51
|
Schmid D, Staudacher DL, Plass CA, Loew HG, Fritz E, Steurer G, Chiba P, Moeslinger T. Pinacidil-primed ATP-sensitive potassium channels mediate feedback control of mechanical power output in isolated myocardium of rats and guinea pigs. Eur J Pharmacol 2009; 628:116-27. [PMID: 19925786 DOI: 10.1016/j.ejphar.2009.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 10/29/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
We tested the hypothesis, that ATP-sensitive potassium (K(ATP)) channels limit cardiac energy demand by a feedback control of mean power output at increased cardiac rates. We analysed the interrelationships between rising energy demand of adult rat and guinea pig left ventricular papillary muscle and down-regulatory electromechanical effects mediated by K(ATP) channels. Using the K(ATP)-opener pinacidil the stimulation frequency was increased stepwise and the mechanical parameters and action potentials were recorded. Power output was derived from force-length area or force-time integral calculations, respectively. Simultaneously oxygen availability in the preparations was estimated by flavoprotein fluorescence measurements. ADP/ATP ratios were determined by HPLC. We found highly linear relationships between isotonic power output and the effects of pinacidil on isotonic shortening in both rat (r(2)=0.993) and guinea pig muscles (r(2)=0.997). These effects were solely observed for the descending limb of shortening-frequency relationships. In addition, a highly linear correlation between total force-time integral-derived power and pinacidil effects on action potential duration (APD(50), r(2)=0.92) was revealed. Power output became constant and frequency-independent in the presence of pinacidil at higher frequencies. In contrast, the K(ATP)-blocker glibenclamide produced a lengthening of APD(50) and increased force transiently at higher power levels. Pinacidil prevented core hypoxia and a change in ADP/ATP ratio during high frequency stimulation. We conclude, that pinacidil-primed cardiac K(ATP) channels homeostatically control power output during periods of high energy demand. This effect is associated with a reduced development of hypoxic areas inside the heart muscle by adapting cardiac function to a limited energy supply.
Collapse
Affiliation(s)
- Diethart Schmid
- Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol 2009; 41:1957-71. [PMID: 19703657 PMCID: PMC3522519 DOI: 10.1016/j.biocel.2009.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/20/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
Ca(2+) signaling is of vital importance to cardiac cell function and plays an important role in heart failure. It is based on sarcolemmal, sarcoplasmic reticulum and mitochondrial Ca(2+) cycling. While the first two are well characterized, the latter remains unclear, controversial and technically challenging. In mammalian cardiac myocytes, Ca(2+) influx through L-type calcium channels in the sarcolemmal membrane triggers Ca(2+) release from the nearby junctional sarcoplasmic reticulum to produce Ca(2+) sparks. When this triggering is synchronized by the cardiac action potential, a global [Ca(2+)](i) transient arises from coordinated Ca(2+) release events. The ends of intermyofibrillar mitochondria are located within 20 nm of the junctional sarcoplasmic reticulum and thereby experience a high local [Ca(2+)] during the Ca(2+) release process. Both local and global Ca(2+) signals may thus influence calcium signaling in mitochondria and, reciprocally, mitochondria may contribute to the local control of calcium signaling. In addition to the intermyofibrillar mitochondria, morphologically distinct mitochondria are also located in the perinuclear and subsarcolemmal regions of the cardiomyocyte and thus experience a different local [Ca(2+)]. Here we review the literature in regard to several issues of broad interest: (1) the ultrastructural basis for mitochondrion - sarcoplasmic reticulum cross-signaling; (2) mechanisms of sarcoplasmic reticulum signaling; (3) mitochondrial calcium signaling; and (4) the possible interplay of calcium signaling between the sarcoplasmic reticulum and adjacent mitochondria. Finally, this review discusses experimental findings and mathematical models of cardiac calcium signaling between the sarcoplasmic reticulum and mitochondria, identifies weaknesses in these models, and suggests strategies and approaches for future investigations.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
53
|
Jeneson JAL, Schmitz JPJ, van den Broek NMA, van Riel NAW, Hilbers PAJ, Nicolay K, Prompers JJ. Magnitude and control of mitochondrial sensitivity to ADP. Am J Physiol Endocrinol Metab 2009; 297:E774-84. [PMID: 19622784 PMCID: PMC3833997 DOI: 10.1152/ajpendo.00370.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/16/2009] [Indexed: 11/22/2022]
Abstract
The transduction function for ADP stimulation of mitochondrial ATP synthesis in skeletal muscle was reconstructed in vivo and in silico to investigate the magnitude and origin of mitochondrial sensitivity to cytoplasmic ADP concentration changes. Dynamic in vivo measurements of human leg muscle phosphocreatine (PCr) content during metabolic recovery from contractions were performed by (31)P-NMR spectroscopy. The cytoplasmic ADP concentration ([ADP]) and rate of oxidative ATP synthesis (Jp) at each time point were calculated from creatine kinase equilibrium and the derivative of a monoexponential fit to the PCr recovery data, respectively. Reconstructed [ADP]-Jp relations for individual muscles containing more than 100 data points were kinetically characterized by nonlinear curve fitting yielding an apparent kinetic order and ADP affinity of 1.9 +/- 0.2 and 0.022 +/- 0.003 mM, respectively (means +/- SD; n = 6). Next, in silico [ADP]-Jp relations for skeletal muscle were generated using a computational model of muscle oxidative ATP metabolism whereby model parameters corresponding to mitochondrial enzymes were randomly changed by 50-150% to determine control of mitochondrial ADP sensitivity. The multiparametric sensitivity analysis showed that mitochondrial ADP ultrasensitivity is an emergent property of the integrated mitochondrial enzyme network controlled primarily by kinetic properties of the adenine nucleotide translocator.
Collapse
Affiliation(s)
- Jeroen A L Jeneson
- Biomedical NMR, Dept. of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
54
|
|
55
|
Timohhina N, Guzun R, Tepp K, Monge C, Varikmaa M, Vija H, Sikk P, Kaambre T, Sackett D, Saks V. Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for Mitochondrial Interactosome. J Bioenerg Biomembr 2009; 41:259-75. [PMID: 19597977 DOI: 10.1007/s10863-009-9224-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 06/13/2009] [Indexed: 11/25/2022]
Abstract
The aim of this study was to measure energy fluxes from mitochondria in isolated permeabilized cardiomyocytes. Respiration of permeabilized cardiomyocytes and mitochondrial membrane potential were measured in presence of MgATP, pyruvate kinase - phosphoenolpyruvate and creatine. ATP and phosphocreatine concentrations in medium surrounding cardiomyocytes were determined. While ATP concentration did not change in time, mitochondria effectively produced phosphocreatine (PCr) with PCr/O(2) ratio equal to 5.68 +/- 0.14. Addition of heterodimeric tubulin to isolated mitochondria was found to increase apparent Km for exogenous ADP from 11 +/- 2 microM to 330 +/- 47 microM, but creatine again decreased it to 23 +/- 6 microM. These results show directly that under physiological conditions the major energy carrier from mitochondria into cytoplasm is PCr, produced by mitochondrial creatine kinase (MtCK), which functional coupling to adenine nucleotide translocase is enhanced by selective limitation of permeability of mitochondrial outer membrane within supercomplex ATP Synthasome-MtCK-VDAC-tubulin, Mitochondrial Interactosome.
Collapse
Affiliation(s)
- Natalia Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Hickey AJR, Chai CC, Choong SY, de Freitas Costa S, Skea GL, Phillips ARJ, Cooper GJS. Impaired ATP turnover and ADP supply depress cardiac mitochondrial respiration and elevate superoxide in nonfailing spontaneously hypertensive rat hearts. Am J Physiol Cell Physiol 2009; 297:C766-74. [PMID: 19553568 DOI: 10.1152/ajpcell.00111.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although most attention has been focused on mitochondrial ATP production and transfer in failing hearts, less has been focused on the nonfailing hypertensive heart. Here, energetic complications are less obvious, yet they may provide insight into disease ontogeny. We studied hearts from 12-mo-old spontaneously hypertensive rats (SHR) relative to normotensive Wistar-Kyoto (WKY) rats. The ex vivo working-heart model of SHR showed reduced compliance and impaired responses to increasing preloads. High-resolution respirometry showed higher state 3 (with excess ADP) respiration in SHR left ventricle fibers with complex I substrates and maximal uncoupled respiration with complex I + complex II substrates. Respiration with ATP was depressed 15% in SHR fibers relative to WKY fibers, suggesting impaired ATP hydrolysis. This finding was consistent with a 50% depression of actomyosin ATPase activities. Superoxide production from SHR fibers was similar to that from WKY fibers respiring with ADP; however, it was increased by 15% with ATP. In addition, the apparent K(m) for ADP was 54% higher for SHR fibers, and assays conducted after ex vivo work showed a 28% depression of complex I in SHR, but not WKY, fibers. Transmission electron microscopy showed similar mitochondrial volumes but a decrease in the number of cristae in SHR mitochondria. Tissue lipid peroxidation was also 15% greater in SHR left ventricle. Overall, these data suggest that although cardiac mitochondria from nonfailing SHR hearts function marginally better than those from WKY hearts, they show dysfunction after intense work. Impaired ATP turnover in hard-working SHR hearts may starve cardiac mitochondria of ADP and elevate superoxide.
Collapse
Affiliation(s)
- Anthony J R Hickey
- School of Biological Sciences, Faculty of Science, Univ. of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
57
|
Mironov SL. Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity. Int J Biochem Cell Biol 2009; 41:2005-14. [PMID: 19379829 DOI: 10.1016/j.biocel.2009.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 12/20/2022]
Abstract
This review focuses on different aspects of dynamics of mitochondria in neuronal cytoplasm which play an important role in the life and fate of neurons. It starts with description of the energy supply in the brain; considers the typical patterns of mitochondrial movements; relates them to the neuronal activity and in particular at the synapses; extends to the analysis of the origin of local ATP changes in the cytoplasm; considers main features of motor-assisted movements of mitochondria and their role in determining a transport velocity; describes the measurements of ATP gradients in neuronal processes and relates them to spatial variations in the mobility of mitochondria that occur in the vicinity of synapses due to the local ADP increases; considers the influence of hypoxia and intracellular signalling pathways on mitochondria movements. Finally, the recent views on the mechanisms and possible functional role of mitochondrial network as a whole in neurons are discussed and unresolved issues and future perspectives in this field of research are delineated.
Collapse
Affiliation(s)
- Sergei L Mironov
- DFG-Center of Molecular Physiology of the Brain, Georg-August-University, Department of Neuro- and Sensory Physiology, Humboldtallee 23, Göttingen, 37075, Germany.
| |
Collapse
|
58
|
Schryer DW, Peterson P, Paalme T, Vendelin M. Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks. Int J Mol Sci 2009; 10:1697-1718. [PMID: 19468334 PMCID: PMC2680642 DOI: 10.3390/ijms10041697] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/07/2009] [Accepted: 04/14/2009] [Indexed: 01/20/2023] Open
Abstract
Isotope labeling is one of the few methods of revealing the in vivo bidirectionality and compartmentalization of metabolic fluxes within metabolic networks. We argue that a shift from steady state to dynamic isotopomer analysis is required to deal with these cellular complexities and provide a review of dynamic studies of compartmentalized energy fluxes in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex metabolic behaviour on a molecular level is prerequisite for the intelligent design of genetically modified organisms able to realize their potential of revolutionizing food, energy, and pharmaceutical production. We describe techniques to explore the bidirectionality and compartmentalization of metabolic fluxes using information contained in the isotopic transient, and discuss the integration of kinetic models with MFA. The flux parameters of an example metabolic network were optimized to examine the compartmentalization of metabolites and and the bidirectionality of fluxes in the TCA cycle of Saccharomyces uvarum for steady-state respiratory growth.
Collapse
Affiliation(s)
- David W. Schryer
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia 21, 12618 Tallinn, Estonia; E-Mails:
(D.W.S.);
(P.P.);
(M.V.)
| | - Pearu Peterson
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia 21, 12618 Tallinn, Estonia; E-Mails:
(D.W.S.);
(P.P.);
(M.V.)
| | - Toomas Paalme
- Department of Food Processing, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia; E-Mail:
(T.P.)
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia 21, 12618 Tallinn, Estonia; E-Mails:
(D.W.S.);
(P.P.);
(M.V.)
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
59
|
Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1089-105. [PMID: 19362066 DOI: 10.1016/j.bbabio.2009.03.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/19/2009] [Accepted: 03/31/2009] [Indexed: 11/23/2022]
Abstract
The main focus of this investigation is steady state kinetics of regulation of mitochondrial respiration in permeabilized cardiomyocytes in situ. Complete kinetic analysis of the regulation of respiration by mitochondrial creatine kinase was performed in the presence of pyruvate kinase and phosphoenolpyruvate to simulate interaction of mitochondria with glycolytic enzymes. Such a system analysis revealed striking differences in kinetic behaviour of the MtCK-activated mitochondrial respiration in situ and in vitro. Apparent dissociation constants of MgATP from its binary and ternary complexes with MtCK, Kia and Ka (1.94+/-0.86 mM and 2.04+/-0.14 mM, correspondingly) were increased by several orders of magnitude in situ in comparison with same constants in vitro (0.44+/-0.08 mM and 0.016+/-0.01 mM, respectively). Apparent dissociation constants of creatine, Kib and Kb (2.12+/-0.21 mM 2.17+/-0.40 Mm, correspondingly) were significantly decreased in situ in comparison with in vitro mitochondria (28+/-7 mM and 5+/-1.2 mM, respectively). Dissociation constant for phosphocreatine was not changed. These data may indicate selective restriction of metabolites' diffusion at the level of mitochondrial outer membrane. It is concluded that mechanisms of the regulation of respiration and energy fluxes in vivo are system level properties which depend on intracellular interactions of mitochondria with cytoskeleton, intracellular MgATPases and cytoplasmic glycolytic system.
Collapse
|
60
|
Li M, Zhao C. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue. ACTA ACUST UNITED AC 2009; 52:284-95. [DOI: 10.1007/s11427-009-0005-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/22/2008] [Indexed: 11/29/2022]
|
61
|
Cortassa S, O'Rourke B, Winslow RL, Aon MA. Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J 2009; 96:2466-78. [PMID: 19289071 PMCID: PMC2989151 DOI: 10.1016/j.bpj.2008.12.3893] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/01/2008] [Indexed: 01/14/2023] Open
Abstract
Understanding the regulation and control of complex networks of reactions requires analytical tools that take into account the interactions between individual network components controlling global network function. Here, we apply a generalized matrix method of control analysis to calculate flux and concentration control coefficients, as well as response coefficients, in an integrated model of excitation-contraction (EC) coupling and mitochondrial energetics (ECME model) in the cardiac ventricular myocyte. Control and regulation of oxygen consumption (V(O2)) was first assessed in a mitochondrion model, and then in the integrated cardiac myocyte model under resting and working conditions. The results demonstrate that in the ECME model, control of respiration is distributed among cytoplasmic ATPases and mitochondrial processes. The magnitude of control by cytoplasmic ATPases increases under working conditions. The model prediction that the respiratory chain exerts strong positive control on V(O2) (control coefficient 0.89) was corroborated experimentally in cardiac trabeculae utilizing the inhibitor titration method. In the model, mitochondrial respiration displayed the highest response coefficients with respect to the concentration of cytoplasmic ATP. This was due to the high elasticity of ANT flux toward ATP in the cytoplasm. The analysis reveals the complex interdependence of sarcolemmal, cytoplasmic, and mitochondrial processes that contribute to the control of energy supply and demand in the heart. Moreover, by visualizing the structure of control of the metabolic network of the myocyte, we provide support for the emerging concept of control by diffuse loops, in which action on the network (e.g., by a pharmacological agent) may bring about changes in processes without obvious direct mechanistic links between them.
Collapse
Affiliation(s)
- Sonia Cortassa
- Division of Cardiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
62
|
Philosophical basis and some historical aspects of systems biology: from Hegel to Noble - applications for bioenergetic research. Int J Mol Sci 2009; 10:1161-92. [PMID: 19399243 PMCID: PMC2672024 DOI: 10.3390/ijms10031161] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/07/2009] [Accepted: 03/12/2009] [Indexed: 12/13/2022] Open
Abstract
We live in times of paradigmatic changes for the biological sciences. Reductionism, that for the last six decades has been the philosophical basis of biochemistry and molecular biology, is being displaced by Systems Biology, which favors the study of integrated systems. Historically, Systems Biology - defined as the higher level analysis of complex biological systems - was pioneered by Claude Bernard in physiology, Norbert Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic approach to the living. Systems Biology applies methods inspired by cybernetics, network analysis, and non-equilibrium dynamics of open systems. These developments follow very precisely the dialectical principles of development from thesis to antithesis to synthesis discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated processes of energy metabolism in different cells. These integrated systems acquire new, system-level properties due to interaction of cellular components, such as metabolic compartmentation, channeling and functional coupling mechanisms, which are central for regulation of the energy fluxes. State of the art of these studies in the new area of Molecular System Bioenergetics is analyzed.
Collapse
|
63
|
Wu F, Beard DA. Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart. BMC SYSTEMS BIOLOGY 2009; 3:22. [PMID: 19228404 PMCID: PMC2667476 DOI: 10.1186/1752-0509-3-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 02/19/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The heart is capable of maintaining contractile function despite a transient decrease in blood flow and increase in cardiac ATP demand during systole. This study analyzes a previously developed model of cardiac energetics and oxygen transport to understand the roles of the creatine kinase system and myoglobin in maintaining the ATP hydrolysis potential during beat-to-beat transient changes in blood flow and ATP hydrolysis rate. RESULTS The theoretical investigation demonstrates that elimination of myoglobin only slightly increases the predicted range of oscillation of cardiac oxygenation level during beat-to-beat transients in blood flow and ATP utilization. In silico elimination of myoglobin has almost no impact on the cytoplasmic ATP hydrolysis potential (DeltaGATPase). In contrast, disabling the creatine kinase system results in considerable oscillations of cytoplasmic ADP and ATP levels and seriously deteriorates the stability of DeltaGATPase in the beating heart. CONCLUSION The CK system stabilizes DeltaGATPase by both buffering ATP and ADP concentrations and enhancing the feedback signal of inorganic phosphate in regulating mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Fan Wu
- Biotechnology and Bioengineering Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Daniel A Beard
- Biotechnology and Bioengineering Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
64
|
Vinnakota KC, Wu F, Kushmerick MJ, Beard DA. Multiple ion binding equilibria, reaction kinetics, and thermodynamics in dynamic models of biochemical pathways. Methods Enzymol 2009; 454:29-68. [PMID: 19216922 PMCID: PMC2761843 DOI: 10.1016/s0076-6879(08)03802-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H(+), Mg(2+), K(+), and Ca(2+). These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework.
Collapse
Affiliation(s)
- Kalyan C Vinnakota
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|
65
|
Vendelin M, Birkedal R. Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy. Am J Physiol Cell Physiol 2008; 295:C1302-15. [PMID: 18815224 PMCID: PMC2584976 DOI: 10.1152/ajpcell.00313.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes.
Collapse
Affiliation(s)
- Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics at Tallinn Univ. of Technology Akadeemia 21, 12618 Tallinn, Estonia.
| | | |
Collapse
|
66
|
Wu F, Zhang EY, Zhang J, Bache RJ, Beard DA. Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts. J Physiol 2008; 586:4193-208. [PMID: 18617566 PMCID: PMC2652194 DOI: 10.1113/jphysiol.2008.154732] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 06/01/2008] [Indexed: 11/08/2022] Open
Abstract
To understand how cardiac ATP and CrP remain stable with changes in work rate - a phenomenon that has eluded mechanistic explanation for decades - data from (31)phosphate-magnetic resonance spectroscopy ((31)P-MRS) are analysed to estimate cytoplasmic and mitochondrial phosphate metabolite concentrations in the normal state, during high cardiac workstates, during acute ischaemia and reactive hyperaemic recovery. Analysis is based on simulating distributed heterogeneous oxygen transport in the myocardium integrated with a detailed model of cardiac energy metabolism. The model predicts that baseline myocardial free inorganic phosphate (P(i)) concentration in the canine myocyte cytoplasm - a variable not accessible to direct non-invasive measurement - is approximately 0.29 mm and increases to 2.3 mm near maximal cardiac oxygen consumption. During acute ischaemia (from ligation of the left anterior descending artery) P(i) increases to approximately 3.1 mm and ATP consumption in the ischaemic tissue is reduced quickly to less than half its baseline value before the creatine phosphate (CrP) pool is 18% depleted. It is determined from these experiments that the maximal rate of oxygen consumption of the heart is an emergent property and is limited not simply by the maximal rate of ATP synthesis, but by the maximal rate at which ATP can be synthesized at a potential at which it can be utilized. The critical free energy of ATP hydrolysis for cardiac contraction that is consistent with these findings is approximately -63.5 kJ mol(-1). Based on theoretical findings, we hypothesize that inorganic phosphate is both the primary feedback signal for stimulating oxidative phosphorylation in vivo and also the most significant product of ATP hydrolysis in limiting the capacity of the heart to hydrolyse ATP in vivo. Due to the lack of precise quantification of P(i) in vivo, these hypotheses and associated model predictions remain to be carefully tested experimentally.
Collapse
Affiliation(s)
- Fan Wu
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wiscosin, Milwaukee, WI 53213, USA
| | | | | | | | | |
Collapse
|
67
|
Van Beek JHGM. Multiscale and modular analysis of cardiac energy metabolism: repairing the broken interfaces of isolated system components. Ann N Y Acad Sci 2008; 1123:155-68. [PMID: 18375588 DOI: 10.1196/annals.1420.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Computational models of large molecular systems can be assembled from modules representing biological function emerging from interactions among a small subset of molecules. Experimental information on isolated molecules can be integrated with the response of the network as a whole to estimate crucial missing parameters. As an example, a "skeleton" model is analyzed for the module regulating dynamic adaptation of myocardial oxidative phosphorylation (OxPhos) to fluctuating cardiac energy demand. The module contains adenine nucleotides, creatine, and phosphate groups. Enzyme kinetic equations for two creatine kinase (CK) isoforms were combined with the response time of OxPhos (t mito; generalized time constant) to steps in the cardiac pacing rate to identify all module parameters. To obtain t mito, the time course of O2 uptake was measured for the whole heart. An O2 transport model was used to deconvolute the whole-heart response to the mitochondrial level. By optimizing mitochondrial outer membrane permeability to 21 microm/s the experimental t mito = 3.7 s was reproduced. This in vivo value is about four times larger, or smaller, respectively, than conflicting values obtained from two different in vitro studies. This demonstrates an important rule for multiscale analysis: experimental responses and modeling of the system at the larger scale allow one to estimate essential parameters for the interfaces of components which may have been altered during physical isolation. The model correctly predicts a smaller t mito when CK activity is reduced. The model further predicts a slower response if the muscle CK isoform is overexpressed and a faster response if mitochondrial CK is overexpressed. The CK system is very effective in decreasing maximum levels of ADP during systole and reducing average Pi levels over the whole cardiac cycle.
Collapse
|
68
|
Niethammer P, Kueh HY, Mitchison TJ. Spatial patterning of metabolism by mitochondria, oxygen, and energy sinks in a model cytoplasm. Curr Biol 2008; 18:586-91. [PMID: 18406136 PMCID: PMC2902971 DOI: 10.1016/j.cub.2008.03.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 03/12/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Metabolite gradients might guide mitochondrial localization in cells and angiogenesis in tissues. It is unclear whether they can exist in single cells, because the length scale of most cells is small compared to the expected diffusion times of metabolites. For investigation of metabolic gradients, we need experimental systems in which spatial patterns of metabolism can be systematically measured and manipulated. We used concentrated cytoplasmic extracts from Xenopus eggs as a model cytoplasm, and visualized metabolic gradients formed in response to spatial stimuli. Restriction of oxygen supply to the edge of a drop mimicked distance to the surface of a single cell, or distance from a blood vessel in tissue. We imaged a step-like increase of Nicotinamide adenine dinucleotide (NAD) reduction approximately 600 microm distant from the oxygen source. This oxic-anoxic switch was preceded on the oxic side by a gradual rise of mitochondrial transmembrane potential (Deltapsi) and reactive oxygen species (ROS) production, extending over approximately 600 microm and approximately 300 microm, respectively. Addition of Adenosine triphosphate (ATP)-consuming beads mimicked local energy sinks in the cell. We imaged Deltapsi gradients with a decay length of approximately 50-300 microm around these beads, in the first visualization of an energy demand signaling gradient. Our study demonstrates that mitochondria can pattern the cytoplasm over length scales that are suited to convey morphogenetic information in large cells and tissues and provides a versatile model system for probing of the formation and function of metabolic gradients.
Collapse
Affiliation(s)
- Philipp Niethammer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
69
|
Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U, Wallimann T, Aliev M, Vendelin M. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell Biochem 2007; 46:27-65. [PMID: 18652071 DOI: 10.1007/978-1-4020-6486-9_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, we summarize the main structural and functional data on the role of the phosphocreatine (PCr)--creatine kinase (CK) pathway for compartmentalized energy transfer in cardiac cells. Mitochondrial creatine kinase, MtCK, fixed by cardiolipin molecules in the vicinity of the adenine nucleotide translocator, is a key enzyme in this pathway. Direct transfer of ATP and ADP between these proteins has been revealed both in experimental studies on the kinetics of the regulation of mitochondrial respiration and by mathematical modelling as a main mechanism of functional coupling of PCr production to oxidative phosphorylation. In cells in vivo or in permeabilized cells in situ, this coupling is reinforced by limited permeability of the outer membrane of the mitochondria for adenine nucleotides due to the contacts with cytoskeletal proteins. Due to these mechanisms, at least 80% of total energy is exported from mitochondria by PCr molecules. Mathematical modelling of intracellular diffusion and energy transfer shows that the main function of the PCr-CK pathway is to connect different pools (compartments) of ATP and, by this way, to overcome the local restrictions and diffusion limitation of adenine nucleotides due to the high degree of structural organization of cardiac cells.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U 884, Joseph Fourier University, 2280, Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Spicer ST, Tran GT, Killingsworth MC, Carter N, Power DA, Paizis K, Boyd R, Hodgkinson SJ, Hall BM. Induction of passive Heymann nephritis in complement component 6-deficient PVG rats. THE JOURNAL OF IMMUNOLOGY 2007; 179:172-8. [PMID: 17579035 DOI: 10.4049/jimmunol.179.1.172] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Passive Heymann nephritis (PHN), a model of human membranous nephritis, is induced in susceptible rat strains by injection of heterologous antisera to rat renal tubular Ag extract. PHN is currently considered the archetypal complement-dependent form of nephritis, with the proteinuria resulting from sublytic glomerular epithelial cell injury induced by the complement membrane attack complex (MAC) of C5b-9. This study examined whether C6 and MAC are essential to the development of proteinuria in PHN by comparing the effect of injection of anti-Fx1A antisera into PVG rats deficient in C6 (PVG/C6(-)) and normal PVG rats (PVG/c). PVG/c and PVG/C6(-) rats developed similar levels of proteinuria at 3, 7, 14, and 28 days following injection of antisera. Isolated whole glomeruli showed similar deposition of rat Ig and C3 staining in PVG/c and PVG/C6(-) rats. C9 deposition was abundant in PVG/c but was not detected in PVG/C6(-) glomeruli, indicating C5b-9/MAC had not formed in PVG/C6(-) rats. There was also no difference in the glomerular cellular infiltrate of T cells and macrophages nor the size of glomerular basement membrane deposits measured on electron micrographs. To examine whether T cells effect injury, rats were depleted of CD8+ T cells which did not affect proteinuria in the early heterologous phase but prevented the increase in proteinuria associated with the later autologous phase. These studies showed proteinuria in PHN occurs without MAC and that other mechanisms, such as immune complex size, early complement components, CD4+ and CD8+ T cells, disrupt glomerular integrity and lead to proteinuria.
Collapse
Affiliation(s)
- S Timothy Spicer
- Department of Medicine, University of New South Wales and Liverpool Hospital, Liverpool BC 1871, New South Wales, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
van Beek JHGM. Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation. Am J Physiol Cell Physiol 2007; 293:C815-29. [PMID: 17581855 DOI: 10.1152/ajpcell.00355.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Computational models of a large metabolic system can be assembled from modules that represent a biological function emerging from interaction of a small subset of molecules. A "skeleton model" is tested here for a module that regulates the first phase of dynamic adaptation of oxidative phosphorylation (OxPhos) to demand in heart muscle cells. The model contains only diffusion, mitochondrial outer membrane (MOM) permeation, and two isoforms of creatine kinase (CK), in cytosol and mitochondrial intermembrane space (IMS), respectively. The communication with two neighboring modules occurs via stimulation of mitochondrial ATP production by ADP and P(i) from the IMS and via time-varying cytosolic ATP hydrolysis during contraction. Assuming normal cytosolic diffusion and high MOM permeability for ADP, the response time of OxPhos (t(mito); generalized time constant) to steps in cardiac pacing rate is predicted to be 2.4 s. In contrast, with low MOM permeability, t(mito) is predicted to be 15 s. An optimized MOM permeability of 21 mum/s gives t(mito) = 3.7 s, in agreement with experiments on rabbit heart with blocked glycolytic ATP synthesis. The model correctly predicts a lower t(mito) if CK activity is reduced by 98%. Among others, the following predictions result from the model analysis: 1) CK activity buffers large ADP oscillations; 2) ATP production is pulsatile in beating heart, although it adapts slowly to demand with "time constant" approximately 14 heartbeats; 3) if the muscle isoform of CK is overexpressed, OxPhos reacts slower to changing workload; and 4) if mitochondrial CK is overexpressed, OxPhos reacts faster.
Collapse
Affiliation(s)
- Johannes H G M van Beek
- Dept. of Molecular Cell Physiology, FALW, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam.
| |
Collapse
|
72
|
Korzeniewski B. Regulation of oxidative phosphorylation through parallel activation. Biophys Chem 2007; 129:93-110. [PMID: 17566629 DOI: 10.1016/j.bpc.2007.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 11/21/2022]
Abstract
When the mechanical work intensity in muscle increases, the elevated ATP consumption rate must be matched by the rate of ATP production by oxidative phosphorylation in order to avoid a quick exhaustion of ATP. The traditional mechanism of the regulation of oxidative phosphorylation, namely the negative feedback involving [ADP] and [Pi] as regulatory signals, is not sufficient to account for various kinetic properties of the system in intact skeletal muscle and heart in vivo. Theoretical studies conducted using a dynamic computer model of oxidative phosphorylation developed previously strongly suggest the so-called each-step-activation (or parallel activation) mechanism, due to which all oxidative phosphorylation complexes are directly activated by some cytosolic factor/mechanism related to muscle contraction in parallel with the activation of ATP usage and substrate dehydrogenation by calcium ions. The present polemic article reviews and discusses the growing evidence supporting this mechanism and compares it with alternative mechanisms proposed in the literature. It is concluded that only the each-step-activation mechanism is able to explain the rich set of various experimental results used as a reference for estimating the validity and applicability of particular mechanisms.
Collapse
Affiliation(s)
- Bernard Korzeniewski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
73
|
Abstract
Mitochondria often reside in subcellular regions with high metabolic demands. We examined the mechanisms that can govern the relocation of mitochondria to these sites in respiratory neurons. Mitochondria were visualized using tetramethylrhodamineethylester, and their movements were analyzed by applying single-particle tracking. Intracellular ATP ([ATP](i)) was assessed by imaging the luminescence of luciferase, the fluorescence of the ATP analog TNP-ATP, and by monitoring the activity of K(ATP) channels. Directed movements of mitochondria were accompanied by transient increases in TNP-ATP fluorescence. Application of glutamate and hypoxia reversibly decreased [ATP](i) levels and inhibited the directed transport. Injections of ATP did not rescue the motility of mitochondria after its inhibition by hypoxia. Introduction of ADP suppressed mitochondrial movements and occluded the effects of subsequent hypoxia. Mitochondria decreased their velocity in the proximity of synapses that correlated with local [ATP](i) depletions. Using a model of motor-assisted transport and Monte Carlo simulations, we showed that mitochondrial traffic is more sensitive to increases in [ADP](i) than to [ATP](i) depletions. We propose that consumption of synaptic ATP can produce local increases in [ADP](i) and facilitate the targeting of mitochondria to synapses.
Collapse
Affiliation(s)
- Sergej L Mironov
- DFG-Center Molecular Physiology of the Brain, Department of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
74
|
Chance B, Im J, Nioka S, Kushmerick M. Skeletal muscle energetics with PNMR: personal views and historic perspectives. NMR IN BIOMEDICINE 2006; 19:904-26. [PMID: 17075955 DOI: 10.1002/nbm.1109] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This article reviews historical and current NMR approaches to describing in vivo bioenergetics of skeletal muscles in normal and diseased populations. It draws upon the first author's more than 70 years of personal experience in enzyme kinetics and the last author's physiological approaches. The development of in vivo PNMR jointly with researchers around the world is described. It is explained how non-invasive PNMR has advanced human exercise biochemistry, physiology and pathology. Further, after a brief explanation of bioenergetics with PNMR on creatine kinase, anerobic glycolysis and mitochondrial oxidative phosphorylation, some basic and controversial subjects are focused upon, and the authors' view of the subjects are offered, with questions and answers. Some of the research has been introduced in exercise physiology. Future directions of NMR on bioenergetics, as a part of system biological approaches, are indicated.
Collapse
Affiliation(s)
- Britton Chance
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| | | | | | | |
Collapse
|
75
|
Buettner GR, Ng CF, Wang M, Rodgers VGJ, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med 2006; 41:1338-50. [PMID: 17015180 PMCID: PMC2443724 DOI: 10.1016/j.freeradbiomed.2006.07.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/09/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
The principal source of hydrogen peroxide in mitochondria is thought to be from the dismutation of superoxide via the enzyme manganese superoxide dismutase (MnSOD). However, the nature of the effect of SOD on the cellular production of H(2)O(2) is not widely appreciated. The current paradigm is that the presence of SOD results in a lower level of H(2)O(2) because it would prevent the non-enzymatic reactions of superoxide that form H(2)O(2). The goal of this work was to: a) demonstrate that SOD can increase the flux of H(2)O(2), and b) use kinetic modelling to determine what kinetic and thermodynamic conditions result in SOD increasing the flux of H(2)O(2). We examined two biological sources of superoxide production (xanthine oxidase and coenzyme Q semiquinone, CoQ(*-) that have different thermodynamic and kinetic properties. We found that SOD could change the rate of formation of H(2)O(2) in cases where equilibrium-specific reactions form superoxide with an equilibrium constant (K) less than 1. An example is the formation of superoxide in the electron transport chain (ETC) of the mitochondria by the reaction of ubisemiquinone radical with dioxygen. We measured the rate of release of H(2)O(2) into culture medium from cells with differing levels of MnSOD. We found that the higher the level of SOD, the greater the rate of accumulation of H(2)O(2). Results with kinetic modelling were consistent with this observation; the steady-state level of H(2)O(2) increases if K<1, for example CoQ(*-)+O(2)-->CoQ+O(2)(*-). However, when K>1, e.g. xanthine oxidase forming O(2)(*-), SOD does not affect the steady state-level of H(2)O(2). Thus, the current paradigm that SOD will lower the flux of H(2)O(2) does not hold for the ETC. These observations indicate that MnSOD contributes to the flux of H(2)O(2) in cells and thereby is involved in establishing the cellular redox environment and thus the biological state of the cell.
Collapse
Affiliation(s)
- Garry R Buettner
- Free Radical and Radiation Biology Program, EMRB 68, The University of Iowa, Iowa City, IA 52242-1101, USA.
| | | | | | | | | |
Collapse
|
76
|
Wu F, Jeneson JAL, Beard DA. Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback. Am J Physiol Cell Physiol 2006; 292:C115-24. [PMID: 16837647 DOI: 10.1152/ajpcell.00237.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data from (31)P-nuclear magnetic resonance spectroscopy of human forearm flexor muscle were analyzed based on a previously developed model of mitochondrial oxidative phosphorylation (PLoS Comp Bio 1: e36, 2005) to test the hypothesis that substrate level (concentrations of ADP and inorganic phosphate) represents the primary signal governing the rate of mitochondrial ATP synthesis and maintaining the cellular ATP hydrolysis potential in skeletal muscle. Model-based predictions of cytoplasmic concentrations of phosphate metabolites (ATP, ADP, and P(i)) matched data obtained from 20 healthy volunteers and indicated that as work rate is varied from rest to submaximal exercise commensurate increases in the rate of mitochondrial ATP synthesis are effected by changes in concentrations of available ADP and P(i). Additional data from patients with a defect of complex I of the respiratory chain and a patient with a deficiency in the mitochondrial adenine nucleotide translocase were also predicted the by the model by making the appropriate adjustments to the activities of the affected proteins associates with the defects, providing both further validation of the biophysical model of the control of oxidative phosphorylation and insight into the impact of these diseases on the ability of the cell to maintain its energetic state.
Collapse
Affiliation(s)
- Fan Wu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
77
|
Beard DA. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism. PLoS Comput Biol 2006; 2:e107. [PMID: 16978045 PMCID: PMC1570176 DOI: 10.1371/journal.pcbi.0020107] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 07/10/2006] [Indexed: 11/24/2022] Open
Abstract
Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP), and phosphocreatine (CrP) have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 μmol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 μmol min−1 g−1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded hypoperfusion. These findings suggest that the observed stability of energy metabolites emerges as a property of a properly constructed model of cardiac substrate transport and mitochondrial metabolism. In addition, the validated model provides quantitative predictions of changes in phosphate metabolites during cardiac ischemia. To function properly over a range of work rates, the heart must maintain its metabolic energy level within a range that is narrow relative to changes in the rate of energy utilization. Decades of observations have revealed that in cardiac muscle cells, the supply of adenosine triphosphate (ATP)—the primary currency of intracellular energy transfer—is controlled to maintain intracellular concentrations of ATP and related compounds within narrow ranges. Yet the development of a mechanistic understanding of this tight control has lagged behind experimental observation. This paper introduces a computational model that links ATP synthesis in a subcellular body called the mitochondrion with ATP utilization in the cytoplasm, and reveals that the primary control mechanism operating in the system is feedback of substrate concentrations for ATP synthesis. In other words, changes in the concentrations of the products generated by the utilization of ATP in the cell (adenosine diphosphate and inorganic phosphate) effect changes in the rate at which mitochondria utilize those products to resynthesize ATP.
Collapse
Affiliation(s)
- Daniel A Beard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.
| |
Collapse
|
78
|
Birkedal R, Shiels HA, Vendelin M. Three-dimensional mitochondrial arrangement in ventricular myocytes: from chaos to order. Am J Physiol Cell Physiol 2006; 291:C1148-58. [PMID: 16822946 DOI: 10.1152/ajpcell.00236.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a novel method to quantitatively analyze mitochondrial positioning in three dimensions. Using this method, we compared the relative positioning of mitochondria in adult rat and rainbow trout (Oncorhynchus mykiss) ventricular myocytes. Energetic data suggest that trout, in contrast to the rat, have two subpopulations of mitochondria in their cardiomyocytes. Therefore, we speculated whether trout cardiomyocytes exhibit two types of mitochondrial patterns. Stacks of confocal images of mitochondria were acquired in live cardiomyocytes. The images were processed and mitochondrial centers were detected automatically. The mitochondrial arrangement was analyzed by calculating the three-dimensional probability density and distribution functions describing the distances between neighboring mitochondrial centers. In the rat (8 cells with a total of 7,546 mitochondrial centers), intermyofibrillar mitochondria are highly ordered and arranged in parallel strands. These strands are separated by approximately 1.8 mum and can be found in any transversal direction relative to each other. Neighboring strands exhibit the same mitochondrial periodicity. In contrast to the rat, trout ventricular myocytes (22 cells; 5,528 mitochondrial centers) exhibit a relatively chaotic mitochondrial pattern. Neighboring mitochondria can be found in any direction relative to each other. Thus, two potential subpopulations of mitochondria in trout are not distinguishable by their pattern. The developed method required minor interaction in the filtering of the mitochondrial centers. It is therefore a practical approach to describe intracellular organization and may also be used for analysis of time-dependent organizational changes. The obtained quantitative description of mitochondrial organization is a requisite for accurate mathematical analysis of mitochondrial systems biology.
Collapse
Affiliation(s)
- Rikke Birkedal
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
79
|
Liguzinski P, Korzeniewski B. Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies. Am J Physiol Cell Physiol 2006; 291:C1213-24. [PMID: 16760266 DOI: 10.1152/ajpcell.00078.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been postulated previously that a direct activation of all oxidative phosphorylation complexes in parallel with the activation of ATP usage and substrate dehydrogenation (the so-called each-step activation) is the main mechanism responsible for adjusting the rate of ATP production by mitochondria to the current energy demand during rest-to-work transition in intact skeletal muscle in vivo. The present in silico study, using a computer model of oxidative phosphorylation developed previously, analyzes the impact of the each-step-activation mechanism on the distribution of control (defined within Metabolic Control Analysis) over the oxygen consumption flux among the components of the bioenergetic system in intact oxidative skeletal muscle at different energy demands. It is demonstrated that in the absence of each-step activation, the oxidative phosphorylation complexes take over from ATP usage most of the control over the respiration rate and oxidative ATP production at higher (but still physiological) energy demands. This leads to a saturation of oxidative phosphorylation, impossibility of a further acceleration of oxidative ATP synthesis, and dramatic drop in the phosphorylation potential. On the other hand, the each-step-activation mechanism allows maintenance of a high degree of the control exerted by ATP usage over the ATP turnover and oxygen consumption flux even at high energy demands and thus enables a potentially very large increase in ATP turnover. It is also shown that low oxygen concentration shifts the metabolic control from ATP usage to cytochrome oxidase and thus limits the oxidative ATP production.
Collapse
Affiliation(s)
- Piotr Liguzinski
- Faculty of Biotechnology, Jagiellonian University, Crakow, Poland
| | | |
Collapse
|
80
|
Cortassa S, Aon MA, O'Rourke B, Jacques R, Tseng HJ, Marbán E, Winslow RL. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 2006; 91:1564-89. [PMID: 16679365 PMCID: PMC1518641 DOI: 10.1529/biophysj.105.076174] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An intricate network of reactions is involved in matching energy supply with demand in the heart. This complexity arises because energy production both modulates and is modulated by the electrophysiological and contractile activity of the cardiac myocyte. Here, we present an integrated mathematical model of the cardiac cell that links excitation-contraction coupling with mitochondrial energy generation. The dynamics of the model are described by a system of 50 ordinary differential equations. The formulation explicitly incorporates cytoplasmic ATP-consuming processes associated with force generation and ion transport, as well as the creatine kinase reaction. Changes in the electrical and contractile activity of the myocyte are coupled to mitochondrial energetics through the ATP, Ca2+, and Na+ concentrations in the myoplasmic and mitochondrial matrix compartments. The pseudo steady-state relationship between force and oxygen consumption at various stimulus frequencies and external Ca2+ concentrations is reproduced in both model simulations and direct experiments in cardiac trabeculae under normoxic conditions, recapitulating the linearity between cardiac work and respiration in the heart. Importantly, the model can also reproduce the rapid time-dependent changes in mitochondrial NADH and Ca2+ in response to abrupt changes in workload. The steady-state and dynamic responses of the model were conferred by ADP-dependent stimulation of mitochondrial oxidative phosphorylation and Ca2+ -dependent regulation of Krebs cycle dehydrogenases, illustrating how the model can be used as a tool for investigating mechanisms underlying metabolic control in the heart.
Collapse
Affiliation(s)
- Sonia Cortassa
- The Johns Hopkins University, Institute for Computational Medicine, and Institute of Molecular Cardiobiology, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 2006; 571:253-73. [PMID: 16410283 PMCID: PMC1796789 DOI: 10.1113/jphysiol.2005.101444] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Accepted: 01/12/2006] [Indexed: 12/18/2022] Open
Abstract
The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation-contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for 'metabolic pacing', synchronizing the cellular electrical and mechanical activities with energy supply processes.
Collapse
Affiliation(s)
- Valdur Saks
- Structural and Quantitative Bioenergetics Research Group, Laboratory of Bioenergetics, Joseph Fourier University, 2280, Rue de la Piscine, BP53X -38041, Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
82
|
Nangaku M, Couser WG. Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol 2005; 9:183-91. [PMID: 16189625 DOI: 10.1007/s10157-005-0357-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
The passive trapping of preformed immune complexes is responsible for some forms of glomerulonephritis that are associated with mesangial or subendothelial deposits. The biochemical characteristics of circulating antigens play important roles in determining the biologic activity of immune complexes in these cases. Examples of circulating immune complex diseases include the classic acute and chronic serum sickness models in rabbits, and human lupus nephritis. Immune deposits also form "in situ". In situ immune deposit formation may occur at subepithelial, subendothelial, and mesangial sites. In situ immune-complex formation has been most frequently studied in the Heymann nephritis models of membranous nephropathy with subepithelial immune deposits. While the autoantigenic target in Heymann nephritis has been identified as megalin, the pathogenic antigenic target in human membranous nephropathy had been unknown until the recent identification of neutral endopeptidase as one target. It is likely that there is no universal antigen in human membranous nephropathy. Immune complexes can damage glomerular structures by attracting circulating inflammatory cells or activating resident glomerular cells to release vasoactive substances, cytokines, and activators of coagulation. However, the principal mediator of immune complex-mediated glomerular injury is the complement system, especially C5b-9 membrane attack complex formation. C5b-9 inserts in sublytic quantities into the membranes of glomerular cells, where it produces cell activation, converting normal cells into resident inflammatory effector cells that cause injury. Excessive activation of the complement system is normally prevented by a series of circulating and cell-bound complement regulatory proteins. Genetic deficiencies or mutations of these proteins can lead to the spontaneous development of glomerular disease. The identification of specific antigens in human disease may lead to the development of fundamental therapies. Particularly promising future therapeutic approaches include selective immunosuppression and interference in complement activation and C5b-9-mediated cell injury.
Collapse
Affiliation(s)
- Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1 Bunkyo-ku, Tokyo, 113-8655, Japan.
| | | |
Collapse
|
83
|
Kinsey ST, Pathi P, Hardy KM, Jordan A, Locke BR. Does intracellular metabolite diffusion limit post-contractile recovery in burst locomotor muscle? ACTA ACUST UNITED AC 2005; 208:2641-52. [PMID: 16000534 DOI: 10.1242/jeb.01686] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-metamorphic growth in the blue crab entails an increase in body mass that spans several orders of magnitude. The muscles that power burst swimming in these animals grow hypertrophically, such that small crabs have fiber diameters that are typical of most cells (<60 microm) while in adult animals the fibers are giant (>600 microm). Thus, as the animals grow, their muscle fibers cross and greatly exceed the surface area to volume ratio (SA:V) and intracellular diffusion distance threshold that is adhered to by most cells. Large fiber size should not impact burst contractile function, but post-contractile recovery may be limited by low SA:V and excessive intracellular diffusion distances. A number of changes occur in muscle structure, metabolic organization and metabolic flux during development to compensate for the effects of increasing fiber size. In the present study, we examined the impact of intracellular metabolite diffusive flux on the rate of post-contractile arginine phosphate (AP) resynthesis in burst locomotor muscle from small and large animals. AP recovery was measured following burst exercise, and these data were compared to a mathematical reaction-diffusion model of aerobic metabolism. The measured rates of AP resynthesis were independent of fiber size, while simulations of aerobic AP resynthesis yielded lower rates in large fibers. These contradictory findings are consistent with previous observations that there is an increased reliance on anaerobic metabolism for post-contractile metabolic recovery in large fibers. However, the model results suggest that the interaction between mitochondrial ATP production rates, ATP consumption rates and diffusion distances yield a system that is not particularly close to being limited by intracellular metabolite diffusion. We conclude that fiber SA:V and O2 flux exert more control than intracellular metabolite diffusive flux over the developmental changes in metabolic organization and metabolic fluxes that characterize these muscles.
Collapse
Affiliation(s)
- Stephen T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5915, USA.
| | | | | | | | | |
Collapse
|
84
|
Bao L, Osawe I, Haas M, Quigg RJ. Signaling through up-regulated C3a receptor is key to the development of experimental lupus nephritis. THE JOURNAL OF IMMUNOLOGY 2005; 175:1947-55. [PMID: 16034139 DOI: 10.4049/jimmunol.175.3.1947] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Signaling of the C3a anaphylatoxin through its G protein-coupled receptor, C3aR, is relevant in a variety of inflammatory diseases, but its role in lupus nephritis is undefined. In this study, we show that expression of C3aR was significantly increased in prediseased and diseased kidneys of MRL/lpr lupus mice compared with MRL/+ controls. To investigate the role of C3aR in experimental lupus, a small molecule antagonist of C3aR (C3aRa) was administered continuously to MRL/lpr mice from 13 to 19 wk of age. All 13 C3aRa-treated mice survived during the 6-wk treatment compared with 9 of 14 (64.3%) control animals given vehicle (p = 0.019). Relative to controls, C3aRa-treated animals were protected from renal disease as measured by albuminuria (p = 0.040) and blood urea nitrogen (p = 0.021). In addition, there were fewer neutrophils, monocytes, and apoptotic cells in the kidneys of C3aRa-treated mice. C3aRa treatment also led to reduced renal IL-1beta and RANTES mRNA and phosphorylated phosphatase and tensin homologue deleted on chromosome 10 protein, whereas the mass of phosphorylated protein kinase B/Akt was increased by C3aRa. Thus, C3aR antagonism significantly reduces renal disease in MRL/lpr mice, which further translates into prolonged survival. These data illustrate that C3aR is relevant in experimental lupus nephritis and may be a target for therapeutic intervention in the human disease.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Apoptosis/drug effects
- Apoptosis/immunology
- Arginine/administration & dosage
- Arginine/analogs & derivatives
- Benzhydryl Compounds/administration & dosage
- Complement C3a/metabolism
- Complement C3a/physiology
- Complement Inactivator Proteins/administration & dosage
- Fluorescent Antibody Technique, Indirect
- Inflammation Mediators/metabolism
- Kidney/drug effects
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/mortality
- Lupus Erythematosus, Systemic/pathology
- Male
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred MRL lpr
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation/drug effects
- RNA, Messenger/biosynthesis
- Receptors, Complement/antagonists & inhibitors
- Receptors, Complement/biosynthesis
- Receptors, Complement/genetics
- Receptors, Complement/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Suppressor Proteins/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
85
|
Beard DA. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 2005; 1:e36. [PMID: 16163394 PMCID: PMC1201326 DOI: 10.1371/journal.pcbi.0010036] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 08/03/2005] [Indexed: 12/04/2022] Open
Abstract
A computational model for the mitochondrial respiratory chain that appropriately balances mass, charge, and free energy transduction is introduced and analyzed based on a previously published set of data measured on isolated cardiac mitochondria. The basic components included in the model are the reactions at complexes I, III, and IV of the electron transport system, ATP synthesis at F1F0 ATPase, substrate transporters including adenine nucleotide translocase and the phosphate–hydrogen co-transporter, and cation fluxes across the inner membrane including fluxes through the K+/H+ antiporter and passive H+ and K+ permeation. Estimation of 16 adjustable parameter values is based on fitting model simulations to nine independent data curves. The identified model is further validated by comparison to additional datasets measured from mitochondria isolated from rat heart and liver and observed at low oxygen concentration. To obtain reasonable fits to the available data, it is necessary to incorporate inorganic-phosphate-dependent activation of the dehydrogenase activity and the electron transport system. Specifically, it is shown that a model incorporating phosphate-dependent activation of complex III is able to reasonably reproduce the observed data. The resulting validated and verified model provides a foundation for building larger and more complex systems models and investigating complex physiological and pathophysiological interactions in cardiac energetics. Cells are able to perform tasks that consume energy (such as producing mechanical force in muscle contraction) by using chemical energy delivered in the form of a chemical compound called adenosine triphosphate, or ATP. Two Nobel Prizes were awarded (in 1978 to Peter D. Mitchell and in 1997 to Paul D. Boyer and John E. Walker) for the determination of how ATP is synthesized from the components adenosine diphosphate (ADP) and inorganic phosphate in a subcellular body called the mitochondrion. The operating theory, called the chemiosmotic theory, describes how a driving force called the proton motive force, which arises from the sum of contributions from the electrical potential and the hydrogen ion concentration difference across the mitochondrial inner membrane, is developed by reactions catalyzed by certain enzymes and consumed in generating ATP. Yet, to date, no computer model has successfully described the development and consumption of both the chemical and electrical components of the proton motive force in a thermodynamically balanced simulation. Beard introduces such a model, which is extensively validated based on previously published sets of data obtained on isolated mitochondria. The model is used to test hypotheses about how intracellular respiration is regulated; this model could serve as a foundation for investigating the control of mitochondrial function and for developing larger integrated simulations of cellular metabolism.
Collapse
Affiliation(s)
- Daniel A Beard
- Biotechnology and Bioengineering Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.
| |
Collapse
|
86
|
Matsuoka S, Jo H, Sarai N, Noma A. An in silico study of energy metabolism in cardiac excitation-contraction coupling. ACTA ACUST UNITED AC 2005; 54:517-22. [PMID: 15760483 DOI: 10.2170/jjphysiol.54.517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The heart produces and uses ATP at a high rate. Each step involved in ATP metabolism has been extensively studied. However, functional coupling between ATP production and membrane excitation-contraction coupling, which is the main ATP consumption process, is not yet fully understood because of complicated interactions and the lack of quantitative data obtained in vivo. Computer simulation is a powerful tool for integrating experimental data and for solving their complicated interactions. To investigate the mechanisms underlying cardiac excitation-contraction-energy metabolism coupling, we have developed a computer model of cardiac excitation-contraction coupling (Kyoto model) that includes the major processes of ATP production, such as oxidative phosphorylation that was originally developed for skeletal muscle by Korzeniewski and Zoladz [Biophys Chem 92: 17-34, 2001], creatine kinase, and adenylate kinase. In this review, we briefly summarize cardiac energy metabolism and discuss the regulation of mitochondrial ATP synthesis, using the Kyoto model.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- Department of Physiology and Biophysics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
87
|
Korzeniewski B, Noma A, Matsuoka S. Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Biophys Chem 2005; 116:145-57. [PMID: 15950827 DOI: 10.1016/j.bpc.2005.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 11/28/2022]
Abstract
A dynamic computer model of oxidative phosphorylation in intact heart was developed by modifying the model of oxidative phosphorylation in intact skeletal muscle published previously. Next, this model was used for theoretical studies on the regulation of oxidative phosphorylation in intact heart in vivo during transition between different work intensities. It is shown that neither a direct activation of ATP usage alone nor a direct activation of both ATP usage and substrate dehydrogenation, including the calcium-activated tricarboxylate acid cycle dehydrogenases, can account for the constancy of [ADP], [PCr], [P(i)] and [NADH] during a significant increase in oxygen consumption and ATP turnover encountered in intact heart in vivo. Only a direct activation of all oxidative phosphorylation complexes in parallel with a stimulation of ATP usage and substrate dehydrogenation enabled to reproduce the experimental data concerning the constancy of metabolite concentrations. The molecular background of the differences between heart and skeletal muscle in the kinetic behaviour of the oxidative phosphorylation system is also discussed.
Collapse
Affiliation(s)
- Bernard Korzeniewski
- Department of Physiology and Biophysics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | |
Collapse
|
88
|
Beard DA, Qian H. Thermodynamic-based computational profiling of cellular regulatory control in hepatocyte metabolism. Am J Physiol Endocrinol Metab 2005; 288:E633-44. [PMID: 15507536 DOI: 10.1152/ajpendo.00239.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermodynamic-based constraints on biochemical fluxes and concentrations are applied in concert with mass balance of fluxes in glycogenesis and glycogenolysis in a model of hepatic cell metabolism. Constraint-based modeling methods that facilitate predictions of reactant concentrations, reaction potentials, and enzyme activities are introduced to identify putative regulatory and control sites in biological networks by computing the minimal control scheme necessary to switch between metabolic modes. Computational predictions of control sites in glycogenic and glycogenolytic operational modes in the hepatocyte network compare favorably with known regulatory mechanisms. The developed hepatic metabolic model is used to computationally analyze the impairment of glucose production in von Gierke's and Hers' diseases, two metabolic diseases impacting glycogen metabolism. The computational methodology introduced here can be generalized to identify downstream targets of agonists, to systematically probe possible drug targets, and to predict the effects of specific inhibitors (or activators) on integrated network function.
Collapse
Affiliation(s)
- Daniel A Beard
- Biotechnology and Bioengineering Center, Dept. of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | |
Collapse
|
89
|
Vendelin M, Lemba M, Saks VA. Analysis of functional coupling: mitochondrial creatine kinase and adenine nucleotide translocase. Biophys J 2005; 87:696-713. [PMID: 15240503 PMCID: PMC1304393 DOI: 10.1529/biophysj.103.036210] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments--i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented.
Collapse
Affiliation(s)
- Marko Vendelin
- Laboratory of Fundamental and Applied Bioenergetics, Institut National de la Santé et de la Recherche Médicale E0221, Joseph Fourier University, Grenoble, France.
| | | | | |
Collapse
|
90
|
Joubert F, Mateo P, Gillet B, Beloeil JC, Mazet JL, Hoerter JA. CK flux or direct ATP transfer: versatility of energy transfer pathways evidenced by NMR in the perfused heart. Mol Cell Biochem 2004; 256-257:43-58. [PMID: 14977169 DOI: 10.1023/b:mcbi.0000009858.41434.fc] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
How the myocardium is able to permanently coordinate its intracellular fluxes of ATP synthesis, transfer and utilization is difficult to investigate in the whole organ due to the cellular complexity. The adult myocardium represents a paradigm of an energetically compartmented cell since 50% of total CK activity is bound in the vicinity of other enzymes (myofibrillar sarcolemmal and sarcoplasmic reticulum ATPases as well as mitochondrial adenine nucleotide translocator, ANT). Such vicinity of enzymes is well known in vitro as well as in preparations of skinned fibers to influence the kinetic properties of these enzymes and thus the functioning of the subcellular organelles. Intracellular compartmentation has often been neglected in the NMR analysis of CK kinetics in the whole organ. It is indeed a methodological challenge to reveal subcellular kinetics in a working organ by a global approach such as NMR. To get insight in the energy transfer pathway in the perfused rat heart, we developed a combined analysis of several protocols of magnetization transfer associated with biochemical data and quantitatively evaluated which scheme of energetic exchange best describes the NMR data. This allows to show the kinetic compartmentation of subcellular CKs and to quantify their fluxes. Interestingly, we could show that the energy transfer pathway shifts from the phosphocreatine shuttle in the oxygenated perfused heart to a direct ATP diffusion from mitochondria to cytosol under moderate inhibition of ATP synthesis. Furthermore using NMR measured fluxes and the known kinetic properties of the enzymes, it is possible to model the system, estimate local ADP concentrations and propose hypothesis for the versatility of energy transfer pathway. In the normoxic heart, a 3-fold ADP gradient was found between mitochondrial intermembrane space, cytosol and ADP in the vicinity of ATPases. The shift from PCr to ATP transport observed when ATP synthesis decreases might result from a balance in the activity of two populations of ANT, either coupled or uncoupled to CK. We believe this NMR approach could be a valuable tool to reinvestigate the control of respiration by ADP in the whole heart reconciling the biochemical knowledge of mitochondrial obtained in vitro or in skinned fibers with data on the whole heart as well as to identify the implication of bioenergetics in the pathological heart.
Collapse
Affiliation(s)
- F Joubert
- U-446 INSERM, Cardiologie Cellulaire et Moléculaire, Université Paris-Sud, Chatenay Malabry, France
| | | | | | | | | | | |
Collapse
|
91
|
Saks VA, Kuznetsov AV, Vendelin M, Guerrero K, Kay L, Seppet EK. Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 2004; 256-257:185-99. [PMID: 14977180 DOI: 10.1023/b:mcbi.0000009868.92189.fb] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this review we analyze the concepts and the experimental data on the mechanisms of the regulation of energy metabolism in muscle cells. Muscular energetics is based on the force-length relationship, which in the whole heart is expressed as a Frank-Starling law, by which the alterations of left ventricle diastolic volume change linearly both the cardiac work and oxygen consumption. The second basic characteristics of the heart is the metabolic stability--almost constant levels of high energy phosphates, ATP and phosphocreatine, which are practically independent of the workload and the rate of oxygen consumption, in contrast to the fast-twitch skeletal muscle with no metabolic stability and rapid fatigue. Analysis of the literature shows that an increase in the rate of oxygen consumption by order of magnitude, due to Frank-Starling law, is observed without any significant changes in the intracellular calcium transients. Therefore, parallel activation of contraction and mitochondrial respiration by calcium ions may play only a minor role in regulation of respiration in the cells. The effective regulation of the respiration under the effect of Frank-Starling law and metabolic stability of the heart are explained by the mechanisms of functional coupling within supramolecular complexes in mitochondria, and at the subcellular level within the intracellular energetic units. Such a complex structural and functional organisation of heart energy metabolism can be described quantitatively by mathematical models.
Collapse
Affiliation(s)
- V A Saks
- Structural and Quantitative Bioenergetics Research Group, Laboratory of Fundamental and Applied Bioenergetics, INSERM E0221, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
92
|
Dos Santos P, Laclau MN, Boudina S, Garlid KD. Alterations of the bioenergetics systems of the cell in acute and chronic myocardial ischemia. Mol Cell Biochem 2004; 256-257:157-66. [PMID: 14977178 DOI: 10.1023/b:mcbi.0000009866.75225.e2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of the works presented here is to analyze the alterations induced by acute ischemia-reperfusion and chronic ischemia on mitochondrial function, in relation to alterations on heart function. Parameters of mitochondrial function were assessed on skinned fibers coming from isolated perfused rat hearts. The effects of chronic ischemia were studied on a rat model of left descending coronary artery stenosis. Two key events observed after acute ischemia-reperfusion and chronic ischemia are the decrease (or the loss) of the stimulatory effect of creatine and the alteration of outer mitochondrial permeability to cytochrome c and ADP. Taken together, these effects indicate the alteration of the intermembrane space architecture leading to the loss of intracellular adenine nucleotides compartmentation and possibly of functional coupling of mitochondrial creatine kinase and adenine nucleotide translocase. These alterations result in the impairment of intracellular energy transfer (channeling) from mitochondria to ATP-utilizing sites located in the cytosol. This may play a significant role in ischemic injury and alterations in heart function. We show that these effects were prevented by effective cardioprotective strategies like ischemic preconditioning or pharmacological preconditioning by perfusion of mitochondrial ATP-sensitive potassium channel openers. We hypothesize that an open mitochondrial ATP-sensitive potassium channel during ischemia maintains the tight structure of the intermembrane space that is required to preserve the normal low outer membrane permeability to ADP and ATP.
Collapse
|
93
|
Seppet EK, Eimre M, Andrienko T, Kaambre T, Sikk P, Kuznetsov AV, Saks V. Studies of mitochondrial respiration in muscle cells in situ: use and misuse of experimental evidence in mathematical modelling. Mol Cell Biochem 2004; 256-257:219-27. [PMID: 14977183 DOI: 10.1023/b:mcbi.0000009870.24814.1c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Applications of permeabilized cell and skinned fiber techniques in combination with methods of mathematical modelling for studies of mitochondrial function in the cell are critically evaluated. Mathematical models may be useful tools for explaining biological phenomena, but only if they are selected by fitting the computing results with real experimental data. Confocal microscopy has been used in experiments with permeabilized cardiomyocytes and myocardial fibers to determine the maximal diffusion distance from medium to the core of cells, which is shown not to exceed 8-10 microm. This is a principal index for correctly explaining high apparent Km for exogenous ADP (200-300 microM) in regulation of mitochondrial respiration in oxidative muscle cells in situ. The best fitting of the results of in silico studies may be achieved by using of the compartmentalized energy transfer model. From these results, it may be concluded that in cardiac muscle cells the mitochondria and ATPases are organized into intracellular energetic units (ICEUs) separated from the bulk phase of cytoplasm by some barriers which limit the diffusion of adenine nucleotides. In contrast, alternative models based on the concept of the cell as homogenous system do not explain the observed experimental phenomena and have led to misleading conclusions. The various sources of experimental and conceptual errors are analyzed.
Collapse
Affiliation(s)
- Enn K Seppet
- Department of Pathophysiology, University of Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
94
|
Ventura-Clapier R, Kaasik A, Veksler V. Structural and functional adaptations of striated muscles to CK deficiency. Mol Cell Biochem 2004; 256-257:29-41. [PMID: 14977168 DOI: 10.1023/b:mcbi.0000009857.69730.97] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In adult mammalian muscle cells, energy consuming processes are mainly localized to the sarcolemma, sarcoplasmic reticulum (SR) and myofibrillar compartments, while energy production occurs within mitochondria or glycolytic complexes. Due to the restricted diffusion of adenine nucleotides near the active sites of ATPases involved in contractile activity and calcium homeostasis, there are multiple local systems that can locally rephosphorylate ADP and provide ATP. The creatine kinase (CK) system, with specific isoenzymes localized within each compartment, efficiently controls local adenylate pools and links energy production and utilization. However, mice lacking one or both of the MM-CK and mi-CK isoforms (CK-/-) are viable and develop almost normal cardiac and skeletal muscle function under the conditions of moderate workload, suggesting adaptations or other mechanisms that may ensure efficient energy transfer. While fixed CK is essentially important, other systems could also be involved as well, such as bound glycolytic enzymes or adenylate kinase. We have shown that, additionally, a direct functional interplay exists between mitochondria and sarcoplasmic reticulum, or between mitochondria and myofilaments in muscle cells, that catalyzes direct energy and signal transfer between organelles. In cardiac cells of CK-/- mice, marked cytoarchitectural modifications were observed, and direct adenine nucleotide channeling between mitochondria and organelles was very effective to rescue SR and myofilament functions. In fast skeletal muscles, increased oxidative capacity also indicates compensatory mechanisms. In mutant mice, mitochondrial capacity increases and a direct energy channeling occurs between mitochondria on one hand and ATP consuming sites on the other. However, these systems appear to be insufficient to fully compensate for the lack of CK at high workload. It can be concluded that local rephosphorylation of ADP is a crucial regulatory point in highly differentiated and organized muscle cells to ensure contractile diversity and efficiency and that the CK system is important to control energy fluxes and energy homeostasis.
Collapse
Affiliation(s)
- R Ventura-Clapier
- U-446 INSERM Université Paris-Sud, 5 rue Jean-Baptiste Clément, Châtenay-Malabry, France.
| | | | | |
Collapse
|
95
|
Vendelin M, Béraud N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks VA. Mitochondrial regular arrangement in muscle cells: a "crystal-like" pattern. Am J Physiol Cell Physiol 2004; 288:C757-67. [PMID: 15496480 DOI: 10.1152/ajpcell.00281.2004] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work was to characterize quantitatively the arrangement of mitochondria in heart and skeletal muscles. We studied confocal images of mitochondria in nonfixed cardiomyocytes and fibers from soleus and white gastrocnemius muscles of adult rats. The arrangement of intermyofibrillar mitochondria was analyzed by estimating the densities of distribution of mitochondrial centers relative to each other (probability density function). In cardiomyocytes (1,820 mitochondrial centers marked), neighboring mitochondria are aligned along a rectangle, with distance between the centers equal to 1.97 +/- 0.43 and 1.43 +/- 0.43 microm in the longitudinal and transverse directions, respectively. In soleus (1,659 mitochondrial centers marked) and white gastrocnemius (621 pairs of mitochondria marked), mitochondria are mainly organized in pairs at the I-band level. Because of this organization, there are two distances characterizing mitochondrial distribution in the longitudinal direction in these muscles. The distance between mitochondrial centers in the longitudinal direction within the same I band is 0.91 +/- 0.11 and 0.61 +/- 0.07 microm in soleus and white gastrocnemius, respectively. The distance between mitochondrial centers in different I bands is approximately 3.7 and approximately 3.3 microm in soleus and gastrocnemius, respectively. In the transverse direction, the mitochondria are packed considerably closer to each other in soleus than in white gastrocnemius, with the distance equal to 0.75 +/- 0.22 microm in soleus and 1.09 +/- 0.41 microm in gastrocnemius. Our results show that intermyofibrillar mitochondria are arranged in a highly ordered crystal-like pattern in a muscle-specific manner with relatively small deviation in the distances between neighboring mitochondria. This is consistent with the concept of the unitary nature of the organization of the muscle energy metabolism.
Collapse
Affiliation(s)
- Marko Vendelin
- Group of Quantitative and Structural Bioenergetics, Laboratory of Fundamental and Applied Bioenergetics, Institut National de la Santé et de la Recherche Médicale E0221, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Ojeda C, Joseph P, Saks VA, Piriou V, Tourneur Y. Subcellular heterogeneity in mitochondrial red-ox responses to KATP channel agonists in freshly isolated rabbit cardiomyocytes. Mol Cell Biochem 2004; 256-257:367-77. [PMID: 14977195 DOI: 10.1023/b:mcbi.0000009882.61557.a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have used the technique of fluorescent microscopy imaging supplemented with the refined analysis of temporal cartography of the cell fluorescence to investigate the mechanisms of regulation of mitochondrial function and its red-ox state in cardiac cells in vivo. Autofluorescence of flavoproteins of the respiratory chain in the isolated rabbit cardiomyocytes was registered before and after application of mitochondrial KATP channel opener diazoxide (100 and 400 microM). Diazoxide addition resulted in oxidation of flavoproteins. Detailed analysis of these responses showed that they were heterogeneous over space and time. The local responses show rapid jumps. In a few cells, metabolic oscillations developed and could be recorded for tens of minutes. Under these conditions the cells appeared divided into a small number of regions in which mitochondria function synchronously. Local pattern of oxidation switches again and again from a reduced state to the same level of oxidation. All these phenomena where absent when the cells were permeabilized by saponin giving a direct access to mitochondrial KATP channel opener. Cross-correlation analysis revealed a high degree of homogeneity for cells presenting metabolic oscillations, contrarily to those displaying a smooth increase in fluorescence in response to diazoxide. The results are consistent with the view that mitochondria form independent functional units whose behaviour can be synchronised by some unknown cellular factors or metabolites.
Collapse
|
97
|
Kongas O, Wagner MJ, ter Veld F, Nicolay K, van Beek JHGM, Krab K. The mitochondrial outer membrane is not a major diffusion barrier for ADP in mouse heart skinned fibre bundles. Pflugers Arch 2004; 447:840-4. [PMID: 14722773 DOI: 10.1007/s00424-003-1214-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 11/05/2003] [Indexed: 12/01/2022]
Abstract
The response of mitochondrial oxygen consumption to ADP in saponin-skinned cardiac fibre bundles has an apparent Km an order of magnitude higher than that in isolated mitochondria. Here we report that incubating skinned cardiac fibre bundles from wild-type mice or double-knockout mice lacking both cytosolic and mitochondrial creatine kinase (CK) with CK and creatine or with yeast hexokinase and glucose as extramitochondrial ADP-producing systems decreases the apparent Km of the bundles for ADP severalfold. We conclude that the affinity of mitochondria for ADP in mouse heart is of the same order of magnitude as that of isolated mitochondria, while the high apparent Km of the bundles is caused by diffusion gradients outside the mitochondria.
Collapse
Affiliation(s)
- Olav Kongas
- Department of Mechanics and Applied Mathematics, Institute of Cybernetics, Tallinn Technical University, Akadeemia 21, 12618 Tallinn, Estonia.
| | | | | | | | | | | |
Collapse
|
98
|
Affiliation(s)
- Richard J Quigg
- Section of Nephrology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
99
|
Garlid KD, Dos Santos P, Xie ZJ, Costa ADT, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:1-21. [PMID: 14507424 DOI: 10.1016/s0005-2728(03)00109-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.
Collapse
Affiliation(s)
- Keith D Garlid
- Department of Biology, Portland State University, 1719 SW 10th Avenue, PO Box 751, Portland, OR 97207, USA.
| | | | | | | | | |
Collapse
|
100
|
Bruton J, Tavi P, Aydin J, Westerblad H, Lännergren J. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. J Physiol 2003; 551:179-90. [PMID: 12815178 PMCID: PMC2343157 DOI: 10.1113/jphysiol.2003.043927] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous studies on single fast-twitch fibres from mouse toe muscles have shown marked fatigue-induced changes in the free myoplasmic [Ca2+] ([Ca2+]i), while mitochondrial [Ca2+] remained unchanged. We have now investigated whether muscle fibres from the legs of mice respond in a similar way. Intact, single fibres were dissected from the soleus and extensor digitorum longus (EDL) muscles of adult mice. To measure [Ca2+]i, indo-1 was injected into the isolated fibres. Mitochondrial [Ca2+] was measured using Rhod-2 and confocal laser microscopy. Fatigue was induced by up to 1000 tetanic contractions (70 Hz) given at 2 s intervals. In soleus fibres, there was no significant decrease in tetanic [Ca2+]i at the end of the fatiguing stimulation, whereas tetanic force was significantly reduced by about 30 %. In 10 out of 14 soleus fibres loaded with Rhod-2 and subjected to fatigue, mitochondrial [Ca2+] increased to a maximum after about 50 tetani; this increase was fully reversed within 20 min after the end of stimulation. The force-frequency curve of the non-responding soleus fibres was shifted to higher frequencies compared to that of the responding fibres. In addition, eight out of nine Rhod-2-loaded EDL fibres showed similar changes in mitochondrial [Ca2+] during and after a period of fatiguing stimulation. The stimulation-induced increase in mitochondrial [Ca2+] was reduced when mitochondria were depolarised by application of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, whereas it was increased by application of an inhibitor of the mitochondrial Na+/Ca2+ exchange (CGP-37157). In conclusion, isolated slow-twitch muscle fibres show only modest changes in tetanic force and [Ca2+]i during repeated contractions. The increase in mitochondrial Ca2+ does not appear to be essential for activation of mitochondrial ATP production, nor does it cause muscle damage.
Collapse
Affiliation(s)
- Joseph Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|