51
|
Wettstein M, Peters-Regehr T, Kubitz R, Fischer R, Holneicher C, Mönnighoff I, Häussinger D. Release of osmolytes induced by phagocytosis and hormones in rat liver. Am J Physiol Gastrointest Liver Physiol 2000; 278:G227-33. [PMID: 10666046 DOI: 10.1152/ajpgi.2000.278.2.g227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Betaine, taurine, and inositol participate as osmolytes in liver cell volume homeostasis and interfere with cell function. In this study we investigated whether osmolytes are also released from the intact liver independent of osmolarity changes. In the perfused rat liver, phagocytosis of carbon particles led to a four- to fivefold stimulation of taurine efflux into the effluent perfusate above basal release rates. This taurine release was inhibited by 70-80% by the anion exchange inhibitor DIDS or by pretreatment of the rats with gadolinium chloride. Administration of vasopressin, cAMP, extracellular ATP, and glucagon also increased release of betaine and/or taurine, whereas insulin, extracellular UTP, and adenosine were without effect. In isolated liver cells, it was shown that parenchymal cells and sinusoidal endothelial cells, but not Kupffer cells and hepatic stellate cells, release osmolytes upon hormone stimulation. This may be caused by a lack of hormone receptor expression in these cells, because single-cell fluorescence measurements revealed an increase of intracellular calcium concentration in response to vasopressin and glucagon in parenchymal cells and sinusoidal endothelial cells but not in Kupffer cells and hepatic stellate cells. The data show that Kupffer cells release osmolytes during phagocytosis via DIDS-sensitive anion channels. This mechanism may be used to compensate for the increase in cell volume induced by the ingestion of phagocytosable material. The physiological significance of hormone-induced osmolyte release remains to be evaluated.
Collapse
Affiliation(s)
- M Wettstein
- Clinic for Gastroenterology, Hepatology, and Infectious Disease, Heinrich Heine University, 40255 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
52
|
Aon MA, Cortassa S, Iglesias AA. Effects of stress on cellular infrastructure and metabolic organization in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:239-73. [PMID: 10494628 DOI: 10.1016/s0074-7696(08)62398-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ample evidence shows the role of cytoskeleton mainly in cell division, cell form, and general orientation by the perception of physical forces such as gravity and mechanical ones in plant cells. However, the problem of how cytoskeleton organization and its dynamics at the cellular level in turn affects main metabolic pathways of gene expression and cellular energetics is yet unsolved. The response given by cells to environmental challenges such as stress responses is crucially dependent on the organization of their architecture. Drought, high salinity, and low temperature are sensed by plants as a water stress condition. The latter is known to entrain a series of physiological and metabolic changes at the cellular level. This review hypothesizes that the cytoskeletal network of plant cells and tissues may transduce environmental stress into changes in the organization and dynamics of metabolism and gene expression. Accordingly, experimental evidence concerning the current models of cytoplasmic architecture that have emerged in recent years and the effects of stress on the cytostructure are analyzed.
Collapse
Affiliation(s)
- MA Aon
- Instituto Tecnologico de Chascomus (INTECH-CONICET), Chascomus, Argentina
| | | | | |
Collapse
|
53
|
Goswami C, Saha N. Glucose, pyruvate and lactate efflux by the perfused liver of a teleost, Clarias batrachus during aniso-osmotic exposure. Comp Biochem Physiol A Mol Integr Physiol 1998. [DOI: 10.1016/s1095-6433(98)00017-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Wehner F, Tinel H. Role of Na+ conductance, Na(+)-H+ exchange, and Na(+)-K(+)-2Cl- symport in the regulatory volume increase of rat hepatocytes. J Physiol 1998; 506 ( Pt 1):127-42. [PMID: 9481677 PMCID: PMC2230698 DOI: 10.1111/j.1469-7793.1998.127bx.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. In rat hepatocytes under hypertonic stress, the entry of Na+ (which is thereafter exchanged for K+ via Na(+)-K(+)-ATPase) plays the key role in regulatory volume increase (RVI). 2. In the present study, the contributions of Na+ conductance, Na(+)-H+ exchange and Na(+)-K(+)-2Cl- symport to this process were quantified in confluent primary cultures by means of intracellular microelectrodes and cable analysis, microfluorometric determinations of cell pH and buffer capacity, and measurements of frusemide (furosemide)/bumetanide-sensitive 86Rb+ uptake, respectively. Osmolarity was increased from 300 to 400 mosmol l-1 by addition of sucrose. 3. The experiments indicate a relative contribution of approximately 4:1:1 to hypertonicity-induced Na+ entry for the above-mentioned transporters and the overall Na+ yield equalled 51 mmol l-1 (10 min)-1. 4. This Na+ gain is in good agreement with the stimulation of Na+ extrusion via Na(+)-K(+)-ATPase plus the actual increase in cell Na+, namely 55 mmol l-1 (10 min)-1, as we determined on the basis of ouabain-sensitive 86Rb+ uptake and by means of Na(+)-sensitive microelectrodes, respectively. 5. The overall increase in Na+ and K+ activity plus the expected concomitant increase in cell Cl- equalled 68 mmol l-1, which fits well with the increase in osmotic activity expected to occur from an initial cell shrinkage to 87.5% and a RVI to 92.6% of control, namely 53 mosmol l-1. 6. The prominent role of Na+ conductance in the RVI of rat hepatocytes could be confirmed on the basis of the pharmacological profile of this process, which was characterized by means of confocal laser-scanning microscopy.
Collapse
Affiliation(s)
- F Wehner
- Max-Planck-Institut für molekulare Physiologie, Abteilung Epithelphysiologie, Dortmund, Germany.
| | | |
Collapse
|
55
|
Leclercq P, Filippi C, Sibille B, Hamant S, Keriel C, Leverve XM. Inhibition of glycerol metabolism in hepatocytes isolated from endotoxic rats. Biochem J 1997; 325 ( Pt 2):519-25. [PMID: 9230136 PMCID: PMC1218590 DOI: 10.1042/bj3250519] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sepsis or endotoxaemia inhibits gluconeogenesis from various substrates, the main effect being related to a change in the phosphoenolpyruvate carboxykinase transcription rate. In addition, sepsis has been reported to affect the oxidative phosphorylation pathway. We have studied glycerol metabolism in hepatocytes isolated from rats fasted and injected 16 h previously with lipopolysaccharide from Escherichia coli. Endotoxin inhibited glycerol metabolism and led to a very large accumulation of glycerol 3-phosphate; the cytosolic reducing state was increased. Furthermore glycerol kinase activity was increased by 33% (P<<0.01). The respiratory rate of intact cells was significantly decreased by sepsis, with glycerol or octanoate as exogenous substrates, whereas oxidative phosphorylation (ATP-to-O ratio or respirations in state 4, state 3 and the oligomycin-insensitive state as well as the uncoupled state) was unchanged in permeabilized hepatocytes. Hence the effect on energy metabolism seems to be present only in intact hepatocytes. An additional important feature was the observation of a significant increase in cellular volume in cells from endotoxic animals, which might account for the alterations induced by sepsis.
Collapse
Affiliation(s)
- P Leclercq
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Université Joseph Fourier, Bâtiment 72 Biologie, BP 53X, 38041 Grenoble-Cedex 09, France
| | | | | | | | | | | |
Collapse
|
56
|
Waldegger S, Barth P, Raber G, Lang F. Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci U S A 1997; 94:4440-5. [PMID: 9114008 PMCID: PMC20741 DOI: 10.1073/pnas.94.9.4440] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hepatic metabolism and gene expression are among other regulatory mechanisms controlled by the cellular hydration state, which changes rapidly in response to anisotonicity, concentrative substrate uptake, oxidative stress, and under the influence of hormones such as insulin and glucagon. Differential screening for cell volume sensitive transcripts in a human hepatoma cell line revealed a gene for a putative serine/threonine kinase, h-sgk, which has 98% sequence identity to a serum- and glucocorticoid regulated kinase, sgk, cloned from a rat mammary tumor cell line. h-sgk transcript levels were strongly altered during anisotonic and isotonic cell volume changes. Within 30 min h-sgk RNA was, independent of de novo protein synthesis, induced upon cell shrinkage and, due to a complete stop in h-sgk transcription, reduced upon cell swelling. Comparable changes of sgk transcript levels were observed in a renal epithelial cell line. h-sgk mRNA was detected in all human tissues tested, with the highest levels in pancreas, liver, and heart. The putative serine/threonine protein kinase h-sgk may provide a functional link between the cellular hydration state and metabolic control.
Collapse
Affiliation(s)
- S Waldegger
- Physiologisches Institut I der Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
57
|
Minetti G, Piccinini G, Balduini C, Seppi C, Brovelli A. Tyrosine phosphorylation of band 3 protein in Ca2+/A23187-treated human erythrocytes. Biochem J 1996; 320 ( Pt 2):445-50. [PMID: 8973551 PMCID: PMC1217950 DOI: 10.1042/bj3200445] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human erythrocytes were induced to release membrane vesicles by treatment with Ca2+ and ionophore A23187. In addition to the biochemical changes already known to accompany loading of human erythrocytes with Ca2+, the present study reveals that tyrosine phosphorylation of the anion exchanger band 3 protein also occurs. The relationship between tyrosine phosphorylation of band 3 and membrane vesiculation was analysed using quinine (a non-specific inhibitor of the Ca(2+)-activated K+ channel, and the only known inhibitor of Ca(2+)-induced vesiculation) and charybdotoxin, a specific inhibitor of the apamin-insensitive K(+)-channel. Both inhibitors suppressed tyrosine phosphorylation of band 3. In the presence of quinine, membrane vesiculation was also suppressed. In contrast, at the concentration of charybdotoxin required to suppress tyrosine phosphorylation of band 3, membrane vesiculation was only mildly inhibited (16-23% inhibition), suggesting that tyrosine phosphorylation of band 3 is not necessary for membrane vesiculation. Phosphorylation of band 3 was in fact observed when erythrocytes were induced to shrink in a Ca(2+)-independent manner, e.g. by treatment with the K+ ionophore valinomycin or with hypertonic solutions. These observations suggest that band 3 tyrosine phosphorylation occurs when cell volume regulation is required.
Collapse
Affiliation(s)
- G Minetti
- Dipartimento di Biochimica A. Castellani, Università di Pavia, Italy
| | | | | | | | | |
Collapse
|
58
|
Vieira LL, Lafuente E, Gamarro F, Cabantchik Z. An amino acid channel activated by hypotonically induced swelling of Leishmania major promastigotes. Biochem J 1996; 319 ( Pt 3):691-7. [PMID: 8920968 PMCID: PMC1217844 DOI: 10.1042/bj3190691] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Leishmania promastigotes accumulate amino acids (AAs) by an uphill transport mechanism that is dependent on membrane potential. The accumulated AAs provide the cell with an osmotic reservoir that can be utilized for osmoregulation. Exposure of Leishmania promastigotes to hypotonic media induced a rapid release of AAs that was proportional to the imposed osmotic gradients and independent of the ionic strength or the presence of Cl-, K+, Na+ or Ca2+ in the medium. The hypotonically activated AA release pathway was of relatively low chemical specificity. The solutes released included most of the zwitterionic and anionic AAs, predominantly alanine, hydroxyproline, glycine and glutamic acid, whereas cationic AAs were virtually excluded. AA release was markedly blocked by classical anion transport inhibitors such as the disulphonic stilbene 4,4'-diisothiocyanostilbene-2,2'-disulphonate (DIDS) and its dihydro derivative H2DIDS and others, by restoration of isotonicity or by lowering the temperature (4 degrees C). The temperature profile of AA release showed a low energy of activation (Ea 46 +/- 1.3 (S.E.M.) kJ/mol) in the range 15-30 degrees C and a very high Ea (147 +/- 8 kJ/mol) in the range 4-15 degrees C. Parasites exposed to hypotonic media containing AAs also showed a hypotonically stimulated AA uptake under favourable solute concentration gradients. This uptake was analogous for L- and D-isomers of threonine. After hypotonic exposure, cells underwent a depolarization that was largely prevented by anion transport blockers. On the basis of all these results we propose that after hypotonic stress Leishmania promastigotes restore their internal volume by a regulated release of AAs, which involves activation of channels that allow the passage of both neutral and anionic AAs and possibly other anionic substances.
Collapse
Affiliation(s)
- L L Vieira
- Department of Biological Chemistry, Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
59
|
Basavappa S, Ellory JC. The role of swelling-induced anion channels during neuronal volume regulation. Mol Neurobiol 1996; 13:137-53. [PMID: 8938648 DOI: 10.1007/bf02740638] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Regulation of cell volume is an essential function of most mammalian cells. In the cells of the central nervous system, maintenance of cell osmolarity and, hence, volume, is particularly crucial because of the restrictive nature of the skull. Cell volume regulation involves a variety of pathways, with considerable differences between cell types. One common pathway activated during hypo-osmotic stress involves chloride (Cl-) channels. However, hypo-osmotically stimulated anion permeability can be regulated by a diverse array of second messengers. Although neuronal swelling can occur in a number of pathological and nonpathological conditions, our understanding of neuronal volume regulation is limited. This article summarizes our current understanding of the role of anion channels during neuronal volume regulation.
Collapse
Affiliation(s)
- S Basavappa
- University Laboratory of Physiology, University of Oxford, UK
| | | |
Collapse
|
60
|
Schreiber R, Zhang F, Häussinger D. Regulation of vesicular pH in liver macrophages and parenchymal cells by ammonia and anisotonicity as assessed by fluorescein isothiocyanate-dextran fluorescence. Biochem J 1996; 315 ( Pt 2):385-92. [PMID: 8615804 PMCID: PMC1217207 DOI: 10.1042/bj3150385] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short-term-cultivated rat hepatocytes and Kupffer cells were allowed to endocytose fluorescein isothiocyanate (FITC)-coupled dextran, in order to study the effects of aniso-osmotic exposure and NH4Cl on apparent vesicular pH (pHves) by single-cell fluorescence. Following a 2 h loading period with FITC-dextran in normo-osmotic (305 mosmol/l) medium, the apparent pHves was 6.01 +/- 0.05 (n = 39) in parenchymal cells and 4.94 +/- 0.04 (n = 76) in Kupffer cells. Under these conditions pHves in parenchymal cells, but not in Kupffer cells, was sensitive to changes in ambient osmolarity. Inhibition of vacuolar H(+)-ATPase by concanamycin A did not affect the osmosensitivity of pHves in parenchymal cells. However, the effects of anisotonicity on pHves were largely abolished in the presence of 4.4'-di-isothiocyanato-stibene-2,2'-disulphonic acid (DIDS) or when extracellular chloride was substituted for gluconate. In neither Kupffer cells, nor liver parenchymal cells did hypo-osmotic cell swelling cause an increase in intracellular Ca2+. With regard to vesicular acidification, the following differences were noted between parenchymal and Kupffer cells. (1) In Kupffer cells endocytosed FITC-dextran reached a strongly acidic compartment with a pH value of approx. 5 within 5 min, whereas it took 4-5 h in parenchymal cells. Modification of pHves by hypo-osmolarity in Kupffer cells was only observed in a short-lived "early' compartment with a pH value of approx. 6. (2) In contrast to pHves in parenchymal cells, pHves in Kupffer cells was very sensitive towards alkalinization by NH4Cl: addition of NH4Cl at 1 or 10 mM increased apparent pHves by 0.80 or 1.46 in Kupffer cells, but only by 0.18 or 0.56 in parenchymal cells. The low ammonia sensitivity of pHves in parenchymal cells was observed not only a the less acidic (pH approx. 6) endocytotic compartment which is reached by FITC-dextran within 2 h, but also in the stronger acidic compartment (pH approx. 5) which is reached after 4-5 h. (3) NH4Cl had no effect on the osmosensitivity of pHves in parenchymal cells, whereas in Kupffer cells pHves became sensitive to anisotonicity when NH4Cl was present. Osmosensitivity of pHves in Kupffer cells under these conditions, however, was not affected by genistein, DIDS or colchicine, whereas these compounds abolished the osmosensitivity of pHves in parenchymal cells. It is suggested that regulation of pHves by cell volume in liver parenchymal cells involves changes of vesicular chloride conductance. In addition, there are marked differences between Kupffer and parenchymal cells with respect to vesicular ammonia permeability and the kinetics of endocytotic membrane flow and acidification.
Collapse
Affiliation(s)
- R Schreiber
- Klinik für Gastroenterologie, Heinrich Heine Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
61
|
Affiliation(s)
- D Häussinger
- Medizinische Universitätsklinik, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
62
|
Zhang F, Warskulat U, Wettstein M, Schreiber R, Henninger HP, Decker K, Häussinger D. Hyperosmolarity stimulates prostaglandin synthesis and cyclooxygenase-2 expression in activated rat liver macrophages. Biochem J 1995; 312 ( Pt 1):135-43. [PMID: 7492303 PMCID: PMC1136236 DOI: 10.1042/bj3120135] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of aniso-osmotic exposure on the level of inducible cyclooxygenase (Cox-2) and on prostanoid synthesis was studied in cultured rat liver macrophages (Kupffer cells). In lipopolysaccharide (LPS)- or phorbol 12-myristate 13-acetate-stimulated Kupffer cells, hyperosmotic (355 mosmol/l) exposure, due to addition of NaCl or impermeant sugars, markedly increased prostaglandin (PG) E2, D2 and thromboxane B2 synthesis in a time- and osmolarity-dependent manner. Increased prostanoid production was observed about 8 h after exposure to LPS in hyperosmotic medium compared to Kupffer cells treated with LPS under normotonic (305 mosmol/l) conditions. A similar stimulatory effect of hyperosmolarity on PGE2 production was also seen when arachidonate was added exogenously. Hyperosmotic stimulation of PGE2 production was accompanied by a strong induction of Cox-2 mRNA levels and an increase in immunoreactive Cox-2, whereas the levels of immunoreactive phospholipase A2 and cyclooxygenase-1 did not change significantly. Dexamethasone, indomethacin and the selective Cox-2 inhibitor, NS-398, abolished the hypertonicity-induced stimulation of PGE2 formation; dexamethasone also prevented the increase in Cox-2 mRNA and protein. The increase of immunoreactive Cox-2 lasted for about 24 h and was also blocked by actinomycin D or cycloheximide, but not by brefeldin A. Tunicamycin or treatment with endoglucosidase H reduced the molecular mass of hypertonicity-induced Cox-2 by 5 kDa. Tunicamycin treatment also suppressed the hypertonicity-induced stimulation of PGE2 production. The hyperosmolarity/LPS-induced stimulation of prostaglandin formation was partly sensitive to protein kinase C inhibition but was not accompanied by an increase in the cytosolic free Ca2+ concentration. The data suggest that osmolarity may be a critical factor in the regulation of Cox-2 expression and prostanoid production in activated rat liver macrophages.
Collapse
Affiliation(s)
- F Zhang
- Medizinische Universitätsklinik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Schliess F, Schreiber R, Häussinger D. Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling in H4IIE hepatoma cells. Biochem J 1995; 309 ( Pt 1):13-7. [PMID: 7619047 PMCID: PMC1135793 DOI: 10.1042/bj3090013] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatic metabolism and gene expression are among the factors controlled by the cellular hydration state, which changes within minutes in response to aniso-osmotic environments, cumulative substrate uptake, oxidative stress and under the influence of hormones such as insulin. The signalling events coupling cell-volume changes to altered cell function were studied in H4IIE rat hepatoma cells. Hypo-osmotic cell swelling resulted within 1 min in a tyrosine kinase-mediated activation of the extracellular signal-regulated protein kinases Erk-1 and Erk-2, which was independent of protein kinase C and cytosolic calcium. Activation of mitogen-activated protein kinases was followed by an increased phosphorylation of c-Jun, which may explain our recently reported finding of an about 5-fold increase in c-jun mRNA level in response to cell swelling. Pretreatment of cells with pertussis or cholera toxin abolished the swelling-induced activation of Erk-1 and Erk-2, suggesting the involvement of G-proteins. Thus, a signal-transduction pathway resembling growth factor signalling is activated already by osmotic water shifts across the plasma membrane, thereby providing a new perspective for adaption of cell function to alterations of the environment.
Collapse
Affiliation(s)
- F Schliess
- Medizinische Klinik, Heinrich Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
64
|
Schreiber R, Häussinger D. Characterization of the swelling-induced alkalinization of endocytotic vesicles in fluorescein isothiocyanate-dextran-loaded rat hepatocytes. Biochem J 1995; 309 ( Pt 1):19-24. [PMID: 7542446 PMCID: PMC1135794 DOI: 10.1042/bj3090019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Short-term cultivated rat hepatocytes were allowed to endocytose fluorescein isothiocyanate (FITC)-coupled dextran and the apparent vesicular pH (pHves) was measured by single-cell fluorescence. After 2 h of exposure to FITC-dextran, the apparent pH in the vesicular compartments accessible to endocytosed FITC-dextran was 6.01 +/- 0.05 (n = 39) in normo-osmotic media. Hypo-osmotic exposure increased, whereas hyper-osmotic exposure decreased apparent pHves. by 0.18 +/- 0.02 (n = 26) and 0.12 +/- 0.01 (n = 23) respectively. Incubation of the cells with unlabelled dextran for 2h before a 2-h FITC-dextran exposure had no effect on apparent pHves and its osmosensitivity. When, however, hepatocytes were exposed to unlabelled dextran for 5 h after a 2 h exposure to FITC-dextran, in order to allow transport of endocytosed FITC-dextran to late endocytotic/lysosomal compartments, apparent pHves. decreased to 5.38 +/- 0.04 (n = 12) and the apparent pH in the vesicular compartment containing the dye was no longer sensitive to aniso-osmotic exposure. These findings indicate that the osomosensitivity of pHves. is apparently restricted to early endocytotic compartments. Aniso-osmotic regulation of apparent pHves. in freshly FITC-loaded hepatocytes was not accompanied by aniso-osmolarity-induced changes of the cytosolic free calcium concentration, and neither vasopressin nor extracellular ATP, which provoked a marked Ca2+ signal, affected apparent pHves. Dibutyryl-cyclic AMP (cAMP) or vanadate (0.5 mmol/l) were without effect on apparent pHves. and its osmosensitivity. However, pertussis toxin-treatment or genistein (but not daidzein) or the erbstatin analogue methyl 2,5-dihydroxycinnamate fully abolished the osmo-sensitivity of apparent pHves., but did not affect apparent pHves. It is concluded that regulation of pHves. by cell volume occurs in early endocytotic compartments, but probably not in lysosomes, and is mediated by a G-protein and tyrosine kinase-dependent, but Ca2+- and cAMP-independent mechanism.
Collapse
Affiliation(s)
- R Schreiber
- Medizinische Klinik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | |
Collapse
|