51
|
Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis. Proc Natl Acad Sci U S A 2017; 114:E7272-E7281. [PMID: 28808008 DOI: 10.1073/pnas.1617383114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways.
Collapse
|
52
|
Goldenberg RB. Singing Lessons for Respiratory Health: A Literature Review. J Voice 2017; 32:85-94. [PMID: 28461167 DOI: 10.1016/j.jvoice.2017.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Several studies have explored the role of music and singing as a treatment for respiratory symptoms. The objective of this paper was to review the current body of literature in regard to the use of singing as both a physiological and a psychological therapy for respiratory disease and assess the role the singing teacher might play in this treatment. STUDY DESIGN This is a literature review, discussion of results and directions for further research. METHOD Multiple databases were searched using keywords such as "respiratory," "physiotherapy," and "pulmonary" in conjunction with "singing." Studies that met selection criteria were summarized and analyzed. RESULTS Seventeen studies pertaining to multiple conditions including chronic obstructive pulmonary disease, asthma, cystic fibrosis, cancer, Parkinson disease, quadriplegia, and multiple sclerosis were analyzed. All studies reported trends of positive physical and/or quality of life outcomes after a series of singing lessons, regardless of statistical significance. Several noted improvements in maximum expiratory pressure and overall breathing technique. Many studies included open-ended interviews revealing participants' perception of singing as an effective therapy that was fun, improved mood, taught breathing and breath control, was a good exercise for the lungs, and had improved physical functioning. CONCLUSIONS Singing can be used as an adjunctive treatment for respiratory disease, with the best results occurring after long-term study. Group lessons and a strong teacher relationship feed the need for social interaction and support, which can facilitate treatment compliance. Further research is warranted.
Collapse
|
53
|
CK2 is a key regulator of SLC4A2-mediated Cl -/HCO 3- exchange in human airway epithelia. Pflugers Arch 2017; 469:1073-1091. [PMID: 28455748 PMCID: PMC5554290 DOI: 10.1007/s00424-017-1981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.
Collapse
|
54
|
Blackmon RL, Kreda SM, Sears PR, Chapman BS, Hill DB, Tracy JB, Ostrowski LE, Oldenburg AL. Direct monitoring of pulmonary disease treatment biomarkers using plasmonic gold nanorods with diffusion-sensitive OCT. NANOSCALE 2017; 9:4907-4917. [PMID: 28358158 PMCID: PMC5473168 DOI: 10.1039/c7nr00376e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The solid concentration of pulmonary mucus (wt%) is critical to respiratory health. In patients with respiratory disease, such as Cystic Fibrosis (CF) and Chronic Obstructive Pulmonary Disorder (COPD), mucus hydration is impaired, resulting in high wt%. Mucus with high wt% is a hallmark of pulmonary disease that leads to obstructed airways, inflammation, and infection. Methods to measure mucus hydration in situ and in real-time are needed for drug development and personalized therapy. We employed plasmonic gold nanorod (GNR) biosensors that intermittently collide with macromolecules comprising the mucus mesh as they self-diffuse, such that GNR translational diffusion (DT) is sensitive to wt%. GNRs are attractive candidates for bioprobes due to their anisotropic optical scattering that makes them easily distinguishable from native tissue using polarization-sensitive OCT. Using principles of heterodyne dynamic light scattering, we developed diffusion-sensitive optical coherence tomography (DS-OCT) to spatially-resolve changing DT in real-time. DS-OCT enables, for the first time, direct monitoring of changes in nanoparticle diffusion rates that are sensitive to nanoporosity with spatial and temporal resolutions of 4.7 μm and 0.2 s. DS-OCT therefore enables us to measure spatially-resolved changes in mucus wt% over time. In this study, we demonstrate the applicability of DS-OCT on well-differentiated primary human bronchial epithelial cells during a clinical mucus-hydrating therapy, hypertonic saline treatment (HST), to reveal, for the first time, mucus mixing, cellular secretions, and mucus hydration on the micrometer scale that translate to long-term therapeutic effects.
Collapse
Affiliation(s)
- R L Blackmon
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, NC 27599-3255, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
This review describes a framework for providing a personalised approach to selecting the most appropriate airway clearance technique (ACT) for each patient. It is based on a synthesis of the physiological evidence that supports the modulation of ventilation and expiratory airflow as a means of assisting airway clearance. Possession of a strong understanding of the physiological basis for ACTs will enable clinicians to decide which ACT best aligns with the individual patient's pathology in diseases with anatomical bronchiectasis and mucus hypersecretion.The physiological underpinning of postural drainage is that by placing a patient in various positions, gravity enhances mobilisation of secretions. Newer ACTs are based on two other physiological premises: the ability to ventilate behind obstructed regions of the lung and the capacity to achieve the minimum expiratory airflow bias necessary to mobilise secretions. After reviewing each ACT to determine if it utilises both ventilation and expiratory flow, these physiological concepts are assessed against the clinical evidence to provide a mechanism for the effectiveness of each ACT. This article provides the clinical rationale necessary to determine the most appropriate ACT for each patient, thereby improving care.
Collapse
Affiliation(s)
- Maggie McIlwaine
- Dept of Physiotherapy, University of British Columbia, Vancouver, BC, Canada
| | - Judy Bradley
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - J Stuart Elborn
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
- National Heart and Lung Institute, Imperial College and Royal Brompton Hospital, London, UK
| | - Fidelma Moran
- School of Health Sciences, Ulster University, Newtownabbey, UK
| |
Collapse
|
56
|
Paquet-Mercier F, Parvinzadeh Gashti M, Bellavance J, Taghavi SM, Greener J. Through thick and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the effect of ionic strength. LAB ON A CHIP 2016; 16:4710-4717. [PMID: 27808313 DOI: 10.1039/c6lc01101b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Continuous, non-intrusive measurements of time-varying viscosity of Pseudomonas sp. biofilms are made using a microfluidic method that combines video tracking with a semi-empirical viscous flow model. The approach uses measured velocity and height of tracked biofilm segments, which move under the constant laminar flow of a nutrient solution. Following a low viscosity growth stage, rapid thickening was observed. During this stage, viscosity increased by over an order of magnitude in less than ten hours. The technique was also demonstrated as a promising platform for parallel experiments by subjecting multiple biofilm-laden microchannels to nutrient solutions containing NaCl in the range of 0 to 34 mM. Preliminary data suggest a strong relationship between ionic strength and biofilm properties, such as average viscosity and rapid thickening onset time. The technique opens the way for a combinatorial approach to study the response of biofilm viscosity under well-controlled physical, chemical and biological growth conditions.
Collapse
Affiliation(s)
- F Paquet-Mercier
- Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada.
| | | | - J Bellavance
- Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - S M Taghavi
- Département de Génie Chimique, Université Laval, Québec, QC G1V 0A6, Canada
| | - J Greener
- Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
57
|
Furuya K, Tan JJ, Boudreault F, Sokabe M, Berthiaume Y, Grygorczyk R. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung. Am J Physiol Lung Cell Mol Physiol 2016; 311:L956-L969. [PMID: 27638905 DOI: 10.1152/ajplung.00425.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH2O) induced transient (<30 s) ATP release in a limited number of air-inflated alveolar sacs during their recruitment/opening. Released ATP reached concentrations of ∼10-6 M, relevant for autocrine/paracrine signaling, but it remained spatially restricted to single alveolar sacs or their clusters. ATP release was stimulus dependent: prolonged (100 s) inflation evoked long-lasting ATP release that terminated upon alveoli deflation/derecruitment while cyclic inflation/suction produced cyclic ATP release. With LL introduced into blood vessels, inflation induced transient ATP release in many small patchlike areas the size of alveolar sacs. Findings suggest that inflation induces ATP release in both alveoli and the surrounding blood capillary network; the functional units of ATP release presumably consist of alveolar sacs or their clusters. Our study demonstrates the feasibility of real-time ATP release imaging in ex vivo lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function.
Collapse
Affiliation(s)
- Kishio Furuya
- Mechanobiology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Ju Jing Tan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yves Berthiaume
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; and.,Institut de recherches cliniques de Montréal (IRCM), Quebec, Canada
| | - Ryszard Grygorczyk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; .,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
58
|
Flores-Delgado G, Lytle C, Quinton PM. Site of Fluid Secretion in Small Airways. Am J Respir Cell Mol Biol 2016; 54:312-8. [PMID: 26562629 DOI: 10.1165/rcmb.2015-0238rc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The secretion and management of readily transportable airway surface liquid (ASL) along the respiratory tract is crucial for the clearance of debris and pathogens from the lungs. In proximal large airways, submucosal glands (SMGs) can produce ASL. However, in distal small airways, SMGs are absent, although the lumens of these airways are, uniquely, highly plicated. Little is known about the production and maintenance of ASL in small airways, but using electrophysiology, we recently found that native porcine small airways simultaneously secrete and absorb. How these airways can concurrently transport ASL in opposite directions is puzzling. Using high expression of the Na-K-2Cl cotransport (NKCC) 1 protein (SLC12a2) as a phenotypic marker for fluid secretory cells, immunofluorescence microscopy of porcine small airways revealed two morphologically separated sets of luminal epithelial cells. NKCC1 was abundantly expressed by most cells in the contraluminal regions of the pleats but highly expressed very infrequently by cells in the luminal folds of the epithelial plications. In larger proximal airways, the acini of SMGs expressed NKCC1 prominently, but cells expressing NKCC1 in the surface epithelium were sparse. Our findings indicate that, in the small airway, cells in the pleats of the epithelium secrete ASL, whereas, in the larger proximal airways, SMGs mainly secrete ASL. We propose a mechanism in which the locations of secretory cells in the base of pleats and of absorptive cells in luminal folds physically help maintain a constant volume of ASL in small airways.
Collapse
Affiliation(s)
- Guillermo Flores-Delgado
- 1 Department of Pediatrics, School of Medicine, University of California-San Diego, La Jolla, California; and
| | - Christian Lytle
- 2 Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Paul M Quinton
- 1 Department of Pediatrics, School of Medicine, University of California-San Diego, La Jolla, California; and.,2 Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| |
Collapse
|
59
|
Livraghi A, Randell SH. Cystic Fibrosis and Other Respiratory Diseases of Impaired Mucus Clearance. Toxicol Pathol 2016; 35:116-29. [PMID: 17325980 DOI: 10.1080/01926230601060025] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposed to a diverse array of potentially noxious agents, the respiratory tract is protected by a highly developed innate defense system. Physiologically regulated epithelial ion and water transport coordinated with mucin secretion, beating cilia, and cough results in continuous flow of fluid and mucus over airway surfaces toward the larynx. This cleansing action is the initial and perhaps most quantitatively important innate defense mechanism. Repeated lung infections and eventual respiratory insufficiency characteristic of human cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) illustrate the consequences of impaired mucus clearance. Altered mucus clearance likely contributes to the initiation, progression, and chronicity of other airway diseases characterized by inflammation and mucous secretory cell hyper/metaplasia that afflict millions worldwide, including chronic obstructive pulmonary disease (COPD). This review concisely discusses the pathophysiology of human diseases characterized by genetic defects that impair mucus clearance. It then explores animal models in which components of the mucus clearance system have been disrupted. These models firmly establish the importance of mucus clearance for respiratory health, and will help elucidate disease mechanisms and therapeutic strategies in CF, PCD and COPD.
Collapse
Affiliation(s)
- Alessandra Livraghi
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, The University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
60
|
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor. Sci Rep 2016; 6:27390. [PMID: 27278076 PMCID: PMC4899698 DOI: 10.1038/srep27390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.
Collapse
|
61
|
Abstract
Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing 100020, China; Department of Cellular and Molecular Biology, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler Texas 75708, USA,
| | | |
Collapse
|
62
|
Li Q, Kresge C, Bugde A, Lamphere M, Park JY, Feranchak AP. Regulation of mechanosensitive biliary epithelial transport by the epithelial Na(+) channel. Hepatology 2016; 63:538-49. [PMID: 26475057 PMCID: PMC4780683 DOI: 10.1002/hep.28301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/14/2015] [Indexed: 12/07/2022]
Abstract
UNLABELLED Intrahepatic biliary epithelial cells (BECs), also known as cholangiocytes, modulate the volume and composition of bile through the regulation of secretion and absorption. While mechanosensitive Cl(-) efflux has been identified as an important secretory pathway, the counterabsorptive pathways have not been identified. In other epithelial cells, the epithelial Na(+) channel (ENaC) has been identified as an important contributor to fluid absorption; however, its expression and function in BECs have not been previously studied. Our studies revealed the presence of α, β, and γ ENaC subunits in human BECs and α and γ subunits in mouse BECs. In studies of confluent mouse BEC monolayers, the ENaC contributes to the volume of surface fluid at the apical membrane during constitutive conditions. Further, functional studies using whole-cell patch clamp of single BECs demonstrated small constitutive Na(+) currents, which increased significantly in response to fluid-flow or shear. The magnitude of Na(+) currents was proportional to the shear force, displayed inward rectification and a reversal potential of +40 mV (ENa+ = +60 mV), and were abolished with removal of extracellular Na(+) (N-methyl-d-glucamine) or in the presence of amiloride. Transfection with ENaCα small interfering RNA significantly inhibited flow-stimulated Na(+) currents, while overexpression of the α subunit significantly increased currents. ENaC-mediated currents were positively regulated by proteases and negatively regulated by extracellular adenosine triphosphate. CONCLUSION These studies represent the initial characterization of mechanosensitive Na(+) currents activated by flow in biliary epithelium; understanding the role of mechanosensitive transport pathways may provide strategies to modulate the volume and composition of bile during cholestatic conditions. (Hepatology 2016;63:538-549).
Collapse
Affiliation(s)
- Qin Li
- Department of Physiology, Jianhan University School of Medicine, Wuhan, China,Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Charles Kresge
- Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Abhijit Bugde
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michelle Lamphere
- Department of Pathology and Laboratory Medicine, Children’s Health, Children’s Medical Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jason Y. Park
- Department of Pathology and Laboratory Medicine, Children’s Health, Children’s Medical Center, University of Texas Southwestern Medical Center, Dallas, TX,Pathology, University of Texas Southwestern Medical Center, Dallas, TX,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
63
|
Ghosh A, Boucher RC, Tarran R. Airway hydration and COPD. Cell Mol Life Sci 2015; 72:3637-52. [PMID: 26068443 PMCID: PMC4567929 DOI: 10.1007/s00018-015-1946-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung's mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (1) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC) to maintain airway hydration; (2) ciliary beating; and (3) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure.
Collapse
Affiliation(s)
- Arunava Ghosh
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - R C Boucher
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
64
|
Vitzthum C, Clauss WG, Fronius M. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2942-51. [PMID: 26357939 DOI: 10.1016/j.bbamem.2015.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 12/20/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel that is essential for electrolyte and fluid homeostasis. Preliminary evidence indicates that CFTR is a mechanosensitive channel. In lung epithelia, CFTR is exposed to different mechanical forces such as shear stress (Ss) and membrane distention. The present study questioned whether Ss and/or stretch influence CFTR activity (wild type, ∆F508, G551D). Human CFTR (hCFTR) was heterologously expressed in Xenopus oocytes and the response to the mechanical stimulus and forskolin/IBMX (FI) was measured by two-electrode voltage-clamp experiments. Ss had no influence on hCFTR activity. Injection of an intracellular analogous solution to increase cell volume alone did not affect hCFTR activity. However, hCFTR activity was augmented by injection after pre-stimulation with FI. The response to injection was similar in channels carrying the common mutations ∆F508 and G551D compared to wild type hCFTR. Stretch-induced CFTR activation was further assessed in Ussing chamber measurements using Xenopus lung preparations. Under control conditions increased hydrostatic pressure (HP) decreased the measured ion current including activation of a Cl(-) secretion that was unmasked by the CFTR inhibitor GlyH-101. These data demonstrate activation of CFTR in vitro and in a native pulmonary epithelium in response to mechanical stress. Mechanosensitive regulation of CFTR is highly relevant for pulmonary physiology that relies on ion transport processes facilitated by pulmonary epithelial cells.
Collapse
Affiliation(s)
- Constanze Vitzthum
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang G Clauss
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
65
|
Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores. PLoS One 2015; 10:e0127267. [PMID: 26024524 PMCID: PMC4449158 DOI: 10.1371/journal.pone.0127267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion.
Collapse
|
66
|
Choi HC, Kim CSK, Tarran R. Automated acquisition and analysis of airway surface liquid height by confocal microscopy. Am J Physiol Lung Cell Mol Physiol 2015; 309:L109-18. [PMID: 26001773 DOI: 10.1152/ajplung.00027.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022] Open
Abstract
The airway surface liquid (ASL) is a thin-liquid layer that lines the luminal side of airway epithelia. ASL contains many molecules that are involved in primary innate defense in the lung. Measurement of ASL height on primary airway cultures by confocal microscopy is a powerful tool that has enabled researchers to study ASL physiology and pharmacology. Previously, ASL image acquisition and analysis were performed manually. However, this process is time and labor intensive. To increase the throughput, we have developed an automatic ASL measurement technique that combines a fully automated confocal microscope with novel automatic image analysis software that was written with image processing techniques derived from the computer science field. We were able to acquire XZ ASL images at the rate of ∼ 1 image/s in a reproducible fashion. Our automatic analysis software was able to analyze images at the rate of ∼ 32 ms/image. As proofs of concept, we generated a time course for ASL absorption and a dose response in the presence of SPLUNC1, a known epithelial sodium channel inhibitor, on human bronchial epithelial cultures. Using this approach, we determined the IC50 for SPLUNC1 to be 6.53 μM. Furthermore, our technique successfully detected a difference in ASL height between normal and cystic fibrosis (CF) human bronchial epithelial cultures and detected changes in ATP-stimulated Cl(-)/ASL secretion. We conclude that our automatic ASL measurement technique can be applied for repeated ASL height measurements with high accuracy and consistency and increased throughput.
Collapse
Affiliation(s)
- Hyun-Chul Choi
- Department of Electronic Engineering, Yeungnam University, Kyungsan, Kyungbuk, South Korea; and
| | - Christine Seul Ki Kim
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
67
|
Sears PR, Yin WN, Ostrowski LE. Continuous mucociliary transport by primary human airway epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2015; 309:L99-108. [PMID: 25979076 DOI: 10.1152/ajplung.00024.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated.
Collapse
Affiliation(s)
- Patrick R Sears
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Wei-Ning Yin
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
68
|
Schlingmann B, Molina SA, Koval M. Claudins: Gatekeepers of lung epithelial function. Semin Cell Dev Biol 2015; 42:47-57. [PMID: 25951797 DOI: 10.1016/j.semcdb.2015.04.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
The lung must maintain a proper barrier between airspaces and fluid filled tissues in order to maintain lung fluid balance. Central to maintaining lung fluid balance are epithelial cells which create a barrier to water and solutes. The barrier function of these cells is mainly provided by tight junction proteins known as claudins. Epithelial barrier function varies depending on the different needs within the segments of the respiratory tree. In the lower airways, fluid is required to maintain mucociliary clearance, whereas in the terminal alveolar airspaces a thin layer of surfactant enriched fluid lowers surface tension to prevent airspace collapse and is critical for gas exchange. As the epithelial cells within the segments of the respiratory tree differ, the composition of claudins found in these epithelial cells is also different. Among these differences is claudin-18 which is uniquely expressed by the alveolar epithelial cells. Other claudins, notably claudin-4 and claudin-7, are more ubiquitously expressed throughout the respiratory epithelium. Claudin-5 is expressed by both pulmonary epithelial and endothelial cells. Based on in vitro and in vivo model systems and histologic analysis of lungs from human patients, roles for specific claudins in maintaining barrier function and protecting the lung from the effects of acute injury and disease are being identified. One surprising finding is that claudin-18 and claudin-4 control lung cell phenotype and inflammation beyond simply maintaining a selective paracellular permeability barrier. This suggests claudins have more nuanced roles for the control of airway and alveolar physiology in the healthy and diseased lung.
Collapse
Affiliation(s)
- Barbara Schlingmann
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Samuel A Molina
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
69
|
White DE, Bartley J, Nates RJ. Model demonstrates functional purpose of the nasal cycle. Biomed Eng Online 2015; 14:38. [PMID: 25907572 PMCID: PMC4416271 DOI: 10.1186/s12938-015-0034-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
Background Despite the occurrence of the nasal cycle being well documented, the functional purpose of this phenomenon is not well understood. This investigation seeks to better understand the physiological objective of the nasal cycle in terms of airway health through the use of a computational nasal air-conditioning model. Method A new state-variable heat and water mass transfer model is developed to predict airway surface liquid (ASL) hydration status within each nasal airway. Nasal geometry, based on in-vivo magnetic resonance imaging (MRI) data is used to apportion inter-nasal air flow. Results The results demonstrate that the airway conducting the majority of the airflow also experiences a degree of ASL dehydration, as a consequence of undertaking the bulk of the heat and water mass transfer duties. In contrast, the reduced air conditioning demand within the other airway allows its ASL layer to remain sufficiently hydrated so as to support continuous mucociliary clearance. Conclusions It is quantitatively demonstrated in this work how the nasal cycle enables the upper airway to accommodate the contrasting roles of air conditioning and the removal of entrapped contaminants through fluctuation in airflow partitioning between each airway.
Collapse
Affiliation(s)
- David E White
- School of Engineering, Auckland University of Technology, Auckland, New Zealand.
| | - Jim Bartley
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| | - Roy J Nates
- School of Engineering, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
70
|
Peters W, Kusche-Vihrog K, Oberleithner H, Schillers H. Cystic fibrosis transmembrane conductance regulator is involved in polyphenol-induced swelling of the endothelial glycocalyx. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1521-30. [PMID: 25881741 DOI: 10.1016/j.nano.2015.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/15/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Previous studies show that polyphenol-rich compounds can induce a swelling of the endothelial glycocalyx (eGC). Our goal was to reveal the mechanism behind the eGC-swelling. As polyphenols are potent modulators of fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, the hypothesis was tested whether polyphenol-induced increase in CFTR activity is responsible for the eGC-swelling. The impact of the polyphenols resveratrol, (-)-epicatechin, and quercetin on nanomechanics of living endothelial GM7373 cells was monitored by AFM-nanoindentation. The tested polyphenols lead to eGC-swelling with a simultaneous decrease in cortical stiffness. EGC-swelling, but not the change in cortical stiffness, was prevented by the inhibition of CFTR. Polyphenol-induced eGC-swelling could be mimicked by cytochalasin D, an actin-depolymerizing agent. Thus, in the vascular endothelium, polyphenols induce eGC-swelling by softening cortical actin and activating CFTR. Our findings imply that CFTR plays an important role in the maintenance of vascular homeostasis and may explain the vasoprotective properties of polyphenols. FROM THE CLINICAL EDITOR Many vascular problems clinically can be attributed to a dysregulation of endothelial glycocalyx (eGC). The underlying mechanism however remains unclear. In this article, the authors used nanoindentation and showed that polyphenols could swell the endothelial glycocalyx and alter its function. This investigative method can lead to further mechanistic studies of other molecular pathways.
Collapse
Affiliation(s)
- Wladimir Peters
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | | - Hermann Schillers
- Institute of Physiology II, University of Münster, Münster, Germany.
| |
Collapse
|
71
|
Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: are we dosing high enough? PLoS One 2015; 10:e0118454. [PMID: 25734630 PMCID: PMC4348481 DOI: 10.1371/journal.pone.0118454] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/20/2015] [Indexed: 11/30/2022] Open
Abstract
Background Pseudomonas aeruginosa (Pa) infection is an important contributor to the progression of cystic fibrosis (CF) lung disease. The cornerstone treatment for Pa infection is the use of inhaled antibiotics. However, there is substantial lung disease heterogeneity within and between patients that likely impacts deposition patterns of inhaled antibiotics. Therefore, this may result in airways below the minimal inhibitory concentration of the inhaled agent. Very little is known about antibiotic concentrations in small airways, in particular the effect of structural lung abnormalities. We therefore aimed to develop a patient-specific airway model to predict concentrations of inhaled antibiotics and to study the impact of structural lung changes and breathing profile on local concentrations in airways of patients with CF. Methods In- and expiratory CT-scans of children with CF (5–17 years) were scored (CF-CT score), segmented and reconstructed into 3D airway models. Computational fluid dynamic (CFD) simulations were performed on 40 airway models to predict local Aztreonam lysine for inhalation (AZLI) concentrations. Patient-specific lobar flow distribution and nebulization of 75 mg AZLI through a digital Pari eFlow model with mass median aerodynamic diameter range were used at the inlet of the airway model. AZLI concentrations for central and small airways were computed for different breathing patterns and airway surface liquid thicknesses. Results In most simulated conditions, concentrations in both central and small airways were well above the minimal inhibitory concentration. However, small airways in more diseased lobes were likely to receive suboptimal AZLI. Structural lung disease and increased tidal volumes, respiratory rates and larger particle sizes greatly reduced small airway concentrations. Conclusions CFD modeling showed that concentrations of inhaled antibiotic delivered to the small airways are highly patient specific and vary throughout the bronchial tree. These results suggest that anti-Pa treatment of especially the small airways can be improved.
Collapse
|
72
|
Xu X, Balsiger R, Tyrrell J, Boyaka PN, Tarran R, Cormet-Boyaka E. Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR. Biochim Biophys Acta Gen Subj 2015; 1850:1224-32. [PMID: 25697727 DOI: 10.1016/j.bbagen.2015.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/19/2015] [Accepted: 02/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cystic fibrosis transmembrane conductance regulator plays a key role in maintenance of lung fluid homeostasis. Cigarette smoke decreases CFTR expression in the lung but neither the mechanisms leading to CFTR loss, nor potential ways to prevent its loss have been identified to date. METHODS The molecular mechanisms leading to down-regulation of CFTR by cigarette smoke were determined using pharmacologic inhibitors and silencing ribonucleic acids (RNAs). RESULTS Using human bronchial epithelial cells, here we show that cigarette smoke induces degradation of CFTR that is attenuated by lysosomal inhibitors, but not proteasome inhibitors. Cigarette smoke can activate multiple signaling pathways in airway epithelial cells, including the MEK/Erk1/2 MAPK (MEK: mitogen-activated protein kinase/ERK kinase Erk1/2: extracellular signal-regulated kinase 1/2 MAPK: Mitogen-activated protein kinase) pathway regulating cell survival. Interestingly, pharmacological inhibition of the MEK/Erk1/2 MAPK pathway prevented the loss of plasma membrane CFTR upon cigarette smoke exposure. Similarly, decreased expression of Erk1/2 using silencing RNAs prevented the suppression of CFTR protein by cigarette smoke. Conversely, specific inhibitors of the c-Jun N-terminal kinase (JNK) or p38 MAPK pathways had no effect on CFTR decrease after cigarette smoke exposure. In addition, inhibition of the MEK/Erk1/2 MAPK pathway prevented the reduction of the airway surface liquid observed upon cigarette smoke exposure of primary human airway epithelial cells. Finally, addition of the antioxidant N-acetylcysteine inhibited activation of Erk1/2 by cigarette smoke and precluded the cigarette smoke-induced decrease of CFTR. CONCLUSIONS These results show that the MEK/Erk1/2 MAPK pathway regulates plasma membrane CFTR in human airway cells. GENERAL SIGNIFICANCE The MEK/Erk1/2 MAPK pathway should be considered as a target for strategies to maintain/restore CFTR expression in the lung of smokers.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Robert Balsiger
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jean Tyrrell
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
73
|
Cao K, Chen M, Jie X, Wang Y, Li Q, Xu J. H5N1 Virus Hemagglutinin Inhibition of cAMP-Dependent CFTR via TLR4-Mediated Janus Tyrosine Kinase 3 Activation Exacerbates Lung Inflammation. Mol Med 2015; 21:134-42. [PMID: 25587856 PMCID: PMC4461576 DOI: 10.2119/molmed.2014.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/12/2015] [Indexed: 01/19/2023] Open
Abstract
The host tolerance mechanisms to avian influenza virus (H5N1) infection that limit tissue injury remain unknown. Emerging evidence indicates that cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent Cl− channel, modulates airway inflammation. Janus tyrosine kinase (JAK) 3, a JAK family member that plays a central role in inflammatory responses, prominently contributes to the dysregulated innate immune response upon H5N1 attachment; therefore, this study aims to elucidate whether JAK3 activation induced by H5N1 hemagglutinin (HA) inhibits cAMP-dependent CFTR channels. We performed short-circuit current, immunohistochemistry and molecular analyses of the airway epithelium in Jak3+/+ and Jak3+/− mice. We demonstrate that H5N1 HA attachment inhibits cAMP-dependent CFTR Cl− channels via JAK3-mediated adenylyl cyclase (AC) suppression, which reduces cAMP production. This inhibition leads to increased nuclear factor-kappa B (NF-κB) signaling and inflammatory responses. H5N1 HA is detected by TLR4 expressed on respiratory epithelial cells, facilitating JAK3 activation. This activation induces the interaction between TLR4 and Gαi protein, which blocks ACs. Our findings provide novel insight into the pathogenesis of acute lung injury via the inhibition of cAMP-dependent CFTR channels, indicating that the administration of cAMP-elevating agents and targeting JAK3 may activate host tolerance to infection for the management of influenza virus–induced fatal pneumonia.
Collapse
Affiliation(s)
- Ke Cao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Minhui Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiang Jie
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yansheng Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qiasheng Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
74
|
Hildebrandt JP. Pore-forming virulence factors of Staphylococcus aureus destabilize epithelial barriers-effects of alpha-toxin in the early phases of airway infection. AIMS Microbiol 2015. [DOI: 10.3934/microbiol.2015.1.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
75
|
Åstrand ABM, Hemmerling M, Root J, Wingren C, Pesic J, Johansson E, Garland AL, Ghosh A, Tarran R. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol Lung Cell Mol Physiol 2014; 308:L22-32. [PMID: 25361567 DOI: 10.1152/ajplung.00163.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis and chronic bronchitis (CB). Rehydration by hypertonic saline is efficacious but suffers from a short duration of action. We tested whether epithelial sodium channel (ENaC) inhibition would rehydrate normal and dehydrated airways to increase mucociliary clearance (MCC) over a significant time frame. For this, we used a tool compound (Compound A), which displays nanomolar ENaC affinity and retention in the airway surface liquid (ASL). Using normal human bronchial epithelial cultures (HBECs) grown at an air-liquid interface, we evaluated in vitro potency and efficacy using short-circuit current (I(sc)) and ASL height measurements where it inhibited I(sc) and increased ASL height by ∼ 50% (0.052 μM at 6 h), respectively. The in vivo efficacy was investigated in a modified guinea pig tracheal potential difference model, where we observed an effective dose (ED50) of 5 μg/kg (i.t.), and by MCC measures in rats and sheep, where we demonstrated max clearance rates at 100 μg/kg (i.t.) and 75 μg/kg (i.t.), respectively. Acute cigarette smoke-induced ASL height depletion in HBECs was used to mimic the situation in patients with CB, and pretreatment prevented both cigarette smoke-induced ASL dehydration and lessened the decrease in ciliary beat frequency. Furthermore, when added after cigarette smoke exposure, Compound A increased the rate of ASL rehydration. In conclusion, Compound A demonstrated significant effects and a link between increased airway hydration, ciliary function, and MCC. These data support the hypothesis that ENaC inhibition may be efficacious in the restoration of mucus hydration and transport in patients with CB.
Collapse
Affiliation(s)
| | | | - James Root
- AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | | - Alaina L Garland
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Arunava Ghosh
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
76
|
Birket SE, Chu KK, Liu L, Houser GH, Diephuis BJ, Wilsterman EJ, Dierksen G, Mazur M, Shastry S, Li Y, Watson JD, Smith AT, Schuster BS, Hanes J, Grizzle WE, Sorscher EJ, Tearney GJ, Rowe SM. A functional anatomic defect of the cystic fibrosis airway. Am J Respir Crit Care Med 2014; 190:421-32. [PMID: 25029666 DOI: 10.1164/rccm.201404-0670oc] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The mechanisms underlying cystic fibrosis (CF) lung disease pathogenesis are unknown. OBJECTIVES To establish mechanisms linking anion transport with the functional microanatomy, we evaluated normal and CF piglet trachea as well as adult swine trachea in the presence of selective anion inhibitors. METHODS We investigated airway functional microanatomy using microoptical coherence tomography, a new imaging modality that concurrently quantifies multiple functional parameters of airway epithelium in a colocalized fashion. MEASUREMENTS AND MAIN RESULTS Tracheal explants from wild-type swine demonstrated a direct link between periciliary liquid (PCL) hydration and mucociliary transport (MCT) rates, a relationship frequently invoked but never experimentally confirmed. However, in CF airways this relationship was completely disrupted, with greater PCL depths associated with slowest transport rates. This disrupted relationship was recapitulated by selectively inhibiting bicarbonate transport in vitro and ex vivo. CF mucus exhibited increased viscosity in situ due to the absence of bicarbonate transport, explaining defective MCT that occurs even in the presence of adequate PCL hydration. CONCLUSIONS An inherent defect in CF airway surface liquid contributes to delayed MCT beyond that caused by airway dehydration alone and identifies a fundamental mechanism underlying the pathogenesis of CF lung disease in the absence of antecedent infection or inflammation.
Collapse
|
77
|
Sun H, Harris WT, Kortyka S, Kotha K, Ostmann AJ, Rezayat A, Sridharan A, Sanders Y, Naren AP, Clancy JP. Tgf-beta downregulation of distinct chloride channels in cystic fibrosis-affected epithelia. PLoS One 2014; 9:e106842. [PMID: 25268501 PMCID: PMC4182049 DOI: 10.1371/journal.pone.0106842] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/05/2014] [Indexed: 01/15/2023] Open
Abstract
Rationale The cystic fibrosis transmembrane conductance regulator (CFTR) and Calcium-activated Chloride Conductance (CaCC) each play critical roles in maintaining normal hydration of epithelial surfaces including the airways and colon. TGF-beta is a genetic modifier of cystic fibrosis (CF), but how it influences the CF phenotype is not understood. Objectives We tested the hypothesis that TGF-beta potently downregulates chloride-channel function and expression in two CF-affected epithelia (T84 colonocytes and primary human airway epithelia) compared with proteins known to be regulated by TGF-beta. Measurements and Main Results TGF-beta reduced CaCC and CFTR-dependent chloride currents in both epithelia accompanied by reduced levels of TMEM16A and CFTR protein and transcripts. TGF-beta treatment disrupted normal regulation of airway-surface liquid volume in polarized primary human airway epithelia, and reversed F508del CFTR correction produced by VX-809. TGF-beta effects on the expression and activity of TMEM16A, wtCFTR and corrected F508del CFTR were seen at 10-fold lower concentrations relative to TGF-beta effects on e-cadherin (epithelial marker) and vimentin (mesenchymal marker) expression. TGF-beta downregulation of TMEM16A and CFTR expression were partially reversed by Smad3 and p38 MAPK inhibition, respectively. Conclusions TGF-beta is sufficient to downregulate two critical chloride transporters in two CF-affected tissues that precedes expression changes of two distinct TGF-beta regulated proteins. Our results provide a plausible mechanism for CF-disease modification by TGF-beta through effects on CaCC.
Collapse
Affiliation(s)
- Hongtao Sun
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - William T. Harris
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephanie Kortyka
- University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kavitha Kotha
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Alicia J. Ostmann
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Amir Rezayat
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Anusha Sridharan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yan Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - John P. Clancy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
78
|
Higgins G, Buchanan P, Perriere M, Al-Alawi M, Costello RW, Verriere V, McNally P, Harvey BJ, Urbach V. Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am J Respir Cell Mol Biol 2014; 51:178-90. [PMID: 24588705 DOI: 10.1165/rcmb.2012-0424oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In cystic fibrosis (CF), the airway surface liquid (ASL) height is reduced as a result of impaired ion transport, which favors bacterial colonization and inflammation of the airway and leads to progressive lung destruction. Lipoxin (LX)A4, which promotes resolution of inflammation, is inadequately produced in the airways of patients with CF. We previously demonstrated that LXA4 stimulates an ASL height increase and epithelial repair. Here we report the molecular mechanisms involved in these processes. We found that LXA4 (1 nM) induced an apical ATP release from non-CF (NuLi-1) and CF (CuFi-1) airway epithelial cell lines and CF primary cultures. The ATP release induced by LXA4 was completely inhibited by antagonists of the ALX/FPR2 receptor and Pannexin-1 channels. LXA4 induced an increase in intracellular cAMP and calcium, which were abolished by the selective inhibition of the P2RY11 purinoreceptor. Pannexin-1 and ATP hydrolysis inhibition and P2RY11 purinoreceptor knockdown all abolished the increase of ASL height induced by LXA4. Inhibition of the A2b adenosine receptor did not affect the ASL height increase induced by LXA4, whereas the PKA inhibitor partially inhibited this response. The stimulation of NuLi-1 and CuFi-1 cell proliferation, migration, and wound repair by LXA4 was inhibited by the antagonists of Pannexin-1 channel and P2RY11 purinoreceptor. Taken together, our results provide evidence for a novel role of LXA4 in stimulating apical ATP secretion via Pannexin-1 channels and P2RY11 purinoreceptors activation leading to an ASL height increase and epithelial repair.
Collapse
|
79
|
Voisin G, Bouvet GF, Legendre P, Dagenais A, Massé C, Berthiaume Y. Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells. Physiol Genomics 2014; 46:634-46. [PMID: 24893876 DOI: 10.1152/physiolgenomics.00003.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although cystic fibrosis (CF) pathophysiology is explained by a defect in CF transmembrane conductance regulator (CFTR) protein, the broad spectrum of disease severity is the consequence of environmental and genetic factors. Among them, oxidative stress has been demonstrated to play an important role in the evolution of this disease, with susceptibility to oxidative damage, decline of pulmonary function, and impaired lung antioxidant defense. Although oxidative stress has been implicated in the regulation of inflammation, its molecular outcomes in CF cells remain to be evaluated. To address the question, we compared the gene expression profile in NuLi-1 cells with wild-type CFTR and CuFi-1 cells homozygous for ΔF508 mutation cultured at air-liquid interface. We analyzed the transcriptomic response of these cell lines with microarray technology, under basal culture conditions and after 24 h oxidative stress induced by 15 μM 2,3-dimethoxy-1,4-naphtoquinone. In the absence of oxidative conditions, CuFi-1 gene profiling showed typical dysregulated inflammatory responses compared with NuLi-1. In the presence of oxidative conditions, the transcriptome of CuFi-1 cells reflected apoptotic transcript modulation. These results were confirmed in the CFBE41o- and corrCFBE41o- cell lines as well as in primary culture of human CF airway epithelial cells. Altogether, our data point to the influence of oxidative stress on cell survival functions in CF and identify several genes that could be implicated in the inflammation response observed in CF patients.
Collapse
Affiliation(s)
- Grégory Voisin
- Centre de recherche, Centre hospitalier de l'Université de Montréal - Hôtel Dieu, Montréal, Quebec, Canada
| | | | - Pierre Legendre
- Département de sciences biologiques, Université de Montréal, Succursale Centre-ville, Montréal, Quebec, Canada; and
| | - André Dagenais
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada
| | - Chantal Massé
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada; Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
80
|
Zhang A, Yan X, Li H, Gu Z, Zhang P, Zhang H, Li Y, Yu H. TMEM16A protein attenuates lipopolysaccharide-mediated inflammatory response of human lung epithelial cell line A549. Exp Lung Res 2014; 40:237-50. [PMID: 24784799 DOI: 10.3109/01902148.2014.905655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To observe the expression of endogenous TMEM16A in rat alveolar type II epithelial cells (AT-II) and A549, and study the effect of TMEM16A on lipopolysaccharide (LPS)-induced proinflammatory cytokine secretion. METHODS Rat AT-II cells were isolated and TMEM16A protein expression in rat AT-II cells was measured by Western blot. TMEM16A mRNA and protein expressions in A549 were measured by real-time quantitative polymerase chain reaction (PCR) and Western blot, respectively. TMEM16A gene was transfected into A549 using Lipofectamine 2000. Transfected cells were selected in the presence of G418 to create a stable TMEM16A overexpression A549 cell line. The expression of TMEM16A in A549 was knocked down by lentiviral vector-mediated RNA interference. TNF-α and IL-8 levels were determined by enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter assay system was used to measure the transcriptional activity of NF-κB. RESULTS (1) Endogenous TMEM16A was expressed in rat AT-II and A549. (2) TMEM16A expression in A549 significantly increased at 24 hours and 36 hours, and then decreased at 48 hours after LPS treatment. (3) TMEM16A mRNA and protein expressions were increased in the stable TMEM16A overexpression A549 cell line. (4) TMEM16A overexpression decreased the LPS-induced TNF-α and IL-8 secretions. (5) TMEM16A mRNA and protein expressions were knocked down in TMEM16A-siRNA lentivirus transfected A549. (6) TMEM16A knockdown increased the LPS-induced TNF-α and IL-8 secretions. (7) TMEM16A overexpression inhibited LPS-induced NF-κB activation. CONCLUSIONS TMEM16A is expressed in AT-II. TMEM16A in A549 inhibits LPS-induced NF-κB activation and decreases proinflammatory cytokines release, protecting A549 from acute LPS-mediated damage.
Collapse
Affiliation(s)
- Aili Zhang
- 1Department of Respirology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Luz S, Cihil KM, Brautigan DL, Amaral MD, Farinha CM, Swiatecka-Urban A. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells. J Biol Chem 2014; 289:15080-93. [PMID: 24727471 PMCID: PMC4031558 DOI: 10.1074/jbc.m114.563742] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl−-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser737 in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl− secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser737 mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl− channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl− channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Simão Luz
- From the Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Kristine M Cihil
- the Department of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - David L Brautigan
- the Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, and
| | - Margarida D Amaral
- From the Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Carlos M Farinha
- From the Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Agnieszka Swiatecka-Urban
- the Department of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15201, the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
82
|
Secretion properties, clearance, and therapy in airway disease. TRANSLATIONAL RESPIRATORY MEDICINE 2014; 2:6. [PMID: 25505698 PMCID: PMC4215824 DOI: 10.1186/2213-0802-2-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/19/2014] [Indexed: 01/26/2023]
Abstract
Chronic airway diseases like cystic fibrosis, chronic bronchitis, asthma, diffuse panbronchiolitis, and bronchiectasis are all associated with chronic inflammation. The airway mucosa responds to infection and inflammation in part by surface mucous (goblet) cell and submucosal gland hyperplasia and hypertrophy with mucus hypersecretion. Products of inflammation including neutrophil derived DNA and filamentous actin, effete cells, bacteria, and cell debris all contribute to mucus purulence and, when this is expectorated it is called sputum. Mucus is usually cleared by ciliary movement, and sputum is cleared by cough. These airway diseases each are associated with the production of mucus and sputum with characteristic composition, polymer structure, and biophysical properties. These properties change with the progress of the disease making it possible to use sputum analysis to identify the potential cause and severity of airway diseases. This information has also been important for the development of effective mucoactive therapy to promote airway hygiene.
Collapse
|
83
|
Garcia GJM, Picher M, Zuo P, Okada SF, Lazarowski ER, Button B, Boucher RC, Elston TC. Computational model for the regulation of extracellular ATP and adenosine in airway epithelia. Subcell Biochem 2014; 55:51-74. [PMID: 21560044 DOI: 10.1007/978-94-007-1217-1_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Extracellular nucleotides are key components of the signaling network regulating airway clearance. They are released by the epithelium into the airway surface liquid (ASL) to stimulate cilia beating activity, mucus secretion and airway hydration. Understanding the factors affecting their availability for purinoceptor activation is an important step toward the development of new therapies for obstructive lung diseases. This chapter presents a mathematical model developed to gain predictive insights into the regulation of ASL nucleotide concentrations on human airway epithelia. The parameters were estimated from experimental data collected on polarized primary cultures of human nasal and bronchial epithelial cells. This model reproduces major experimental observations: (1) the independence of steady-state nucleotide concentrations on ASL height, (2) the impact of selective ectonucleotidase inhibitors on their steady-state ASL concentrations, (3) the changes in ASL composition caused by mechanical stress mimicking normal breathing, (4) and the differences in steady-state concentrations existing between nasal and bronchial epithelia. In addition, this model launched the study of nucleotide release into uncharted territories, which led to the discovery that airway epithelia release, not only ATP, but also ADP and AMP. This study shows that computational modeling, coupled to experimental validation, provides a powerful approach for the identification of key therapeutic targets for the improvement of airway clearance in obstructive respiratory diseases.
Collapse
Affiliation(s)
- Guilherme J M Garcia
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Effect of epithelium ATP release on cyclic pressure-induced airway mucus secretion. Biosci Rep 2014; 34:BSR20130109. [PMID: 27919041 PMCID: PMC3891320 DOI: 10.1042/bsr20130109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022] Open
Abstract
The cyclic mechanical effect of airflow during breathing creates the optimal airway hydration state. MUC (mucin) 5AC is an important component of the airway mucus. The formation of MUC5AC is related to ATP and intracellular calcium in the epithelial cells. In this study, we evaluated the effect of ATP release from intracellular calcium in epithelial cells on cyclic pressure-induced mucus secretion in the airway. 16HBE (human bronchial epithelial cells) were cultured in vitro on cyclically tilted cultured plates and divided into five groups: control, tilt, tilt and BAPTA–AM (1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid–acetoxymethyl ester), tilt and EGTA and tilt and RB-2 (reactive blue-2). The shear stress and compressive stress were induced by the surface tension of the liquid, atmospheric pressure and liquid gravity. Cell activity, MUC5AC mRNA expression level, MUC5AC protein expression level and ATP release and intracellular calcium changes were measured with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay, RT–PCR (reverse transcription–PCR), HPLC and inverted fluorescence microscope, respectively. We detected that cyclic pressure significantly increased MUC5AC secretion and ATP release. The enhanced ATP release could be inhibited by both BAPTA–AM and RB-2, while EGTA did not have a suppressive effect. BAPTA–AM, EGTA and RB-2 did not obviously inhibit MUC5AC mRNA expression. Cyclic pressure did not induce MUC5AC secretion in the airway mucus epithelium via Ca2+-dependent ATP release, and nearly all Ca2+ was provided by stored intracellular Ca2+.
Collapse
|
85
|
Manzanares D, Srinivasan M, Salathe ST, Ivonnet P, Baumlin N, Dennis JS, Conner GE, Salathe M. IFN-γ-mediated reduction of large-conductance, Ca2+-activated, voltage-dependent K+ (BK) channel activity in airway epithelial cells leads to mucociliary dysfunction. Am J Physiol Lung Cell Mol Physiol 2014; 306:L453-62. [PMID: 24414257 DOI: 10.1152/ajplung.00247.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Effective mucociliary clearance (MCC) depends in part on adequate airway surface liquid (ASL) volume to maintain an appropriate periciliary fluid height that allows normal ciliary activity. Apically expressed large-conductance, Ca(2+)-activated, and voltage-dependent K(+) (BK) channels provide an electrochemical gradient for Cl(-) secretion and thus play an important role for adequate airway hydration. Here we show that IFN-γ decreases ATP-mediated apical BK activation in normal human airway epithelial cells cultured at the air-liquid interface. IFN-γ decreased mRNA levels of KCNMA1 but did not affect total protein levels. Because IFN-γ upregulates dual oxidase (DUOX)2 and therefore H2O2 production, we hypothesized that BK inactivation could be mediated by BK oxidation. However, DUOX2 knockdown did not affect the IFN-γ effect on BK activity. IFN-γ changed mRNA levels of the BK β-modulatory proteins KCNMB2 (increased) and KCNMB4 (decreased) as well as leucine-rich repeat-containing protein (LRRC)26 (decreased). Mallotoxin, a BK opener only in the absence of LRRC26, showed that BK channels lost their association with LRRC26 after IFN-γ treatment. Finally, IFN-γ caused a decrease in ciliary beating frequency that was immediately rescued by apical fluid addition, suggesting that it was due to ASL volume depletion. These data were confirmed with direct ASL measurements using meniscus scanning. Overexpression of KCNMA1, the pore-forming subunit of BK, overcame the reduction of ASL volume induced by IFN-γ. Key experiments were repeated in cystic fibrosis cells and showed the same results. Therefore, IFN-γ induces mucociliary dysfunction through BK inactivation.
Collapse
|
86
|
Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev Respir Med 2014; 7:553-76. [DOI: 10.1586/17476348.2013.837752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
87
|
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) are plasma membrane proteins involved in various important physiological processes. In epithelial cells, CaCC activity mediates the secretion of Cl(-) and of other anions, such as bicarbonate and thiocyanate. In smooth muscle and excitable cells of the nervous system, CaCCs have an excitatory role coupling intracellular Ca(2+) elevation to membrane depolarization. Recent studies indicate that TMEM16A (transmembrane protein 16 A or anoctamin 1) and TMEM16B (transmembrane protein 16 B or anoctamin 2) are CaCC-forming proteins. Induced expression of TMEM16A and B in null cells by transfection causes the appearance of Ca(2+)-activated Cl(-) currents similar to those described in native tissues. Furthermore, silencing of TMEM16A by RNAi causes disappearance of CaCC activity in cells from airway epithelium, biliary ducts, salivary glands, and blood vessel smooth muscle. Mice devoid of TMEM16A expression have impaired Ca(2+)-dependent Cl(-) secretion in the epithelial cells of the airways, intestine, and salivary glands. These animals also show a loss of gastrointestinal motility, a finding consistent with an important function of TMEM16A in the electrical activity of gut pacemaker cells, that is, the interstitial cells of Cajal. Identification of TMEM16 proteins will help to elucidate the molecular basis of Cl(-) transport.
Collapse
Affiliation(s)
- Loretta Ferrera
- Laboratory of Molecular Genetics, Istituto Giannina Gaslini, Genova, Italy
| | | | | |
Collapse
|
88
|
Wheatley CM, Morgan WJ, Cassuto NA, Foxx-Lupo WT, Daines CL, Morgan MA, Phan H, Snyder EM. Exhaled breath condensate detects baseline reductions in chloride and increases in response to albuterol in cystic fibrosis patients. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2013; 7:79-90. [PMID: 24367235 PMCID: PMC3869628 DOI: 10.4137/ccrpm.s12882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Impaired ion regulation and dehydration is the primary pathophysiology in cystic fibrosis (CF) lung disease. A potential application of exhaled breath condensate (EBC) collection is to assess airway surface liquid ionic composition at baseline and in response to pharmacological therapy in CF. Our aims were to determine if EBC could detect differences in ion regulation between CF and healthy and measure the effect of the albuterol on EBC ions in these populations. Baseline EBC Cl−, DLCO and SpO2 were lower in CF (n = 16) compared to healthy participants (n = 16). EBC Cl− increased in CF subjects, while there was no change in DLCO or membrane conductance, but a decrease in pulmonary-capillary blood volume in both groups following albuterol. This resulted in an improvement in diffusion at the alveolar-capillary unit, and removal of the baseline difference in SpO2 by 90-minutes in CF subjects. These results demonstrate that EBC detects differences in ion regulation between healthy and CF individuals, and that albuterol mediates increases in Cl− in CF, suggesting that the benefits of albuterol extend beyond simple bronchodilation.
Collapse
Affiliation(s)
- Courtney M Wheatley
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, Arizona
| | - Wayne J Morgan
- Department of Pediatrics- Pulmonology, Allergy and Immunology, University of Arizona, Tucson, Arizona
| | - Nicholas A Cassuto
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, Arizona
| | - William T Foxx-Lupo
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, Arizona
| | - Cori L Daines
- Department of Pediatrics- Pulmonology, Allergy and Immunology, University of Arizona, Tucson, Arizona
| | - Mary A Morgan
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, Arizona
| | - Hanna Phan
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, Arizona. ; Department of Pediatrics- Pulmonology, Allergy and Immunology, University of Arizona, Tucson, Arizona
| | - Eric M Snyder
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, Arizona
| |
Collapse
|
89
|
Liu C, Li Q, Zhou X, Kolosov VP, Perelman JM. Cortactin mediates elevated shear stress-induced mucin hypersecretion via actin polymerization in human airway epithelial cells. Int J Biochem Cell Biol 2013; 45:2756-63. [DOI: 10.1016/j.biocel.2013.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/12/2013] [Accepted: 09/28/2013] [Indexed: 11/25/2022]
|
90
|
Sheridan JT, Gilmore RC, Watson MJ, Archer CB, Tarran R. 17β-Estradiol inhibits phosphorylation of stromal interaction molecule 1 (STIM1) protein: implication for store-operated calcium entry and chronic lung diseases. J Biol Chem 2013; 288:33509-33518. [PMID: 24114840 DOI: 10.1074/jbc.m113.486662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sex plays a significant role in the development of lung diseases including asthma, cancer, chronic bronchitis, and cystic fibrosis. In cystic fibrosis, 17β-estradiol (E2) may inhibit store-operated Ca(2+) entry (SOCE) to impinge upon airway secretions, leaving females at greater risk of contracting lung infections. Stromal interaction molecule 1 (STIM1)-mediated SOCE is essential for cell homeostasis and regulates numerous processes including cell proliferation, smooth muscle contraction, and secretion. E2 can signal nongenomically to modulate Ca(2+) signaling, but little is known of the underlying mechanisms. We found that E2 exposure inhibited STIM1 translocation in airway epithelia, preventing SOCE. This correlated with a decrease in STIM1-STIM1 FRET and STIM1 mobility in E2-exposed HEK293T cells co-expressing estrogen receptor α. We also examined the role of STIM1 phosphorylation in E2-mediated inhibition of STIM1 mobility. STIM1 is basally phosphorylated at serine 575, which is required for SOCE. Exposure to E2 significantly decreased STIM1 serine phosphorylation. Mutating serine 575 to an alanine blocked STIM1 phosphorylation, reduced basal STIM1 mobility, and rendered STIM1 insensitive to E2. These data indicate that E2 can signal nongenomically by inhibiting basal phosphorylation of STIM1, leading to a reduction in SOCE.
Collapse
Affiliation(s)
- John T Sheridan
- Department of Cell and Molecular Physiology, the University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rodney C Gilmore
- Cystic Fibrosis/Pulmonary Research and Treatment Center, the University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael J Watson
- Cystic Fibrosis/Pulmonary Research and Treatment Center, the University of North Carolina, Chapel Hill, North Carolina 27599
| | - Christopher B Archer
- Cystic Fibrosis/Pulmonary Research and Treatment Center, the University of North Carolina, Chapel Hill, North Carolina 27599
| | - Robert Tarran
- Department of Cell and Molecular Physiology, the University of North Carolina, Chapel Hill, North Carolina 27599; Cystic Fibrosis/Pulmonary Research and Treatment Center, the University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
91
|
Adler KB, Tuvim MJ, Dickey BF. Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne) 2013; 4:129. [PMID: 24065956 PMCID: PMC3776272 DOI: 10.3389/fendo.2013.00129] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022] Open
Abstract
Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 10(6) Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the generation of DAG and of IP3 that releases calcium from apical ER. Stimulated secretion requires activation of the low affinity calcium sensor Synaptotagmin-2, while a corresponding high affinity calcium sensor in basal secretion is not known. The core exocytic machinery is comprised of the SNARE proteins VAMP8, SNAP23, and an unknown Syntaxin protein, together with the scaffolding protein Munc18b. Common and distinct features of this exocytic system in comparison to neuroendocrine cells and neurons are highlighted.
Collapse
Affiliation(s)
- Kenneth B. Adler
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- *Correspondence: Burton F. Dickey, Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Unit 1462, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA e-mail:
| |
Collapse
|
92
|
Rasgado-Flores H, Krishna Mandava V, Siman H, Van Driessche W, Pilewski JM, Randell SH, Bridges RJ. Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors. Am J Physiol Cell Physiol 2013; 305:C1114-22. [PMID: 23986197 DOI: 10.1152/ajpcell.00166.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertonic saline (HS) inhalation therapy benefits cystic fibrosis (CF) patients [Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006; Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT; the National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group. N Engl J Med 354: 229-240, 2006]. Surprisingly, these benefits are long-lasting and are diminished by the epithelial Na(+) channel blocker amiloride (Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006). Our aim was to explain these effects. Human bronchial epithelial (hBE) cells from CF lungs were grown in inserts and were used in three experimental approaches: 1) Ussing chambers to measure amiloride-sensitive short-circuit currents (INa); 2) continuous perfusion Ussing chambers; and 3) near "thin-film" conditions in which the airway surface of the inserts was exposed to a small volume (30 μl) of isosmotic or HS solution as the inserts were kept in their incubation tray and were subsequently used to measure INa under isosmotic conditions (near thin-film experiments; Tarran R, Boucher RC. Methods Mol Med 70: 479-492, 2002). HS solutions (660 mosmol/kgH2O) were prepared by adding additional NaCl to the isosmotic buffer. The transepithelial short-circuit current (ISC), conductance (GT), and capacitance (CT) were measured by transepithelial impedance analysis (Danahay H, Atherton HC, Jackson AD, Kreindler JL, Poll CT, Bridges RJ. Am J Physiol Lung Cell Mol Physiol 290: L558-L569, 2006; Singh AK, Singh S, Devor DC, Frizzell RA, van Driessche W, Bridges RJ. Methods Mol Med 70: 129-142, 2002). Exposure to apical HS inhibited INa, GT, and CT. The INa inhibition required 60 min of reexposure to the isosmotic solution to recover 75%. The time of exposure to HS required to inhibit INa was <2.5 min. Under near thin-film conditions, apical exposure to HS inhibited INa, but as osmotically driven water moved to the apical surface, the aqueous apical volume increased, leading to an amiloride-insensitive decrease in its osmolality and to recovery of INa that lagged behind the osmotic recovery. Amiloride significantly accelerated the recovery of INa following exposure to HS. Our conclusions are that exposure to HS inhibits hBE INa and that amiloride diminishes this effect.
Collapse
Affiliation(s)
- Hector Rasgado-Flores
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
93
|
Lin CL, Tawhai MH, Hoffman EA. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:643-55. [PMID: 23843310 DOI: 10.1002/wsbm.1234] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/20/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
Abstract
Improved understanding of structure and function relationships in the human lungs in individuals and subpopulations is fundamentally important to the future of pulmonary medicine. Image-based measures of the lungs can provide sensitive indicators of localized features, however to provide a better prediction of lung response to disease, treatment, and environment, it is desirable to integrate quantifiable regional features from imaging with associated value-added high-level modeling. With this objective in mind, recent advances in computational fluid dynamics (CFD) of the bronchial airways-from a single bifurcation symmetric model to a multiscale image-based subject-specific lung model-will be reviewed. The interaction of CFD models with local parenchymal tissue expansion-assessed by image registration-allows new understanding of the interplay between environment, hot spots where inhaled aerosols could accumulate, and inflammation. To bridge ventilation function with image-derived central airway structure in CFD, an airway geometrical modeling method that spans from the model 'entrance' to the terminal bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models on aerosol transport and deposition will be discussed.
Collapse
Affiliation(s)
- Ching-Long Lin
- Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
94
|
Cihil KM, Zimnik A, Swiatecka-Urban A. c-Cbl reduces stability of rescued ∆F508-CFTR in human airway epithelial cells: Implications for cystic fibrosis treatment. Commun Integr Biol 2013; 6:e23094. [PMID: 23750297 PMCID: PMC3609839 DOI: 10.4161/cib.23094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CFTR is a PKA activated Cl- channel expressed in the apical membrane of fluid transporting epithelia. We previously demonstrated that c-Cbl decreases CFTR stability in the plasma membrane by facilitating its endocytosis and lysosomal degradation in human airway epithelium. The most common mutation associated with cystic fibrosis, deletion of Phe508 (∆F508), leads to a temperature sensitive biosynthetic processing defect in the CFTR protein. Mature ∆F508-CFTR that has been rescued by low temperature or chemical chaperones is partially functional as a Cl- channel but has decreased plasma membrane stability due to altered post-maturational trafficking. Our present data demonstrate that c-Cbl controls the post-maturational trafficking of rescued ∆F508-CFTR. Partial depletion of c-Cbl increased stability of the plasma membrane associated mature ∆F508-CFTR and the ∆F508-CFTR mediated Cl- secretion. These data indicate that correcting the post-maturational trafficking of ∆F508-CFTR may represent a therapeutic approach complementary to the biosynthetic rescue. Because c-Cbl functions as an adaptor and scaffolding protein during CFTR endocytosis, we propose that interfering with the c-Cbl mediated endocytic recruitment of ∆F508-CFTR may increase stability of ∆508-CFTR in the plasma membrane after its biosynthetic rescue.
Collapse
Affiliation(s)
- Kristine M Cihil
- Department of Nephrology; Children's Hospital of Pittsburgh; Pittsburgh, PA USA
| | | | | |
Collapse
|
95
|
Baker SE, Wong EC, Wheatley CM, Foxx-Lupo WT, Martinez MG, Morgan MA, Sprissler R, Morgan WJ, Snyder EM. Genetic variation of SCNN1A influences lung diffusing capacity in cystic fibrosis. Med Sci Sports Exerc 2013; 44:2315-21. [PMID: 22776878 DOI: 10.1249/mss.0b013e318266ebc3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Epithelial Na channels (ENaCs) play a crucial role in ion and fluid regulation in the lung. In cystic fibrosis (CF), Na hyperabsorption results from ENaC overactivity, leading to airway dehydration. Previous work has demonstrated functional genetic variation of SCNN1A (the gene encoding the ENaC α-subunit), manifesting as an alanine (A) to threonine (T) substitution at amino acid 663, with the αT663 variant resulting in a more active channel. METHODS We assessed the influence of genetic variation of SCNN1A on the diffusing capacity of the lungs for carbon monoxide (DLCO) and nitric oxide (DLNO), together with alveolar-capillary membrane conductance (DM), pulmonary capillary blood volume, and alveolar volume (VA) at rest and during peak exercise in 18 patients with CF (10 homozygous for αA663 (AA group) and 8 with at least one T663 allele (AT/TT group)). Because of the more active channel, we hypothesized that the AT/TT group would show a greater increase in DLCO, DLNO, and DM with exercise because of exercise-mediated ENaC inhibition and subsequent attenuation of Na hyperabsorption. RESULTS The AT/TT group had significantly lower pulmonary function, weight, and body mass index than the AA group. Both groups had similar peak workloads, relative peak oxygen consumptions, and cardiopulmonary responses to exercise. The AT/TT group demonstrated a greater increase in DLNO, DLNO/VA, and DM in response to exercise (% increases: DLNO = 18 ± 11 vs 41 ± 38; DLNO/VA = 14 ± 21 vs 40 ± 37; DM = 15 ± 11 vs 41 ± 38, AA vs AT/TT, respectively). There were no differences between groups in absolute diffusing capacity measures at peak exercise. CONCLUSION These results suggest that genetic variation of the α-subunit of ENaC differentially affects the diffusing capacity response to exercise in patients with CF.
Collapse
Affiliation(s)
- Sarah E Baker
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Tgf-β1 inhibits Cftr biogenesis and prevents functional rescue of ΔF508-Cftr in primary differentiated human bronchial epithelial cells. PLoS One 2013; 8:e63167. [PMID: 23671668 PMCID: PMC3650079 DOI: 10.1371/journal.pone.0063167] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
CFTR is an integral transmembrane glycoprotein and a cAMP-activated Cl(-) channel. Mutations in the CFTR gene lead to Cystic Fibrosis (CF)-an autosomal recessive disease with majority of the morbidity and mortality resulting from airway infection, inflammation, and fibrosis. The most common disease-associated mutation in the CFTR gene-deletion of Phe508 (ΔF508) leads to a biosynthetic processing defect of CFTR. Correction of the defect and delivery of ΔF508-CFTR to the cell surface has been highly anticipated as a disease modifying therapy. Compared to promising results in cultured cell this approach was much less effective in CF patients in an early clinical trial. Although the cause of failure to rescue ΔF508-CFTR in the clinical trial has not been determined, presence of factor(s) that interfere with the rescue in vivo could be considered. The cytokine TGF-β1 is frequently elevated in CF patients. TGF-β1 has pleiotropic effects in different disease models and genetic backgrounds and little is known about TGF-β1 effects on CFTR in human airway epithelial cells. Moreover, there are no published studies examining TGF-β1 effects on the functional rescue of ΔF508-CFTR. Here we found that TGF-β1 inhibits CFTR biogenesis by reducing mRNA levels and protein abundance in primary differentiated human bronchial epithelial (HBE) cells from non-CF individuals. TGF-β1 inhibits CFTR biogenesis without compromising the epithelial phenotype or integrity of HBE cells. TGF-β1 also inhibits biogenesis and impairs the functional rescue of ΔF508-CFTR in HBE cells from patients homozygous for the ΔF508 mutation. Our data indicate that activation of TGF-β1 signaling may inhibit CFTR function in non-CF individuals and may interfere with therapies directed at correcting the processing defect of ΔF508-CFTR in CF patients.
Collapse
|
97
|
A mechanochemical model for auto-regulation of lung airway surface layer volume. J Theor Biol 2013; 325:42-51. [PMID: 23415939 DOI: 10.1016/j.jtbi.2013.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 01/23/2023]
Abstract
We develop a proof-of-principle model for auto-regulation of water volume in the lung airway surface layer (ASL) by coupling biochemical kinetics, transient ASL volume, and homeostatic mechanical stresses. The model is based on the hypothesis that ASL volume is sensed through soluble mediators and phasic stresses generated by beating cilia and air drag forces. Model parameters are fit based on the available data on human bronchial epithelial cell cultures. Simulations then demonstrate that homeostatic volume regulation is a natural consequence of the processes described. The model maintains ASL volume within a physiological range that modulates with phasic stress frequency and amplitude. Next, we show that the model successfully reproduces the responses of cell cultures to significant isotonic and hypotonic challenges, and to hypertonic saline, an effective therapy for mucus hydration in cystic fibrosis patients. These results compel an advanced airway hydration model with therapeutic value that will necessitate detailed kinetics of multiple molecular pathways, feedback to ASL viscoelasticity properties, and stress signaling from the ASL to the cilia and epithelial cells.
Collapse
|
98
|
Van Scott MR, Chandler J, Olmstead S, Brown JM, Mannie M. Airway Anatomy, Physiology, and Inflammation. THE TOXICANT INDUCTION OF IRRITANT ASTHMA, RHINITIS, AND RELATED CONDITIONS 2013. [PMCID: PMC7122617 DOI: 10.1007/978-1-4614-9044-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
99
|
Reddy MM, Stutts MJ. Status of fluid and electrolyte absorption in cystic fibrosis. Cold Spring Harb Perspect Med 2013; 3:a009555. [PMID: 23284077 DOI: 10.1101/cshperspect.a009555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Salt and fluid absorption is a shared function of many of the body's epithelia, but its use is highly adapted to the varied physiological roles of epithelia-lined organs. These functions vary from control of hydration of outward-facing epithelial surfaces to conservation and regulation of total body volume. In the most general context, salt and fluid absorption is driven by active Na(+) absorption. Cl(-) is absorbed passively through various available paths in response to the electrical driving force that results from active Na(+) absorption. Absorption of salt creates a concentration gradient that causes water to be absorbed passively, provided the epithelium is water permeable. Key differences notwithstanding, the transport elements used for salt and fluid absorption are broadly similar in diverse epithelia, but the regulation of these elements enables salt absorption to be tailored to very different physiological needs. Here we focus on salt absorption by exocrine glands and airway epithelia. In cystic fibrosis, salt and fluid absorption by gland duct epithelia is effectively prevented by the loss of cystic fibrosis transmembrane conductance regulator (CFTR). In airway epithelia, salt and fluid absorption persists, in the absence of CFTR-mediated Cl(-) secretion. The contrast of these tissue-specific changes in CF tissues is illustrative of how salt and fluid absorption is differentially regulated to accomplish tissue-specific physiological objectives.
Collapse
Affiliation(s)
- M M Reddy
- Department of Pediatrics, UCSD School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
100
|
Grygorczyk R, Furuya K, Sokabe M. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells. J Physiol 2012; 591:1195-215. [PMID: 23247110 DOI: 10.1113/jphysiol.2012.244145] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract Mechano-transduction at cellular and tissue levels often involves ATP release and activation of the purinergic signalling cascade. In the lungs, stretch is an important physical stimulus but its impact on ATP release, the underlying release mechanisms and transduction pathways are poorly understood. Here, we investigated the effect of unidirectional stretch on ATP release from human alveolar A549 cells by real-time luciferin-luciferase bioluminescence imaging coupled with simultaneous infrared imaging, to monitor the extent of cell stretch and to identify ATP releasing cells. In subconfluent (<90%) cell cultures, single 1 s stretch (10-40%)-induced transient ATP release from a small fraction (1.5%) of cells that grew in number dose-dependently with increasing extent of stretch. ATP concentration in the proximity (150 μm) of releasing cells often exceeded 10 μm, sufficient for autocrine/paracrine purinoreceptor stimulation of neighbouring cells. ATP release responses were insensitive to the putative ATP channel blockers carbenoxolone and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid, but were inhibited by N-ethylmaleimide and bafilomycin. In confluent cell cultures, the maximal fraction of responding cells dropped to <0.2%, but was enhanced several-fold in the wound/scratch area after it was repopulated by new cells during the healing process. Fluo8 fluorescence experiments revealed two types of stretch-induced intracellular Ca(2+) responses, rapid sustained Ca(2+) elevations in a limited number of cells and delayed secondary responses in neighbouring cells, seen as Ca(2+) waves whose propagation was consistent with extracellular diffusion of released ATP. Our experiments revealed that a single >10% stretch was sufficient to initiate intercellular purinergic signalling in alveolar cells, which may contribute to the regulation of surfactant secretion and wound healing.
Collapse
|