuz A, Nef P, Andres-Barquin PJ. Identification and characterization of human taste receptor genes belonging to the TAS2R family. Cytogenet Genome Res 2003; 98:45-53. [PMID: 12584440 DOI: 10.1159/000068546] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The sense of taste is a chemosensory system responsible for basic food appraisal. Humans distinguish between five primary tastes: bitter, sweet, sour, salty and umami. The molecular events in the perception of bitter taste are believed to start with the binding of specific water-soluble molecules to G-protein-coupled receptors encoded by the TAS2R/T2R family of taste receptor genes. TAS2R receptors are expressed at the surface of taste receptor cells and are coupled to G proteins and second messenger pathways. We have identified, cloned and characterized 11 new bitter taste receptor genes and four new pseudogenes that belong to the human TAS2R family. Their encoded proteins have between 298 and 333 amino acids and share between 23 and 86% identity with other human TAS2R proteins. Screening of a mono-chromosomal somatic cell hybrid panel to assign the identified bitter taste receptor genes to human chromosomes demonstrated that they are located in chromosomes 7 and 12. Including the 15 sequences identified, the human TAS2R family is composed of 28 full-length genes and 16 pseudogenes. Phylogenetic analyses suggest a classification of the TAS2R genes in five groups that may reflect a specialization in the detection of specific types of bitter chemicals.
Collapse
Affiliation(s)
- C Conte
- Neuroscience, Pharma Research, F. Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | |
Collapse
|
61
|
Milani N, Guarin E, Renfer E, Nef P, Andres-Barquin PJ. Functional expression of a mammalian olfactory receptor in Caenorhabditis elegans. Neuroreport 2002; 13:2515-20. [PMID: 12499859 DOI: 10.1097/00001756-200212200-00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The olfactory system in both vertebrates and invertebrates can recognize and distinguish thousands of chemical signals. Olfactory receptors are responsible for the early molecular events in the detection of volatile compounds and the perception of smell. Recently, candidate olfactory receptor genes have been identified in several organisms, but their characterization is far from been completed due to the difficulty to functionally express them in heterologous systems. To circumvent such difficulty, we expressed a mammalian olfactory gene, rat I7, in the nematode. We generated transgenic worms expressing I7 in AWA or AWB chemosensory neurons and performed behavioural assays using different concentrations of the rat I7 receptor agonist octanal. Pure octanal was repellent for wild-type worms whereas a 1:10 dilution was attractant. Expression of I7 in AWB neurons counteracted the volatile attraction to diluted octanal observed in control wild-type worms. Furthermore, expression of I7 in AWA neurons counteracted the volatile avoidance to pure octanal observed in wild-type worms. These results indicate that it is possible to functionally express mammalian olfactory receptors in providing a research tool to efficiently search for specific olfactory receptor ligands and to extend our understanding of the molecular basis of olfaction.
Collapse
Affiliation(s)
- Nicoletta Milani
- Department of Neuroscience, Building 93/340, F. Hoffmann-La Roche, Basel 4070, Switzerland
| | | | | | | | | |
Collapse
|
62
|
Vassalli A, Rothman A, Feinstein P, Zapotocky M, Mombaerts P. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 2002; 35:681-96. [PMID: 12194868 DOI: 10.1016/s0896-6273(02)00793-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An olfactory sensory neuron (OSN) expresses selectively one member from a repertoire of approximately 1000 odorant receptor (OR) genes and projects its axon to a specific glomerulus in the olfactory bulb. Both processes are here recapitulated by MOR23 and M71 OR minigenes, introduced into mice. Minigenes of 9 kb and as short as 2.2 kb are selectively expressed by neurons that do not coexpress the endogenous gene but coproject their axons to the same glomeruli. Deletion of a 395 bp upstream region in the MOR23 minigene abolishes expression. In this region we recognize sequence motifs conserved in many OR genes. Transgenic lines expressing the OR in ectopic epithelial zones form ectopic glomeruli, which also receive input from OSNs expressing the cognate endogenous receptor. This suggests a recruitment through homotypic interactions between OSNs expressing the same OR.
Collapse
Affiliation(s)
- Anne Vassalli
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
63
|
Abstract
Olfactory sensory neurons (OSNs) expressing a given odorant receptor (OR) gene project their axons to a few specific glomeruli that reside at recognizable locations in the olfactory bulb. Connecting approximately 1000 populations of OSNs to the approximately 1800 glomeruli of the mouse bulb poses a formidable wiring problem. Additional progress in understanding the mechanisms of neuronal connectivity is dependent on knowing how these axonal pathways are organized and how they form during development. Here we have applied a genetic approach to this problem. We have constructed by gene targeting novel strains of mice in which either all OSNs or those that express a specific OR gene, M72 or M71, also produce green fluorescent protein (GFP) or a fusion of tau with GFP. We visualized OSNs and their axons in whole mounts with two-photon laser scanning microscopy. The main conclusion we draw from the three-dimensional reconstructions is the high degree of morphological variability of mature glomeruli receiving axonal input from OR-expressing OSNs and of the pathways taken by the axons to those glomeruli. We also observe that axons of OR-expressing OSNs do not innervate nearby glomeruli in mature mice. Postnatally, a tangle of axons from M72-expressing OSNs occupies a large surface area of the bulb and coalesces abruptly into a protoglomerulus at a reproducible stage of development. These results differ in several aspects from those reported for the development of glomeruli receiving input from OSNs expressing the P2 OR, suggesting the need for a more systematic examination of OR-specific glomeruli.
Collapse
|
64
|
Abstract
The mouse's sense of smell is built of approximately 1000 input channels. Each of these consists of a population of olfactory sensory neurons that express the same odorant receptor gene and project their axons to the same targets (glomeruli) in the olfactory bulb. A neuron must choose to express a singular receptor gene from a repertoire of approximately 1000 genes, and its axon must be wired to the corresponding glomerulus, from an array of approximately 1800 glomeruli. Genetic experiments have shown that the expressed odorant receptor specifies axonal choice of the innervated glomerulus, but it is not the only determinant. The mechanisms of odorant receptor gene choice and axonal wiring are central to the functional organization of the mammalian olfactory system. Although principles have emerged, our understanding of these processes is still limited.
Collapse
Affiliation(s)
- P Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|