51
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
52
|
Schormann N, Hayden KL, Lee P, Banerjee S, Chattopadhyay D. An overview of structure, function, and regulation of pyruvate kinases. Protein Sci 2019; 28:1771-1784. [PMID: 31342570 DOI: 10.1002/pro.3691] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
In the last step of glycolysis Pyruvate kinase catalyzes the irreversible conversion of ADP and phosphoenolpyruvate to ATP and pyruvic acid, both crucial for cellular metabolism. Thus pyruvate kinase plays a key role in controlling the metabolic flux and ATP production. The hallmark of the activity of different pyruvate kinases is their tight modulation by a variety of mechanisms including the use of a large number of physiological allosteric effectors in addition to their homotropic regulation by phosphoenolpyruvate. Binding of effectors signals precise and orchestrated movements in selected areas of the protein structure that alter the catalytic action of these evolutionarily conserved enzymes with remarkably conserved architecture and sequences. While the diverse nature of the allosteric effectors has been discussed in the literature, the structural basis of their regulatory effects is still not well understood because of the lack of data representing conformations in various activation states. Results of recent studies on pyruvate kinases of different families suggest that members of evolutionarily related families follow somewhat conserved allosteric strategies but evolutionarily distant members adopt different strategies. Here we review the structure and allosteric properties of pyruvate kinases of different families for which structural data are available.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katherine L Hayden
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama
| | - Paul Lee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Illinois
| | | |
Collapse
|
53
|
Skinner-Adams TS, Fisher GM, Riches AG, Hutt OE, Jarvis KE, Wilson T, von Itzstein M, Chopra P, Antonova-Koch Y, Meister S, Winzeler EA, Clarke M, Fidock DA, Burrows JN, Ryan JH, Andrews KT. Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone. Commun Biol 2019; 2:166. [PMID: 31069275 PMCID: PMC6499835 DOI: 10.1038/s42003-019-0397-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Atovaquone-proguanil (Malarone®) is used for malaria prophylaxis and treatment. While the cytochrome bc1-inhibitor atovaquone has potent activity, proguanil's action is attributed to its cyclization-metabolite, cycloguanil. Evidence suggests that proguanil has limited intrinsic activity, associated with mitochondrial-function. Here we demonstrate that proguanil, and cyclization-blocked analogue tBuPG, have potent, but slow-acting, in vitro anti-plasmodial activity. Activity is folate-metabolism and isoprenoid biosynthesis-independent. In yeast dihydroorotate dehydrogenase-expressing parasites, proguanil and tBuPG slow-action remains, while bc1-inhibitor activity switches from comparatively fast to slow-acting. Like proguanil, tBuPG has activity against P. berghei liver-stage parasites. Both analogues act synergistically with bc1-inhibitors against blood-stages in vitro, however cycloguanil antagonizes activity. Together, these data suggest that proguanil is a potent slow-acting anti-plasmodial agent, that bc1 is essential to parasite survival independent of dihydroorotate dehydrogenase-activity, that Malarone® is a triple-drug combination that includes antagonistic partners and that a cyclization-blocked proguanil may be a superior combination partner for bc1-inhibitors in vivo.
Collapse
Affiliation(s)
- Tina S. Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - Gillian M. Fisher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - Andrew G. Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Oliver E. Hutt
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Karen E. Jarvis
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Tony Wilson
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, QLD 4222 Australia
| | - Pradeep Chopra
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, QLD 4222 Australia
| | - Yevgeniya Antonova-Koch
- School of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
- Present Address: California Institute for Biomedical Research (Calibr), La Jolla, CA 92037 USA
| | - Stephan Meister
- School of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
- Present Address: Beckman Coulter Life Sciences in Indianapolis, Indianapolis, IN 46268 USA
| | | | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - David A. Fidock
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
| | - Jeremy N. Burrows
- Medicines for Malaria Venture (MMV), Route de Pré Bois 20, Geneva, 1215 Switzerland
| | - John H. Ryan
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| |
Collapse
|
54
|
Melatti C, Pieperhoff M, Lemgruber L, Pohl E, Sheiner L, Meissner M. A unique dynamin-related protein is essential for mitochondrial fission in Toxoplasma gondii. PLoS Pathog 2019; 15:e1007512. [PMID: 30947298 PMCID: PMC6448817 DOI: 10.1371/journal.ppat.1007512] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
The single mitochondrion of apicomplexan protozoa is thought to be critical for all stages of the life cycle, and is a validated drug target against these important human and veterinary parasites. In contrast to other eukaryotes, replication of the mitochondrion is tightly linked to the cell cycle. A key step in mitochondrial segregation is the fission event, which in many eukaryotes occurs by the action of dynamins constricting the outer membrane of the mitochondria from the cytosolic face. To date, none of the components of the apicomplexan fission machinery have been identified and validated. We identify here a highly divergent, dynamin-related protein (TgDrpC), conserved in apicomplexans as essential for mitochondrial biogenesis and potentially for fission in Toxoplasma gondii. We show that TgDrpC is found adjacent to the mitochondrion, and is localised both at its periphery and at its basal part, where fission is expected to occur. We demonstrate that depletion or dominant negative expression of TgDrpC results in interconnected mitochondria and ultimately in drastic changes in mitochondrial morphology, as well as in parasite death. Intriguingly, we find that the canonical adaptor TgFis1 is not required for mitochondrial fission. The identification of an Apicomplexa-specific enzyme required for mitochondrial biogenesis and essential for parasite growth highlights parasite adaptation. This work paves the way for future drug development targeting TgDrpC, and for the analysis of additional partners involved in this crucial step of apicomplexan multiplication.
Collapse
Affiliation(s)
- Carmen Melatti
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Manuela Pieperhoff
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Leandro Lemgruber
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ehmke Pohl
- Department of Biosciences, & Biophysical Sciences Institute, Durham University, Durham, United Kingdom
| | - Lilach Sheiner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
55
|
Yonge F, Weixia X. Identification of Mitochondrial Proteins of Malaria Parasite Adding the New Parameter. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180608100348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malaria has been one of the serious infectious diseases caused by Plasmodium falciparum (P. falciparum). Mitochondrial proteins of P. falciparum are regarded as effective drug targets against malaria. Thus, it is necessary to accurately identify mitochondrial proteins of malaria parasite. Many algorithms have been proposed for the prediction of mitochondrial proteins of malaria parasite and yielded the better results. However, the parameters used by these methods were primarily based on amino acid sequences. In this study, we added a novel parameter for predicting mitochondrial proteins of malaria parasite based on protein secondary structure. Firstly, we extracted three feature parameters, namely, three kinds of protein secondary structures compositions (3PSS), 20 amino acid compositions (20AAC) and 400 dipeptide compositions (400DC), and used the analysis of variance (ANOVA) to screen 400 dipeptides. Secondly, we adopted these features to predict mitochondrial proteins of malaria parasite by using support vector machine (SVM). Finally, we found that 1) adding the feature of protein secondary structure (3PSS) can indeed improve the prediction accuracy. This result demonstrated that the parameter of protein secondary structure is a valid feature in the prediction of mitochondrial proteins of malaria parasite; 2) feature combination can improve the prediction’s results; feature selection can reduce the dimension and simplify the calculation. We achieved the sensitivity (Sn) of 98.16%, the specificity (Sp) of 97.64% and overall accuracy (Acc) of 97.88% with 0.957 of Mathew’s correlation coefficient (MCC) by using 3PSS+ 20AAC+ 34DC as a feature in 15-fold cross-validation. This result is compared with that of the similar work in the same dataset, showing the superiority of our work.
Collapse
Affiliation(s)
- Feng Yonge
- College of Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Xie Weixia
- College of Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| |
Collapse
|
56
|
Scarpelli PH, Tessarin‐Almeida G, Viçoso KL, Lima WR, Borges‐Pereira L, Meissner KA, Wrenger C, Rafaello A, Rizzuto R, Pozzan T, Garcia CRS. Melatonin activates FIS1, DYN1, and DYN2 Plasmodium falciparum related-genes for mitochondria fission: Mitoemerald-GFP as a tool to visualize mitochondria structure. J Pineal Res 2019; 66:e12484. [PMID: 29480948 PMCID: PMC6585791 DOI: 10.1111/jpi.12484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Malaria causes millions of deaths worldwide and is considered a huge burden to underdeveloped countries. The number of cases with resistance to all antimalarials is continuously increasing, making the identification of novel drugs a very urgent necessity. A potentially very interesting target for novel therapeutic intervention is the parasite mitochondrion. In this work, we studied in Plasmodium falciparum 3 genes coding for proteins homologues of the mammalian FIS1 (Mitochondrial Fission Protein 1) and DRP1 (Dynamin Related Protein 1) involved in mitochondrial fission. We studied the expression of P. falciparum genes that show ample sequence and structural homologies with the mammalian counterparts, namely FIS1, DYN1, and DYN2. The encoded proteins are characterized by a distinct pattern of expression throughout the erythrocytic cycle of P. falciparum, and their mRNAs are modulated by treating the parasite with the host hormone melatonin. We have previously reported that the knockout of the Plasmodium gene that codes for protein kinase 7 is essential for melatonin sensing. We here show that PfPk7 knockout results in major alterations of mitochondrial fission genes expression when compared to wild-type parasites, and no change in fission proteins expression upon treatment with the host hormone. Finally, we have compared the morphological characteristics (using MitoTracker Red CMX Ros) and oxygen consumption properties of P. falciparum mitochondria in wild-type parasites and PfPk7 Knockout strains. A novel GFP construct targeted to the mitochondrial matrix to wild-type parasites was also developed to visualize P. falciparum mitochondria. We here show that, the functional characteristics of P. falciparum are profoundly altered in cells lacking protein kinase 7, suggesting that this enzyme plays a major role in the control of mitochondrial morphogenesis and maturation during the intra-erythrocyte cell cycle progression.
Collapse
Affiliation(s)
- Pedro H. Scarpelli
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | | | - Kênia Lopes Viçoso
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Wania Rezende Lima
- Instituto de Ciências Exatas e Naturais‐MedicinaUniversidade Federal de Mato Grosso‐Campus RondonópolisMato GrossoBrazil
| | - Lucas Borges‐Pereira
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Kamila Anna Meissner
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Carsten Wrenger
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Anna Rafaello
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | | | - Tullio Pozzan
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | - Celia R. S. Garcia
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
- Departamento de Fisiologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
57
|
Pacheco MA, Matta NE, Valkiunas G, Parker PG, Mello B, Stanley CE, Lentino M, Garcia-Amado MA, Cranfield M, Kosakovsky Pond SL, Escalante AA. Mode and Rate of Evolution of Haemosporidian Mitochondrial Genomes: Timing the Radiation of Avian Parasites. Mol Biol Evol 2019; 35:383-403. [PMID: 29126122 PMCID: PMC5850713 DOI: 10.1093/molbev/msx285] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Haemosporidians are a diverse group of vector-borne parasitic protozoa that includes the agents of human malaria; however, most of the described species are found in birds and reptiles. Although our understanding of these parasites’ diversity has expanded by analyses of their mitochondrial genes, there is limited information on these genes’ evolutionary rates. Here, 114 mitochondrial genomes (mtDNA) were studied from species belonging to four genera: Leucocytozoon, Haemoproteus, Hepatocystis, and Plasmodium. Contrary to previous assertions, the mtDNA is phylogenetically informative. The inferred phylogeny showed that, like the genus Plasmodium, the Leucocytozoon and Haemoproteus genera are not monophyletic groups. Although sensitive to the assumptions of the molecular dating method used, the estimated times indicate that the diversification of the avian haemosporidian subgenera/genera took place after the Cretaceous–Paleogene boundary following the radiation of modern birds. Furthermore, parasite clade differences in mtDNA substitution rates and strength of negative selection were detected. These differences may affect the biological interpretation of mtDNA gene lineages used as a proxy to species in ecological and parasitological investigations. Given that the mitochondria are critically important in the parasite life cycle stages that take place in the vector and that the transmission of parasites belonging to particular clades has been linked to specific insect families/subfamilies, this study suggests that differences in vectors have affected the mode of evolution of haemosporidian mtDNA genes. The observed patterns also suggest that the radiation of haemosporidian parasites may be the result of community-level evolutionary processes between their vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| | - Nubia E Matta
- Departamento de Biología, Grupo de Investigación Caracterización Genética e Inmunología, Sede Bogotá-Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Patricia G Parker
- Department of Biology, Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, MO
| | - Beatriz Mello
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| | - Craig E Stanley
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| | | | - Maria Alexandra Garcia-Amado
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Miranda, Venezuela
| | - Michael Cranfield
- Gorilla Doctors, the Wildlife Health Center School of Veterinary Medicine, University of California, Davis, CA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| | - Ananias A Escalante
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| |
Collapse
|
58
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 533] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
59
|
Huet D, Rajendran E, van Dooren GG, Lourido S. Identification of cryptic subunits from an apicomplexan ATP synthase. eLife 2018; 7:e38097. [PMID: 30204085 PMCID: PMC6133553 DOI: 10.7554/elife.38097] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023] Open
Abstract
The mitochondrial ATP synthase is a macromolecular motor that uses the proton gradient to generate ATP. Proper ATP synthase function requires a stator linking the catalytic and rotary portions of the complex. However, sequence-based searches fail to identify genes encoding stator subunits in apicomplexan parasites like Toxoplasma gondii or the related organisms that cause malaria. Here, we identify 11 previously unknown subunits from the Toxoplasma ATP synthase, which lack homologs outside the phylum. Modeling suggests that two of them, ICAP2 and ICAP18, are distantly related to mammalian stator subunits. Our analysis shows that both proteins form part of the ATP synthase complex. Depletion of ICAP2 leads to aberrant mitochondrial morphology, decreased oxygen consumption, and disassembly of the complex, consistent with its role as an essential component of the Toxoplasma ATP synthase. Our findings highlight divergent features of the central metabolic machinery in apicomplexans, which may reveal new therapeutic opportunities.
Collapse
Affiliation(s)
- Diego Huet
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Esther Rajendran
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Giel G van Dooren
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts, United States
| |
Collapse
|
60
|
Poonam, Gupta Y, Gupta N, Singh S, Wu L, Chhikara BS, Rawat M, Rathi B. Multistage inhibitors of the malaria parasite: Emerging hope for chemoprotection and malaria eradication. Med Res Rev 2018; 38:1511-1535. [PMID: 29372568 DOI: 10.1002/med.21486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Over time, several exciting advances have been made in the treatment and prevention of malaria; however, this devastating disease continues to be a major global health problem and affects millions of people every year. Notably, the paucity of new efficient drug molecules and the inevitable drug resistance of the malaria parasite, Plasmodium falciparum, against frontline therapeutics are the foremost struggles facing malaria eradication initiatives. According to the malaria eradication agenda, the discovery of new chemical entities that can destroy the parasite at the liver stage, the asexual blood stage, the gametocyte stage, and the insect ookinete stage of the parasite life cycle (i.e., compounds exhibiting multistage activity) are in high demand, preferably with novel and multiple modes of action. Phenotypic screening of chemical libraries against the malaria parasite is certainly a crucial step toward overcoming these crises. In the last few years, various research groups, including industrial research laboratories, have performed large-scale phenotypic screenings that have identified a wealth of chemical entities active against multiple life stages of the malaria parasite. Vital scientific and technological developments have led to the discovery of multistage inhibitors of the malaria parasite; these compounds, considered highly valuable starting points for subsequent drug discovery and eradication of malaria, are reviewed.
Collapse
Affiliation(s)
- Poonam
- Department of Chemistry, Miranda House, University of Delhi, India
| | - Yash Gupta
- National Institute of Malaria Research (ICMR), New Delhi, India
| | - Nikesh Gupta
- Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi, India
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Lidong Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, China
| | | | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
61
|
Gomez-Lorenzo MG, Rodríguez-Alejandre A, Moliner-Cubel S, Martínez-Hoyos M, Bahamontes-Rosa N, Gonzalez Del Rio R, Ródenas C, Fuente JDL, Lavandera JL, García-Bustos JF, Mendoza-Losana A. Functional screening of selective mitochondrial inhibitors of Plasmodium. Int J Parasitol Drugs Drug Resist 2018; 8:295-303. [PMID: 29775797 PMCID: PMC6039321 DOI: 10.1016/j.ijpddr.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 11/25/2022]
Abstract
Phenotypic screening has produced most of the new chemical entities currently in clinical development for malaria, plus many lead compounds active against Plasmodium falciparum asexual stages. However, lack of knowledge about the mode of action of these compounds delays and may even hamper their future development. Identifying the mode of action of the inhibitors greatly helps to prioritise compounds for further development as novel antimalarials. Here we describe a whole-cell method to detect inhibitors of the mitochondrial electron transport chain, using oxygen consumption as high throughput readout in 384-well plate format. The usefulness of the method has been confirmed with the Tres Cantos Antimalarial Compound Set (TCAMS). The assay identified 124 respiratory inhibitors in TCAMS, seven of which were novel anti-plasmodial chemical structures never before described as mitochondrial inhibitors.
Collapse
Affiliation(s)
- Maria G Gomez-Lorenzo
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Ane Rodríguez-Alejandre
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Sonia Moliner-Cubel
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - María Martínez-Hoyos
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Noemí Bahamontes-Rosa
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Rubén Gonzalez Del Rio
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Carolina Ródenas
- Centro de Investigación Básica (CIB) GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Jesús de la Fuente
- Centro de Investigación Básica (CIB) GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Jose Luis Lavandera
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain; Department of Basic Medical Science, CEU San Pablo University, Julián Romea 23, 28003, Madrid, Spain
| | - Jose F García-Bustos
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain; Department of Microbiology and Biomedicine Discovery Institute, Monash University, 3800, VIC, Australia
| | - Alfonso Mendoza-Losana
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain.
| |
Collapse
|
62
|
Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol 2018; 16:e2006128. [PMID: 30005062 PMCID: PMC6059495 DOI: 10.1371/journal.pbio.2006128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.
Collapse
Affiliation(s)
- Rahul Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Tobias Mourier
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| |
Collapse
|
63
|
Selection of Plasmodium falciparum cytochrome B mutants by putative PfNDH2 inhibitors. Proc Natl Acad Sci U S A 2018; 115:6285-6290. [PMID: 29844160 DOI: 10.1073/pnas.1804492115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria control is threatened by a limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum Components of the mitochondrial electron transport chain (ETC) are attractive targets for drug development, owing to exploitable differences between the parasite and human ETC. Disruption of ETC function interferes with metabolic processes including de novo pyrimidine synthesis, essential for nucleic acid replication. We investigated the effects of ETC inhibitor selection on two distinct P. falciparum clones, Dd2 and 106/1. Compounds CK-2-68 and RYL-552, substituted quinolones reported to block P. falciparum NADH dehydrogenase 2 (PfNDH2; a type II NADH:quinone oxidoreductase), unexpectedly selected mutations at the quinol oxidation (Qo) pocket of P. falciparum cytochrome B (PfCytB). Selection experiments with atovaquone (ATQ) on 106/1 parasites yielded highly resistant PfCytB Y268S mutants seen in clinical infections that fail ATQ-proguanil treatment. In contrast, ATQ pressure on Dd2 yielded moderately resistant parasites carrying a PfCytB M133I or K272R mutation. Strikingly, all ATQ-selected mutants demonstrated little change or slight increase of sensitivity to CK-2-68 or RYL-552. Molecular docking studies demonstrated binding of all three ETC inhibitors to the Qo pocket of PfCytB, where Y268 forms strong van der Waals interactions with the hydroxynaphthoquinone ring of ATQ but not the quinolone ring of CK-2-68 or RYL-552. Our results suggest that combinations of suitable ETC inhibitors may be able to subvert or delay the development of P. falciparum drug resistance.
Collapse
|
64
|
Ke H, Dass S, Morrisey JM, Mather MW, Vaidya AB. The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in Plasmodium falciparum. J Biol Chem 2018; 293:8128-8137. [PMID: 29626096 DOI: 10.1074/jbc.ra118.002552] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Indexed: 12/22/2022] Open
Abstract
The phylum Apicomplexa contains a group of protozoa causing diseases in humans and livestock. Plasmodium spp., the causative agent of malaria, contains a mitochondrion that is very divergent from that of their hosts. The malarial mitochondrion is a clinically validated target for the antimalarial drug atovaquone, which specifically blocks the electron transfer activity of the bc1 complex of the mitochondrial electron transport chain (mtETC). Most mtETC proteins are nuclear-encoded and imported from the cytosol, but three key protein subunits are encoded in the Plasmodium mitochondrial genome: cyt b, COXI, and COXIII. They are translated inside the mitochondrion by mitochondrial ribosomes (mitoribosomes). Here, we characterize the function of one large mitoribosomal protein in Plasmodium falciparum, PfmRPL13. We found that PfmRPL13 localizes to the parasite mitochondrion and is refractory to genetic knockout. Ablation of PfmRPL13 using a conditional knockdown system (TetR-DOZI-aptamer) caused a series of adverse events in the parasite, including mtETC deficiency, loss of mitochondrial membrane potential (Δψm), and death. The PfmRPL13 knockdown parasite also became hypersensitive to proguanil, a drug proposed to target an alternative process for maintaining Δψm Surprisingly, transmission EM revealed that PfmRPL13 disruption also resulted in an unusually elongated and branched mitochondrion. The growth arrest of the knockdown parasite could be rescued with a second copy of PfmRPL13, but not by supplementation with decylubiquinone or addition of a yeast dihydroorotate dehydrogenase gene. In summary, we provide first and direct evidence that mitoribosomes are essential for malaria parasites to maintain the structural and functional integrity of the mitochondrion.
Collapse
Affiliation(s)
- Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Joanne M Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Michael W Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
65
|
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis 2018; 4:301-314. [PMID: 29451780 PMCID: PMC5848146 DOI: 10.1021/acsinfecdis.7b00276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
many new anti-infectives have been discovered and developed solely
using phenotypic cellular screening and assay optimization, most researchers
recognize that structure-guided drug design is more practical and
less costly. In addition, a greater chemical space can be interrogated
with structure-guided drug design. The practicality of structure-guided
drug design has launched a search for the targets of compounds discovered
in phenotypic screens. One method that has been used extensively in
malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA).
Here, small molecules from phenotypic screens with demonstrated antiparasitic
activity are used in genome-based target discovery methods. In this
Review, we discuss the newest, most promising druggable targets discovered
or further validated by evolution-based methods, as well as some exceptions.
Collapse
Affiliation(s)
- Madeline R. Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Purva Gupta
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Elizabeth A. Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
66
|
Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. ATP synthase from Trypanosoma brucei has an elaborated canonical F 1-domain and conventional catalytic sites. Proc Natl Acad Sci U S A 2018; 115:2102-2107. [PMID: 29440423 PMCID: PMC5834723 DOI: 10.1073/pnas.1720940115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structures and functions of the components of ATP synthases, especially those subunits involved directly in the catalytic formation of ATP, are widely conserved in metazoans, fungi, eubacteria, and plant chloroplasts. On the basis of a map at 32.5-Å resolution determined in situ in the mitochondria of Trypanosoma brucei by electron cryotomography, it has been proposed that the ATP synthase in this species has a noncanonical structure and different catalytic sites in which the catalytically essential arginine finger is provided not by the α-subunit adjacent to the catalytic nucleotide-binding site as in all species investigated to date, but rather by a protein, p18, found only in the euglenozoa. A crystal structure at 3.2-Å resolution of the catalytic domain of the same enzyme demonstrates that this proposal is incorrect. In many respects, the structure is similar to the structures of F1-ATPases determined previously. The α3β3-spherical portion of the catalytic domain in which the three catalytic sites are found, plus the central stalk, are highly conserved, and the arginine finger is provided conventionally by the α-subunits adjacent to each of the three catalytic sites found in the β-subunits. Thus, the enzyme has a conventional catalytic mechanism. The structure differs from previous described structures by the presence of a p18 subunit, identified only in the euglenozoa, associated with the external surface of each of the three α-subunits, thereby elaborating the F1-domain. Subunit p18 is a pentatricopeptide repeat (PPR) protein with three PPRs and appears to have no function in the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Martin G Montgomery
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Ondřej Gahura
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Andrew G W Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
67
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
68
|
Gahura O, Šubrtová K, Váchová H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zíková A. The F 1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J 2018; 285:614-628. [PMID: 29247468 DOI: 10.1111/febs.14364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
The F-ATPases (also called the F1 Fo -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F1 domain. These unique features of the F1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F1 -ATPase complex is not strictly conserved in eukaryotes.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael E Harbour
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
69
|
+Targeting Mitochondrial Functions as Antimalarial Regime, What Is Next? CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
70
|
Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C, Metcalf T, Modrzynska K, Schwach F, Martin RE, Mather MW, McFadden GI, Parts L, Rutledge GG, Vaidya AB, Wengelnik K, Rayner JC, Billker O. Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell 2017; 170:260-272.e8. [PMID: 28708996 PMCID: PMC5509546 DOI: 10.1016/j.cell.2017.06.030] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/13/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine. Two-thirds of Plasmodium berghei genes contribute to normal blood stage growth The core genome of malaria parasites is highly optimized for rapid host colonization Essential parasite genes and pathways are identified for drug target prioritization Low functional redundancy reflects the constant environment encountered by a parasite
Collapse
Affiliation(s)
- Ellen Bushell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Ana Rita Gomes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Theo Sanderson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Burcu Anar
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gareth Girling
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Colin Herd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Tom Metcalf
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Katarzyna Modrzynska
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Frank Schwach
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Geoffrey I McFadden
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Australia
| | - Leopold Parts
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gavin G Rutledge
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Akhil B Vaidya
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kai Wengelnik
- DIMNP, CNRS, INSERM, University Montpellier, Montpellier, France
| | - Julian C Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
71
|
Powell MJ, Letcher PM, James TY. Ultrastructural characterization of the host-parasite interface between Allomyces anomalus (Blastocladiomycota) and Rozella allomycis (Cryptomycota). Fungal Biol 2017; 121:561-572. [PMID: 28606351 DOI: 10.1016/j.funbio.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022]
Abstract
Rozella allomycis is an obligate endoparasite of the water mold Allomyces and a member of a clade (= Opisthosporidia) sister to the traditional Fungi. Gaining insights into Rozella's development as a phylogenetically pivotal endoparasite can aid our understanding of structural adaptations and evolution of the Opisthosporidia clade, especially within the context of genomic information. The purpose of this study is to characterize the interface between R. allomycis and Allomyces anomalus. Electron microscopy of developing plasmodia of R. allomycis in host hyphae shows that the interface consists of three-membrane layers, interpreted as the parasite's plasma membrane (inner one layer) and a host cisterna (outer two layers). As sporangial and resting spore plasmodia develop, host mitochondria typically cluster at the surface of the parasite and eventually align parallel to the three-membrane layered interface. The parasite's mitochondria have only a few cristae and the mitochondrial matrix is sparse, clearly distinguishing parasite mitochondria from those of the host. Consistent with the expected organellar topology if the parasite plasmodia phagocytize host cytoplasm, phagocytic vacuoles are at first bounded by three-membrane layers with host-type mitochondria lining the inner membrane. Thus, Rozella's nutrition, at least in part, is phagotrophic in contrast to osmotrophic nutrition of traditional fungi.
Collapse
Affiliation(s)
- Martha J Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
72
|
Is the Mitochondrion a Good Malaria Drug Target? Trends Parasitol 2017; 33:185-193. [DOI: 10.1016/j.pt.2016.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/25/2016] [Accepted: 10/06/2016] [Indexed: 01/21/2023]
|
73
|
Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, Meyer AJ, Becker K. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med 2017; 104:104-117. [PMID: 28062360 DOI: 10.1016/j.freeradbiomed.2017.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, 101 Bagby Ave., Waco, TX 76706, USA
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jude M Przyborski
- Parasitology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
74
|
Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity. Antimicrob Agents Chemother 2016; 61:AAC.01220-16. [PMID: 27799215 DOI: 10.1128/aac.01220-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 01/21/2023] Open
Abstract
Caged Garcinia xanthones (CGXs) constitute a family of natural products that are produced by tropical/subtropical trees of the genus Garcinia CGXs have a unique chemical architecture, defined by the presence of a caged scaffold at the C ring of a xanthone moiety, and exhibit a broad range of biological activities. Here we show that synthetic CGXs exhibit antimalarial activity against Plasmodium falciparum, the causative parasite of human malaria, at the intraerythrocytic stages. Their activity can be substantially improved by attaching a triphenylphosphonium group at the A ring of the caged xanthone. Specifically, CR135 and CR142 were found to be highly effective antimalarial inhibitors, with 50% effective concentrations as low as ∼10 nM. CGXs affect malaria parasites at multiple intraerythrocytic stages, with mature stages (trophozoites and schizonts) being more vulnerable than immature rings. Within hours of CGX treatment, malaria parasites display distinct morphological changes, significant reduction of parasitemia (the percentage of infected red blood cells), and aberrant mitochondrial fragmentation. CGXs do not, however, target the mitochondrial electron transport chain, the target of the drug atovaquone and several preclinical candidates. CGXs are cytotoxic to human HEK293 cells at the low micromolar level, which results in a therapeutic window of around 150-fold for the lead compounds. In summary, we show that CGXs are potent antimalarial compounds with structures distinct from those of previously reported antimalarial inhibitors. Our results highlight the potential to further develop Garcinia natural product derivatives as novel antimalarial agents.
Collapse
|
75
|
Klug D, Mair GR, Frischknecht F, Douglas RG. A small mitochondrial protein present in myzozoans is essential for malaria transmission. Open Biol 2016; 6:160034. [PMID: 27053680 PMCID: PMC4852462 DOI: 10.1098/rsob.160034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myzozoans (which include dinoflagellates, chromerids and apicomplexans) display notable divergence from their ciliate sister group, including a reduced mitochondrial genome and divergent metabolic processes. The factors contributing to these divergent processes are still poorly understood and could serve as potential drug targets in disease-causing protists. Here, we report the identification and characterization of a small mitochondrial protein from the rodent-infecting apicomplexan parasite Plasmodium berghei that is essential for development in its mosquito host. Parasites lacking the gene mitochondrial protein ookinete developmental defect (mpodd) showed malformed parasites that were unable to transmit to mosquitoes. Knockout parasites displayed reduced mitochondrial mass without affecting organelle integrity, indicating no role of the protein in mitochondrial biogenesis or morphology maintenance but a likely role in mitochondrial import or metabolism. Using genetic complementation experiments, we identified a previously unrecognized Plasmodium falciparum homologue that can rescue the mpodd(−) phenotype, thereby showing that the gene is functionally conserved. As far as can be detected, mpodd is found in myzozoans, has homologues in the phylum Apicomplexa and appears to have arisen in free-living dinoflagellates. This suggests that the MPODD protein has a conserved mitochondrial role that is important for myzozoans. While previous studies identified a number of essential proteins which are generally highly conserved evolutionarily, our study identifies, for the first time, a non-canonical protein fulfilling a crucial function in the mitochondrion during parasite transmission.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Ross G Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
76
|
Sakata-Kato T, Wirth DF. A Novel Methodology for Bioenergetic Analysis of Plasmodium falciparum Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses of Mitochondrial Inhibitors. ACS Infect Dis 2016; 2:903-916. [PMID: 27718558 DOI: 10.1021/acsinfecdis.6b00101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Given that resistance to all drugs in clinical use has arisen, discovery of new antimalarial drug targets is eagerly anticipated. The Plasmodium mitochondrion has been considered a promising drug target largely based on its significant divergence from the host organelle as well as its involvement in ATP production and pyrimidine biosynthesis. However, the functions of Plasmodium mitochondrial protein complexes and associated metabolic pathways are not fully characterized. Here, we report the development of novel and robust bioenergetic assay protocols for Plasmodium falciparum asexual parasites utilizing a Seahorse Bioscience XFe24 Extracellular Flux Analyzer. These protocols allowed us to simultaneously assess the direct effects of metabolites and inhibitors on mitochondrial respiration and glycolytic activity in real-time with the readout of oxygen consumption rate and extracellular acidification rate. Using saponin-freed parasites at the schizont stage, we found that succinate, malate, glycerol-3-phosphate, and glutamate, but not pyruvate, were able to increase the oxygen consumption rate and that glycerol-3-phosphate dehydrogenase had the largest potential as an electron donor among tested mitochondrial dehydrogenases. Furthermore, we revealed the presence of a glucose-regulated metabolic shift between oxidative phosphorylation and glycolysis. We measured proton leak and reserve capacity and found bioenergetic evidence for oxidative phosphorylation in erythrocytic stage parasites but at a level much lower than that observed in mammalian cells. Lastly, we developed an assay platform for target identification and mode of action studies of mitochondria-targeting antimalarials. This study provides new insights into the bioenergetics and metabolomics of the Plasmodium mitochondria.
Collapse
Affiliation(s)
- Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
77
|
Schreeg ME, Marr HS, Tarigo JL, Cohn LA, Bird DM, Scholl EH, Levy MG, Wiegmann BM, Birkenheuer AJ. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny. PLoS One 2016; 11:e0165702. [PMID: 27832128 PMCID: PMC5104439 DOI: 10.1371/journal.pone.0165702] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022] Open
Abstract
The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the phylogenetic relationships within the group.
Collapse
Affiliation(s)
- Megan E. Schreeg
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Henry S. Marr
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Jaime L. Tarigo
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
- University of Georgia, College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Leah A. Cohn
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, United States of America
| | - David M. Bird
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Elizabeth H. Scholl
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Michael G. Levy
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Brian M. Wiegmann
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Adam J. Birkenheuer
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| |
Collapse
|
78
|
Bhartiya D, Chawla V, Ghosh S, Shankar R, Kumar N. Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum. Genomics 2016; 108:224-231. [PMID: 27789319 DOI: 10.1016/j.ygeno.2016.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022]
Abstract
The AT-rich genome of P. falciparum has uniquely localized G-rich stretches that have propensity to form G-quadruplexes. However, their global occurrence and potential biological roles in the parasite are poorly explored. Our genome-wide analysis revealed unique enrichment of quadruplexes in P. falciparum genome which was remarkably different from other Plasmodium species. A distinct predominance of quadruplexes was observed in nuclear and organellar genes that participate in antigenic variation, pathogenesis, DNA/RNA regulation, metabolic and protein quality control processes. Data also suggested association of quadruplexes with SNPs and DNA methylation. Furthermore, analysis of steady state mRNA (RNA-seq) and polysome-associated mRNA (Ribosome profiling) data revealed stage-specific differences in translational efficiency of quadruplex harboring genes. Taken together, our findings hint towards existence of regulatory dynamics associated with quadruplexes that may modulate translational efficiency of quadruplex harboring genes to provide survival advantage to the parasite against host immune response and antimalarial drug pressure.
Collapse
Affiliation(s)
- Deeksha Bhartiya
- ICMR-Institute of Cytology and Preventive Oncology, Noida 201301, Uttar Pradesh, India
| | - Vandna Chawla
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Sourav Ghosh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
| | - Ravi Shankar
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
79
|
Dana S, Keshri SK, Shukla J, Vikramdeo KS, Mondal N, Mukhopadhyay P, Dhar SK. Design, Synthesis and Evaluation of Bifunctional Acridinine-Naphthalenediimide Redox-Active Conjugates as Antimalarials. ACS OMEGA 2016; 1:318-333. [PMID: 30023479 PMCID: PMC6044610 DOI: 10.1021/acsomega.6b00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/30/2016] [Indexed: 06/08/2023]
Abstract
A novel class of bifunctional molecules was synthesized integrating acridine (Ac) and redox-active naphthalenediimide (NDI) scaffolds directly and through a flexible linker (en). We evaluated in vitro antiplasmodial activity, physicochemical properties, and a possible mode of action. Theoretical studies suggested electronic segmentation between the electron-rich Ac and electron-deficient NDI scaffolds. Orthogonal Ac-NDI molecules showed activities in the micromolar to submicromolar range against a chloroquine (CQ)-sensitive strain of human malaria pathogen Plasmodium falciparum (maximum activity, IC50: 0.419 μM). The flexible Ac-en-NDI molecules were most potent and showed activity in the nanomolar range against both CQ-sensitive (with most effective compounds, IC50: 3.65 and 4.33 nM) as well as CQ-resistant (with most effective compounds, IC50: 52.20 and 28.53 nM) strains of P. falciparum. Significantly, with CQ-resistant strains, the activity of the most effective compounds was 1 order of magnitude better than that of standard drug CQ. Ac-en-NDI-conjugated molecules were significantly more potent than the individual NDI and Ac-based molecules. The structure-activity relationship (SAR) suggests that the flexible spacer (en) linking the Ac and NDI scaffolds plays a vital role in exhibiting improved potency. None of the molecules triggered hemolysis in culture, and the most potent compounds did not show cytotoxicity in vitro against mammalian fibroblast NIH3T3 cells at their respective IC50 values. The other significant outcome of this work is that some of the investigated molecules have the potential to affect multiple processes in the parasite including the hemozoin formation in digestive vacuoles (DVs), mitochondrial membrane potential, and the redox homeostasis of the parasite.
Collapse
Affiliation(s)
- Srikanta Dana
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New
Mehrauli Road, 110067 New Delhi, India
| | - Sudhir Kumar Keshri
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Jyoti Shukla
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Kunwar Somesh Vikramdeo
- School
of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Neelima Mondal
- School
of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Pritam Mukhopadhyay
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Suman Kumar Dhar
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New
Mehrauli Road, 110067 New Delhi, India
| |
Collapse
|
80
|
Identification of Novel Plasmodium falciparum Hexokinase Inhibitors with Antiparasitic Activity. Antimicrob Agents Chemother 2016; 60:6023-33. [PMID: 27458230 DOI: 10.1128/aac.00914-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum, the deadliest species of malaria parasites, is dependent on glycolysis for the generation of ATP during the pathogenic red blood cell stage. Hexokinase (HK) catalyzes the first step in glycolysis, transferring the γ-phosphoryl group of ATP to glucose to yield glucose-6-phosphate. Here, we describe the validation of a high-throughput assay for screening small-molecule collections to identify inhibitors of the P. falciparum HK (PfHK). The assay, which employed an ADP-Glo reporter system in a 1,536-well-plate format, was robust with a signal-to-background ratio of 3.4 ± 1.2, a coefficient of variation of 6.8% ± 2.9%, and a Z'-factor of 0.75 ± 0.08. Using this assay, we screened 57,654 molecules from multiple small-molecule collections. Confirmed hits were resolved into four clusters on the basis of structural relatedness. Multiple singleton hits were also identified. The most potent inhibitors had 50% inhibitory concentrations as low as ∼1 μM, and several were found to have low-micromolar 50% effective concentrations against asexual intraerythrocytic-stage P. falciparum parasites. These molecules additionally demonstrated limited toxicity against a panel of mammalian cells. The identification of PfHK inhibitors with antiparasitic activity using this validated screening assay is encouraging, as it justifies additional HTS campaigns with more structurally amenable libraries for the identification of potential leads for future therapeutic development.
Collapse
|
81
|
Weiner J, Kooij TWA. Phylogenetic profiles of all membrane transport proteins of the malaria parasite highlight new drug targets. MICROBIAL CELL 2016; 3:511-521. [PMID: 28357319 PMCID: PMC5348985 DOI: 10.15698/mic2016.10.534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In order to combat the on-going malaria epidemic, discovery of new drug targets
remains vital. Proteins that are essential to survival and specific to malaria
parasites are key candidates. To survive within host cells, the parasites need
to acquire nutrients and dispose of waste products across multiple membranes.
Additionally, like all eukaryotes, they must redistribute ions and organic
molecules between their various internal membrane bound compartments. Membrane
transport proteins mediate all of these processes and are considered important
mediators of drug resistance as well as drug targets in their own right.
Recently, using advanced experimental genetic approaches and streamlined life
cycle profiling, we generated a large collection of Plasmodium
berghei gene deletion mutants and assigned essential gene
functions, highlighting potential targets for prophylactic, therapeutic, and
transmission-blocking anti-malarial drugs. Here, we present a comprehensive
orthology assignment of all Plasmodium falciparum putative
membrane transport proteins and provide a detailed overview of the associated
essential gene functions obtained through experimental genetics studies in human
and murine model parasites. Furthermore, we discuss the phylogeny of selected
potential drug targets identified in our functional screen. We extensively
discuss the results in the context of the functional assignments obtained using
gene targeting available to date.
Collapse
Affiliation(s)
- January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Taco W A Kooij
- Department of Medical Microbiology & Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
82
|
Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats. Proc Natl Acad Sci U S A 2016; 113:9834-9. [PMID: 27528689 DOI: 10.1073/pnas.1610643113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haemosporidia parasites have mostly and abundantly been described using mitochondrial genes, and in particular cytochrome b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria parasites isolated from Nycteridae bats has been recently reported. Bats are hosts to a diverse and profuse array of Haemosporidia parasites that remain largely unstudied. There is a need to obtain more molecular data from chiropteran parasites. Such data would help to better understand the evolutionary history of Haemosporidia, which notably include the Plasmodium parasites, malaria's agents. We use next-generation sequencing to obtain the complete mitochondrial genome of Nycteria parasites from African Nycteris grandis (Nycteridae) and Rhinolophus alcyone (Rhinolophidae) and Asian Megaderma spasma (Megadermatidae). We report four complete mitochondrial genomes, including two rearranged mitochondrial genomes within Haemosporidia. Our results open outlooks into potentially undiscovered Haemosporidian diversity.
Collapse
|
83
|
Atovaquone and ELQ-300 Combination Therapy as a Novel Dual-Site Cytochrome bc1 Inhibition Strategy for Malaria. Antimicrob Agents Chemother 2016; 60:4853-9. [PMID: 27270285 DOI: 10.1128/aac.00791-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Antimalarial combination therapies play a crucial role in preventing the emergence of drug-resistant Plasmodium parasites. Although artemisinin-based combination therapies (ACTs) comprise the majority of these formulations, inhibitors of the mitochondrial cytochrome bc1 complex (cyt bc1) are among the few compounds that are effective for both acute antimalarial treatment and prophylaxis. There are two known sites for inhibition within cyt bc1: atovaquone (ATV) blocks the quinol oxidase (Qo) site of cyt bc1, while some members of the endochin-like quinolone (ELQ) family, including preclinical candidate ELQ-300, inhibit the quinone reductase (Qi) site and retain full potency against ATV-resistant Plasmodium falciparum strains with Qo site mutations. Here, we provide the first in vivo comparison of ATV, ELQ-300, and combination therapy consisting of ATV plus ELQ-300 (ATV:ELQ-300), using P. yoelii murine models of malaria. In our monotherapy assessments, we found that ATV functioned as a single-dose curative compound in suppressive tests whereas ELQ-300 demonstrated a unique cumulative dosing effect that successfully blocked recrudescence even in a high-parasitemia acute infection model. ATV:ELQ-300 therapy was highly synergistic, and the combination was curative with a single combined dose of 1 mg/kg of body weight. Compared to the ATV:proguanil (Malarone) formulation, ATV:ELQ-300 was more efficacious in multiday, acute infection models and was equally effective at blocking the emergence of ATV-resistant parasites. Ultimately, our data suggest that dual-site inhibition of cyt bc1 is a valuable strategy for antimalarial combination therapy and that Qi site inhibitors such as ELQ-300 represent valuable partner drugs for the clinically successful Qo site inhibitor ATV.
Collapse
|
84
|
Lunev S, Bosch SS, Batista FDA, Wrenger C, Groves MR. Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum. Acta Crystallogr F Struct Biol Commun 2016; 72:523-33. [PMID: 27380369 PMCID: PMC4933002 DOI: 10.1107/s2053230x16008475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/25/2016] [Indexed: 11/10/2022] Open
Abstract
The de novo pyrimidine-biosynthesis pathway of Plasmodium falciparum is a promising target for antimalarial drug discovery. The parasite requires a supply of purines and pyrimidines for growth and proliferation and is unable to take up pyrimidines from the host. Direct (or indirect) inhibition of de novo pyrimidine biosynthesis via dihydroorotate dehydrogenase (PfDHODH), the fourth enzyme of the pathway, has already been shown to be lethal to the parasite. In the second step of the plasmodial pyrimidine-synthesis pathway, aspartate and carbamoyl phosphate are condensed to N-carbamoyl-L-aspartate and inorganic phosphate by aspartate transcarbamoylase (PfATC). In this paper, the 2.5 Å resolution crystal structure of PfATC is reported. The space group of the PfATC crystals was determined to be monoclinic P21, with unit-cell parameters a = 87.0, b = 103.8, c = 87.1 Å, α = 90.0, β = 117.7, γ = 90.0°. The presented PfATC model shares a high degree of homology with the catalytic domain of Escherichia coli ATC. There is as yet no evidence of the existence of a regulatory domain in PfATC. Similarly to E. coli ATC, PfATC was modelled as a homotrimer in which each of the three active sites is formed at the oligomeric interface. Each active site comprises residues from two adjacent subunits in the trimer with a high degree of evolutional conservation. Here, the activity loss owing to mutagenesis of the key active-site residues is also described.
Collapse
Affiliation(s)
- Sergey Lunev
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Soraya S. Bosch
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Fernando de Assis Batista
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Matthew R. Groves
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
85
|
Abstract
Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts.
Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion.
Toxoplasma gondii and
Theileria sp., besides
Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol (
T. gondii and
Plasmodium) and how a secreted protein can immortalize the host cell (
Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against
T. gondii and the liver stages of
Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected
Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen.
Collapse
Affiliation(s)
- Frank Seeber
- FG16: Mycotic and parasitic agents and mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Svenja Steinfelder
- Institute of Immunology, Center of Infection Medicine, Free University Berlin, Berlin, Germany
| |
Collapse
|
86
|
Khan S. Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases. Malar J 2016; 15:203. [PMID: 27068331 PMCID: PMC4828885 DOI: 10.1186/s12936-016-1247-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/30/2016] [Indexed: 11/22/2022] Open
Abstract
Escalating drug resistance in malaria parasites and lack of vaccine entails the discovery of novel drug targets and inhibitor molecules. The multi-component protein translation machinery is a rich source of such drug targets. Malaria parasites contain three translational compartments: the cytoplasm, apicoplast and mitochondrion, of which the latter two are of the prokaryotic type. Recent explorations by many groups into the malaria parasite protein translation enzymes, aminoacyl-tRNA synthetases (aaRSs), have yielded many promising inhibitors. The understanding of the biology of this unique set of 36 enzymes has become much clearer in recent times. Current review discusses the advances made in understanding of crucial aaRSs from Plasmodium and also the specific inhibitors found against malaria aaRSs.
Collapse
Affiliation(s)
- Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, India.
| |
Collapse
|
87
|
Jenkins BJ, Daly TM, Morrisey JM, Mather MW, Vaidya AB, Bergman LW. Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p. PLoS One 2016; 11:e0152197. [PMID: 27015086 PMCID: PMC4807763 DOI: 10.1371/journal.pone.0152197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
Coenzyme Q (CoQ, ubiquinone) is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s) of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10), which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.
Collapse
Affiliation(s)
- Bethany J. Jenkins
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Thomas M. Daly
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Michael W. Mather
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Lawrence W. Bergman
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
88
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
89
|
Johnston IG, Williams BP. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention. Cell Syst 2016; 2:101-11. [PMID: 27135164 DOI: 10.1016/j.cels.2016.01.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/14/2015] [Accepted: 01/27/2016] [Indexed: 11/18/2022]
Abstract
Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
90
|
Fernández-Álvaro E, Hong WD, Nixon GL, O’Neill PM, Calderón F. Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action. J Med Chem 2016; 59:5587-603. [DOI: 10.1021/acs.jmedchem.5b01485] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Fernández-Álvaro
- Diseases of the Developing World, Tres
Cantos Medicines Development Campus, GlaxoSmithKline, c/Severo Ochoa, 2, 28760, Tres Cantos, Madrid, Spain
| | - W. David Hong
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Gemma L. Nixon
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Paul M. O’Neill
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Félix Calderón
- Diseases of the Developing World, Tres
Cantos Medicines Development Campus, GlaxoSmithKline, c/Severo Ochoa, 2, 28760, Tres Cantos, Madrid, Spain
| |
Collapse
|
91
|
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol 2015; 32:56-70. [PMID: 26472327 DOI: 10.1016/j.pt.2015.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - James I MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
92
|
Padma Priya P, Grover M, Tatu US, Natarajan V. Characterization of Precursor PfHsp60 in Plasmodium falciparum Cytosol during Its Asexual Development in Human Erythrocytes. PLoS One 2015; 10:e0136401. [PMID: 26317863 PMCID: PMC4552884 DOI: 10.1371/journal.pone.0136401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial heat shock protein 60 (Hsp60) is a nuclear encoded gene product that gets post-translationally translocated into the mitochondria. Using multiple approaches such as immunofluorescence experiments, isoelectric point analysis with two-dimensional gel electrophoresis, and mass spectrometric identification of the signal peptide, we show that Hsp60 from Plasmodium falciparum (PfHsp60) accumulates in the parasite cytoplasm during the ring, trophozoite, and schizont stages of parasite development before being imported into the parasite mitochondria. Using co-immunoprecipitation experiments with antibodies specific to cytoplasmic PfHsp90, PfHsp70-1, and PfHsp60, we show association of precursor PfHsp60 with cytoplasmic chaperone machinery. Metabolic labeling involving pulse and chase indicates translocation of the precursor pool into the parasite mitochondrion during chase. Analysis of results obtained with Geldanamycin treatment confirmed precursor PfHsp60 to be one of the clients for PfHsp90. Cytosolic chaperones bind precursor PfHsp60 prior to its import into the mitochondrion of the parasite. Our data suggests an inefficient co-ordination in the synthesis and translocation of mitochondrial PfHsp60 during asexual growth of malaria parasite in human erythrocytes.
Collapse
Affiliation(s)
- P. Padma Priya
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Manish Grover
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Utpal S. Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vasant Natarajan
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
93
|
Ha YR, Hwang BG, Hong Y, Yang HW, Lee SJ. Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:421-30. [PMID: 26323840 PMCID: PMC4566515 DOI: 10.3347/kjp.2015.53.4.421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 07/05/2015] [Indexed: 11/23/2022]
Abstract
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (ΔΨm) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.
Collapse
Affiliation(s)
- Young Ran Ha
- Division of Integrative Bioscience and Bioengineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Bae-Geun Hwang
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yeonchul Hong
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Hye-Won Yang
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
94
|
Shoguchi E, Shinzato C, Hisata K, Satoh N, Mungpakdee S. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans. Genome Biol Evol 2015. [PMID: 26199191 PMCID: PMC4558855 DOI: 10.1093/gbe/evv137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Sutada Mungpakdee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
95
|
Takeuchi F, Sekizuka T, Ogasawara Y, Yokoyama H, Kamikawa R, Inagaki Y, Nozaki T, Sugita-Konishi Y, Ohnishi T, Kuroda M. The Mitochondrial Genomes of a Myxozoan Genus Kudoa Are Extremely Divergent in Metazoa. PLoS One 2015; 10:e0132030. [PMID: 26148004 PMCID: PMC4492933 DOI: 10.1371/journal.pone.0132030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022] Open
Abstract
The Myxozoa are oligo-cellular parasites with alternate hosts--fish and annelid worms--and some myxozoan species harm farmed fish. The phylum Myxozoa, comprising 2,100 species, was difficult to position in the tree of life, due to its fast evolutionary rate. Recent phylogenomic studies utilizing an extensive number of nuclear-encoded genes have confirmed that Myxozoans belong to Cnidaria. Nevertheless, the evolution of parasitism and extreme body simplification in Myxozoa is not well understood, and no myxozoan mitochondrial DNA sequence has been reported to date. To further elucidate the evolution of Myxozoa, we sequenced the mitochondrial genomes of the myxozoan species Kudoa septempunctata, K. hexapunctata and K. iwatai and compared them with those of other metazoans. The Kudoa mitochondrial genomes code for ribosomal RNAs, transfer RNAs, eight proteins for oxidative phosphorylation and three proteins of unknown function, and they are among the metazoan mitochondrial genomes coding the fewest proteins. The mitochondrial-encoded proteins were extremely divergent, exhibiting the fastest evolutionary rate in Metazoa. Nevertheless, the dN/dS ratios of the protein genes in genus Kudoa were approximately 0.1 and similar to other cnidarians, indicating that the genes are under negative selection. Despite the divergent genetic content, active oxidative phosphorylation was indicated by the transcriptome, metabolism and structure of mitochondria in K. septempunctata. As possible causes, we attributed the divergence to the population genetic characteristics shared between the two most divergent clades, Ctenophora and Myxozoa, and to the parasitic lifestyle of Myxozoa. The fast-evolving, functional mitochondria of the genus Kudoa expanded our understanding of metazoan mitochondrial evolution.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yumiko Ogasawara
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yokoyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Sakyou-ku, Kyoto, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | | - Takahiro Ohnishi
- Division of Microbiology, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
96
|
Oborník M, Lukeš J. The Organellar Genomes of Chromera and Vitrella, the Phototrophic Relatives of Apicomplexan Parasites. Annu Rev Microbiol 2015; 69:129-44. [PMID: 26092225 DOI: 10.1146/annurev-micro-091014-104449] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are known to contain greatly reduced organellar genomes. Their mitochondrial genome carries only three protein-coding genes, and their plastid genome is reduced to a 35-kb-long circle. The discovery of coral-endosymbiotic algae Chromera velia and Vitrella brassicaformis, which share a common ancestry with Apicomplexa, provided an opportunity to study possibly ancestral forms of organellar genomes, a unique glimpse into the evolutionary history of apicomplexan parasites. The structurally similar mitochondrial genomes of Chromera and Vitrella differ in gene content, which is reflected in the composition of their respiratory chains. Thus, Chromera lacks respiratory complexes I and III, whereas Vitrella and apicomplexan parasites are missing only complex I. Plastid genomes differ substantially between these algae, particularly in structure: The Chromera plastid genome is a linear, 120-kb molecule with large and divergent genes, whereas the plastid genome of Vitrella is a highly compact circle that is only 85 kb long but nonetheless contains more genes than that of Chromera. It appears that organellar genomes have already been reduced in free-living phototrophic ancestors of apicomplexan parasites, and such reduction is not associated with parasitism.
Collapse
|
97
|
Stickles AM, Ting LM, Morrisey JM, Li Y, Mather MW, Meermeier E, Pershing AM, Forquer IP, Miley GP, Pou S, Winter RW, Hinrichs DJ, Kelly JX, Kim K, Vaidya AB, Riscoe MK, Nilsen A. Inhibition of cytochrome bc1 as a strategy for single-dose, multi-stage antimalarial therapy. Am J Trop Med Hyg 2015; 92:1195-201. [PMID: 25918204 PMCID: PMC4458825 DOI: 10.4269/ajtmh.14-0553] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/13/2015] [Indexed: 11/07/2022] Open
Abstract
Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development.
Collapse
Affiliation(s)
- Allison M Stickles
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Li-Min Ting
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Joanne M Morrisey
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Yuexin Li
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Michael W Mather
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Erin Meermeier
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - April M Pershing
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Isaac P Forquer
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Galen P Miley
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Sovitj Pou
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Rolf W Winter
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - David J Hinrichs
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Jane X Kelly
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Kami Kim
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Akhil B Vaidya
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Michael K Riscoe
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| | - Aaron Nilsen
- Departments of Physiology and Pharmacology, Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon; Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania; VA Medical Center, Portland, Oregon
| |
Collapse
|
98
|
Rapid High-Resolution Melt Analysis of Cytauxzoon felis Cytochrome b To Aid in the Prognosis of Cytauxzoonosis. J Clin Microbiol 2015; 53:2517-24. [PMID: 26019197 DOI: 10.1128/jcm.00635-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
Cytauxzoon felis is a virulent, tick-transmitted, protozoan parasite that infects felines. Cytauxzoonosis was previously thought to be uniformly fatal in domestic cats. Treatment combining atovaquone and azithromycin (A&A) has been associated with survival rates of over 60%. Atovaquone, a ubiquinone analogue, targets C. felis cytochrome b (cytb), of which 30 unique genotypes have been identified. The C. felis cytb genotype cytb1 is associated with increased survival rates in cats treated with A&A. The purpose of this study was to design a PCR panel that could distinguish C. felis cytb1 from other cytochrome b genotypes. Primer pairs were designed to span five different nucleotide positions at which single-nucleotide polymorphisms in the C. felis cytb gene had been identified. Through the use of high-resolution melt analysis, this panel was predicted to distinguish cytb1 from other cytb genotypes. Assays were validated using samples from 69 cats with cytauxzoonosis for which the C. felis cytb genotypes had been characterized previously. The PCR panel identified C. felis cytb1 with 100% sensitivity and 98.2% specificity. High-resolution melt analysis can rapidly provide prognostic information for clients considering A&A treatment in cats with cytauxzoonosis.
Collapse
|
99
|
Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase. Biochem J 2015; 465:459-69. [PMID: 25391660 DOI: 10.1042/bj20140998] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.
Collapse
|
100
|
Ke H, Lewis IA, Morrisey JM, McLean KJ, Ganesan SM, Painter HJ, Mather MW, Jacobs-Lorena M, Llinás M, Vaidya AB. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle. Cell Rep 2015; 11:164-74. [PMID: 25843709 DOI: 10.1016/j.celrep.2015.03.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/11/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022] Open
Abstract
New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO) lines that delete six of the eight mitochondrial tricarboxylic acid (TCA) cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of (13)C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.
Collapse
Affiliation(s)
- Hangjun Ke
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ian A Lewis
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Joanne M Morrisey
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Kyle J McLean
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Suresh M Ganesan
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Heather J Painter
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael W Mather
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Manuel Llinás
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|