51
|
Abstract
An ideal observer is a theoretical model observer that performs a specific sensory-perceptual task optimally, making the best possible use of the available information given physical and biological constraints. An image-computable ideal observer (pixels in, estimates out) is a particularly powerful type of ideal observer that explicitly models the flow of visual information from the stimulus-encoding process to the eventual decoding of a sensory-perceptual estimate. Image-computable ideal observer analyses underlie some of the most important results in vision science. However, most of what we know from ideal observers about visual processing and performance derives from relatively simple tasks and relatively simple stimuli. This review describes recent efforts to develop image-computable ideal observers for a range of tasks with natural stimuli and shows how these observers can be used to predict and understand perceptual and neurophysiological performance. The reviewed results establish principled links among models of neural coding, computational methods for dimensionality reduction, and sensory-perceptual performance in tasks with natural stimuli.
Collapse
Affiliation(s)
- Johannes Burge
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
52
|
Effects of Mild Traumatic Brain Injury on Stereopsis Detected by a Virtual Reality System: Attempt to Develop a Screening Test. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose
The study aimed to evaluate stereopsis as a surrogate marker for post-concussion oculomotor function to develop an objective test that can reliably and quickly detect mild traumatic brain injuries (TBI).
Methods
The cohort of this prospective clinical study included 30 healthy subjects (mean age 25 ± 2 years) and 30 TBI patients (43 ± 22 years) comprising 11 patients with moderate TBI and 19 patients with mild TBI. The healthy subjects were examined once, whereas the TBI patients were examined immediately after hospitalization, at 1 week, and at 2 months. A virtual reality (VR) program displayed three-dimensional rendering of four rotating soccer balls over VR glasses in different gaze directions. The subjects were instructed to select the ball that appeared to be raised from the screen as quickly as possible via remote control. The response times and fusion abilities in different gaze directions were recorded.
Results
The correlation between stereopsis and TBI severity was significant. The response times of the moderate and mild TBI groups were significantly longer than those of the healthy reference group. The response times of the moderate TBI group were significantly longer than those of the mild TBI group. The response times at follow-up examinations were significantly shorter than those immediately after hospitalization. Fusion ability was primarily defective in the gaze direction to the right (90°) and left (270° and 315°).
Conclusions
TBI patients showed impaired stereopsis. Measuring stereopsis in different positions of the visual field using VR can be effective for rapid concussion assessment.
Collapse
|
53
|
KESEMEN O, TİRYAKİ BK, TEZEL Ö, PAK A. Some Statistics in Polar Coordinate System with Uniform Angles. GAZI UNIVERSITY JOURNAL OF SCIENCE 2020. [DOI: 10.35378/gujs.610086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
54
|
Gil-Casas A, Piñero DP, Molina-Martin A. Binocular, Accommodative and Oculomotor Alterations In Multiple Sclerosis: A Review. Semin Ophthalmol 2020; 35:103-115. [PMID: 32228341 DOI: 10.1080/08820538.2020.1744671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an acquired demyelinating and inflammatory neurodegenerative disease affecting the central nervous system (CNS). Clinical and subclinical ocular disturbances occur in almost all patients with MS. The objective of this narrative review was to collect and summarize the available scientific information on oculomotor, accommodative and binocular alterations that have been reported in MS. A systematic search strategy with the following descriptors was carried out: multiple sclerosis, ocular motility disorders, internuclear ophthalmoplegia, nystagmus, vergences, fixation, pupil reflex, accommodation and stereopsis. According to the search, some oculomotor alterations were found to be commonly reported in MS, such as alterations in saccades and nystagmus. In contrast, accommodative, vergence and stereopsis alterations have not been comprehensively studied despite their relevance, with only minimal evidence showing a potential negative impact of the disease on these aspects. In conclusion, oculomotor impairment is a common component of disability in MS patients and should be considered when managing this type of patients. More research is still needed to know the real impact of this disease on binocular vision and accommodation.
Collapse
Affiliation(s)
- Amparo Gil-Casas
- Clínica Optométrica, Foundation Lluís Alcanyís, University of Valencia, Valencia, Spain
| | - David P Piñero
- Optics and Visual Perception Group (GOPV). Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Ainhoa Molina-Martin
- Optics and Visual Perception Group (GOPV). Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| |
Collapse
|
55
|
Iwaniuk AN, Wylie DR. Sensory systems in birds: What we have learned from studying sensory specialists. J Comp Neurol 2020; 528:2902-2918. [PMID: 32133638 DOI: 10.1002/cne.24896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
Abstract
"Diversity" is an apt descriptor of the research career of Jack Pettigrew as it ranged from the study of trees, to clinical conditions, to sensory neuroscience. Within sensory neuroscience, he was fascinated by the evolution of sensory systems across species. Here, we review some of his work on avian sensory specialists and research that he inspired in others. We begin with an overview of the importance of the Wulst in stereopsis and the need for further study of the Wulst in relation to binocularity across avian species. Next, we summarize recent anatomical, behavioral, and physiological studies on optic flow specializations in hummingbirds. Beyond vision, we discuss the first evidence of a tactile "fovea" in birds and how this led to detailed studies of tactile specializations in waterfowl and sensorimotor systems in parrots. We then describe preliminary studies by Pettigrew of two endemic Australian species, the plains-wanderer (Pedionomus torquatus) and letter-winged kite (Elanus scriptus), that suggest the evolution of some unique auditory and visual specializations in relation to their unique behavior and ecology. Finally, we conclude by emphasizing the importance of a comparative and integrative approach to understanding avian sensory systems and provide an example of one system that has yet to be properly examined: tactile facial bristles in birds. Through reviewing this research and offering future avenues for discovery, we hope that others also embrace the comparative approach to understanding sensory system evolution in birds and other vertebrates.
Collapse
Affiliation(s)
- Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
56
|
Binocular responsiveness of projection neurons of the praying mantis optic lobe in the frontal visual field. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:165-181. [PMID: 32088748 PMCID: PMC7069917 DOI: 10.1007/s00359-020-01405-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/30/2022]
Abstract
Praying mantids are the only insects proven to have stereoscopic vision (stereopsis): the ability to perceive depth from the slightly shifted images seen by the two eyes. Recently, the first neurons likely to be involved in mantis stereopsis were described and a speculative neuronal circuit suggested. Here we further investigate classes of neurons in the lobula complex of the praying mantis brain and their tuning to stereoscopically-defined depth. We used sharp electrode recordings with tracer injections to identify visual projection neurons with input in the optic lobe and output in the central brain. In order to measure binocular response fields of the cells the animals watched a vertical bar stimulus in a 3D insect cinema during recordings. We describe the binocular tuning of 19 neurons projecting from the lobula complex and the medulla to central brain areas. The majority of neurons (12/19) were binocular and had receptive fields for both eyes that overlapped in the frontal region. Thus, these neurons could be involved in mantis stereopsis. We also find that neurons preferring different contrast polarity (bright vs dark) tend to be segregated in the mantis lobula complex, reminiscent of the segregation for small targets and widefield motion in mantids and other insects.
Collapse
|
57
|
Optimized but Not Maximized Cue Integration for 3D Visual Perception. eNeuro 2020; 7:ENEURO.0411-19.2019. [PMID: 31836597 PMCID: PMC6948924 DOI: 10.1523/eneuro.0411-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 02/02/2023] Open
Abstract
Reconstructing three-dimensional (3D) scenes from two-dimensional (2D) retinal images is an ill-posed problem. Despite this, 3D perception of the world based on 2D retinal images is seemingly accurate and precise. The integration of distinct visual cues is essential for robust 3D perception in humans, but it is unclear whether this is true for non-human primates (NHPs). Here, we assessed 3D perception in macaque monkeys using a planar surface orientation discrimination task. Perception was accurate across a wide range of spatial poses (orientations and distances), but precision was highly dependent on the plane's pose. The monkeys achieved robust 3D perception by dynamically reweighting the integration of stereoscopic and perspective cues according to their pose-dependent reliabilities. Errors in performance could be explained by a prior resembling the 3D orientation statistics of natural scenes. We used neural network simulations based on 3D orientation-selective neurons recorded from the same monkeys to assess how neural computation might constrain perception. The perceptual data were consistent with a model in which the responses of two independent neuronal populations representing stereoscopic cues and perspective cues (with perspective signals from the two eyes combined using nonlinear canonical computations) were optimally integrated through linear summation. Perception of combined-cue stimuli was optimal given this architecture. However, an alternative architecture in which stereoscopic cues, left eye perspective cues, and right eye perspective cues were represented by three independent populations yielded two times greater precision than the monkeys. This result suggests that, due to canonical computations, cue integration for 3D perception is optimized but not maximized.
Collapse
|
58
|
Feord RC, Sumner ME, Pusdekar S, Kalra L, Gonzalez-Bellido PT, Wardill TJ. Cuttlefish use stereopsis to strike at prey. SCIENCE ADVANCES 2020; 6:eaay6036. [PMID: 31934631 PMCID: PMC6949036 DOI: 10.1126/sciadv.aay6036] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
The camera-type eyes of vertebrates and cephalopods exhibit remarkable convergence, but it is currently unknown whether the mechanisms for visual information processing in these brains, which exhibit wildly disparate architecture, are also shared. To investigate stereopsis in a cephalopod species, we affixed "anaglyph" glasses to cuttlefish and used a three-dimensional perception paradigm. We show that (i) cuttlefish have also evolved stereopsis (i.e., the ability to extract depth information from the disparity between left and right visual fields); (ii) when stereopsis information is intact, the time and distance covered before striking at a target are shorter; (iii) stereopsis in cuttlefish works differently to vertebrates, as cuttlefish can extract stereopsis cues from anticorrelated stimuli. These findings demonstrate that although there is convergent evolution in depth computation, cuttlefish stereopsis is likely afforded by a different algorithm than in humans, and not just a different implementation.
Collapse
Affiliation(s)
- R. C. Feord
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - M. E. Sumner
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - S. Pusdekar
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - L. Kalra
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - P. T. Gonzalez-Bellido
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Trevor J. Wardill
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
59
|
Second-order cues to figure motion enable object detection during prey capture by praying mantises. Proc Natl Acad Sci U S A 2019; 116:27018-27027. [PMID: 31818943 DOI: 10.1073/pnas.1912310116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Detecting motion is essential for animals to perform a wide variety of functions. In order to do so, animals could exploit motion cues, including both first-order cues-such as luminance correlation over time-and second-order cues, by correlating higher-order visual statistics. Since first-order motion cues are typically sufficient for motion detection, it is unclear why sensitivity to second-order motion has evolved in animals, including insects. Here, we investigate the role of second-order motion in prey capture by praying mantises. We show that prey detection uses second-order motion cues to detect figure motion. We further present a model of prey detection based on second-order motion sensitivity, resulting from a layer of position detectors feeding into a second layer of elementary-motion detectors. Mantis stereopsis, in contrast, does not require figure motion and is explained by a simpler model that uses only the first layer in both eyes. Second-order motion cues thus enable prey motion to be detected, even when perfectly matching the average background luminance and independent of the elementary motion of any parts of the prey. Subsequent to prey detection, processes such as stereopsis could work to determine the distance to the prey. We thus demonstrate how second-order motion mechanisms enable ecologically relevant behavior such as detecting camouflaged targets for other visual functions including stereopsis and target tracking.
Collapse
|
60
|
Cox MA, Dougherty K, Westerberg JA, Schall MS, Maier A. Temporal dynamics of binocular integration in primary visual cortex. J Vis 2019; 19:13. [PMID: 31622471 PMCID: PMC6797477 DOI: 10.1167/19.12.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Whenever we open our eyes, our brain quickly integrates the two eyes' perspectives into a combined view. This process of binocular integration happens so rapidly that even incompatible stimuli are briefly fused before one eye's view is suppressed in favor of the other (binocular rivalry). The neuronal basis for this brief period of fusion during incompatible binocular stimulation is unclear. Neuroanatomically, the eyes provide two largely separate streams of information that are integrated into a binocular response by the primary visual cortex (V1). However, the temporal dynamics underlying the formation of this binocular response are largely unknown. To address this question, we examined the temporal profile of binocular responses in V1 of fixating monkeys. We found that V1 processes binocular stimuli in a dynamic sequence that comprises at least two distinct temporal phases. An initial transient phase is characterized by enhanced spiking responses for both compatible and incompatible binocular stimuli compared to monocular stimulation. This transient is followed by a sustained response that differed markedly between congruent and incongruent binocular stimulation. Specifically, incompatible binocular stimulation resulted in overall response reduction relative to monocular stimulation (binocular suppression). In contrast, responses to compatible stimuli were either suppressed or enhanced (binocular facilitation) depending on the neurons' ocularity (selectivity for one eye over the other) and laminar location. These results suggest that binocular integration in V1 occurs in at least two sequential steps that comprise initial additive combination of the two eyes' signals followed by widespread differentiation between binocular concordance and discordance.
Collapse
Affiliation(s)
- Michele A Cox
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Kacie Dougherty
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Jacob A Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Michelle S Schall
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
61
|
Abstract
With modern neurophysiological methods able to record neural activity throughout the visual pathway in the context of arbitrarily complex visual stimulation, our understanding of visual system function is becoming limited by the available models of visual neurons that can be directly related to such data. Different forms of statistical models are now being used to probe the cellular and circuit mechanisms shaping neural activity, understand how neural selectivity to complex visual features is computed, and derive the ways in which neurons contribute to systems-level visual processing. However, models that are able to more accurately reproduce observed neural activity often defy simple interpretations. As a result, rather than being used solely to connect with existing theories of visual processing, statistical modeling will increasingly drive the evolution of more sophisticated theories.
Collapse
Affiliation(s)
- Daniel A. Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
62
|
Li Z, Shigemasu H. Generalized Representation of Stereoscopic Surface Shape and Orientation in the Human Visual Cortex. Front Hum Neurosci 2019; 13:283. [PMID: 31481886 PMCID: PMC6710440 DOI: 10.3389/fnhum.2019.00283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
The brain's ability to extract three-dimensional (3D) shape and orientation information from viewed objects is vital in daily life. Stereoscopic 3D surface perception relies on binocular disparity. Neurons selective to binocular disparity are widely distributed among visual areas, but the manner in these areas are involved in stereoscopic 3D surface representation is unclear. To address this, participants were instructed to observe random dot stereograms (RDS) depicting convex and concave curved surfaces and the blood oxygenation level-dependent (BOLD) signal of visual cortices was recorded. Two surface types were: (i) horizontally positioned surfaces defined by shear disparity; and (ii) vertically positioned surfaces defined by compression disparity. The surfaces were presented at different depth positions per trial. Functional magnetic resonance imaging (fMRI) data were classified from early visual areas to higher visual areas. We determined whether cortical areas were selective to shape and orientation by assessing same-type stimuli classification accuracies based on multi-voxel activity patterns per area. To identify whether some areas were related to a more generalized sign of curvature or orientation representation, transfer classification was used by training classifiers on one dataset type and testing classifiers on another type. Same-type stimuli classification results showed that most selected visual areas were selective to shape and all were selective to the orientation of disparity-defined 3D surfaces. Transfer classification results showed that in the dorsal visual area V3A, classification accuracies for the discriminate sign of surface curvature were higher than the baseline of statistical significance for all types of classifications, demonstrating that V3A is related to generalized shape representation. Classification accuracies for discriminating horizontal-vertical surfaces in higher dorsal areas V3A and V7 and ventral area lateral occipital complex (LOC) as well as in some areas of intraparietal sulcus (IPS) were higher than the baseline of statistical significance, indicating their relation to the generalized representation of 3D surface orientation.
Collapse
Affiliation(s)
- Zhen Li
- Graduate School of Engineering, Kochi University of Technology, Kochi, Japan
| | | |
Collapse
|
63
|
La Chioma A, Bonhoeffer T, Hübener M. Area-Specific Mapping of Binocular Disparity across Mouse Visual Cortex. Curr Biol 2019; 29:2954-2960.e5. [DOI: 10.1016/j.cub.2019.07.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
|
64
|
Mice Discriminate Stereoscopic Surfaces Without Fixating in Depth. J Neurosci 2019; 39:8024-8037. [PMID: 31462533 DOI: 10.1523/jneurosci.0895-19.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/21/2022] Open
Abstract
Stereopsis is a ubiquitous feature of primate mammalian vision, but little is known about if and how rodents such as mice use stereoscopic vision. We used random dot stereograms to test for stereopsis in male and female mice, and they were able to discriminate near from far surfaces over a range of disparities, with diminishing performance for small and large binocular disparities. Based on two-photon measurements of disparity tuning, the range of disparities represented in the visual cortex aligns with the behavior and covers a broad range of disparities. When we examined their binocular eye movements, we found that, unlike primates, mice did not systematically vary relative eye positions or use vergence eye movements when presented with different disparities. Nonetheless, the representation of disparity tuning was wide enough to capture stereoscopic information over a range of potential vergence angles. Although mice share fundamental characteristics of stereoscopic vision with primates and carnivores, their lack of disparity-dependent vergence eye movements and wide neuronal representation suggests that they may use a distinct strategy for stereopsis.SIGNIFICANCE STATEMENT Binocular vision allows us to derive depth information by comparing right and left eye information. We characterized binocular integration in mice because tools exist in these animals to dissect the underlying neural circuitry for binocular vision. Using random dot stereograms, we find that behavior and disparity tuning in the visual cortex share fundamental characteristics with primates, but we did not observe any evidence of disparity-dependent changes in vergence angle. We propose that mice use a distinct strategy of stereopsis compared with primates by using a broad range of disparities to encode depth over a large field of view and to compensate for nonstereoscopic changes in vergence angle that arise during natural behavior.
Collapse
|
65
|
Ng CJ, Farell B. Solving the stereo correspondence problem with false matches. PLoS One 2019; 14:e0219052. [PMID: 31356649 PMCID: PMC6662999 DOI: 10.1371/journal.pone.0219052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/14/2019] [Indexed: 11/29/2022] Open
Abstract
The stereo correspondence problem exists because false matches between the images from multiple sensors camouflage the true (veridical) matches. True matches are correspondences between image points that have the same generative source; false matches are correspondences between similar image points that have different sources. This problem of selecting true matches among false ones must be overcome by both biological and artificial stereo systems in order for them to be useful depth sensors. The proposed re-examination of this fundamental issue shows that false matches form a symmetrical pattern in the array of all possible matches, with true matches forming the axis of symmetry. The patterning of false matches can therefore be used to locate true matches and derive the depth profile of the surface that gave rise to them. This reverses the traditional strategy, which treats false matches as noise. The new approach is particularly well-suited to extract the 3-D locations and shapes of camouflaged surfaces and to work in scenes characterized by high degrees of clutter. We demonstrate that the symmetry of false-match signals can be exploited to identify surfaces in random-dot stereograms. This strategy permits novel depth computations for target detection, localization, and identification by machine-vision systems, accounts for physiological and psychophysical findings that are otherwise puzzling and makes possible new ways for combining stereo and motion signals.
Collapse
Affiliation(s)
- Cherlyn J. Ng
- Institute for Sensory Research, Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| | - Bart Farell
- Institute for Sensory Research, Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
66
|
Joris PX, van der Heijden M. Early Binaural Hearing: The Comparison of Temporal Differences at the Two Ears. Annu Rev Neurosci 2019; 42:433-457. [DOI: 10.1146/annurev-neuro-080317-061925] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many mammals, including humans, are exquisitely sensitive to tiny time differences between sounds at the two ears. These interaural time differences are an important source of information for sound detection, for sound localization in space, and for environmental awareness. Two brainstem circuits are involved in the initial temporal comparisons between the ears, centered on the medial and lateral superior olive. Cells in these nuclei, as well as their afferents, display a large number of striking physiological and anatomical specializations to enable submillisecond sensitivity. As such, they provide an important model system to study temporal processing in the central nervous system. We review the progress that has been made in characterizing these primary binaural circuits as well as the variety of mechanisms that have been proposed to underlie their function.
Collapse
Affiliation(s)
- Philip X. Joris
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Marcel van der Heijden
- Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| |
Collapse
|
67
|
Abstract
A puzzle for neuroscience—and robotics—is how insects achieve surprisingly complex behaviours with such tiny brains. One example is depth perception via binocular stereopsis in the praying mantis, a predatory insect. Praying mantids use stereopsis, the computation of distances from disparities between the two retinal images, to trigger a raptorial strike of their forelegs when prey is within reach. The neuronal basis of this ability is entirely unknown. Here we show the first evidence that individual neurons in the praying mantis brain are tuned to specific disparities and eccentricities, and thus locations in 3D-space. Like disparity-tuned cortical cells in vertebrates, the responses of these mantis neurons are consistent with linear summation of binocular inputs followed by an output nonlinearity. Our study not only proves the existence of disparity sensitive neurons in an insect brain, it also reveals feedback connections hitherto undiscovered in any animal species. The praying mantis, a predatory insect, estimates depth via binocular vision. In this way, the animal decides whether prey is within reach. Here, the authors explore the neural correlates of binocular distance estimation and report that individual neurons are tuned to specific locations in 3D space.
Collapse
|
68
|
Motion and binocular disparity processing: Two sides of two different coins. PROGRESS IN BRAIN RESEARCH 2019. [PMID: 31239128 DOI: 10.1016/bs.pbr.2019.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
From a mathematical point of view, extracting motion and disparity signals from a binocular visual stream requires very similar operations, applied over time for motion and across eyes for disparity. This similarity is reflected in the theories that have been proposed to describe the neural mechanisms used by the brain to extract these signals. At the behavioral level there are, however, several differences in how humans react to these stimuli, which presumably reflect differences in how these signals are processed by the brain. Here we highlight three such differences: the degree to which different axes of motion/disparity are treated isotropically, the importance of reference signals, and the rules that underlie the combination of 1D signals to extract 2D signals.
Collapse
|
69
|
Visuomotor Behaviour in Amblyopia: Deficits and Compensatory Adaptations. Neural Plast 2019; 2019:6817839. [PMID: 31281344 PMCID: PMC6590572 DOI: 10.1155/2019/6817839] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023] Open
Abstract
Amblyopia is a neurodevelopmental visual disorder arising from decorrelated binocular experience during the critical periods of development. The hallmark of amblyopia is reduced visual acuity and impairment in binocular vision. The consequences of amblyopia on various sensory and perceptual functions have been studied extensively over the past 50 years. Historically, relatively fewer studies examined the impact of amblyopia on visuomotor behaviours; however, research in this area has flourished over the past 10 years. Therefore, the aim of this review paper is to provide a comprehensive review of current knowledge about the effects of amblyopia on eye movements, upper limb reaching and grasping movements, as well as balance and gait. Accumulating evidence indicates that amblyopia is associated with considerable deficits in visuomotor behaviour during amblyopic eye viewing, as well as adaptations in behaviour during binocular and fellow eye viewing in adults and children. Importantly, due to amblyopia heterogeneity, visuomotor development in children and motor skill performance in adults may be significantly influenced by the etiology and clinical features, such as visual acuity and stereoacuity. Studies with larger cohorts of children and adults are needed to disentangle the unique contribution of these clinical characteristics to the development and performance of visuomotor behaviours.
Collapse
|
70
|
Read JCA, Cumming BG. The psychophysics of stereopsis can be explained without invoking independent ON and OFF channels. J Vis 2019; 19:7. [PMID: 31173632 PMCID: PMC6690401 DOI: 10.1167/19.6.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Early vision proceeds through distinct ON and OFF channels, which encode luminance increments and decrements respectively. It has been argued that these channels also contribute separately to stereoscopic vision. This is based on the fact that observers perform better on a noisy disparity discrimination task when the stimulus is a random-dot pattern consisting of equal numbers of black and white dots (a “mixed-polarity stimulus,” argued to activate both ON and OFF stereo channels), than when it consists of all-white or all-black dots (“same-polarity,” argued to activate only one). However, it is not clear how this theory can be reconciled with our current understanding of disparity encoding. Recently, a binocular convolutional neural network was able to replicate the mixed-polarity advantage shown by human observers, even though it was based on linear filters and contained no mechanisms which would respond separately to black or white dots. Here, we show that a subtle feature of the way the stimuli were constructed in all these experiments can explain the results. The interocular correlation between left and right images is actually lower for the same-polarity stimuli than for mixed-polarity stimuli with the same amount of disparity noise applied to the dots. Because our current theories suggest stereopsis is based on a correlation-like computation in primary visual cortex, this postulate can explain why performance was better for the mixed-polarity stimuli. We conclude that there is currently no evidence supporting separate ON and OFF channels in stereopsis.
Collapse
Affiliation(s)
- Jenny C A Read
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Bruce G Cumming
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
71
|
Chessa M, Solari F. A Computational Model for the Neural Representation and Estimation of the Binocular Vector Disparity from Convergent Stereo Image Pairs. Int J Neural Syst 2019; 29:1850029. [DOI: 10.1142/s0129065718500296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The depth cue is a fundamental piece of information for artificial and living beings who interact with the surrounding environment in order to handle objects and to avoid obstacles: in such situations, the disparity patterns, which arise when agents fixate objects, are vector fields. We propose a biologically-inspired computational model to estimate dense horizontal and vertical disparity maps by exploiting the cortical paradigms of the primate visual system: in particular, we aim to model the disparity sensitivity of the V1–MT visual pathway. The proposed model is based on a first processing stage composed of a bank of spatial band-pass filters and a static nonlinearity, mimicking complex binocular cells. Then, subsequent pooling stages and decoding strategies allow the model to estimate the vector disparity, after having represented it as a population of MT-like units. We assess the proposed model by using standard benchmarking stereo images, the Middlebury dataset, and specific stereo images that have horizontal and vertical disparities, which characterize the stimuli produced by active vision systems. Moreover, we systemically analyze how the different processing stages affect the model performance, and we discuss their implications for the neural modeling.
Collapse
Affiliation(s)
- Manuela Chessa
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Fabio Solari
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via All’Opera Pia 13, 16145 Genova, Italy
| |
Collapse
|
72
|
Uji M, Jentzsch I, Redburn J, Vishwanath D. Dissociating neural activity associated with the subjective phenomenology of monocular stereopsis: An EEG study. Neuropsychologia 2019; 129:357-371. [PMID: 31034841 DOI: 10.1016/j.neuropsychologia.2019.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/26/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
The subjective phenomenology associated with stereopsis, of solid tangible objects separated by a palpable negative space, is conventionally thought to be a by-product of the derivation of depth from binocular disparity. However, the same qualitative impression has been reported in the absence of disparity, e.g., when viewing pictorial images monocularly through an aperture. Here we aimed to explore if we could identify dissociable neural activity associated with the qualitative impression of stereopsis in the absence of the processing of binocular disparities. We measured EEG activity while subjects viewed pictorial (non-stereoscopic) images of 2D and 3D geometric forms under four different viewing conditions (binocular, monocular, binocular aperture, monocular aperture). EEG activity was analysed by oscillatory source localization (beamformer technique) to examine power change in occipital and parietal regions across viewing and stimulus conditions in targeted frequency bands (alpha: 8-13 Hz & gamma: 60-90 Hz). We observed expected event-related gamma synchronization and alpha desynchronization in occipital cortex and predominant gamma synchronization in parietal cortex across viewing and stimulus conditions. However, only the viewing condition predicted to generate the strongest impression of stereopsis (monocular aperture) revealed significantly elevated gamma synchronization within the parietal cortex for the critical contrasts (3D vs. 2D form). These findings suggest dissociable neural processes specific to the qualitative impression of stereopsis as distinguished from disparity processing.
Collapse
Affiliation(s)
- Makoto Uji
- School of Psychology and Neuroscience, University of St Andrews, UK.
| | - Ines Jentzsch
- School of Psychology and Neuroscience, University of St Andrews, UK
| | - James Redburn
- School of Psychology and Neuroscience, University of St Andrews, UK
| | | |
Collapse
|
73
|
Armendariz M, Ban H, Welchman AE, Vanduffel W. Areal differences in depth cue integration between monkey and human. PLoS Biol 2019; 17:e2006405. [PMID: 30925163 PMCID: PMC6457573 DOI: 10.1371/journal.pbio.2006405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/10/2019] [Accepted: 03/12/2019] [Indexed: 11/22/2022] Open
Abstract
Electrophysiological evidence suggested primarily the involvement of the middle temporal (MT) area in depth cue integration in macaques, as opposed to human imaging data pinpointing area V3B/kinetic occipital area (V3B/KO). To clarify this conundrum, we decoded monkey functional MRI (fMRI) responses evoked by stimuli signaling near or far depths defined by binocular disparity, relative motion, and their combination, and we compared results with those from an identical experiment previously performed in humans. Responses in macaque area MT are more discriminable when two cues concurrently signal depth, and information provided by one cue is diagnostic of depth indicated by the other. This suggests that monkey area MT computes fusion of disparity and motion depth signals, exactly as shown for human area V3B/KO. Hence, these data reconcile previously reported discrepancies between depth processing in human and monkey by showing the involvement of the dorsal stream in depth cue integration using the same technique, despite the engagement of different regions. In everyday life, we interact with a three-dimensional world that we perceive via our two-dimensional retinas. Our brain can reconstruct the third dimension from these flat retinal images using multiple sources of visual information, or cues. The horizontal displacement of the two retinal images, known as binocular disparity, and the relative motion between different objects are two important depth cues. However, to make the most of the information provided by each cue, our brains must efficiently integrate across them. To examine this process, we used neuroimaging in monkeys to record brain responses evoked by stimuli signaling depths defined by either binocular disparity or relative motion in isolation, and also when the two cues are combined congruently or incongruently. We found that cortical area MT in monkeys is involved in the fusion of these two particular depth cues, in contrast to previous human imaging data that pinpoint a more posterior cortical area, V3B/KO. Our findings support the existence of depth cue integration mechanisms in primates; however, this fusion appears to be computed in slightly different areas in humans and monkeys.
Collapse
Affiliation(s)
- Marcelo Armendariz
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, Belgium
| | - Hiroshi Ban
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Andrew E. Welchman
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (WV); (AW)
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Leuven Brain Institute, Leuven, Belgium
- * E-mail: (WV); (AW)
| |
Collapse
|
74
|
Brascamp JW. Neurophysiology: Charting the Confluence of the Two Eyes' Information Streams. Curr Biol 2019; 29:R134-R136. [PMID: 30779904 DOI: 10.1016/j.cub.2018.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In primates, the two eyes offer substantially overlapping views of the world. The information they provide is merged into a single, integrated, representation in visual cortex. New evidence changes long-standing ideas about how and where in the processing stream this happens.
Collapse
Affiliation(s)
- Jan W Brascamp
- Michigan State University, Department of Psychology, 316 Physics Road, East Lansing, MI 48824, USA.
| |
Collapse
|
75
|
Evaluation of visual function in Royal College of Surgeon rats using a depth perception visual cliff test. Vis Neurosci 2019; 36:E002. [PMID: 30700338 DOI: 10.1017/s095252381800007x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preserving of vision is the main goal in vision research. The presented research evaluates the preservation of visual function in Royal College of Surgeon (RCS) rats using a depth perception test. Rats were placed on a stage with one side containing an illusory steep drop ("cliff") and another side with a minimal drop ("table"). Latency of stage dismounting and the percentage of rats that set their first foot on the "cliff" side were determined. Nondystrophic Long-Evans (LE) rats were tested as control. Electroretinogram and histology analysis were used to determine retinal function and structure. Four-week-old RCS rats presented a significantly shorter mean latency to dismount the stage compared with 6-week-old rats (mean ± standard error, 13.7 ± 1.68 vs. 20.85 ± 6.5 s, P = 0.018). Longer latencies were recorded as rats aged, reaching 45.72 s in 15-week-old rats (P < 0.00001 compared with 4-week-old rats). All rats at the age of 4 weeks placed their first foot on the table side. By contrast, at the age of 8 weeks, 28.6% rats dismounted on the cliff side and at the age of 10 and 15 weeks, rats randomly dismounted the stage to either table or cliff side. LE rats dismounted the stage faster than 4-week-old RCS rats, but the difference was not statistically significant (7 ± 1.58 s, P = 0.057) and all LE rats dismounted on the table side. The latency to dismount the stage in RCS rats correlated with maximal electroretinogram b-wave under dark and light adaptation (Spearman's rho test = -0.603 and -0.534, respectively, all P < 0.0001), outer nuclear layer thickness (Spearman's rho test = -0.764, P = 0.002), and number of S- and M-cones (Spearman's rho test = -0.763 [P = 0.002], and -0.733 [P = 0.004], respectively). The cliff avoidance test is an objective, quick, and readily available method for the determination of RCS rats' visual function.
Collapse
|
76
|
Doron R, Sterkin A, Fried M, Yehezkel O, Lev M, Belkin M, Rosner M, Solomon AS, Mandel Y, Polat U. Spatial visual function in anomalous trichromats: Is less more? PLoS One 2019; 14:e0209662. [PMID: 30673711 PMCID: PMC6343896 DOI: 10.1371/journal.pone.0209662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/09/2018] [Indexed: 12/03/2022] Open
Abstract
Color deficiency is a common inherited disorder affecting 8% of Caucasian males with anomalous trichromacy (AT); it is the most common type of inherited color vision deficiency. Anomalous trichromacy is caused by alteration of one of the three cone-opsins’ spectral sensitivity; it is usually considered to impose marked limitations for daily life as well as for choice of occupation. Nevertheless, we show here that anomalous trichromat subjects have superior basic visual functions such as visual acuity (VA), contrast sensitivity (CS), and stereo acuity, compared with participants with normal color vision. Both contrast sensitivity and stereo acuity performance were correlated with the severity of color deficiency. We further show that subjects with anomalous trichromacy exhibit a better ability to detect objects camouflaged in natural gray scale figures. The advantages of color-deficient subjects in spatial vision performance could explain the relatively high prevalence of color-vision polymorphism in humans.
Collapse
Affiliation(s)
- Ravid Doron
- Department of Optometry and Vision Science, Hadassah Academic College, Jerusalem, Israel
| | - Anna Sterkin
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Moshe Fried
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Oren Yehezkel
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Maria Lev
- The School of Optometry and Vision Science, The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Michael Belkin
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Mordechai Rosner
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Arieh S. Solomon
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Yossi Mandel
- The School of Optometry and Vision Science, The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Material (BINA), Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (UP); (YM)
| | - Uri Polat
- The School of Optometry and Vision Science, The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (UP); (YM)
| |
Collapse
|
77
|
Depth perception in patients with congenital color vision deficiency. Eye (Lond) 2018; 33:674-678. [PMID: 30518972 DOI: 10.1038/s41433-018-0292-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/04/2018] [Accepted: 10/01/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To assess the effect of type and severity of congenital color vision deficiency (CCVD) on depth perception. METHODS Thirty-one male patients with a known diagnosis of CCVD were included in the study group and 31 age-matched healthy subjects in the control group. After standard ophthalmological examination including best corrected visual acuity (BCVA) testing with Snellen chart, slit-lamp examination, non-contact tonometry, and fundus examination, all patients underwent color perception testing with Hardy-Rand-Rittler (HRR) 4th edition pseudoisochromatic test plates and stereoacuity testing with Titmus stereo test plates. RESULTS Of the 31 patients with CCVD, 7 were protanope and 24 were deuteranope. Mean stereoacuity was 46.77 ± 11.3, 105.7 ± 69.0, and 134.1 ± 115.2 in the control, protanope, and deuteranope groups, respectively. Stereoacuity was significantly better in the control group than in the protanope and deuteranope groups (p = 0.039, p < 0.001 respectively). No significant difference was observed between protanopes and deuteranopes regarding stereoacuity (p = 0.73). Mean BCVA was -0.01 ± 0.03, -0.02 ± 0.07, and -0.10 ± 0.11 in the control, protanope, and deuteranope groups, respectively. Mean BCVA in deuteranopes was significantly better than the control group (p = 0.004), while mean BCVA in deuteranopes and protanopes did not differ significantly (p = 0.056). No significant difference was observed between the control group and protanopes regarding visual acuity (p = 0.921). CONCLUSIONS Our study showed that color vision had an important effect on depth perception and CCVD may cause decreased stereoacuity.
Collapse
|
78
|
Railo H, Saastamoinen J, Kylmälä S, Peltola A. Binocular disparity can augment the capacity of vision without affecting subjective experience of depth. Sci Rep 2018; 8:15798. [PMID: 30361498 PMCID: PMC6202414 DOI: 10.1038/s41598-018-34137-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022] Open
Abstract
Binocular disparity results in a tangible subjective experience of three-dimensional world, but whether disparity also augments objective perceptual performance remains debated. We hypothesized that the improved coding of depth enabled by binocular disparity allows participants to individuate more objects at a glance as the objects can be more efficiently differentiated from each other and the background. We asked participants to enumerate objects in briefly presented naturalistic (Experiment 1) and artificial (Experiment 2) scenes in immersive virtual reality. This type of enumeration task yields well-documented capacity limits where up to 3-4 items can be enumerated rapidly and accurately, known as subitizing. Our results show that although binocular disparity did not yield a large general improvement in enumeration accuracy or reaction times, it improved participants' ability to process the items right after the limit of perceptual capacity. Binocular disparity also sped-up response times by 27 ms on average when artificial stimuli (cubes) were used. Interestingly, the influence of disparity on subjectively experienced depth revealed a clearly different pattern than the influence of disparity on objective performance. This suggests that the functional and subjective sides of stereopsis can be dissociated. Altogether our results suggest that binocular disparity may increase the number of items the visual system can simultaneously process. This may help animals to better resolve and track objects in complex, cluttered visual environments.
Collapse
Affiliation(s)
- Henry Railo
- Department of Clinical Neurophysiology, University of Turku and Turku University Hospital, FI-20521, Turku, Finland.
- Department of Psychology, University of Turku, Turku, 20014, Finland.
| | - Joni Saastamoinen
- Department of Psychology, University of Turku, Turku, 20014, Finland
| | - Sipi Kylmälä
- Department of Psychology, University of Turku, Turku, 20014, Finland
| | - Aapo Peltola
- Turku Game Lab, Turku University of Applied Sciences, Turku, 20520, Finland
| |
Collapse
|
79
|
Bossi M, Hamm LM, Dahlmann-Noor A, Dakin SC. A comparison of tests for quantifying sensory eye dominance. Vision Res 2018; 153:60-69. [PMID: 30292725 DOI: 10.1016/j.visres.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Clinicians rely heavily on stereoacuity to measure binocular visual function, but stereo-vision represents only one aspect of binocularity. Lab-based tests of sensory eye dominance (SED) are commonplace, but have not been translated to wider clinical practice. Here we compare several methods of quantifying SED in a format suitable for clinical use. We tested 30 participants with ostensibly normal vision on eight tests. Seven tests (#1-7) were designed to quantify SED in the form of an interocular balance-point (BP). In tests #1-6, we estimated a contrast-BP, the interocular difference in contrast required for observers to be equally likely to base their judgement on either eye, whereas in test #7 we measured binocular rivalry (interocular ratio of sensory dominance duration). We compare test-retest reliability (intra-observer consistency) and test-validity (inter-observer discriminatory power) and compare BP to stereoacuity (test #8). The test that best preserved inter-observer differences in contrast balance while maintaining good test-retest reliability was a polarity judgement using superimposed opposite-contrast polarity same-identity optotypes. A reliable and valid measure of SED can be obtained rapidly (20 trials) using a simple contrast-polarity judgement. Tests that use polarity-rivalrous stimuli elicit more reliable judgments than those that do not. SIGNIFICANCE STATEMENT: Although sensory eye dominance is central to understanding normal and disordered binocular vision, there is currently no consensus as to the best way to measure it. Here we compare several candidate measures of sensory eye dominance and conclude that a reliable measure of SED can be achieved rapidly using a judgement of stimulus contrast-polarity.
Collapse
Affiliation(s)
- Manuela Bossi
- UCL Institute of Ophthalmology, University College London, Bath St, London EC1V 9EL, UK
| | - Lisa M Hamm
- School of Optometry and Vision Science, University of Auckland, Auckland 1142, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
| | - Annegret Dahlmann-Noor
- UCL Institute of Ophthalmology, University College London, Bath St, London EC1V 9EL, UK; Department of Paediatric Ophthalmology, NIHR Biomedical Research Centre at Moorfields Eye Hospital, City Road, London EC1V 2PD, UK
| | - Steven C Dakin
- UCL Institute of Ophthalmology, University College London, Bath St, London EC1V 9EL, UK; School of Optometry and Vision Science, University of Auckland, Auckland 1142, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
80
|
Nityananda V, Read JCA. Stereopsis in animals: evolution, function and mechanisms. ACTA ACUST UNITED AC 2018; 220:2502-2512. [PMID: 28724702 PMCID: PMC5536890 DOI: 10.1242/jeb.143883] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stereopsis is the computation of depth information from views acquired simultaneously from different points in space. For many years, stereopsis was thought to be confined to primates and other mammals with front-facing eyes. However, stereopsis has now been demonstrated in many other animals, including lateral-eyed prey mammals, birds, amphibians and invertebrates. The diversity of animals known to have stereo vision allows us to begin to investigate ideas about its evolution and the underlying selective pressures in different animals. It also further prompts the question of whether all animals have evolved essentially the same algorithms to implement stereopsis. If so, this must be the best way to do stereo vision, and should be implemented by engineers in machine stereopsis. Conversely, if animals have evolved a range of stereo algorithms in response to different pressures, that could inspire novel forms of machine stereopsis appropriate for distinct environments, tasks or constraints. As a first step towards addressing these ideas, we here review our current knowledge of stereo vision in animals, with a view towards outlining common principles about the evolution, function and mechanisms of stereo vision across the animal kingdom. We conclude by outlining avenues for future work, including research into possible new mechanisms of stereo vision, with implications for machine vision and the role of stereopsis in the evolution of camouflage. Summary: Stereopsis has evolved independently in different animals. We review the various functions it serves and the variety of mechanisms that could underlie stereopsis in different species.
Collapse
Affiliation(s)
- Vivek Nityananda
- Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstraße 19, Berlin 14193, Germany .,Newcastle University, Institute of Neuroscience, Henry Wellcome Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Jenny C A Read
- Newcastle University, Institute of Neuroscience, Henry Wellcome Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
81
|
Emergence of Binocular Disparity Selectivity through Hebbian Learning. J Neurosci 2018; 38:9563-9578. [PMID: 30242050 DOI: 10.1523/jneurosci.1259-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022] Open
Abstract
Neural selectivity in the early visual cortex strongly reflects the statistics of our environment (Barlow, 2001; Geisler, 2008). Although this has been described extensively in literature through various encoding hypotheses (Barlow and Földiák, 1989; Atick and Redlich, 1992; Olshausen and Field, 1996), an explanation as to how the cortex might develop the computational architecture to support these encoding schemes remains elusive. Here, using the more realistic example of binocular vision as opposed to monocular luminance-field images, we show how a simple Hebbian coincidence-detector is capable of accounting for the emergence of binocular, disparity selective, receptive fields. We propose a model based on spike timing-dependent plasticity, which not only converges to realistic single-cell and population characteristics, but also demonstrates how known biases in natural statistics may influence population encoding and downstream correlates of behavior. Furthermore, we show that the receptive fields we obtain are closer in structure to electrophysiological data reported in macaques than those predicted by normative encoding schemes (Ringach, 2002). We also demonstrate the robustness of our model to the input dataset, noise at various processing stages, and internal parameter variation. Together, our modeling results suggest that Hebbian coincidence detection is an important computational principle and could provide a biologically plausible mechanism for the emergence of selectivity to natural statistics in the early sensory cortex.SIGNIFICANCE STATEMENT Neural selectivity in the early visual cortex is often explained through encoding schemes that postulate that the computational aim of early sensory processing is to use the least possible resources (neurons, energy) to code the most informative features of the stimulus (information efficiency). In this article, using stereo images of natural scenes, we demonstrate how a simple Hebbian rule can lead to the emergence of a disparity-selective neural population that not only shows realistic single-cell and population tunings, but also demonstrates how known biases in natural statistics may influence population encoding and downstream correlates of behavior. Our approach allows us to view early neural selectivity, not as an optimization problem, but as an emergent property driven by biological rules of plasticity.
Collapse
|
82
|
Braun S, Kavšek M. Infants perceive two-dimensional shape from horizontal disparity. Infant Behav Dev 2018; 52:140-145. [PMID: 30098523 DOI: 10.1016/j.infbeh.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/01/2022]
Abstract
Previous studies observed that responsiveness to horizontal disparity as such emerges at approximately 2 months of age. Moreover, 3- to 4-month-old infants utilize stereoscopic information to perceive object variations in depth. The present study investigated infants' ability to respond to crossed horizontal disparity information that defines two-dimensional shape. Infants 4 and 5 months of age were habituated to either a cross or the outline of a square. During the posthabituation period, they were presented with both shapes. The stimuli were dynamic random dot stereograms shown on an autostereoscopic monitor. The participants 5 but not 4 months of age displayed significant novelty preferences for the unfamiliar shape during the posthabituation period. Five-month-old infants are hence sensitive to horizontal disparity information that specifies shape.
Collapse
Affiliation(s)
- Stephanie Braun
- University of Bonn, Department of Psychology, Unit of Developmental and Educational Psychology, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
| | - Michael Kavšek
- University of Bonn, Department of Psychology, Unit of Developmental and Educational Psychology, Kaiser-Karl-Ring 9, 53111 Bonn, Germany.
| |
Collapse
|
83
|
Abstract
Psychophysical studies and our own subjective experience suggest that, in natural viewing conditions (i.e., at medium to high contrasts), monocularly and binocularly viewed scenes appear very similar, with the exception of the improved depth perception provided by stereopsis. This phenomenon is usually described as a lack of binocular summation. We show here that there is an exception to this rule: Ocular following eye movements induced by the sudden motion of a large stimulus, which we recorded from three human subjects, are much larger when both eyes see the moving stimulus, than when only one eye does. We further discovered that this binocular advantage is a function of the interocular correlation between the two monocular images: It is maximal when they are identical, and reduced when the two eyes are presented with different images. This is possible only if the neurons that underlie ocular following are sensitive to binocular disparity.
Collapse
Affiliation(s)
- Christian Quaia
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Lance M Optican
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Bruce G Cumming
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
84
|
Iyer AV, Burge J. Depth variation and stereo processing tasks in natural scenes. J Vis 2018; 18:4. [PMID: 30029214 PMCID: PMC6005632 DOI: 10.1167/18.6.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/30/2018] [Indexed: 01/02/2023] Open
Abstract
Local depth variation is a distinctive property of natural scenes, but its effects on perception have only recently begun to be investigated. Depth variation in natural scenes is due to depth edges between objects and surface nonuniformities within objects. Here, we demonstrate how natural depth variation impacts performance in two fundamental tasks related to stereopsis: half-occlusion detection and disparity detection. We report the results of a computational study that uses a large database of natural stereo-images and coregistered laser-based distance measurements. First, we develop a procedure for precisely sampling stereo-image patches from the stereo-images and then quantify the local depth variation in each patch by its disparity contrast. Next, we show that increased disparity contrast degrades half-occlusion detection and disparity detection performance and changes the size and shape of the spatial integration areas ("receptive fields") that optimize performance. Then, we show that a simple image-computable binocular statistic predicts disparity contrast in natural scenes. Finally, we report the most likely spatial patterns of disparity variation and disparity discontinuities (half-occlusions) in natural scenes. Our findings motivate computational and psychophysical investigations of the mechanisms that underlie stereo processing tasks in local regions of natural scenes.
Collapse
Affiliation(s)
- Arvind V Iyer
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Johannes Burge
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
85
|
Dougherty K, Schmid MC, Maier A. Binocular response modulation in the lateral geniculate nucleus. J Comp Neurol 2018; 527:522-534. [PMID: 29473163 DOI: 10.1002/cne.24417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The dorsal lateral geniculate nucleus of the thalamus (LGN) receives the main outputs of both eyes and relays those signals to the visual cortex. Each retina projects to separate layers of the LGN so that each LGN neuron is innervated by a single eye. In line with this anatomical separation, visual responses of almost all of LGN neurons are driven by one eye only. Nonetheless, many LGN neurons are sensitive to what is shown to the other eye as their visual responses differ when both eyes are stimulated compared to when the driving eye is stimulated in isolation. This, predominantly suppressive, binocular modulation of LGN responses might suggest that the LGN is the first location in the primary visual pathway where the outputs from the two eyes interact. Indeed, the LGN features several anatomical structures that would allow for LGN neurons responding to one eye to modulate neurons that respond to the other eye. However, it is also possible that binocular response modulation in the LGN arises indirectly as the LGN also receives input from binocular visual structures. Here we review the extant literature on the effects of binocular stimulation on LGN spiking responses, highlighting findings from cats and primates, and evaluate the neural circuits that might mediate binocular response modulation in the LGN.
Collapse
Affiliation(s)
- Kacie Dougherty
- Department of Psychology, Center for Cognitive and Integrative Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee 37203
| | - Michael C Schmid
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alexander Maier
- Department of Psychology, Center for Cognitive and Integrative Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee 37203
| |
Collapse
|
86
|
Nityananda V, Tarawneh G, Henriksen S, Umeton D, Simmons A, Read JCA. A Novel Form of Stereo Vision in the Praying Mantis. Curr Biol 2018; 28:588-593.e4. [PMID: 29429616 DOI: 10.1016/j.cub.2018.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/19/2022]
Abstract
Stereopsis is the ability to estimate distance based on the different views seen in the two eyes [1-5]. It is an important model perceptual system in neuroscience and a major area of machine vision. Mammalian, avian, and almost all machine stereo algorithms look for similarities between the luminance-defined images in the two eyes, using a series of computations to produce a map showing how depth varies across the scene [3, 4, 6-14]. Stereopsis has also evolved in at least one invertebrate, the praying mantis [15-17]. Mantis stereopsis is presumed to be simpler than vertebrates' [15, 18], but little is currently known about the underlying computations. Here, we show that mantis stereopsis uses a fundamentally different computational algorithm from vertebrate stereopsis-rather than comparing luminance in the two eyes' images directly, mantis stereopsis looks for regions of the images where luminance is changing. Thus, while there is no evidence that mantis stereopsis works at all with static images, it successfully reveals the distance to a moving target even in complex visual scenes with targets that are perfectly camouflaged against the background in terms of texture. Strikingly, these insects outperform human observers at judging stereoscopic distance when the pattern of luminance in the two eyes does not match. Insect stereopsis has thus evolved to be computationally efficient while being robust to poor image resolution and to discrepancies in the pattern of luminance between the two eyes. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Vivek Nityananda
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ghaith Tarawneh
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Sid Henriksen
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Diana Umeton
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Adam Simmons
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jenny C A Read
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
87
|
Alizadeh AM, Van Dromme I, Verhoef BE, Janssen P. Caudal Intraparietal Sulcus and three-dimensional vision: A combined functional magnetic resonance imaging and single-cell study. Neuroimage 2018; 166:46-59. [DOI: 10.1016/j.neuroimage.2017.10.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022] Open
|
88
|
Horváth G, Nemes VA, Radó J, Czigler A, Török B, Buzás P, Jandó G. Simple reaction times to cyclopean stimuli reveal that the binocular system is tuned to react faster to near than to far objects. PLoS One 2018; 13:e0188895. [PMID: 29304135 PMCID: PMC5755738 DOI: 10.1371/journal.pone.0188895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/15/2017] [Indexed: 12/26/2022] Open
Abstract
Binocular depth perception is an important mechanism to segregate the visual scene for mapping relevant objects in our environment. Convergent evidence from psychophysical and neurophysiological studies have revealed asymmetries between the processing of near (crossed) and far (uncrossed) binocular disparities. The aim of the present study was to test if near or far objects are processed faster and with higher contrast sensitivity in the visual system. We therefore measured the relationship between binocular disparity and simple reaction time (RT) as well as contrast gain based on the contrast-RT function in young healthy adults. RTs were measured to suddenly appearing cyclopean target stimuli, which were checkerboard patterns encoded by depth in dynamic random dot stereograms (DRDS). The DRDS technique allowed us to selectively study the stereoscopic processing system by eliminating all monocular cues. The results showed that disparity and contrast had significant effects on RTs. RTs as a function of disparity followed a U-shaped tuning curve indicating an optimum at around 15 arc min, where RTs were minimal. Surprisingly, the disparity tuning of RT was much less pronounced for far disparities. At the optimal disparity, we measured advantages of about 80 ms and 30 ms for near disparities at low (10%) and high (90%) contrasts, respectively. High contrast always reduced RTs as well as the disparity dependent differences. Furthermore, RT-based contrast gains were higher for near disparities in the range of disparities where RTs were the shortest. These results show that the sensitivity of the human visual system is biased for near versus far disparities and near stimuli can result in faster motor responses, probably because they bear higher biological relevance.
Collapse
Affiliation(s)
- Gábor Horváth
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Vanda A. Nemes
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - János Radó
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - András Czigler
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Béla Török
- Department of Ophthalmology, Kantonsspital, St. Gallen, Switzerland
| | - Péter Buzás
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Gábor Jandó
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
89
|
Jaini P, Burge J. Linking normative models of natural tasks to descriptive models of neural response. J Vis 2017; 17:16. [PMID: 29071353 PMCID: PMC6097587 DOI: 10.1167/17.12.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Understanding how nervous systems exploit task-relevant properties of sensory stimuli to perform natural tasks is fundamental to the study of perceptual systems. However, there are few formal methods for determining which stimulus properties are most useful for a given natural task. As a consequence, it is difficult to develop principled models for how to compute task-relevant latent variables from natural signals, and it is difficult to evaluate descriptive models fit to neural response. Accuracy maximization analysis (AMA) is a recently developed Bayesian method for finding the optimal task-specific filters (receptive fields). Here, we introduce AMA–Gauss, a new faster form of AMA that incorporates the assumption that the class-conditional filter responses are Gaussian distributed. Then, we use AMA–Gauss to show that its assumptions are justified for two fundamental visual tasks: retinal speed estimation and binocular disparity estimation. Next, we show that AMA–Gauss has striking formal similarities to popular quadratic models of neural response: the energy model and the generalized quadratic model (GQM). Together, these developments deepen our understanding of why the energy model of neural response have proven useful, improve our ability to evaluate results from subunit model fits to neural data, and should help accelerate psychophysics and neuroscience research with natural stimuli.
Collapse
Affiliation(s)
- Priyank Jaini
- Cheriton School of Computer Science, Waterloo, Ontario, Canada.,Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Johannes Burge
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.,Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
90
|
Esghaei M, Daliri MR, Treue S. Local field potentials are induced by visually evoked spiking activity in macaque cortical area MT. Sci Rep 2017; 7:17110. [PMID: 29215034 PMCID: PMC5719360 DOI: 10.1038/s41598-017-17372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Local field potentials (LFP) have been the focus of many recent studies in systems neuroscience. However, the exact neural basis of these signals remains unclear. To address this question, we determined the relationship between LFP signals and another, much better understood, signature of neural activity: action potentials. Specifically, we focused on the relationship between the amplitude of stimulus-induced LFPs and the magnitude of spiking activity in visual cortex of non-human primates. Our trial-by-trial correlation analyses between these two components of extracellular signals in macaque visual cortex show that the spike rate is coupled to the LFP amplitude with a surprisingly long latency, typically 50 ms. Our analysis shows that the neural spike rate is a significant predictor of the LFP amplitude. This limits the functional interpretation of LFP signals beyond that based on spiking activities.
Collapse
Affiliation(s)
- Moein Esghaei
- Cognitive Neurobiology Laboratory, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran. .,Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany.
| | - Mohammad Reza Daliri
- Cognitive Neurobiology Laboratory, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany.,Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany.,Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany.,Bernstein Center for Computational Neuroscience, Goettingen, Germany.,Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
| |
Collapse
|
91
|
Chen G, Lu HD, Tanigawa H, Roe AW. Solving visual correspondence between the two eyes via domain-based population encoding in nonhuman primates. Proc Natl Acad Sci U S A 2017; 114:13024-13029. [PMID: 29180437 PMCID: PMC5724244 DOI: 10.1073/pnas.1614452114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stereoscopic vision depends on correct matching of corresponding features between the two eyes. It is unclear where the brain solves this binocular correspondence problem. Although our visual system is able to make correct global matches, there are many possible false matches between any two images. Here, we use optical imaging data of binocular disparity response in the visual cortex of awake and anesthetized monkeys to demonstrate that the second visual cortical area (V2) is the first cortical stage that correctly discards false matches and robustly encodes correct matches. Our findings indicate that a key transformation for achieving depth perception lies in early stages of extrastriate visual cortex and is achieved by population coding.
Collapse
Affiliation(s)
- Gang Chen
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310029, China;
- College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering and Instrument Science, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Hisashi Tanigawa
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310029, China
- Department of Physiology, Niigata University, School of Medicine, Chuo-ku, Niigata 951-8510, Japan
| | - Anna W Roe
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310029, China
- College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering and Instrument Science, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
92
|
Dieter KC, Sy JL, Blake R. Individual differences in sensory eye dominance reflected in the dynamics of binocular rivalry. Vision Res 2017; 141:40-50. [PMID: 27756700 PMCID: PMC5406270 DOI: 10.1016/j.visres.2016.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022]
Abstract
Normal binocular vision emerges from the combination of neural signals arising within separate monocular pathways. It is natural to wonder whether both eyes contribute equally to the unified cyclopean impression we ordinarily experience. Binocular rivalry, which occurs when the inputs to the two eyes are markedly different, affords a useful means for quantifying the balance of influence exerted by the eyes (called sensory eye dominance, SED) and for relating that degree of balance to other aspects of binocular visual function. However, the precise ways in which binocular rivalry dynamics change when the eyes are unbalanced remain uncharted. Relying on widespread individual variability in the relative predominance of the two eyes as demonstrated in previous studies, we found that an observer's overall tendency to see one eye more than the other was driven both by differences in the relative duration and frequency of instances of that eye's perceptual dominance. Specifically, larger imbalances between the eyes were associated with longer and more frequent periods of exclusive dominance for the stronger eye. Increases in occurrences of dominant eye percepts were mediated in part by a tendency to experience "return transitions" to the predominant eye - that is, observers often experienced sequential exclusive percepts of the dominant eye's image with an intervening mixed percept. Together, these results indicate that the often-observed imbalances between the eyes during binocular rivalry reflect true differences in sensory processing, a finding that has implications for our understanding of the mechanisms underlying binocular vision in general.
Collapse
Affiliation(s)
- Kevin C Dieter
- Vanderbilt Vision Research Center and Dept. of Psychology, Vanderbilt University, Nashville TN, 37240, USA.
| | - Jocelyn L Sy
- Vanderbilt Vision Research Center and Dept. of Psychology, Vanderbilt University, Nashville TN, 37240, USA
| | - Randolph Blake
- Vanderbilt Vision Research Center and Dept. of Psychology, Vanderbilt University, Nashville TN, 37240, USA
| |
Collapse
|
93
|
Parker AJ, Smith JET, Krug K. Neural architectures for stereo vision. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0261. [PMID: 27269604 PMCID: PMC4901455 DOI: 10.1098/rstb.2015.0261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/26/2022] Open
Abstract
Stereoscopic vision delivers a sense of depth based on binocular information but additionally acts as a mechanism for achieving correspondence between patterns arriving at the left and right eyes. We analyse quantitatively the cortical architecture for stereoscopic vision in two areas of macaque visual cortex. For primary visual cortex V1, the result is consistent with a module that is isotropic in cortical space with a diameter of at least 3 mm in surface extent. This implies that the module for stereo is larger than the repeat distance between ocular dominance columns in V1. By contrast, in the extrastriate cortical area V5/MT, which has a specialized architecture for stereo depth, the module for representation of stereo is about 1 mm in surface extent, so the representation of stereo in V5/MT is more compressed than V1 in terms of neural wiring of the neocortex. The surface extent estimated for stereo in V5/MT is consistent with measurements of its specialized domains for binocular disparity. Within V1, we suggest that long-range horizontal, anatomical connections form functional modules that serve both binocular and monocular pattern recognition: this common function may explain the distortion and disruption of monocular pattern vision observed in amblyopia. This article is part of the themed issue ‘Vision in our three-dimensional world’.
Collapse
Affiliation(s)
- Andrew J Parker
- Department of Anatomy, Physiology and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jackson E T Smith
- Department of Anatomy, Physiology and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Kristine Krug
- Department of Anatomy, Physiology and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
94
|
Kim HR, Angelaki DE, DeAngelis GC. The neural basis of depth perception from motion parallax. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0256. [PMID: 27269599 DOI: 10.1098/rstb.2015.0256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 11/12/2022] Open
Abstract
In addition to depth cues afforded by binocular vision, the brain processes relative motion signals to perceive depth. When an observer translates relative to their visual environment, the relative motion of objects at different distances (motion parallax) provides a powerful cue to three-dimensional scene structure. Although perception of depth based on motion parallax has been studied extensively in humans, relatively little is known regarding the neural basis of this visual capability. We review recent advances in elucidating the neural mechanisms for representing depth-sign (near versus far) from motion parallax. We examine a potential neural substrate in the middle temporal visual area for depth perception based on motion parallax, and we explore the nature of the signals that provide critical inputs for disambiguating depth-sign.This article is part of the themed issue 'Vision in our three-dimensional world'.
Collapse
Affiliation(s)
- HyungGoo R Kim
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, NY 14627, USA
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, NY 14627, USA
| |
Collapse
|
95
|
Fujita I, Doi T. Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0257. [PMID: 27269600 DOI: 10.1098/rstb.2015.0257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 11/12/2022] Open
Abstract
Binocular disparity is detected in the primary visual cortex by a process similar to calculation of local cross-correlation between left and right retinal images. As a consequence, correlation-based neural signals convey information about false disparities as well as the true disparity. The false responses in the initial disparity detectors are eliminated at later stages in order to encode only disparities of the features correctly matched between the two eyes. For a simple stimulus configuration, a feed-forward nonlinear process can transform the correlation signal into the match signal. For human observers, depth judgement is determined by a weighted sum of the correlation and match signals rather than depending solely on the latter. The relative weight changes with spatial and temporal parameters of the stimuli, allowing adaptive recruitment of the two computations under different visual circumstances. A full transformation from correlation-based to match-based representation occurs at the neuronal population level in cortical area V4 and manifests in single-neuron responses of inferior temporal and posterior parietal cortices. Neurons in area V5/MT represent disparity in a manner intermediate between the correlation and match signals. We propose that the correlation and match signals in these areas contribute to depth perception in a weighted, parallel manner.This article is part of the themed issue 'Vision in our three-dimensional world'.
Collapse
Affiliation(s)
- Ichiro Fujita
- Osaka University Graduate School of Frontier Biosciences, Center for Information and Neural Networks, Osaka University and National Institutes of Communications Technology, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Doi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-6074, USA
| |
Collapse
|
96
|
Gain Modulation as a Mechanism for Coding Depth from Motion Parallax in Macaque Area MT. J Neurosci 2017; 37:8180-8197. [PMID: 28739582 DOI: 10.1523/jneurosci.0393-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022] Open
Abstract
Observer translation produces differential image motion between objects that are located at different distances from the observer's point of fixation [motion parallax (MP)]. However, MP can be ambiguous with respect to depth sign (near vs far), and this ambiguity can be resolved by combining retinal image motion with signals regarding eye movement relative to the scene. We have previously demonstrated that both extra-retinal and visual signals related to smooth eye movements can modulate the responses of neurons in area MT of macaque monkeys, and that these modulations generate neural selectivity for depth sign. However, the neural mechanisms that govern this selectivity have remained unclear. In this study, we analyze responses of MT neurons as a function of both retinal velocity and direction of eye movement, and we show that smooth eye movements modulate MT responses in a systematic, temporally precise, and directionally specific manner to generate depth-sign selectivity. We demonstrate that depth-sign selectivity is primarily generated by multiplicative modulations of the response gain of MT neurons. Through simulations, we further demonstrate that depth can be estimated reasonably well by a linear decoding of a population of MT neurons with response gains that depend on eye velocity. Together, our findings provide the first mechanistic description of how visual cortical neurons signal depth from MP.SIGNIFICANCE STATEMENT Motion parallax is a monocular cue to depth that commonly arises during observer translation. To compute from motion parallax whether an object appears nearer or farther than the point of fixation requires combining retinal image motion with signals related to eye rotation, but the neurobiological mechanisms have remained unclear. This study provides the first mechanistic account of how this interaction takes place in the responses of cortical neurons. Specifically, we show that smooth eye movements modulate the gain of responses of neurons in area MT in a directionally specific manner to generate selectivity for depth sign from motion parallax. We also show, through simulations, that depth could be estimated from a population of such gain-modulated neurons.
Collapse
|
97
|
A Model of Binocular Motion Integration in MT Neurons. J Neurosci 2017; 36:6563-82. [PMID: 27307243 DOI: 10.1523/jneurosci.3213-15.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 05/10/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Primate cortical area MT plays a central role in visual motion perception, but models of this area have largely overlooked the binocular integration of motion signals. Recent electrophysiological studies tested binocular integration in MT and found surprisingly that MT neurons lose their hallmark "pattern motion" selectivity when stimuli are presented dichoptically and that many neurons are selective for motion-in-depth (MID). By unifying these novel observations with insights from monocular, frontoparallel motion studies concurrently in a binocular MT motion model, we generated clear, testable predictions about the circuitry and mechanisms underlying visual motion processing. We built binocular models in which signals from left- and right-eye streams could be integrated at various stages from V1 to MT, attempting to create the simplest plausible circuits that accounted for the physiological range of pattern motion selectivity, that explained changes across this range for dichoptic stimulus presentation, and that spanned the spectrum of MID selectivity observed in MT. Our successful models predict that motion-opponent suppression is the key mechanism to account for the striking loss of pattern motion sensitivity with dichoptic plaids, that opponent suppression precedes binocular integration, and that opponent suppression will be stronger in inputs to pattern cells than to component cells. We also found an unexpected connection between circuits for pattern motion selectivity and MID selectivity, suggesting that these two separately studied phenomena could be related. These results also hold in models that include binocular disparity computations, providing a platform for future exploration of binocular response properties in MT. SIGNIFICANCE STATEMENT The neural pathways underlying our sense of visual motion are among the most studied and well-understood parts of the primate cerebral cortex. Nevertheless, our understanding is incomplete because electrophysiological research has focused mainly on motion in the 2D frontoparallel plane, even though real-world motion often occurs in three dimensions, involving a change in distance from the viewer. Recent studies have revealed a specialization for sensing 3D motion in area MT, the cortical area most tightly linked to the processing and perception of visual motion. Our study provides the first model to explain how 3D motion sensitivity can arise in MT neurons and predicts how essential features of 2D motion integration may relate to 3D motion processing.
Collapse
|
98
|
Vancleef K, Read JCA, Herbert W, Goodship N, Woodhouse M, Serrano‐Pedraza I. Overestimation of stereo thresholds by the TNO stereotest is not due to global stereopsis. Ophthalmic Physiol Opt 2017; 37:507-520. [PMID: 28337792 PMCID: PMC5516234 DOI: 10.1111/opo.12371] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/09/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE It has been repeatedly shown that the TNO stereotest overestimates stereo threshold compared to other clinical stereotests. In the current study, we test whether this overestimation can be attributed to a distinction between 'global' (or 'cyclopean') and 'local' (feature or contour-based) stereopsis. METHODS We compared stereo thresholds of a global (TNO) and a local clinical stereotest (Randot Circles). In addition, a global and a local psychophysical stereotest were added to the design. One hundred and forty-nine children between 4 and 16 years old were included in the study. RESULTS Stereo threshold estimates with TNO were a factor of two higher than with any of the other stereotests. No significant differences were found between the other tests. Bland-Altman analyses also indicated low agreement between TNO and the other stereotests, especially for higher stereo threshold estimates. Simulations indicated that the TNO test protocol and test disparities can account for part of this effect. DISCUSSION The results indicate that the global - local distinction is an unlikely explanation for the overestimated thresholds of TNO. Test protocol and disparities are one contributing factor. Potential additional factors include the nature of the task (TNO requires depth discrimination rather than detection) and the use of anaglyph red/green 3D glasses rather than polarizing filters, which may reduce binocular fusion.
Collapse
Affiliation(s)
| | - Jenny C. A. Read
- Institute of NeuroscienceNewcastle UniversityNewcastle‐upon‐TyneUK
| | - William Herbert
- Institute of NeuroscienceNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Nicola Goodship
- Institute of NeuroscienceNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Maeve Woodhouse
- Institute of NeuroscienceNewcastle UniversityNewcastle‐upon‐TyneUK
| | | |
Collapse
|
99
|
Nityananda V, Bissianna G, Tarawneh G, Read J. Small or far away? Size and distance perception in the praying mantis. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0262. [PMID: 27269605 PMCID: PMC4901456 DOI: 10.1098/rstb.2015.0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 11/29/2022] Open
Abstract
Stereo or ‘3D’ vision is an important but costly process seen in several evolutionarily distinct lineages including primates, birds and insects. Many selective advantages could have led to the evolution of stereo vision, including range finding, camouflage breaking and estimation of object size. In this paper, we investigate the possibility that stereo vision enables praying mantises to estimate the size of prey by using a combination of disparity cues and angular size cues. We used a recently developed insect 3D cinema paradigm to present mantises with virtual prey having differing disparity and angular size cues. We predicted that if they were able to use these cues to gauge the absolute size of objects, we should see evidence for size constancy where they would strike preferentially at prey of a particular physical size, across a range of simulated distances. We found that mantises struck most often when disparity cues implied a prey distance of 2.5 cm; increasing the implied distance caused a significant reduction in the number of strikes. We, however, found no evidence for size constancy. There was a significant interaction effect of the simulated distance and angular size on the number of strikes made by the mantis but this was not in the direction predicted by size constancy. This indicates that mantises do not use their stereo vision to estimate object size. We conclude that other selective advantages, not size constancy, have driven the evolution of stereo vision in the praying mantis. This article is part of the themed issue ‘Vision in our three-dimensional world’.
Collapse
Affiliation(s)
- Vivek Nityananda
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Geoffrey Bissianna
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK M2 Comportement Animal et Humain, École doctorale de Rennes, Vie Agro Santé, University of Rennes 1, Rennes 35000, France
| | - Ghaith Tarawneh
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jenny Read
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
100
|
Environmental Enrichment Rescues Binocular Matching of Orientation Preference in the Mouse Visual Cortex. J Neurosci 2017; 37:5822-5833. [PMID: 28500220 DOI: 10.1523/jneurosci.3534-16.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 11/21/2022] Open
Abstract
Neural circuits are shaped by experience during critical periods of development. Sensory deprivation during these periods permanently compromises an organism's ability to perceive the outside world. In the mouse visual system, normal visual experience during a critical period in early life drives the matching of individual cortical neurons' orientation preferences through the two eyes, likely a key step in the development of binocular vision. Here, in mice of both sexes, we show that the binocular matching process is completely blocked by monocular deprivation spanning the entire critical period. We then show that 3 weeks of environmental enrichment (EE), a paradigm of enhanced sensory, motor, and cognitive stimulation, is sufficient to rescue binocular matching to the level seen in unmanipulated mice. In contrast, 6 weeks of conventional housing only resulted in a partial rescue. Finally, we use two-photon calcium imaging to track the matching process chronically in individual cells during EE-induced rescue. We find that for cells that are clearly dominated by one of the two eyes, the input representing the weaker eye changes its orientation preference to align with that of the dominant eye. These results thus reveal ocular dominance as a key driver of the binocular matching process, and suggest a model whereby the dominant input instructs the development of the weaker input. Such a mechanism may operate in the development of other systems that need to integrate inputs from multiple sources to generate normal neuronal functions.SIGNIFICANCE STATEMENT Critical periods are developmental windows of opportunity that ensure the proper wiring of neural circuits, as well as windows of vulnerability when abnormal experience could cause lasting damage to the developing brain. In the visual system, critical period plasticity drives the establishment of binocularly matched orientation preferences in cortical neurons. Here, we show that binocular matching is completely blocked by monocular deprivation during the critical period. Moreover, environmental enrichment can fully rescue the disrupted matching, whereas conventional housing of twice the duration results in a partial rescue. We then use two-photon calcium imaging to track individual cells chronically during the EE-induced recovery, and reveal important insights into how appropriate function can be restored to the nervous system after the critical period.
Collapse
|