51
|
Agarwalla S, De A, Bandyopadhyay S. Predictive Mouse Ultrasonic Vocalization Sequences: Uncovering Behavioral Significance, Auditory Cortex Neuronal Preferences, and Social-Experience-Driven Plasticity. J Neurosci 2023; 43:6141-6163. [PMID: 37541836 PMCID: PMC10476644 DOI: 10.1523/jneurosci.2353-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Mouse ultrasonic vocalizations (USVs) contain predictable sequential structures like bird songs and speech. Neural representation of USVs in the mouse primary auditory cortex (Au1) and its plasticity with experience has been largely studied with single-syllables or dyads, without using the predictability in USV sequences. Studies using playback of USV sequences have used randomly selected sequences from numerous possibilities. The current study uses mutual information to obtain context-specific natural sequences (NSeqs) of USV syllables capturing the observed predictability in male USVs in different contexts of social interaction with females. Behavioral and physiological significance of NSeqs over random sequences (RSeqs) lacking predictability were examined. Female mice, never having the social experience of being exposed to males, showed higher selectivity for NSeqs behaviorally and at cellular levels probed by expression of immediate early gene c-fos in Au1. The Au1 supragranular single units also showed higher selectivity to NSeqs over RSeqs. Social-experience-driven plasticity in encoding NSeqs and RSeqs in adult females was probed by examining neural selectivities to the same sequences before and after the above social experience. Single units showed enhanced selectivity for NSeqs over RSeqs after the social experience. Further, using two-photon Ca2+ imaging, we observed social experience-dependent changes in the selectivity of sequences of excitatory and somatostatin-positive inhibitory neurons but not parvalbumin-positive inhibitory neurons of Au1. Using optogenetics, somatostatin-positive neurons were identified as a possible mediator of the observed social-experience-driven plasticity. Our study uncovers the importance of predictive sequences and introduces mouse USVs as a promising model to study context-dependent speech like communications.SIGNIFICANCE STATEMENT Humans need to detect patterns in the sensory world. For instance, speech is meaningful sequences of acoustic tokens easily differentiated from random ordered tokens. The structure derives from the predictability of the tokens. Similarly, mouse vocalization sequences have predictability and undergo context-dependent modulation. Our work investigated whether mice differentiate such informative predictable sequences (NSeqs) of communicative significance from RSeqs at the behavioral, molecular, and neuronal levels. Following a social experience in which NSeqs occur as a crucial component, mouse auditory cortical neurons become more sensitive to differences between NSeqs and RSeqs, although preference for individual tokens is unchanged. Thus, speech-like communication and its dysfunction may be studied in circuit, cellular, and molecular levels in mice.
Collapse
Affiliation(s)
- Swapna Agarwalla
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amiyangshu De
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sharba Bandyopadhyay
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
52
|
Streri A, de Hevia MD. How do human newborns come to understand the multimodal environment? Psychon Bull Rev 2023; 30:1171-1186. [PMID: 36862372 DOI: 10.3758/s13423-023-02260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2023] [Indexed: 03/03/2023]
Abstract
For a long time, newborns were considered as human beings devoid of perceptual abilities who had to learn with effort everything about their physical and social environment. Extensive empirical evidence gathered in the last decades has systematically invalidated this notion. Despite the relatively immature state of their sensory modalities, newborns have perceptions that are acquired, and are triggered by, their contact with the environment. More recently, the study of the fetal origins of the sensory modes has revealed that in utero all the senses prepare to operate, except for the vision mode, which is only functional starting from the first minutes after birth. This discrepancy between the maturation of the different senses leads to the question of how human newborns come to understand our multimodal and complex environment. More precisely, how the visual mode interacts with the tactile and auditory modes from birth. After having defined the tools that newborns use to interact with other sensory modalities, we review studies across different fields of research such as the intermodal transfer between touch and vision, auditory-visual speech perception, and the existence of links between the dimensions of space, time, and number. Overall, evidence from these studies supports the idea that human newborns are spontaneously driven, and cognitively equipped, to link information collected by the different sensory modes in order to create a representation of a stable world.
Collapse
Affiliation(s)
- Arlette Streri
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006, Paris, France
| | - Maria Dolores de Hevia
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006, Paris, France.
| |
Collapse
|
53
|
Dos Santos EB, Ball GF, Logue DM, Cornil CA, Balthazart J. Sex differences in song syntax and syllable diversity in testosterone-induced songs of adult male and female canaries. Biol Sex Differ 2023; 14:49. [PMID: 37528473 PMCID: PMC10394978 DOI: 10.1186/s13293-023-00533-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Behavioral sex differences are widespread in the animal world. These differences can be qualitative (i.e., behavior present in one sex but not the other, a true sex dimorphism) or quantitative (behavior is present at a higher rate or quality in one sex compared to the other). Singing in oscine songbirds is associated with both types of differences. In canaries, female rarely sing spontaneously but they can be induced to do so by treatments with steroids. Song in these females is, however, not fully masculinized and exhibits relatively subtle differences in quality as compared with male song. We analyzed here sex differences in syllable content and syllable use between singing male and female canaries. METHODS Songs were recorded from three groups of castrated male and three groups of photoregressed female canaries that had received Silastic™ implants filled with testosterone (T), with T plus estradiol (E2), or left empty (control). After 6 weeks of hormone treatment, 30 songs were recorded from each of the 47 subjects. Songs were segmented and each syllable was annotated. Various metrics of syllable diversity were extracted and network analysis was employed to characterize syllable sequences. RESULTS Male and female songs were characterized by marked sex differences related to syllable use. Compared to females, males had a larger syllable-type repertoire and their songs contained more syllable types. Network analysis of syllable sequences showed that males follow more fixed patterns of syllable transitions than females. Both sexes, however, produced song of the same duration containing the same number of syllables produced at similar rates (numbers per second). CONCLUSIONS Under the influence of T, canaries of both sexes are able to produce generally similar vocalizations that nevertheless differ in specific ways. The development of song during ontogeny appears to be a very sophisticated process that is presumably based on genetic and endocrine mechanisms but also on specific learning processes. These data highlight the importance of detailed behavioral analyses to identify the many dimensions of a behavior that can differ between males and females.
Collapse
Affiliation(s)
- Ednei B Dos Santos
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium
| | - Gregory F Ball
- Program in Neuroscience and Cognitive Science; Department of Psychology, University of Maryland, College Park, MD, USA
| | - David M Logue
- Department of Psychology, University of Lethbridge, Lethbridge, AB, Canada
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium.
| |
Collapse
|
54
|
Imaezue GC, Tchernichovski O, Goral M. Recursive Self-feedback Improved Speech Fluency in Two Patients with Chronic Nonfluent Aphasia. APHASIOLOGY 2023; 38:838-861. [PMID: 38894858 PMCID: PMC11182658 DOI: 10.1080/02687038.2023.2239511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/17/2023] [Indexed: 06/21/2024]
Abstract
Background Previous studies have demonstrated that people with nonfluent aphasia (PWNA) improve their language production after repeating personalized scripts, modeled by speech-language pathologists (SLPs). If PWNA could improve by using their own self-feedback, relying less on external feedback, barriers to aphasia treatment, such as a dearth of clinicians and mobility issues, can be overcome. Here we examine whether PWNA improve their language production through an automated procedure that exposes them to playbacks of their own speech, which are updated recursively, without any feedback from SLPs. Method We tested if recursive self-feedback could improve speech fluency in two persons with chronic nonfluent aphasia. We compared two treatments: script production with recursive self-feedback (a new technique) and a non-self-feedback training. We administered the treatments remotely to the participants through their smartphones using two versions of a mobile app we developed. Each participant engaged in each treatment for about three weeks. We estimated clinical improvements of script production through a quantitative trend analysis and nonoverlap of all pairs. Results Recursive self-feedback improved speaking rate and speech initiation latency of trained and untrained scripts in both participants. The control (non-self-feedback) training was also effective, but it induced a somewhat weaker improvement in speaking rate, and improved speech initiation latency in only one participant. Conclusion Our findings provide preliminary evidence that PWNA can improve their speaking rate and speech initiation latency during production of scripts via fully automated recursive self-feedback. The beneficial effects of recursive self-feedback training suggest that speech unison and repeated exposures to written scripts may be optional ingredients of script-based treatments for aphasia.
Collapse
Affiliation(s)
- Gerald C. Imaezue
- Department of Communication Sciences and Disorders, University of South Florida
| | | | - Mira Goral
- Speech-Language-Hearing Sciences Program, The Graduate Center, City University of New York
- Speech-Language-Hearing Sciences, Lehman College, City University of New York
| |
Collapse
|
55
|
Bing J, Sun J, Zhao R, Sun L, Xi C, Liu J, Zhang X, Zeng S. The effects of Wnt, BMP, and Notch signaling pathways on cell proliferation and neural differentiation in a song control nucleus (HVC) of Lonchura striata. Dev Neurobiol 2023; 83:157-166. [PMID: 37433016 DOI: 10.1002/dneu.22920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
There is obvious sexual dimorphism in the song control system of songbirds. In the higher vocal center (HVC), cell proliferation and neuronal differentiation contribute to the net addition of neurons. However, the mechanism underlying these changes is unclear. Given that Wnt, Bmp, and Notch pathways are involved in cell proliferation and neuronal differentiation, no reports are available to study the role of the three pathways in the song control system. To address the issue, we studied cell proliferation in the ventricle zone overlying the developing HVC and neural differentiation within the HVC of Bengalese finches (Lonchura striata) at posthatching day 15 when HVC progenitor cells are generated on a large scale and differentiate into neurons, after Wnt and Bmp pathways were activated by using a pharmacological agonist (LiCl) or Bmp4, respectively, and the Notch pathway was inhibited by an inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester), DAPT). The results indicated that both cell proliferation and neural differentiation toward HVC neurons increased significantly after activation of the Wnt signaling pathway or inhibition of the Notch signaling pathway. Although cell proliferation was increased, neural differentiation was inhibited after treatment with Bmp4. There was obvious synergetic enhancement in the number of proliferating cells after the coregulation of two or three signaling pathways. In addition, synergetic enhancement was also found in the Wnt and Notch pathways in neural differentiation toward neurons within HVC. These results suggest that the three signaling pathways are involved in cell proliferation and neural differentiation of HVC.
Collapse
Affiliation(s)
- Jie Bing
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jing Sun
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Rui Zhao
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Lina Sun
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Xinwen Zhang
- Hainan, Institute of Science and Technology, Haikou, China
- College of Life Sciences, Hainan Normal University, Haikou, China
| | - Shaoju Zeng
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| |
Collapse
|
56
|
Nevue AA, Mello CV, Portfors CV. Bats possess the anatomical substrate for a laryngeal motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546619. [PMID: 37425685 PMCID: PMC10327025 DOI: 10.1101/2023.06.26.546619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cortical neurons that make direct connections to motor neurons in the brainstem and spinal cord are specialized for fine motor control and learning [1, 2]. Imitative vocal learning, the basis for human speech, requires the precise control of the larynx muscles [3]. While much knowledge on vocal learning systems has been gained from studying songbirds [4], an accessible laboratory model for mammalian vocal learning is highly desirable. Evidence indicative of complex vocal repertoires and dialects suggests that bats are vocal learners [5, 6], however the circuitry that underlies vocal control and learning in bats is largely unknown. A key feature of vocal learning animals is a direct cortical projection to the brainstem motor neurons that innervate the vocal organ [7]. A recent study [8] described a direct connection from the primary motor cortex to medullary nucleus ambiguus in the Egyptian fruit bat (Rousettus aegyptiacus). Here we show that a distantly related bat, Seba's short-tailed bat (Carollia perspicillata) also possesses a direct projection from the primary motor cortex to nucleus ambiguus. Our results, in combination with Wirthlin et al. [8], suggest that multiple bat lineages possess the anatomical substrate for cortical control of vocal output. We propose that bats would be an informative mammalian model for vocal learning studies to better understand the genetics and circuitry involved in human vocal communication.
Collapse
Affiliation(s)
- Alexander A Nevue
- College of Arts and Sciences, Washington State University, Vancouver, WA, 98686
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | | |
Collapse
|
57
|
Venditti JA, Murrugarra E, McLean CR, Goldstein MH. Curiosity constructs communicative competence through social feedback loops. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2023; 65:99-134. [PMID: 37481302 DOI: 10.1016/bs.acdb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
One of the most important challenges for a developing infant is learning how best to allocate their attention and forage for information in the midst of a great deal of novel stimulation. We propose that infants of altricial species solve this challenge by learning selectively from events that are contingent on their immature behavior, such as babbling. Such a contingency filter would focus attention and learning on the behavior of social partners, because social behavior reliably fits infants' sensitivity to contingency. In this way a contingent response by a caregiver to an immature behavior becomes a source of learnable information - feedback - to the infant. Social interactions with responsive caregivers afford infants opportunities to explore the impacts of their immature behavior on their environment, which facilitates the development of socially guided learning. Furthermore, contingent interactions are opportunities to make and test predictions about the efficacy of their social behaviors and those of others. In this chapter, we will use prelinguistic vocal learning to exemplify how infants use their developing vocal abilities to elicit learnable information about language from their social partners. Specifically, we review how caregivers' contingent responses to babbling create information that facilitates infant vocal learning and drives the development of communication. Infants play an active role in this process, as their developing predictions about the consequences of their actions serve to further refine their allocation of attention and drive increases in the maturity of their vocal behavior.
Collapse
Affiliation(s)
- Julia A Venditti
- Department of Psychology, Cornell University, 270 Uris Hall, Ithaca, NY, United States
| | - Emma Murrugarra
- Department of Psychology, Cornell University, 270 Uris Hall, Ithaca, NY, United States
| | - Celia R McLean
- Department of Psychology, Cornell University, 270 Uris Hall, Ithaca, NY, United States
| | - Michael H Goldstein
- Department of Psychology, Cornell University, 270 Uris Hall, Ithaca, NY, United States.
| |
Collapse
|
58
|
Caldwell-Harris CL, MacWhinney B. Age effects in second language acquisition: Expanding the emergentist account. BRAIN AND LANGUAGE 2023; 241:105269. [PMID: 37150139 DOI: 10.1016/j.bandl.2023.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
In 2005, Science magazine designated the problem of accounting for difficulties in L2 (second language) learning as one of the 125 outstanding challenges facing scientific research. A maturationally-based sensitive period has long been the favorite explanation for why ultimate foreign language attainment declines with age-of-acquisition. However, no genetic or neurobiological mechanisms for limiting language learning have yet been identified. At the same time, we know that cognitive, social, and motivational factors change in complex ways across the human lifespan. Emergentist theory provides a framework for relating these changes to variation in the success of L2 learning. The great variability in patterns of learning, attainment, and loss across ages, social groups, and linguistic levels provides the core motivation for the emergentist approach. Our synthesis incorporates three groups of factors which change systematically with age: environmental supports, cognitive abilities, and motivation for language learning. This extended emergentist account explains why and when second language succeeds for some children and adults and fails for others.
Collapse
|
59
|
Tripson M, Litwa K, Soderstrom K. Cannabidiol inhibits neuroinflammatory responses and circuit-associated synaptic loss following damage to a songbird vocal pre-motor cortical-like region. Sci Rep 2023; 13:7907. [PMID: 37193782 DOI: 10.1038/s41598-023-34924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
The non-euphorigenic phytocannabinoid cannabidiol (CBD) has been used successfully to treat childhood-onset epilepsies. These conditions are associated with developmental delays that often include vocal learning. Zebra finch song, like language, is a complex behavior learned during a sensitive period of development. Song quality is maintained through continuous sensorimotor refinement involving circuits that control learning and production. Within the vocal motor circuit, HVC is a cortical-like region that when partially lesioned temporarily disrupts song structure. We previously found CBD (10 mg/kg/day) improves post-lesion vocal recovery. The present studies were done to begin to understand mechanisms possibly responsible for CBD vocal protection. We found CBD markedly reduced expression of inflammatory mediators and oxidative stress markers. These effects were associated with regionally-reduced expression of the microglial marker TMEM119. As microglia are key regulators of synaptic reorganization, we measured synapse densities, finding significant lesion-induced circuit-wide decreases that were largely reversed by CBD. Synaptic protection was accompanied by NRF2 activation and BDNF/ARC/ARG3.1/MSK1 expression implicating mechanisms important to song circuit node mitigation of oxidative stress and promotion of synaptic homeostasis. Our findings demonstrate that CBD promotes an array of neuroprotective processes consistent with modulation of multiple cell signaling systems, and suggest these mechanisms are important to post-lesion recovery of a complex learned behavior.
Collapse
Affiliation(s)
- Mark Tripson
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
60
|
Eliades SJ, Tsunada J. Effects of Cortical Stimulation on Feedback-Dependent Vocal Control in Non-Human Primates. Laryngoscope 2023; 133 Suppl 2:S1-S10. [PMID: 35538859 PMCID: PMC9649833 DOI: 10.1002/lary.30175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Hearing plays an important role in our ability to control voice, and perturbations in auditory feedback result in compensatory changes in vocal production. The auditory cortex (AC) has been proposed as an important mediator of this behavior, but causal evidence is lacking. We tested this in an animal model, hypothesizing that AC is necessary for vocal self-monitoring and feedback-dependent control, and that altering activity in AC during vocalization will interfere with vocal control. METHODS We implanted two marmoset monkeys (Callithrix jacchus) with bilateral AC electrode arrays. Acoustic signals were recorded from vocalizing marmosets while altering vocal feedback or electrically stimulating AC during random subsets of vocalizations. Feedback was altered by real-time frequency shifts and presented through headphones and electrical stimulation delivered to individual electrodes. We analyzed recordings to measure changes in vocal acoustics during shifted feedback and stimulation, and to determine their interaction. Results were correlated with the location and frequency tuning of stimulation sites. RESULTS Consistent with previous results, we found electrical stimulation alone evoked changes in vocal production. Results were stronger in the right hemisphere, but decreased with lower currents or repeated stimulation. Simultaneous stimulation and shifted feedback significantly altered vocal control for a subset of sites, decreasing feedback compensation at some and increasing it at others. Inhibited compensation was more likely at sites closer to vocal frequencies. CONCLUSIONS Results provide causal evidence that the AC is involved in feedback-dependent vocal control, and that it is sufficient and may also be necessary to drive changes in vocal production. LEVEL OF EVIDENCE N/A Laryngoscope, 133:1-10, 2023.
Collapse
Affiliation(s)
- Steven J Eliades
- Auditory and Communication Systems Laboratory, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joji Tsunada
- Auditory and Communication Systems Laboratory, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
61
|
Arya P, Petkova SP, Kulkarni PP, Kolodny NH, Gobes SMH. Tracing development of song memory with fMRI in zebra finches after a second tutoring experience. Commun Biol 2023; 6:345. [PMID: 36997617 PMCID: PMC10063632 DOI: 10.1038/s42003-023-04724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Sensory experiences in early development shape higher cognitive functions such as language acquisition in humans and song learning in birds. Zebra finches (Taeniopygia guttata) sequentially exposed to two different song 'tutors' during the sensitive period in development are able to learn from their second tutor and eventually imitate aspects of his song, but the neural substrate involved in learning a second song is unknown. We used fMRI to examine neural activity associated with learning two songs sequentially. We found that acquisition of a second song changes lateralization of the auditory midbrain. Interestingly, activity in the caudolateral Nidopallium (NCL), a region adjacent to the secondary auditory cortex, was related to the fidelity of second-song imitation. These findings demonstrate that experience with a second tutor can permanently alter neural activity in brain regions involved in auditory perception and song learning.
Collapse
Affiliation(s)
- Payal Arya
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Stela P Petkova
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Praveen P Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, 02115, USA
| | - Nancy H Kolodny
- Chemistry Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sharon M H Gobes
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
62
|
Brecht KF, Westendorff S, Nieder A. Neural correlates of cognitively controlled vocalizations in a corvid songbird. Cell Rep 2023; 42:112113. [PMID: 36821443 DOI: 10.1016/j.celrep.2023.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/24/2023] Open
Abstract
The neuronal basis of the songbird's song system is well understood. However, little is known about the neuronal correlates of the executive control of songbird vocalizations. Here, we record single-unit activity from the pallial endbrain region "nidopallium caudolaterale" (NCL) of crows that vocalize to the presentation of a visual go-cue but refrain from vocalizing during trials without a go-cue. We find that the preparatory activity of single vocalization-correlated neurons, but also of the entire population of NCL neurons, before vocal onset predicts whether or not the crows will produce an instructed vocalization. Fluctuations in baseline neuronal activity prior to the go-cue influence the premotor activity of such vocalization-correlated neurons and seemingly bias the crows' decision to vocalize. Neuronal response modulation significantly differs between volitional and task-unrelated vocalizations. This suggests that the NCL can take control over the vocal motor network during the production of volitional vocalizations in a corvid songbird.
Collapse
Affiliation(s)
- Katharina F Brecht
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Stephanie Westendorff
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
63
|
Simon R, Varkevisser J, Mendoza E, Hochradel K, Elsinga R, Wiersma PG, Middelburg E, Zoeter E, Scharff C, Riebel K, Halfwerk W. RoboFinch: A versatile audio‐visual synchronised robotic bird model for laboratory and field research on songbirds. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ralph Simon
- Department of Ecological Science VU University Amsterdam Amsterdam The Netherlands
- Behavioral Ecology and Conservation Lab Nuremberg Zoo Nuremberg Germany
| | | | - Ezequiel Mendoza
- Department of Animal Behavior, Institute of Biology Freie Universität Berlin Berlin Germany
| | - Klaus Hochradel
- Institute of Measurement and Sensor Technology UMIT‐Private University for Health Sciences, Medical Informatics and Technology GmbH Hall in Tirol Austria
| | - Rogier Elsinga
- Department of Ecological Science VU University Amsterdam Amsterdam The Netherlands
| | - Peter G. Wiersma
- Department of Ecological Science VU University Amsterdam Amsterdam The Netherlands
| | - Esmee Middelburg
- Institute of Biology Leiden Leiden University Leiden The Netherlands
| | - Eva Zoeter
- Institute of Biology Leiden Leiden University Leiden The Netherlands
| | - Constance Scharff
- Department of Animal Behavior, Institute of Biology Freie Universität Berlin Berlin Germany
| | - Katharina Riebel
- Institute of Biology Leiden Leiden University Leiden The Netherlands
| | - Wouter Halfwerk
- Department of Ecological Science VU University Amsterdam Amsterdam The Netherlands
| |
Collapse
|
64
|
Jung KM, Kim YM, Han JY. Transplantation and enrichment of busulfan-resistant primordial germ cells into adult testes for efficient production of germline chimeras in songbirds†. Biol Reprod 2023; 108:316-323. [PMID: 36383400 DOI: 10.1093/biolre/ioac206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Zebra finch is a unique model for behavioral, neural, and genomic studies of vocal learning. Several transgenic zebra finches have been produced, although the germline transmission efficiencies are reportedly low. Recently, there have been attempts to produce germline chimeras using primordial germ cells (PGCs). However, this has been hampered by difficulties associated with the manipulation of the small eggs and the fact that the zebra finch is an altricial species that requires parental care after birth, unlike precocial chickens. Consequently, it is difficult to transplant PGCs into embryos and maintain the chimeras. Here, we developed a busulfan-mediated system for transplantation of PGCs into adult testes, to produce germline chimeras with an improved germline transmission capacity. We established microsomal glutathione-S-transferase II (MGSTII)-overexpressing PGCs that are resistant to busulfan, which induces germ cell-specific cytotoxicity, and transplanted them into testes rendered temporarily infertile by busulfan. The recipients were given a second dose of busulfan to deplete endogenous germ cells and enrich the transplanted cells, and donor cell-derived spermatogenesis was accomplished. This method requires fewer recipients due to higher survival rates, and there is no need to wait for maturation of the founders, which is required when transplanting PGCs into embryos. These results are expected to improve transgenic zebra finch production.
Collapse
|
65
|
Birdsong neuroscience and the evolutionary substrates of learned vocalization. Trends Neurosci 2023; 46:97-99. [PMID: 36517289 DOI: 10.1016/j.tins.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Oscine songbirds have served as a model for speech and its evolution since the discovery that birds in this clade learn to produce their songs by imitating conspecifics. We discuss the initial characterization of neural substrates for song learning and highlight several avenues of neuroscientific, phylogenetic, and genomic research that have advanced our understanding of how songbirds evolved to produce this behavior.
Collapse
|
66
|
Effects of Different-Syllable Aggressive Calls on Food Intake and Gene Expression in Vespertilio sinensis. Animals (Basel) 2023; 13:ani13020306. [PMID: 36670846 PMCID: PMC9854892 DOI: 10.3390/ani13020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Social animals enjoy colony benefits but are also exposed to social stress, which affects their physiology in many ways, including alterations to their energy intake, metabolism, and even gene expression. Aggressive calls are defined as calls emitted during aggressive conflicts between individuals of the same species over resources, such as territory, food, or mates. Aggressive calls produced by animals in different aggressive states indicate different levels of competitive intentions. However, whether aggressive calls produced in different aggressive states exert different physiological effects on animals has yet to be determined. Importantly, bats live in clusters and frequently produce aggressive calls of different syllables, thus providing an ideal model for investigating this question. Here, we conducted playback experiments to investigate the effects of two types of aggressive calls representing different competitive intentions on food intake, body mass, corticosterone (CORT) concentration, and gene expression in Vespertilio sinensis. We found that the playback of both aggressive calls resulted in a significant decrease in food intake and body mass, and bats in the tonal-syllable aggressive-calls (tonal calls) playback group exhibited a more significant decrease when compared to the noisy-syllable aggressive-calls (noisy calls) playback group. Surprisingly, the weight and food intake in the white-noise group decreased the most when compared to before playback. Transcriptome results showed that, when compared to the control and white-noise groups, differentially expressed genes (DEGs) involved in energy and metabolism were detected in the noisy-calls playback group, and DEGs involved in immunity and disease were detected in the tonal-calls playback group. These results suggested that the playback of the two types of aggressive calls differentially affected body mass, food intake, and gene expression in bats. Notably, bat responses to external-noise playback (synthetic white noise) were more pronounced than the playback of the two aggressive calls, suggesting that bats have somewhat adapted to internal aggressive calls. Comparative transcriptome analysis suggested that the playback of the two syllabic aggressive calls disrupted the immune system and increased the risk of disease in bats. This study provides new insight into how animals differ in response to different social stressors and anthropogenic noise.
Collapse
|
67
|
Zhang Y, Zhou L, Zuo J, Wang S, Meng W. Analogies of human speech and bird song: From vocal learning behavior to its neural basis. Front Psychol 2023; 14:1100969. [PMID: 36910811 PMCID: PMC9992734 DOI: 10.3389/fpsyg.2023.1100969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Vocal learning is a complex acquired social behavior that has been found only in very few animals. The process of animal vocal learning requires the participation of sensorimotor function. By accepting external auditory input and cooperating with repeated vocal imitation practice, a stable pattern of vocal information output is eventually formed. In parallel evolutionary branches, humans and songbirds share striking similarities in vocal learning behavior. For example, their vocal learning processes involve auditory feedback, complex syntactic structures, and sensitive periods. At the same time, they have evolved the hierarchical structure of special forebrain regions related to vocal motor control and vocal learning, which are organized and closely associated to the auditory cortex. By comparing the location, function, genome, and transcriptome of vocal learning-related brain regions, it was confirmed that songbird singing and human language-related neural control pathways have certain analogy. These common characteristics make songbirds an ideal animal model for studying the neural mechanisms of vocal learning behavior. The neural process of human language learning may be explained through similar neural mechanisms, and it can provide important insights for the treatment of language disorders.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lifang Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiachun Zuo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
68
|
Yeh YT, Rivera M, Woolley SMN. Auditory sensitivity and vocal acoustics in five species of estrildid songbirds. Anim Behav 2023; 195:107-116. [PMID: 36582925 PMCID: PMC9794177 DOI: 10.1016/j.anbehav.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Comparative studies of acoustic communication in clades with diverse signal features provide a powerful framework for testing relationships between perception and behaviour. We measured auditory sensitivity in five species of estrildid songbirds with acoustically distinct songs and tested whether differences aligned with species differences in song frequency content. Species were chosen based on phylogeny and differences in song acoustics. Behavioural audiograms were obtained using operant training and testing. Adult audiograms were compared across species and between sexes within a species. Juvenile and adult audiograms were compared in one species. The audiograms of adults reared by their own species and those reared and tutored by another species were compared in one species. Results showed that audiograms were similar across species and similar to previous reports of songbird auditory sensitivity. Species differed in the highest frequency detected and the frequency of peak sensitivity. While hearing frequency range was not correlated with song frequency bandwidth, the frequency of peak sensitivity was highly corelated with the frequency of peak energy in song. Sensitivity did not differ based on sex, age or tutoring experience. Our findings suggest that adaptations in songbird auditory sensitivity are largely constrained by shared peripheral and central encoding mechanisms, with species-specific perception appearing only at peak sensitivity.
Collapse
Affiliation(s)
- Yow-Tyng Yeh
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, U.S.A
- Department of Biological Sciences, Columbia University, New York, NY, U.S.A
| | - Moises Rivera
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, U.S.A
- Department of Psychology, Columbia University, New York, NY, U.S.A
- Department of Psychology, Hunter College and the Graduate Center, City University of New York, New York, NY, U.S.A
| | - Sarah M. N. Woolley
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, U.S.A
- Department of Psychology, Columbia University, New York, NY, U.S.A
| |
Collapse
|
69
|
Hoeschele M, Wagner B, Mann DC. Lessons learned in animal acoustic cognition through comparisons with humans. Anim Cogn 2023; 26:97-116. [PMID: 36574158 PMCID: PMC9877085 DOI: 10.1007/s10071-022-01735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
Humans are an interesting subject of study in comparative cognition. While humans have a lot of anecdotal and subjective knowledge about their own minds and behaviors, researchers tend not to study humans the way they study other species. Instead, comparisons between humans and other animals tend to be based on either assumptions about human behavior and cognition, or very different testing methods. Here we emphasize the importance of using insider knowledge about humans to form interesting research questions about animal cognition while simultaneously stepping back and treating humans like just another species as if one were an alien researcher. This perspective is extremely helpful to identify what aspects of cognitive processes may be interesting and relevant across the animal kingdom. Here we outline some examples of how this objective human-centric approach has helped us to move forward knowledge in several areas of animal acoustic cognition (rhythm, harmonicity, and vocal units). We describe how this approach works, what kind of benefits we obtain, and how it can be applied to other areas of animal cognition. While an objective human-centric approach is not useful when studying traits that do not occur in humans (e.g., magnetic spatial navigation), it can be extremely helpful when studying traits that are relevant to humans (e.g., communication). Overall, we hope to entice more people working in animal cognition to use a similar approach to maximize the benefits of being part of the animal kingdom while maintaining a detached and scientific perspective on the human species.
Collapse
Affiliation(s)
- Marisa Hoeschele
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| | - Bernhard Wagner
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria
| | - Dan C Mann
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
70
|
Stamps JA, Luttbeg B. Sensitive Period Diversity: Insights From Evolutionary Models. THE QUARTERLY REVIEW OF BIOLOGY 2022. [DOI: 10.1086/722637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
71
|
Orije JEMJ, Van der Linden A. A brain for all seasons: An in vivo MRI perspective on songbirds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:967-984. [PMID: 35989548 PMCID: PMC9804379 DOI: 10.1002/jez.2650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023]
Abstract
Seasonality in songbirds includes not only reproduction but also seasonal changes in singing behavior and its neural substrate, the song control system (SCS). Prior research mainly focused on the role of sex steroids on this seasonal SCS neuroplasticity in males. In this review, we summarize the advances made in the field of seasonal neuroplasticity by applying in vivo magnetic resonance imaging (MRI) in male and female starlings, analyzing the entire brain, monitoring birds longitudinally and determining the neuronal correlates of seasonal variations in plasma hormone levels and song behavior. The first MRI studies in songbirds used manganese enhanced MRI to visualize the SCS in a living bird and validated previously described brain volume changes related to different seasons and testosterone. MRI studies with testosterone implantation established how the consequential boost in singing was correlated to structural changes in the SCS, indicating activity-induced neuroplasticity as song proficiency increased. Next, diffusion tensor MRI explored seasonal neuroplasticity in the entire brain, focusing on networks beyond the SCS, revealing that other sensory systems and even the cerebellum, which is important for the integration of sensory perception and song behavior, experience neuroplasticity starting in the photosensitive period. Functional MRI showed that olfactory, and auditory processing was modulated by the seasons. The convergence of seasonal variations in so many sensory and sensorimotor systems resembles multisensory neuroplasticity during the critical period early in life. This sheds new light on seasonal songbirds as a model for unlocking the brain by recreating seasonally the permissive circumstances for heightened neuroplasticity.
Collapse
Affiliation(s)
- Jasmien Ellen Maria Jozef Orije
- Department of Biomedical SciencesBio‐Imaging Lab, University of AntwerpAntwerpenBelgium,NEURO Research Centre of Excellence, University of AntwerpAntwerpenBelgium
| | - Annemie Van der Linden
- Department of Biomedical SciencesBio‐Imaging Lab, University of AntwerpAntwerpenBelgium,NEURO Research Centre of Excellence, University of AntwerpAntwerpenBelgium
| |
Collapse
|
72
|
Ivanitskii VV, Marova IM. The Syntactic Organization of Bird Song. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022080076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
73
|
Kelley DB. Convergent and divergent neural circuit architectures that support acoustic communication. Front Neural Circuits 2022; 16:976789. [PMID: 36466364 PMCID: PMC9712726 DOI: 10.3389/fncir.2022.976789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Vocal communication is used across extant vertebrates, is evolutionarily ancient, and been maintained, in many lineages. Here I review the neural circuit architectures that support intraspecific acoustic signaling in representative anuran, mammalian and avian species as well as two invertebrates, fruit flies and Hawaiian crickets. I focus on hindbrain motor control motifs and their ties to respiratory circuits, expression of receptors for gonadal steroids in motor, sensory, and limbic neurons as well as divergent modalities that evoke vocal responses. Hindbrain and limbic participants in acoustic communication are highly conserved, while forebrain participants have diverged between anurans and mammals, as well as songbirds and rodents. I discuss the roles of natural and sexual selection in driving speciation, as well as exaptation of circuit elements with ancestral roles in respiration, for producing sounds and driving rhythmic vocal features. Recent technical advances in whole brain fMRI across species will enable real time imaging of acoustic signaling partners, tying auditory perception to vocal production.
Collapse
|
74
|
Liao DA, Brecht KF, Johnston M, Nieder A. Recursive sequence generation in crows. SCIENCE ADVANCES 2022; 8:eabq3356. [PMID: 36322648 PMCID: PMC9629703 DOI: 10.1126/sciadv.abq3356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/13/2022] [Indexed: 05/16/2023]
Abstract
Recursion, the process of embedding structures within similar structures, is often considered a foundation of symbolic competence and a uniquely human capability. To understand its evolution, we can study the recursive aptitudes of nonhuman animals. We adopted the behavioral protocol of a recent study demonstrating that humans and nonhuman primates grasp recursion. We presented sequences of bracket pair stimuli (e.g., [ ] and { }) to crows who were instructed to peck at training lists. They were then tested on their ability to transfer center-embedded structure to never-before-seen pairings of brackets. We reveal that crows have recursive capacities; they perform on par with children and even outperform macaques. The crows continued to produce recursive sequences after extending to longer and thus deeper embeddings. These results demonstrate that recursive capabilities are not limited to the primate genealogy and may have occurred separately from or before human symbolic competence in different animal taxa.
Collapse
|
75
|
Ekström AG. Motor constellation theory: A model of infants' phonological development. Front Psychol 2022; 13:996894. [PMID: 36405212 PMCID: PMC9669916 DOI: 10.3389/fpsyg.2022.996894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/24/2024] Open
Abstract
Every normally developing human infant solves the difficult problem of mapping their native-language phonology, but the neural mechanisms underpinning this behavior remain poorly understood. Here, motor constellation theory, an integrative neurophonological model, is presented, with the goal of explicating this issue. It is assumed that infants' motor-auditory phonological mapping takes place through infants' orosensory "reaching" for phonological elements observed in the language-specific ambient phonology, via reference to kinesthetic feedback from motor systems (e.g., articulators), and auditory feedback from resulting speech and speech-like sounds. Attempts are regulated by basal ganglion-cerebellar speech neural circuitry, and successful attempts at reproduction are enforced through dopaminergic signaling. Early in life, the pace of anatomical development constrains mapping such that complete language-specific phonological mapping is prohibited by infants' undeveloped supralaryngeal vocal tract and undescended larynx; constraints gradually dissolve with age, enabling adult phonology. Where appropriate, reference is made to findings from animal and clinical models. Some implications for future modeling and simulation efforts, as well as clinical settings, are also discussed.
Collapse
Affiliation(s)
- Axel G. Ekström
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
76
|
Zuberbühler K, Bickel B. Transition to language: From agent perception to event representation. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1594. [PMID: 35639563 PMCID: PMC9786335 DOI: 10.1002/wcs.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
Spoken language, as we have it, requires specific capacities-at its most basic advanced vocal control and complex social cognition. In humans, vocal control is the basis for speech, achieved through coordinated interactions of larynx activity and rapid changes in vocal tract configurations. Most likely, speech evolved in response to early humans perceiving reality in increasingly complex ways, to the effect that primate-like signaling became unsustainable as a sole communication device. However, in what ways did and do humans see the world in more complex ways compared to other species? Although animal signals can refer to external events, in contrast to humans, they usually refer to the agents only, sometimes in compositional ways, but never together with patients. It may be difficult for animals to comprehend events as part of larger social scripts, with antecedent causes and future consequences, which are more typically tie the patient into the event. Human brain enlargement over the last million years probably has provided the cognitive resources to represent social interactions as part of bigger social scripts, which enabled humans to go beyond an agent-focus to refer to agent-patient relations, the likely foundation for the evolution of grammar. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Linguistics > Evolution of Language Psychology > Comparative.
Collapse
Affiliation(s)
- Klaus Zuberbühler
- Institute of Biology, University of NeuchatelNeuchatel
- School of Psychology and NeuroscienceUniversity of St AndrewsSt Andrews
| | - Balthasar Bickel
- Department of Comparative Language ScienceUniversity of ZurichZurichSwitzerland
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichZurichSwitzerland
| |
Collapse
|
77
|
Giret N, Rolland M, Del Negro C. Multisensory processes in birds: from single neurons to the influence of social interactions and sensory loss. Neurosci Biobehav Rev 2022; 143:104942. [DOI: 10.1016/j.neubiorev.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
78
|
Chinoy RB, Tanwar A, Buonomano DV. A Recurrent Neural Network Model Accounts for Both Timing and Working Memory Components of an Interval Discrimination Task. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Interval discrimination is of fundamental importance to many forms of sensory processing, including speech and music. Standard interval discrimination tasks require comparing two intervals separated in time, and thus include both working memory (WM) and timing components. Models of interval discrimination invoke separate circuits for the timing and WM components. Here we examine if, in principle, the same recurrent neural network can implement both. Using human psychophysics, we first explored the role of the WM component by varying the interstimulus delay. Consistent with previous studies, discrimination was significantly worse for a 250 ms delay, compared to 750 and 1500 ms delays, suggesting that the first interval is stably stored in WM for longer delays. We next successfully trained a recurrent neural network (RNN) on the task, demonstrating that the same network can implement both the timing and WM components. Many units in the RNN were tuned to specific intervals during the sensory epoch, and others encoded the first interval during the delay period. Overall, the encoding strategy was consistent with the notion of mixed selectivity. Units generally encoded more interval information during the sensory epoch than in the delay period, reflecting categorical encoding of short versus long in WM, rather than encoding of the specific interval. Our results demonstrate that, in contrast to standard models of interval discrimination that invoke a separate memory module, the same network can, in principle, solve the timing, WM, and comparison components of an interval discrimination task.
Collapse
Affiliation(s)
- Rehan B. Chinoy
- Departments of Neurobiology and Psychology, Brain Research Institute, and Integrative Center for Learning and Memory, University of California, Los Angeles, CA 90095–1763, USA
| | - Ashita Tanwar
- Departments of Neurobiology and Psychology, Brain Research Institute, and Integrative Center for Learning and Memory, University of California, Los Angeles, CA 90095–1763, USA
| | - Dean V. Buonomano
- Departments of Neurobiology and Psychology, Brain Research Institute, and Integrative Center for Learning and Memory, University of California, Los Angeles, CA 90095–1763, USA
| |
Collapse
|
79
|
Differences in temporal processing speeds between the right and left auditory cortex reflect the strength of recurrent synaptic connectivity. PLoS Biol 2022; 20:e3001803. [PMID: 36269764 PMCID: PMC9629599 DOI: 10.1371/journal.pbio.3001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Brain asymmetry in the sensitivity to spectrotemporal modulation is an established functional feature that underlies the perception of speech and music. The left auditory cortex (ACx) is believed to specialize in processing fast temporal components of speech sounds, and the right ACx slower components. However, the circuit features and neural computations behind these lateralized spectrotemporal processes are poorly understood. To answer these mechanistic questions we use mice, an animal model that captures some relevant features of human communication systems. In this study, we screened for circuit features that could subserve temporal integration differences between the left and right ACx. We mapped excitatory input to principal neurons in all cortical layers and found significantly stronger recurrent connections in the superficial layers of the right ACx compared to the left. We hypothesized that the underlying recurrent neural dynamics would exhibit differential characteristic timescales corresponding to their hemispheric specialization. To investigate, we recorded spike trains from awake mice and estimated the network time constants using a statistical method to combine evidence from multiple weak signal-to-noise ratio neurons. We found longer temporal integration windows in the superficial layers of the right ACx compared to the left as predicted by stronger recurrent excitation. Our study shows substantial evidence linking stronger recurrent synaptic connections to longer network timescales. These findings support speech processing theories that purport asymmetry in temporal integration is a crucial feature of lateralization in auditory processing.
Collapse
|
80
|
Peters S, Soha J, Searcy WA, Nowicki S. Are song sequencing rules learned by song sparrows? Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
81
|
Coleman MJ, Day NF, Fortune ES. Neural mechanisms for turn-taking in duetting plain-tailed wrens. Front Neural Circuits 2022; 16:970434. [PMID: 36213202 PMCID: PMC9537813 DOI: 10.3389/fncir.2022.970434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/31/2022] [Indexed: 12/27/2022] Open
Abstract
Recent studies conducted in the natural habitats of songbirds have provided new insights into the neural mechanisms of turn-taking. For example, female and male plain-tailed wrens (Pheugopedius euophrys) sing a duet that is so precisely timed it sounds as if a single bird is singing. In this review, we discuss our studies examining the sensory and motor cues that pairs of wrens use to coordinate the rapid alternation of syllable production. Our studies included behavioral measurements of freely-behaving wrens in their natural habitat and neurophysiological experiments conducted in awake and anesthetized individuals at field sites in Ecuador. These studies show that each partner has a pattern-generating circuit in their brain that is linked via acoustic feedback between individuals. A similar control strategy has been described in another species of duetting songbird, white-browed sparrow-weavers (Plocepasser mahali). Interestingly, the combination of neurophysiological results from urethane-anesthetized and awake wrens suggest a role for inhibition in coordinating the timing of turn-taking. Finally, we highlight some of the unique challenges of conducting these experiments at remote field sites.
Collapse
Affiliation(s)
- Melissa J. Coleman
- W.M. Keck Science Department, Claremont McKenna, Scripps and Pitzer Colleges, Claremont, CA, United States,*Correspondence: Melissa J. Coleman
| | - Nancy F. Day
- Department of Psychology, Whitman College, Walla Walla, WA, United States
| | - Eric S. Fortune
- Department Biological Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
82
|
Lin JFL, Imada T, Meltzoff AN, Hiraishi H, Ikeda T, Takahashi T, Hasegawa C, Yoshimura Y, Kikuchi M, Hirata M, Minabe Y, Asada M, Kuhl PK. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cereb Cortex 2022; 33:4116-4134. [PMID: 36130088 PMCID: PMC10068303 DOI: 10.1093/cercor/bhac330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan.,Institute of Linguistics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| | - Hirotoshi Hiraishi
- Hamamatsu University School of Medicine, 1 Chome-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | | | - Chiaki Hasegawa
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2 Chome-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
83
|
McGregor JN, Grassler AL, Jaffe PI, Jacob AL, Brainard MS, Sober SJ. Shared mechanisms of auditory and non-auditory vocal learning in the songbird brain. eLife 2022; 11:75691. [PMID: 36107757 PMCID: PMC9522248 DOI: 10.7554/elife.75691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/14/2022] [Indexed: 01/18/2023] Open
Abstract
Songbirds and humans share the ability to adaptively modify their vocalizations based on sensory feedback. Prior studies have focused primarily on the role that auditory feedback plays in shaping vocal output throughout life. In contrast, it is unclear how non-auditory information drives vocal plasticity. Here, we first used a reinforcement learning paradigm to establish that somatosensory feedback (cutaneous electrical stimulation) can drive vocal learning in adult songbirds. We then assessed the role of a songbird basal ganglia thalamocortical pathway critical to auditory vocal learning in this novel form of vocal plasticity. We found that both this circuit and its dopaminergic inputs are necessary for non-auditory vocal learning, demonstrating that this pathway is critical for guiding adaptive vocal changes based on both auditory and somatosensory signals. The ability of this circuit to use both auditory and somatosensory information to guide vocal learning may reflect a general principle for the neural systems that support vocal plasticity across species.
Collapse
Affiliation(s)
- James N McGregor
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, United States
| | | | - Paul I Jaffe
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | | | - Michael S Brainard
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, United States
| |
Collapse
|
84
|
Fishbein AR. Auditory Pattern Discrimination in Budgerigars (Melopsittacus undulatus). Behav Processes 2022; 202:104742. [PMID: 36038023 DOI: 10.1016/j.beproc.2022.104742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Auditory patterns carry information in human speech at multiple levels, including the surface relationships between sounds within words in phonology and the abstract structures of syntax. The sequences of other animal vocalizations, such as birdsong, can also be described as auditory patterns, but few studies have probed how the sequences are perceived at multiple levels. Past work shows that a small parrot species, the budgerigar (Melopsittacus undulatus), exceeds other birds in sequence perception and is even sensitive to abstract structure. But it is not known what level of auditory analysis is dominant in perception or what limits might exist in sensitivity to abstract structure. Here, budgerigars were tested on their ability to discriminate changes in an auditory pattern, AAB, i.e. sound-same different, to ask how they attended to surface relationships among the sounds and the abstract relationships of same/different among the elements. The results show that the budgerigars primarily used surface transitions between the sounds when discriminating the sequences, but were able to use the abstract relationships to a limited extent, largely restricted to two elements. This study provides insight into how budgerigars extract information from conspecific vocalizations and how their capacities compare to human speech perception.
Collapse
Affiliation(s)
- Adam R Fishbein
- Department of Psychology, University of Maryland, Biology-Psychology Bldg., 4094 Campus Dr., College Park, MD 20742, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
85
|
He J, Fu T, Zhang L, Wanrong Gao L, Rensel M, Remage-Healey L, White SA, Gedman G, Whitelegge J, Xiao X, Schlinger BA. Improved zebra finch brain transcriptome identifies novel proteins with sex differences. Gene 2022; 843:146803. [PMID: 35961439 DOI: 10.1016/j.gene.2022.146803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The zebra finch (Taeniopygia guttata), a representative oscine songbird species, has been widely studied to investigate behavioral neuroscience, most notably the neurobiological basis of vocal learning, a rare trait shared in only a few animal groups including humans. In 2019, an updated zebra finch genome annotation (bTaeGut1_v1.p) was released from the Ensembl database and is substantially more comprehensive than the first version published in 2010. In this study, we utilized the publicly available RNA-seq data generated from Illumina-based short-reads and PacBio single-molecule real-time (SMRT) long-reads to assess the bird transcriptome. To analyze the high-throughput RNA-seq data, we adopted a hybrid bioinformatic approach combining short and long-read pipelines. From our analysis, we added 220 novel genes and 8,134 transcript variants to the Ensembl annotation, and predicted a new proteome based on the refined annotation. We further validated 18 different novel proteins by using mass-spectrometry data generated from zebra finch caudal telencephalon tissue. Our results provide additional resources for future studies of zebra finches utilizing this improved bird genome annotation and proteome.
Collapse
Affiliation(s)
- Jingyan He
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, United States
| | - Ting Fu
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles 90095, United States
| | - Ling Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, United States
| | - Lucy Wanrong Gao
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles 90095, United States
| | - Michelle Rensel
- The Institute for Society and Genetics, University of California, Los Angeles 90095, United States
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, Neuroscience and Behavior, 639 N. Pleasant St, Morrill IVN Neuroscience, University of Massachusetts, Amherst, MA 01003, United States
| | - Stephanie A White
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, United States
| | - Gregory Gedman
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, United States
| | - Julian Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles 90095, United States
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, United States
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, United States.
| |
Collapse
|
86
|
Dehaene S, Al Roumi F, Lakretz Y, Planton S, Sablé-Meyer M. Symbols and mental programs: a hypothesis about human singularity. Trends Cogn Sci 2022; 26:751-766. [PMID: 35933289 DOI: 10.1016/j.tics.2022.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/29/2023]
Abstract
Natural language is often seen as the single factor that explains the cognitive singularity of the human species. Instead, we propose that humans possess multiple internal languages of thought, akin to computer languages, which encode and compress structures in various domains (mathematics, music, shape…). These languages rely on cortical circuits distinct from classical language areas. Each is characterized by: (i) the discretization of a domain using a small set of symbols, and (ii) their recursive composition into mental programs that encode nested repetitions with variations. In various tasks of elementary shape or sequence perception, minimum description length in the proposed languages captures human behavior and brain activity, whereas non-human primate data are captured by simpler nonsymbolic models. Our research argues in favor of discrete symbolic models of human thought.
Collapse
Affiliation(s)
- Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.
| | - Fosca Al Roumi
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Yair Lakretz
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Samuel Planton
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Mathias Sablé-Meyer
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| |
Collapse
|
87
|
Gaviraghi Mussoi J, Stanley MC, Cain KE. Importance of sleep for avian vocal communication. Biol Lett 2022; 18:20220223. [PMID: 35975628 PMCID: PMC9382451 DOI: 10.1098/rsbl.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sleep is one of the few truly ubiquitous animal behaviours, and though many animals spend enormous periods of time asleep, we have only begun to understand the consequences of sleep disturbances. In humans, sleep is crucial for effective communication. Birds are classic models for understanding the evolution and mechanisms of human language and speech. Bird vocalizations are remarkably diverse, critical, fitness-related behaviours, and the way sleep affects vocalizations is likely similarly varied. However, research on the effects of sleep disturbances on avian vocalizations is shockingly scarce. Consequently, there is a critical gap in our understanding of the extent to which sleep disturbances disrupt communication. Here, we argue that sleep disturbances are likely to affect all birds' vocal performance by interfering with motivation, memory consolidation and vocal maintenance. Further, we suggest that quality sleep is likely essential when learning new vocalizations and that sleep disturbances will have especially strong effects on learned vocalizations. Finally, we advocate for future research to address gaps in our understanding of how sleep influences vocal learning and performance in birds.
Collapse
Affiliation(s)
| | - Margaret C Stanley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
88
|
Suri H, Rothschild G. Enhanced stability of complex sound representations relative to simple sounds in the auditory cortex. eNeuro 2022; 9:ENEURO.0031-22.2022. [PMID: 35868858 PMCID: PMC9347310 DOI: 10.1523/eneuro.0031-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Typical everyday sounds, such as those of speech or running water, are spectrotemporally complex. The ability to recognize complex sounds (CxS) and their associated meaning is presumed to rely on their stable neural representations across time. The auditory cortex is critical for processing of CxS, yet little is known of the degree of stability of auditory cortical representations of CxS across days. Previous studies have shown that the auditory cortex represents CxS identity with a substantial degree of invariance to basic sound attributes such as frequency. We therefore hypothesized that auditory cortical representations of CxS are more stable across days than those of sounds that lack spectrotemporal structure such as pure tones (PTs). To test this hypothesis, we recorded responses of identified L2/3 auditory cortical excitatory neurons to both PTs and CxS across days using two-photon calcium imaging in awake mice. Auditory cortical neurons showed significant daily changes of responses to both types of sounds, yet responses to CxS exhibited significantly lower rates of daily change than those of PTs. Furthermore, daily changes in response profiles to PTs tended to be more stimulus-specific, reflecting changes in sound selectivity, as compared to changes of CxS responses. Lastly, the enhanced stability of responses to CxS was evident across longer time intervals as well. Together, these results suggest that spectrotemporally CxS are more stably represented in the auditory cortex across time than PTs. These findings support a role of the auditory cortex in representing CxS identity across time.Significance statementThe ability to recognize everyday complex sounds such as those of speech or running water is presumed to rely on their stable neural representations. Yet, little is known of the degree of stability of single-neuron sound responses across days. As the auditory cortex is critical for complex sound perception, we hypothesized that the auditory cortical representations of complex sounds are relatively stable across days. To test this, we recorded sound responses of identified auditory cortical neurons across days in awake mice. We found that auditory cortical responses to complex sounds are significantly more stable across days as compared to those of simple pure tones. These findings support a role of the auditory cortex in representing complex sound identity across time.
Collapse
Affiliation(s)
- Harini Suri
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
89
|
Williams H, Scharf A, Ryba AR, Ryan Norris D, Mennill DJ, Newman AEM, Doucet SM, Blackwood JC. Cumulative cultural evolution and mechanisms for cultural selection in wild bird songs. Nat Commun 2022; 13:4001. [PMID: 35821243 PMCID: PMC9276793 DOI: 10.1038/s41467-022-31621-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cumulative cultural evolution, the accumulation of sequential changes within a single socially learned behaviour that results in improved function, is prominent in humans and has been documented in experimental studies of captive animals and managed wild populations. Here, we provide evidence that cumulative cultural evolution has occurred in the learned songs of Savannah sparrows. In a first step, "click trains" replaced "high note clusters" over a period of three decades. We use mathematical modelling to show that this replacement is consistent with the action of selection, rather than drift or frequency-dependent bias. Generations later, young birds elaborated the "click train" song form by adding more clicks. We show that the new songs with more clicks elicit stronger behavioural responses from both males and females. Therefore, we suggest that a combination of social learning, innovation, and sexual selection favoring a specific discrete trait was followed by directional sexual selection that resulted in naturally occurring cumulative cultural evolution in the songs of this wild animal population.
Collapse
Affiliation(s)
- Heather Williams
- Biology Department, Williams College, Williamstown, 01267, MA, USA.
| | - Andrew Scharf
- Biology Department, Williams College, Williamstown, 01267, MA, USA
- Mathematics and Statistics Department, Williams College, Williamstown, 01267, MA, USA
| | - Anna R Ryba
- Biology Department, Williams College, Williamstown, 01267, MA, USA
- The Rockefeller University, 1230 York Ave., New York, 10021, NY, USA
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Daniel J Mennill
- Department of Integrative Biology, University of Windsor, Windsor, N9B 3P4, ON, Canada
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Stéphanie M Doucet
- Department of Integrative Biology, University of Windsor, Windsor, N9B 3P4, ON, Canada
| | - Julie C Blackwood
- Mathematics and Statistics Department, Williams College, Williamstown, 01267, MA, USA
| |
Collapse
|
90
|
Andreas J, Beguš G, Bronstein MM, Diamant R, Delaney D, Gero S, Goldwasser S, Gruber DF, de Haas S, Malkin P, Pavlov N, Payne R, Petri G, Rus D, Sharma P, Tchernov D, Tønnesen P, Torralba A, Vogt D, Wood RJ. Toward understanding the communication in sperm whales. iScience 2022; 25:104393. [PMID: 35663036 PMCID: PMC9160774 DOI: 10.1016/j.isci.2022.104393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Machine learning has been advancing dramatically over the past decade. Most strides are human-based applications due to the availability of large-scale datasets; however, opportunities are ripe to apply this technology to more deeply understand non-human communication. We detail a scientific roadmap for advancing the understanding of communication of whales that can be built further upon as a template to decipher other forms of animal and non-human communication. Sperm whales, with their highly developed neuroanatomical features, cognitive abilities, social structures, and discrete click-based encoding make for an excellent model for advanced tools that can be applied to other animals in the future. We outline the key elements required for the collection and processing of massive datasets, detecting basic communication units and language-like higher-level structures, and validating models through interactive playback experiments. The technological capabilities developed by such an undertaking hold potential for cross-applications in broader communities investigating non-human communication and behavioral research.
Collapse
Affiliation(s)
- Jacob Andreas
- MIT CSAIL, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | - Gašper Beguš
- Department of Linguistics, University of California, Berkeley, CA, USA
- Project CETI, New York, NY, USA
| | - Michael M. Bronstein
- Department of Computer Science, University of Oxford, Oxford, UK
- IDSIA, University of Lugano, Lugano, Switzerland
- Twitter, London, UK
- Project CETI, New York, NY, USA
| | - Roee Diamant
- Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Project CETI, New York, NY, USA
| | - Denley Delaney
- Exploration Technology Lab, National Geographic Society, Washington DC, USA
- Project CETI, New York, NY, USA
| | - Shane Gero
- Dominica Sperm Whale Project, Roseau, Commonwealth of Dominica
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Project CETI, New York, NY, USA
| | - Shafi Goldwasser
- Simons Institute for the Theory of Computing, University of California, Berkeley, CA, USA
| | - David F. Gruber
- Department of Natural Sciences, Baruch College and The Graduate Center, PhD Program in Biology, City University of New York, New York, NY, USA
- Project CETI, New York, NY, USA
| | - Sarah de Haas
- Google Research, Mountain View, CA USA
- Project CETI, New York, NY, USA
| | - Peter Malkin
- Google Research, Mountain View, CA USA
- Project CETI, New York, NY, USA
| | | | | | - Giovanni Petri
- ISI Foundation, Turin, Italy
- Project CETI, New York, NY, USA
| | - Daniela Rus
- MIT CSAIL, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | | | - Dan Tchernov
- Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Project CETI, New York, NY, USA
| | - Pernille Tønnesen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Project CETI, New York, NY, USA
| | | | - Daniel Vogt
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| | - Robert J. Wood
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Project CETI, New York, NY, USA
| |
Collapse
|
91
|
Hudson EJ, Creanza N. Modeling how population size drives the evolution of birdsong, a functional cultural trait. Evolution 2022; 76:1139-1152. [PMID: 35403212 PMCID: PMC9324838 DOI: 10.1111/evo.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
Oscine songbirds have been an important study system for social learning, particularly because their learned songs provide an analog for human languages and music. Here, we propose a different analogy: from an evolutionary perspective, could birds' songs change over time more like arrowheads than arias? Small improvements to a bird's song can lead to large fitness differences for its singer, which could make songs more analogous to human tools than languages. We modify a model of human tool evolution to accommodate cultural evolution of birdsong: each song learner chooses the most skilled available tutor to emulate, and each is more likely to produce an inferior copy than a superior one. Similar to human tool evolution, our model suggests that larger populations of birds could foster improvements in song over time, even when learners restrict their pool of tutors to a subset of individuals in their social network. We also demonstrate that song elements could be simplified instead of lost after population bottlenecks if lower quality traits are easier to imitate than higher quality ones. We show that these processes could plausibly generate empirically observed patterns of song evolution for some song traits, and we make predictions about the types of song elements most likely to be lost when populations shrink. More broadly, we aim to connect the modeling approaches used in human and nonhuman systems, moving toward a cohesive theoretical framework that accounts for both cognitive and demographic processes.
Collapse
Affiliation(s)
- Emily J. Hudson
- Department of Biological SciencesVanderbilt UniversityNashvilleTennessee37240
- Evolutionary Studies InitiativeVanderbilt UniversityNashvilleTennessee37240
| | - Nicole Creanza
- Department of Biological SciencesVanderbilt UniversityNashvilleTennessee37240
- Evolutionary Studies InitiativeVanderbilt UniversityNashvilleTennessee37240
| |
Collapse
|
92
|
Song complexity is maintained during inter-population cultural transmission of humpback whale songs. Sci Rep 2022; 12:8999. [PMID: 35637205 PMCID: PMC9151787 DOI: 10.1038/s41598-022-12784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Among animal species, the songs of male humpback whales (Megaptera novaeangliae) are a rare example of social learning between entire populations. Understanding fine-scale similarity in song patterns and structural features will better clarify how accurately songs are learned during inter-population transmission. Here, six distinct song types (2009–2015) transmitted from the east Australian to New Caledonian populations were quantitatively analysed using fine-scale song features. Results found that New Caledonian whales learned each song type with high accuracy regardless of the pattern’s complexity. However, there were rare instances of themes (stereotyped patterns of sound units) only sung by a single population. These occurred more often in progressively changing ‘evolutionary’ songs compared to rapidly changing ‘revolutionary’ songs. Our results suggest that populations do not need to reduce complexity to accurately learn song patterns. Populations may also incorporate changes and embellishments into songs in the form of themes which are suggested to be learnt as distinct segments. Maintaining complex song patterns with such accuracy suggests significant acoustic contact, supporting the hypothesis that song learning may occur on shared feeding grounds or migration routes. This study improves the understanding of inter-population mechanisms for large-scale cultural transmission in animals.
Collapse
|
93
|
Colquitt BM. Organizational Conservation and Flexibility in the Evolution of Birdsong and Avian Motor Control. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:255-264. [PMID: 35644127 DOI: 10.1159/000525019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Birds and mammals have independently evolved complex behavioral and cognitive capabilities yet have markedly different brain structures. An open question is to what extent, despite these differences in anatomy, birds and mammals have evolved similar neural solutions to complex motor control and at what level of organization these similarities might lie. Courtship song in songbirds, a learned motor skill that is similar to the fine motor skills of many mammals including human speech, provides a powerful system in which to study the links connecting the development and evolution of cells, circuits, and behavior. Until recently, obtaining cellular-resolution views of the specialized neural circuitry that subserves birdsong was impossible due to a lack of molecular tools for songbirds. However, the ongoing revolution in cellular profiling and genomics offers unprecedented opportunities for molecular analysis in organisms that lack a traditional genetic infrastructure but have tractable, well-defined behaviors. Here, I describe recent efforts to understand the evolutionary relationships between birdsong control circuitry and mammalian neocortical circuitry using new approaches to measure gene expression in single cells. These results, combined with foundational work relating avian and mammalian brains at a range of biological levels, present an emerging view that amniote pallium evolution is a story of diverse neural circuit architectures employing conserved neuronal elements within a conserved topological framework. This view suggests that one locus of pallial neural circuit evolution lies at the intersection between the gene regulatory programs that regulate regional patterning and those that specify functional identity. Modifications to this intersection may underlie the evolution of pallial motor control in birds in general and to the evolutionary and developmental relationships of these circuits to the avian pallial amygdala.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Physiology, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
94
|
Liu J, Zhang Y, Lv D, Lu J, Xie S, Zi J, Yin Y, Xu H. Birdsong classification based on ensemble multi-scale convolutional neural network. Sci Rep 2022; 12:8636. [PMID: 35606386 PMCID: PMC9126969 DOI: 10.1038/s41598-022-12121-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
With the intensification of ecosystem damage, birds have become the symbolic species of the ecosystem. Ornithology with interdisciplinary technical research plays a great significance for protecting birds and evaluating ecosystem quality. Deep learning shows great progress for birdsongs recognition. However, as the number of network layers increases in traditional CNN, semantic information gradually becomes richer and detailed information disappears. Secondly, the global information carried by the entire input may be lost in convolution, pooling, or other operations, and these problems will weaken the performance of classification. In order to solve such problems, based on the feature spectrogram from the wavelet transform for the birdsongs, this paper explored the multi-scale convolution neural network (MSCNN) and proposed an ensemble multi-scale convolution neural network (EMSCNN) classification framework. The experiments compared the MSCNN and EMSCNN models with other CNN models including LeNet, VGG16, ResNet101, MobileNetV2, EfficientNetB7, Darknet53 and SPP-net. The results showed that the MSCNN model achieved an accuracy of 89.61%, and EMSCNN achieved an accuracy of 91.49%. In the experiments on the recognition of 30 species of birds, our models effectively improved the classification effect with high stability and efficiency, indicating that the models have better generalization ability and are suitable for birdsongs species recognition. It provides methodological and technical scheme reference for bird classification research.
Collapse
Affiliation(s)
- Jiang Liu
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650000, China
| | - Yan Zhang
- College of Mathematics and Physics, Southwest Forestry University, Kunming, 650000, China.
| | - Danjv Lv
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650000, China
| | - Jing Lu
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650000, China
| | - Shanshan Xie
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650000, China
| | - Jiali Zi
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650000, China
| | - Yue Yin
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650000, China
| | - Haifeng Xu
- School of Information Science and Technology, Beijing Forestry University, Beijing, 100091, China
| |
Collapse
|
95
|
Tuned in to communication sounds: Neuronal sensitivity in the túngara frog midbrain to frequency modulated signals. PLoS One 2022; 17:e0268383. [PMID: 35587486 PMCID: PMC9119527 DOI: 10.1371/journal.pone.0268383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
For complex communication signals, it is often difficult to identify the information-bearing elements and their parameters necessary to elicit functional behavior. Consequently, it may be difficult to design stimuli that test how neurons contribute to communicative processing. For túngara frogs (Physalaemus pustulosus), however, previous behavioral testing with numerous stimuli showed that a particular frequency modulated (FM) transition in the male call is required to elicit phonotaxis and vocal responses. Modeled on such behavioral experiments, we used awake in vivo recordings of single units in the midbrain to determine if their excitation was biased to behaviorally important FM parameters. Comparisons of stimulus driven action potentials revealed greatest excitation to the behaviorally important FM transition: a downward FM sweep or step that crosses ~600 Hz. Previous studies using long-duration acoustic exposure found immediate early gene expression in many midbrain neurons to be most sensitive to similar FM. However, those data could not determine if FM coding was accomplished by the population and/or individual neurons. Our data suggest both coding schemes could operate, as 1) individual neurons are more sensitive to the behaviorally significant FM transition and 2) when single unit recordings are analytically combined across cells, the combined code can produce high stimulus discrimination (FM vs. noise driven excitation), approaching that found in behavioral discrimination of call vs. noise.
Collapse
|
96
|
Bottjer SW, Le Moing C, Li E, Yuan R. Responses to Song Playback Differ in Sleeping versus Anesthetized Songbirds. eNeuro 2022; 9:ENEURO.0015-22.2022. [PMID: 35545423 PMCID: PMC9131720 DOI: 10.1523/eneuro.0015-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Vocal learning in songbirds is mediated by a highly localized system of interconnected forebrain regions, including recurrent loops that traverse the cortex, basal ganglia, and thalamus. This brain-behavior system provides a powerful model for elucidating mechanisms of vocal learning, with implications for learning speech in human infants, as well as for advancing our understanding of skill learning in general. A long history of experiments in this area has tested neural responses to playback of different song stimuli in anesthetized birds at different stages of vocal development. These studies have demonstrated selectivity for different song types that provide neural signatures of learning. In contrast to the ease of obtaining responses to song playback in anesthetized birds, song-evoked responses in awake birds are greatly reduced or absent, indicating that behavioral state is an important determinant of neural responsivity. Song-evoked responses can be elicited during sleep as well as anesthesia, and the selectivity of responses to song playback in adult birds is highly similar between anesthetized and sleeping states, encouraging the idea that anesthesia and sleep are similar. In contrast to that idea, we report evidence that cortical responses to song playback in juvenile zebra finches (Taeniopygia guttata) differ greatly between sleep and urethane anesthesia. This finding indicates that behavioral states differ in sleep versus anesthesia and raises questions about relationships between developmental changes in sleep activity, selectivity for different song types, and the neural substrate for vocal learning.
Collapse
Affiliation(s)
- Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Chloé Le Moing
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Ellysia Li
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Rachel Yuan
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
97
|
|
98
|
Fujii TG, Coulter A, Lawley KS, Prather JF, Okanoya K. Song Preference in Female and Juvenile Songbirds: Proximate and Ultimate Questions. Front Physiol 2022; 13:876205. [PMID: 35492616 PMCID: PMC9047784 DOI: 10.3389/fphys.2022.876205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Birdsong has long been a subject of extensive research in the fields of ethology as well as neuroscience. Neural and behavioral mechanisms underlying song acquisition and production in male songbirds are particularly well studied, mainly because birdsong shares some important features with human speech such as critical dependence on vocal learning. However, birdsong, like human speech, primarily functions as communication signals. The mechanisms of song perception and recognition should also be investigated to attain a deeper understanding of the nature of complex vocal signals. Although relatively less attention has been paid to song receivers compared to signalers, recent studies on female songbirds have begun to reveal the neural basis of song preference. Moreover, there are other studies of song preference in juvenile birds which suggest possible functions of preference in social context including the sensory phase of song learning. Understanding the behavioral and neural mechanisms underlying the formation, maintenance, expression, and alteration of such song preference in birds will potentially give insight into the mechanisms of speech communication in humans. To pursue this line of research, however, it is necessary to understand current methodological challenges in defining and measuring song preference. In addition, consideration of ultimate questions can also be important for laboratory researchers in designing experiments and interpreting results. Here we summarize the current understanding of song preference in female and juvenile songbirds in the context of Tinbergen's four questions, incorporating results ranging from ethological field research to the latest neuroscience findings. We also discuss problems and remaining questions in this field and suggest some possible solutions and future directions.
Collapse
Affiliation(s)
- Tomoko G. Fujii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Austin Coulter
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, United States
| | - Koedi S. Lawley
- Department of Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jonathan F. Prather
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, United States
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
99
|
Asogwa NC, Toji N, He Z, Shao C, Shibata Y, Tatsumoto S, Ishikawa H, Go Y, Wada K. Nicotinic acetylcholine receptors in a songbird brain. J Comp Neurol 2022; 530:1966-1991. [PMID: 35344610 DOI: 10.1002/cne.25314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission and cell signaling, which contribute to learning, memory, and the execution of motor skills. Birdsong is a complex learned motor skill in songbirds. Although the existence of 15 nAChR subunits has been predicted in the avian genome, their expression patterns and potential contributions to song learning and production have not been comprehensively investigated. Here, we cloned all the 15 nAChR subunits (ChrnA1-10, B2-4, D, and G) from the zebra finch brain and investigated the mRNA expression patterns in the neural pathways responsible for the learning and production of birdsong during a critical period of song learning. Although there were no detectable hybridization signals for ChrnA1, A6, A9, and A10, the other 11 nAChR subunits were uniquely expressed in one or more major subdivisions in the song nuclei of the songbird brain. Of these 11 subunits, ChrnA3-5, A7, and B2 were differentially regulated in the song nuclei compared with the surrounding anatomically related regions. ChrnA5 was upregulated during the critical period of song learning in the lateral magnocellular nucleus of the anterior nidopallium. Furthermore, single-cell RNA sequencing revealed ChrnA7 and B2 to be the major subunits expressed in neurons of the vocal motor nuclei HVC and robust nucleus of the arcopallium, indicating the potential existence of ChrnA7-homomeric and ChrnB2-heteromeric nAChRs in limited cell populations. These results suggest that relatively limited types of nAChR subunits provide functional contributions to song learning and production in songbirds.
Collapse
Affiliation(s)
| | - Noriyuki Toji
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Ziwei He
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Chengru Shao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroe Ishikawa
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- Department of Physiological Sciences, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
100
|
Hernández DG, Sober SJ, Nemenman I. Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries. eLife 2022; 11:e68192. [PMID: 35315769 PMCID: PMC8989415 DOI: 10.7554/elife.68192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/19/2022] [Indexed: 11/13/2022] Open
Abstract
The problem of deciphering how low-level patterns (action potentials in the brain, amino acids in a protein, etc.) drive high-level biological features (sensorimotor behavior, enzymatic function) represents the central challenge of quantitative biology. The lack of general methods for doing so from the size of datasets that can be collected experimentally severely limits our understanding of the biological world. For example, in neuroscience, some sensory and motor codes have been shown to consist of precisely timed multi-spike patterns. However, the combinatorial complexity of such pattern codes have precluded development of methods for their comprehensive analysis. Thus, just as it is hard to predict a protein's function based on its sequence, we still do not understand how to accurately predict an organism's behavior based on neural activity. Here, we introduce the unsupervised Bayesian Ising Approximation (uBIA) for solving this class of problems. We demonstrate its utility in an application to neural data, detecting precisely timed spike patterns that code for specific motor behaviors in a songbird vocal system. In data recorded during singing from neurons in a vocal control region, our method detects such codewords with an arbitrary number of spikes, does so from small data sets, and accounts for dependencies in occurrences of codewords. Detecting such comprehensive motor control dictionaries can improve our understanding of skilled motor control and the neural bases of sensorimotor learning in animals. To further illustrate the utility of uBIA, we used it to identify the distinct sets of activity patterns that encode vocal motor exploration versus typical song production. Crucially, our method can be used not only for analysis of neural systems, but also for understanding the structure of correlations in other biological and nonbiological datasets.
Collapse
Affiliation(s)
- Damián G Hernández
- Department of Medical Physics, Centro Atómico Bariloche and Instituto BalseiroBarilocheArgentina
- Department of Physics, Emory UniversityAtlantaUnited States
| | - Samuel J Sober
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Ilya Nemenman
- Department of Physics, Emory UniversityAtlantaUnited States
- Department of Biology, Emory UniversityAtlantaUnited States
- Initiative in Theory and Modeling of Living SystemsAtlantaUnited States
| |
Collapse
|