51
|
Scharpf RB, Mireles L, Yang Q, Köttgen A, Ruczinski I, Susztak K, Halper-Stromberg E, Tin A, Cristiano S, Chakravarti A, Boerwinkle E, Fox CS, Coresh J, Linda Kao WH. Copy number polymorphisms near SLC2A9 are associated with serum uric acid concentrations. BMC Genet 2014; 15:81. [PMID: 25007794 PMCID: PMC4118309 DOI: 10.1186/1471-2156-15-81] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric acid levels is unknown. Results We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9 on chromosome 4p16.1 are associated with uric acid (χ2df2=3545, p=3.19×10-23). Effect sizes, expressed as the percentage change in uric acid per deleted copy, are most pronounced among women (3.974.935.87 [ 2.55097.5 denoting percentiles], p=4.57×10-23) and independent of previously reported SNPs in SLC2A9 as assessed by SNP and CNP regression models and the phasing SNP and CNP haplotypes (χ2df2=3190,p=7.23×10-08). Our finding is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable to ARIC in direction and magnitude (1.414.707.88, p=5.46×10-03). Conclusions This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large population-based studies where technical sources of variation are substantial.
Collapse
Affiliation(s)
- Robert B Scharpf
- 550 N, Broadway, Suite 1101, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Sahoo S, Aurich MK, Jonsson JJ, Thiele I. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol 2014; 5:91. [PMID: 24653705 PMCID: PMC3949408 DOI: 10.3389/fphys.2014.00091] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
Membrane transporters enable efficient cellular metabolism, aid in nutrient sensing, and have been associated with various diseases, such as obesity and cancer. Genome-scale metabolic network reconstructions capture genomic, physiological, and biochemical knowledge of a target organism, along with a detailed representation of the cellular metabolite transport mechanisms. Since the first reconstruction of human metabolism, Recon 1, published in 2007, progress has been made in the field of metabolite transport. Recently, we published an updated reconstruction, Recon 2, which significantly improved the metabolic coverage and functionality. Human metabolic reconstructions have been used to investigate the role of metabolism in disease and to predict biomarkers and drug targets. Given the importance of cellular transport systems in understanding human metabolism in health and disease, we analyzed the coverage of transport systems for various metabolite classes in Recon 2. We will review the current knowledge on transporters (i.e., their preferred substrates, transport mechanisms, metabolic relevance, and disease association for each metabolite class). We will assess missing coverage and propose modifications and additions through a transport module that is functional when combined with Recon 2. This information will be valuable for further refinements. These data will also provide starting points for further experiments by highlighting areas of incomplete knowledge. This review represents the first comprehensive overview of the transporters involved in central metabolism and their transport mechanisms, thus serving as a compendium of metabolite transporters specific for human metabolic reconstructions.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Maike K Aurich
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Jon J Jonsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland Reykjavik, Iceland ; Department of Genetics and Molecular Medicine, Landspitali, National University Hospital of Iceland Reykjavik, Iceland
| | - Ines Thiele
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| |
Collapse
|
53
|
Zhang W, Sumners LH, Siegel PB, Cline MA, Gilbert ER. Quantity of glucose transporter and appetite-associated factor mRNA in various tissues after insulin injection in chickens selected for low or high body weight. Physiol Genomics 2013; 45:1084-94. [DOI: 10.1152/physiolgenomics.00102.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chickens from lines selected for low (LWS) or high (HWS) body weight differ by 10-fold in body weight at 56 days old with differences in food intake, glucose regulation, and body composition. To evaluate if there are differences in appetite-regulatory factor and glucose transporter ( GLUT) mRNA that are accentuated by hypoglycemia, blood glucose was measured, and hypothalamus, liver, pectoralis major, and abdominal fat collected at 90 days of age from female HWS and LWS chickens, and reciprocal crosses, HL and LH, at 60 min after intraperitoneal injection of insulin. Neuropeptide Y ( NPY) and receptor ( NPYR) subtypes 1 and 5 mRNA were greater in LWS compared with HWS hypothalamus ( P < 0.05), but greater in HWS than LWS in fat ( P < 0.05). Expression of NPYR2 was greater in LWS than HWS in pectoralis major ( P < 0.05). There was greater expression in HWS than LWS for GLUT1 in hypothalamus and liver ( P < 0.05), GLUT2 in fat and liver ( P < 0.05), and GLUT9 in liver ( P < 0.05). Insulin was associated with reduced blood glucose in all populations ( P < 0.05) and reduced mRNA of insulin receptor ( IR) and GLUT 2 and 3 in liver ( P < 0.05). There was heterosis for mRNA, most notably NPYR1 (−78%) and NPYR5 (−81%) in fat and GLUT2 (−70%) in liver. Results suggest that NPY and GLUTs are associated with differences in energy homeostasis in LWS and HWS. Reduced GLUT and IR mRNA after insulin injection suggest a compensatory mechanism to prevent further hypoglycemia.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Lindsay H. Sumners
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Paul B. Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Mark A. Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
54
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
55
|
Regnault TRH, Gentili S, Sarr O, Toop CR, Sloboda DM. Fructose, pregnancy and later life impacts. Clin Exp Pharmacol Physiol 2013; 40:824-37. [DOI: 10.1111/1440-1681.12162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Timothy RH Regnault
- Department of Obstetrics and Gynaecology; Children's Health Research Institute; Western University; London ON Canada
| | - Sheridan Gentili
- School of Pharmacy and Medical Sciences; Sansom Institute for Health Research; University of South Australia; Adelaide SA Australia
| | - Ousseynou Sarr
- Department of Obstetrics and Gynaecology; Children's Health Research Institute; Western University; London ON Canada
| | - Carla R Toop
- School of Pharmacy and Medical Sciences; Sansom Institute for Health Research; University of South Australia; Adelaide SA Australia
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences; Faculty of Health Sciences; McMaster University; Hamilton ON Canada
| |
Collapse
|
56
|
Roy VK, Krishna A. The expression pattern of the glucose transporter GLUT-5 in the testis during the spermatogenic cycle of the vespertilionid bat Scotophilus heathi. Gen Comp Endocrinol 2013; 191:59-64. [PMID: 23751812 DOI: 10.1016/j.ygcen.2013.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022]
Abstract
The aims of this study were to investigate the localization and rate of expression of GLUT-5 protein during the spermatogenic cycle of Scotophilus heathi and to determine whether the expression of testicular GLUT-5 was under androgenic control. This study showed localization of GLUT-5 mainly in the spermatogonia, spermatids, spermatozoa and Leydig cells of the testis in S. heathi. Western blot analysis showed marked variation in the rate of expression of GLUT-5 protein in the testis during the reproductive cycle, in which peak expression of GLUT-5 in the testis coincided with the period of peak spermatogenesis and mating. Treatment with flutamide (an anti-androgen) caused a dose-dependent decrease in the expression of GLUT-5 protein in the testis that suggested that the expression of GLUT-5 was under androgenic control. We propose that GLUT-5 plays an important role in the transport into spermatozoa of the fuel that is required for prolonged storage in the female genital tract in S. heathi.
Collapse
Affiliation(s)
- Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl 796 004, India
| | | |
Collapse
|
57
|
Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34:413-35. [PMID: 23506881 DOI: 10.1016/j.mam.2012.10.010] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/18/2012] [Indexed: 12/14/2022]
Abstract
The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, 97070 Würzburg, Germany.
| |
Collapse
|
58
|
George RL, Keenan RT. Genetics of hyperuricemia and gout: implications for the present and future. Curr Rheumatol Rep 2013; 15:309. [PMID: 23307580 DOI: 10.1007/s11926-012-0309-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gout is the most common inflammatory arthropathy and occurs in the setting of elevated serum urate levels. Gout is also known to be associated with multiple comorbidities including cardiovascular disease and the metabolic syndrome. Recent advances in research have increased our understanding and improved our knowledge of the pathophysiology of gout. Genome-wide association studies have permitted the identification of several new and common genetic factors that contribute to hyperuricemia and gout. Most of these are involved with the renal urate transport system (the uric acid transportasome), generally considered the most influential regulator of serum urate homeostasis. Thus far, SCL22A12, SCL2A9, and GLUT9 have been found to have the greatest variation and most influence on serum urate levels. However, genetics are only a part of the explanation in the development of hyperuricemia and gout. As results have been mixed, the role of known urate influential genes in gout's associated comorbidities remains unclear. Regardless, GWAS findings have expanded our understanding of the pathophysiology of hyperuricemia and gout, and will likely play a role in the development of future therapies and treatment of this ancient disease.
Collapse
Affiliation(s)
- Ronald L George
- Division of Rheumatology and Immunology, Duke University School of Medicine, DUMC, NC 27710, USA
| | | |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW Reabsorption of glucose in the proximal tubule occurs predominantly via the sodium glucose cotransporter 2 (SGLT2). There has been intense interest in this transporter as a number of SGLT2 inhibitors have entered clinical development. SGLT2 inhibitors act to lower plasma glucose by promoting glycosuria and this review aims to outline the effect on the diabetic kidney of this hypoglycaemic agent. RECENT FINDINGS This review provides an overview of recent findings in this area: the transcriptional control of SGLT2 expression in human proximal tubular cells implicates a number of cytokines in the alteration of SGLT2 expression; experimental data show that SGLT2 inhibition may correct early detrimental effects of diabetes by reducing proximal tubular sodium and glucose transport, suggesting a possible renoprotective effect independent of the glucose lowering effects of these agents; and the nonglycaemic effects of SGLT2 inhibitors may have an impact on renal outcomes. SUMMARY The available clinical evidence shows consistent reduction in glycaemic parameters and some evidence suggests additional effects including weight loss and mild blood pressure reduction. There are some side effects that warrant further investigation and establishing whether SGLT2 inhibition provides a renal benefit relies on future long-term studies with specific renal end-points.
Collapse
|
60
|
Bibee KP, Augustin R, Gazit V, Moley KH. The apical sorting signal for human GLUT9b resides in the N-terminus. Mol Cell Biochem 2013; 376:163-73. [PMID: 23361362 DOI: 10.1007/s11010-013-1564-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/18/2013] [Indexed: 12/11/2022]
Abstract
The two splice variants of human glucose transporter 9 (hGLUT9) are targeted to different polarized membranes. hGLUT9a traffics to the basolateral membrane, whereas hGLUT9b traffics to the apical region. This study examines the sorting mechanism of these variants, which differ only in their N-terminal domain. Mutating a di-leucine motif unique to GLUT9a did not affect targeting. Chimeric proteins were made using GLUT1, a basolaterally targeted transporter, and GLUT3, an apically targeted protein whose signal lies in the C-terminus. Overexpression of the chimeric proteins in polarized cells demonstrates that the N-terminus of hGLUT9b contains a signal capable of redirecting GLUT1 to the apical membrane. The N-terminus of hGLUT9a, however, does not contain a basolateral signal sufficient enough to redirect GLUT3. Portions of the GLUT9a N-terminus were substituted with corresponding portions of the GLUT9b N-terminus to determine the motif responsible for apical targeting. The first 16 amino acids were not found to be a sufficient apical signal. The last ten amino acids of the N-termini differ only in amino-acid class at one location. In the B-form, leucine, a hydrophobic residue, is substituted for lysine, a basic residue, found in the A-form. However, mutation of the leucine in hGLUT9b to a lysine resulted in retention of the apical signal. We therefore believe the apical signal exists as an interplay between the final ten amino acids of the N-terminus and another motif within the protein such as the intracellular loop or other motifs within the N-terminus.
Collapse
Affiliation(s)
- Kristin P Bibee
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
61
|
Pyla R, Poulose N, Jun JY, Segar L. Expression of conventional and novel glucose transporters, GLUT1, -9, -10, and -12, in vascular smooth muscle cells. Am J Physiol Cell Physiol 2013; 304:C574-89. [PMID: 23302780 DOI: 10.1152/ajpcell.00275.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intimal hyperplasia is characterized by exaggerated proliferation of vascular smooth muscle cells (VSMCs). Enhanced VSMC growth is dependent on increased glucose uptake and metabolism. Facilitative glucose transporters (GLUTs) are comprised of conventional GLUT isoforms (GLUT1-5) and novel GLUT isoforms (GLUT6-14). Previous studies demonstrate that GLUT1 overexpression or GLUT10 downregulation contribute to phenotypic changes in VSMCs. To date, the expression profile of all 14 GLUT isoforms has not been fully examined in VSMCs. Using the proliferative and differentiated phenotypes of human aortic VSMCs, the present study has determined the relative abundance of GLUT1-14 mRNAs by quantitative real-time PCR analysis. Twelve GLUT mRNAs excluding GLUT7 and GLUT14 were detectable in VSMCs. In the proliferative phenotype, the relative abundance of key GLUT mRNAs was GLUT1 (∼43%)>GLUT10 (∼26%)>GLUT9 (∼13%)>GLUT12 (∼4%), whereas in the differentiated phenotype the relative abundance was GLUT10 (∼28%)>GLUT1 (∼25%)>GLUT12 (∼20%)>GLUT9 (∼14%), together constituting 86-87% of total GLUT transcripts. To confirm the expression of key GLUT proteins, immunoblot and immunocytochemical analyses were performed using GLUT isoform-specific primary antibodies. The protein bands characteristic of GLUT1, -9, -10, and -12 were detected in VSMCs in parallel with respective positive controls. In particular, GLUT1 protein expression showed different molecular forms representative of altered glycosylation. While GLUT1 protein displayed a predominant distribution in the plasma membrane, GLUT9, -10, and -12 proteins were mostly distributed in the intracellular compartments. The present study provides the first direct evidence for GLUT9 and GLUT12 expression in VSMCs in conjunction with the previously identified GLUT1 and GLUT10.
Collapse
Affiliation(s)
- Rajkumar Pyla
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912-2450, USA
| | | | | | | |
Collapse
|
62
|
Yacovino LL, Aleksunes LM. Endocrine and metabolic regulation of renal drug transporters. J Biochem Mol Toxicol 2012; 26:407-21. [PMID: 22933250 DOI: 10.1002/jbt.21435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/22/2012] [Accepted: 07/21/2012] [Indexed: 12/15/2022]
Abstract
Renal xenobiotic transporters are important determinants of urinary secretion and reabsorption of chemicals. In addition to glomerular filtration, these processes are key to the overall renal clearance of a diverse array of drugs and toxins. Alterations in kidney transporter levels and function can influence the efficacy and toxicity of chemicals. Studies in experimental animals have revealed distinct patterns of renal transporter expression in response to sex hormones, pregnancy, and growth hormone. Likewise, a number of disease states including diabetes, obesity, and cholestasis alter the expression of kidney transporters. The goal of this review is to provide an overview of the major xenobiotic transporters expressed in the kidneys and an understanding of metabolic conditions and hormonal factors that regulate their expression and function.
Collapse
Affiliation(s)
- Lindsay L Yacovino
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
63
|
Witkowska K, Smith KM, Yao SYM, Ng AML, O'Neill D, Karpinski E, Young JD, Cheeseman CI. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol 2012; 303:F527-39. [PMID: 22647630 DOI: 10.1152/ajprenal.00134.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human SLC2A9 (GLUT9) is a novel high-capacity urate transporter belonging to the facilitated glucose transporter family. In the present study, heterologous expression in Xenopus oocytes has allowed us to undertake an in-depth radiotracer flux and electrophysiological study of urate transport mediated by both isoforms of SLC2A9 (a and b). Addition of urate to SLC2A9-producing oocytes generated outward currents, indicating electrogenic transport. Urate transport by SLC2A9 was voltage dependent and independent of the Na(+) transmembrane gradient. Urate-induced outward currents were affected by the extracellular concentration of Cl(-), but there was no evidence for exchange of the two anions. [(14)C]urate flux studies under non-voltage-clamped conditions demonstrated symmetry of influx and efflux, suggesting that SLC2A9 functions in urate efflux driven primarily by the electrochemical gradient of the cell. Urate uptake in the presence of intracellular hexoses showed marked differences between the two isoforms, suggesting functional differences between the two splice variants. Finally, the permeant selectivity of SLC2A9 was examined by testing the ability to transport a panel of radiolabeled purine and pyrimidine nucleobases. SLC2A9 mediated the uptake of adenine in addition to urate, but did not function as a generalized nucleobase transporter. The differential expression pattern of the two isoforms of SLC2A9 in the human kidney's proximal convoluted tubule and its electrogenic transport of urate suggest that these transporters play key roles in the regulation of plasma urate levels and are therefore potentially important participants in hyperuricemia and hypouricemia.
Collapse
Affiliation(s)
- Kate Witkowska
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
This Review covers the rationale, physiological consequences and clinical application of pharmacological sodium-glucose cotransporter 2 (SGLT2) inhibition. In patients with type 2 diabetes mellitus, in whom renal glucose reabsorption might be upregulated, orally active, selective SGLT2 inhibitors improve glycaemic control to a therapeutically useful extent. Chronic administration of several SGLT2 inhibitors dose-dependently lowers HbA(1c) levels by 0.5-1.5% without causing hypoglycaemia. The unique mechanism of action of SGLT2 inhibitors-which does not hinge upon β-cell function or tissue insulin sensitivity-means that they can exert their antihyperglycaemic effects in combination with any other oral antidiabetic drug as well as insulin. Available phase III studies confirm a good tolerability profile. Weight loss owing to urinary calorie leakage may be less than expected, but the negative energy balance offers a valuable clinical benefit. Offloading of sodium can assist blood pressure control. The progressive loss of efficacy in patients with reduced glomerular function will have to be balanced against the possibility of renal protection. The safety issues of genitourinary infections and cancer risk requires careful, proactive monitoring and analysis of robust exposure data, particularly in elderly, frail patients and in patients with impaired kidney function and/or high cardiovascular/cancer risk, who represent an increasing fraction of the population with diabetes mellitus.
Collapse
Affiliation(s)
- Ele Ferrannini
- Department of Internal Medicine, University of Pisa School of Medicine, Via Roma 67, 56100 Pisa, Italy.
| | | |
Collapse
|
65
|
Abstract
Elevated serum levels of uric acid consistently correlate with hypertension, but the directionality of the association remains debated. To help define this relationship, we used a controlled setting within a homogeneous Amish community and the Mendelian randomization of a nonsynonymous coding single-nucleotide polymorphism, rs16890979 (Val253Ile), in the SLC2A9 gene. This gene expresses the GLUT9 transporter that also transports uric acid and is associated with lower serum uric acid levels. We studied the unconfounded association between genotype and blood pressure in 516 Amish adults, each placed for 6 days on standardized diets, first with high sodium, followed by low sodium, with an intervening washout period. Blood pressure, measured using 24-h ambulatory monitoring, during both diet periods was used as the primary outcome. All participants were free of diuretic or other antihypertensive medications and the relationships between GLUT9 genotype and both serum uric acid and blood pressure were assessed. Each copy of the GLUT9 minor Ile allele was found to confer a significant 0.44 mg/dl reduction in serum uric acid and was associated with a significant mean decrease in the systolic blood pressure of 2.2 and 1.5 mm Hg on the high- and low-sodium diet, respectively. Thus, a Mendelian randomization analysis using variants in the GLUT9 gene indicates that a decrease in serum uric acid has a causal effect of lowering blood pressure.
Collapse
|
66
|
Mellor KM, Ritchie RH, Davidoff AJ, Delbridge LMD. Elevated dietary sugar and the heart: experimental models and myocardial remodeling. Can J Physiol Pharmacol 2010; 88:525-40. [PMID: 20555422 DOI: 10.1139/y10-005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A dramatic rise in the prevalence of insulin resistance has been paralleled by increasing dietary consumption of sugar. The use of added sweeteners containing fructose (sucrose and high-fructose corn syrup) has increased by 25% over the past 3 decades. High fructose intake has the potential to adversely influence systemic and cellular metabolism via insulin resistance and glycolytic dysregulation. As a tissue that is both insulin sensitive and glycolysis dependent, the heart may be especially vulnerable to fructose over-consumption. In this review, experimental studies of elevated dietary sugar intake are evaluated, including sucrose and fructose dietary manipulation models. The possible role of the GLUT5 transporter as a mediator of cardiomyocyte fructose uptake is considered. The impact of dietary sucrose and fructose on cardiac insulin-dependent signaling in the context of perturbed systemic metabolic response is detailed. Myocardial dysfunction, modified growth, and oxidative stress responses associated with high dietary sugar intake are discussed. Finally, the involvement of the renin-angiotensin system in mediating fructose cardiopathology is considered. This review highlights the importance of obtaining new mechanistic data that can contribute to a more developed understanding of how high sugar intake directly contributes to structural and functional cardiomyopathy.
Collapse
Affiliation(s)
- Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | |
Collapse
|
67
|
Abstract
Arthritic pain and disability are at or near the top of the list of reasons adult patients seek medical attention. At least 47.8 million US residents have arthritis. In Europe, the magnitude of the problem is similar, affecting 8 million in the United Kingdom and 108 million across the continent. Osteoarthritis is by far the most common form of arthritis. In a regional UK study, nearly half of adults 50 years or older reported some form of osteoarthritic knee pain over a 1-year period. Among the arthritides, gout is notable for the agonizing nature and unique pathogenesis of the pain it generates. Gout is the most common cause of inflammatory arthritis among men and postmenopausal women. Because of the atypical nature of some of its clinical manifestations, gout can present serious diagnostic challenges for practicing physicians. In recent years, knowledge about gout's pathogenesis, pathophysiology, and differential diagnosis has advanced on a broad front. Genetic variants within a newly identified transport gene, SLC2A9, have been associated with a low fractional excretion of uric acid and the presence of gout in several population samples. The SLC2A9 gene encodes glucose transporter 9-a unique hexose and high-capacity urate transporter. In addition, human ATP-binding cassette, subfamily G2 (ABCG2), encoded by the ABCG2 gene, has been found to mediate renal urate secretion. Introduction of a mutation encoded in a model system by a common single nucleotide polymorphism, rs2231142, resulted in a 53% reduction in urate transport rates compared with wild-type ABCG2. Based on a large population study, it has been estimated that at least 10% of all gout cases in white persons may be attributable to this single nucleotide polymorphism causal genetic variant. Of the various categories of arthritis, the crystal-induced arthropathies, gout and pseudogout, are manifested by acute inflammation and tissue damage arising from deposition in joints and periarticular tissues of monosodium urate (MSU), calcium pyrophosphate dehydrate, or basic calcium phosphate crystals. The innate immune system rapidly detects invading pathogenic microbes and nonmicrobial "danger signals" such as MSU crystals. When these crystals are deposited in synovial tissues, NLR proteins (NOD-like receptors) form multiprotein complexes known as inflammasomes that trigger secretion of inflammation-producing cytokines like interleukin-1β and interleukin-18. Usually, gout can be diagnosed by medical history, physical examination, and presence of hyperuricemia (urate >416 μmol/L). However, a urate concentration less than 416 does not by itself rule out gout. Confirmation of the diagnosis by identification of typical MSU crystals in aspirated synovial fluid is definitive. Analysis of joint fluid is mandatory to rule out septic arthritis, which can rapidly become lethal. Because of its special ability to identify and quantitate urate deposits in peripheral tissues, dual-energy computed tomography should prove valuable in the differential diagnosis of gout. Gout mimics a variety of illnesses; for example, spinal gout may masquerade as metastatic cancer, epidural abscess, and nerve compression syndrome.
Collapse
Affiliation(s)
- Theodore B VanItallie
- St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY 10025, USA.
| |
Collapse
|
68
|
Abstract
The ability to take up and metabolize glucose at the cellular level is a property shared by the vast majority of existing organisms. Most mammalian cells import glucose by a process of facilitative diffusion mediated by members of the Glut (SLC2A) family of membrane transport proteins. Fourteen Glut proteins are expressed in the human and they include transporters for substrates other than glucose, including fructose, myoinositol, and urate. The primary physiological substrates for at least half of the 14 Glut proteins are either uncertain or unknown. The well-established glucose transporter isoforms, Gluts 1-4, are known to have distinct regulatory and/or kinetic properties that reflect their specific roles in cellular and whole body glucose homeostasis. Separate review articles on many of the Glut proteins have recently appeared in this journal. Here, we provide a very brief summary of the known properties of the 14 Glut proteins and suggest some avenues of future investigation in this area.
Collapse
Affiliation(s)
- Bernard Thorens
- Department of Physiology and Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
69
|
Calvo MB, Figueroa A, Pulido EG, Campelo RG, Aparicio LA. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int J Endocrinol 2010; 2010:205357. [PMID: 20706540 PMCID: PMC2913528 DOI: 10.1155/2010/205357] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/20/2010] [Indexed: 12/18/2022] Open
Abstract
Sugars, primarily glucose and fructose, are the main energy source of cells. Because of their hydrophilic nature, cells use a number of transporter proteins to introduce sugars through their plasma membrane. Cancer cells are well known to display an enhanced sugar uptake and consumption. In fact, sugar transporters are deregulated in cancer cells so they incorporate higher amounts of sugar than normal cells. In this paper, we compile the most significant data available about biochemical and biological properties of sugar transporters in normal tissues and we review the available information about sugar carrier expression in different types of cancer. Moreover, we describe the possible pharmacological interactions between drugs currently used in anticancer therapy and the expression or function of facilitative sugar transporters. Finally, we also go into the insights about the future design of drugs targeted against sugar utilization in cancer cells.
Collapse
Affiliation(s)
- Moisés Blanco Calvo
- Biomedical Research Institute, A Coruña University Hospital, As Xubias 84, 15006 A Coruña, Spain
| | - Angélica Figueroa
- Biomedical Research Institute, A Coruña University Hospital, As Xubias 84, 15006 A Coruña, Spain
| | - Enrique Grande Pulido
- Clinical Oncology Department, Ramón y Cajal University Hospital, Ctra. de Colmenar Viejo Km. 9,100, 28034 Madrid, Spain
| | - Rosario García Campelo
- Clinical Oncology Department, A Coruña University Hospital, As Xubias 84, 15006 A Coruña, Spain
| | - Luís Antón Aparicio
- Clinical Oncology Department, A Coruña University Hospital, As Xubias 84, 15006 A Coruña, Spain
- Medicine Department, University of A Coruña, Oza s/n, 15006 A Coruña, Spain
- *Luís Antón Aparicio:
| |
Collapse
|