51
|
Nakagawa T, Yokoe S, Asahi M. Phospholamban degradation is induced by phosphorylation-mediated ubiquitination and inhibited by interaction with cardiac type Sarco(endo)plasmic reticulum Ca(2+)-ATPase. Biochem Biophys Res Commun 2016; 472:523-30. [PMID: 26966065 DOI: 10.1016/j.bbrc.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/05/2016] [Indexed: 11/28/2022]
Abstract
Phospholamban (PLN) regulates cardiac type sarco (endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) via Ser(16)-phosphorylation. During heart failure, PLN expression is downregulated with SERCA2a; however, the mechanism of its regulation is not fully understood. Phosphorylation triggers protein degradation and because PLN phosphorylation is upregulated in failing hearts, we examined whether PLN is degraded by Ser(16)-phosphorylation. Cells overexpressing PLN exhibited its degradation post isoproterenol (Iso), forskolin, or 3-isobutyl-1-methylxanthine (IBMX) addition. Moreover, this degradation was inhibited by a cAMP-dependent protein kinase (PKA) inhibitor--H89. Co-immunoprecipitation revealed that Lys(3) of PLN was oligo-ubiquitinated when ubiquitin was overexpressed, and was degraded by Iso treatment. However, when co-expressed with SERCA2a, oligo-ubiquitinated PLN at Lys(3) was not degraded by Iso treatment. In failing hearts from 16 week-old TgPLN(R9C) mice, oligo-ubiquitinated PLN levels increased and PLN expression was downregulated. Furthermore, SERCA2a mRNA levels in TgPLN(R9C) mice hearts were lower than that in wild type mice; however, PLN mRNA levels showed no changes. In another heart failure model, MG132 treatment reversed PLN degradation. These data suggest that PLN is, at least partially, oligo-ubiquitinated at Lys(3) and degraded through Ser(16)-phosphorylation-mediated poly-ubiquitination during heart failure.
Collapse
Affiliation(s)
- Takatoshi Nakagawa
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan.
| |
Collapse
|
52
|
Zhang Y, Storey KB. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation. Mol Cell Biochem 2015; 412:27-40. [PMID: 26597853 DOI: 10.1007/s11010-015-2605-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through downregulation of the NFAT-Cn pathway.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
53
|
Thottakara T, Friedrich FW, Reischmann S, Braumann S, Schlossarek S, Krämer E, Juhr D, Schlüter H, van der Velden J, Münch J, Patten M, Eschenhagen T, Moog-Lutz C, Carrier L. The E3 ubiquitin ligase Asb2β is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation. J Mol Cell Cardiol 2015; 87:214-24. [PMID: 26343497 DOI: 10.1016/j.yjmcc.2015.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is an autosomal-dominant disease with mutations in genes encoding sarcomeric proteins. Previous findings suggest deregulation of the ubiquitin proteasome system (UPS) in HCM in humans and in a mouse model of HCM (Mybpc3-targeted knock-in (KI) mice). In this study we investigated transcript levels of several muscle-specific E3 ubiquitin ligases in KI mice and aimed at identifying novel protein targets. METHODS AND RESULTS Out of 9 muscle-specific E3 ligases, Asb2β was found with the lowest mRNA level in KI compared to wild-type (WT) mice. After adenoviral-mediated Asb2β transduction of WT neonatal mouse cardiomyocytes with either a WT or inactive Asb2β mutant, desmin was identified as a new target of Asb2β by mass spectrometry, co-immunoprecipitation and immunoblotting. Immunofluorescence analysis revealed a co-localization of desmin with Asb2β at the Z-disk of the sarcomere. Knock-down of Asb2β in cardiomyocytes resulted in higher desmin protein levels. Furthermore, desmin levels were higher in ventricular samples of HCM mice and patients than controls. CONCLUSIONS This study identifies desmin as a new Asb2β target for proteasomal degradation in cardiomyocytes and suggests that accumulation of desmin could contribute to UPS impairment in HCM mice and patients.
Collapse
Affiliation(s)
- Tilo Thottakara
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany;; University Heart Center Hamburg, Hamburg, Germany
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany;.
| | - Silke Reischmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Simon Braumann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Denise Juhr
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands; ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Julia Münch
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany;; University Heart Center Hamburg, Hamburg, Germany
| | - Monica Patten
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany;; University Heart Center Hamburg, Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Christel Moog-Lutz
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France;; Université de Toulouse, UPS, Toulouse, France
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany;.
| |
Collapse
|
54
|
Nishida K, Yamaguchi O, Otsu K. Degradation systems in heart failure. J Mol Cell Cardiol 2015; 84:212-22. [PMID: 25981331 DOI: 10.1016/j.yjmcc.2015.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/29/2022]
Abstract
Heart failure is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or the ejection of blood, and is a leading cause of morbidity and mortality in industrialized countries. The mechanisms underlying the development of heart failure are multiple, complex and not well understood. Cardiac mass and its homeostasis are maintained by the balance between protein synthesis and degradation, and an imbalance is likely to result in cellular dysfunction and disease. The protein degradation systems are the principle mechanisms for maintaining cellular homeostasis via protein quality control. Three major protein degradation systems have been identified, namely the calpain system, autophagy, and the ubiquitin proteasome system. Proinflammatory mediators involve the development and progression of heart failure. DNA and RNA degradation systems play a critical role in regulating inflammation and maintaining cellular homeostasis mediated by damaged DNA clearance and posttranscriptional regulation, respectively. This review discusses some recent advances in understanding the role of these degradation systems in heart failure.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK.
| |
Collapse
|
55
|
Wang X, Martin DS. The COP9 signalosome and cullin-RING ligases in the heart. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2015; 5:1-18. [PMID: 26064789 PMCID: PMC4447073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
Alteration of ubiquitin-proteasome system (UPS) mediated protein degradation has been implicated in the progression from a large subset of heart disease to congestive heart failure, rendering it extremely important to elucidate the cellular and molecular mechanism by which the UPS is regulated. Cullin-RING ligases (CRLs) represent the largest family of ubiquitin ligases crucial for UPS-dependent proteolysis. Serving as a cullin deneddylase, the COP9 signalosome (CSN) regulates the activity and assembly of CRLs. In the past several years, emerging studies have begun to unveil the role of the CSN and some of the CRLs in cardiomyocytes or the heart under physiological and pathological conditions. This review article will highlight and analyze these recent progresses and provide the author's perspective on the future directions for this research field.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota Vermillion, SD 57069, USA
| | - Douglas S Martin
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota Vermillion, SD 57069, USA
| |
Collapse
|
56
|
Wang ZG, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng WK, Liu YL, Ji KT, Zhang HY, Fu XB, Li XK, Chu MP, Xiao J. bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci Rep 2015; 5:9287. [PMID: 25787015 PMCID: PMC4365411 DOI: 10.1038/srep09287] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/17/2015] [Indexed: 01/13/2023] Open
Abstract
Autophagy is involved in the development and/or progression of many diseases, including myocardial ischemia/reperfusion (I/R). In this study, we hypothesized a protective role of basic fibroblast growth factor (bFGF) both in vivo and in vitro and demonstrated that excessive autophagy and ubiquitinated protein accumulation is involved in the myocardial I/R model. Our results showed that bFGF improved heart function recovery and increased the survival of cardiomyocytes in myocardial I/R model. The protective effect of bFGF is related to the inhibition of LC3II levels. Additionally, bFGF enhances the clearance of Ub by p62 and increases the survival of H9C2 cells. Moreover, silencing of p62 partially blocks the clearance of Ub and abolishes the anti-apoptosis effect of bFGF. An shRNA against the autophagic machinery Atg7 increased the survival of H9C2 cells co-treated with bFGF and rapamycin. bFGF activates the downstream signaling of the PI3K/Akt/mTOR pathway. These results indicate that the role of bFGF in myocardial I/R recovery is related to the inhibition of excessive autophagy and increased ubiquitinated protein clearance via the activation of PI3K/Akt/mTOR signaling. Overall, our study suggests a new direction for bFGF drug development for heart disease and identifies protein signaling pathways involved in bFGF action.
Collapse
Affiliation(s)
- Zhou-Guang Wang
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Yue Wang
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Yan Huang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Qin Lu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Zheng
- Department of Ultrasound, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dong Hu
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan 232001, China
| | - Wen-Ke Feng
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan-Long Liu
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Kang-Ting Ji
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Yu Zhang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao-Bing Fu
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Kun Li
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Mao-Ping Chu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian Xiao
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
57
|
Mitsiades CS. Therapeutic landscape of carfilzomib and other modulators of the ubiquitin-proteasome pathway. J Clin Oncol 2015; 33:782-5. [PMID: 25605842 PMCID: PMC4517049 DOI: 10.1200/jco.2014.55.5748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
58
|
Priestman MA, Wang Q, Jernigan FE, Chowdhury R, Schmidt M, Lawrence DS. Multicolor monitoring of the proteasome's catalytic signature. ACS Chem Biol 2015; 10:433-40. [PMID: 25347733 PMCID: PMC4340355 DOI: 10.1021/cb5007322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The proteasome, a validated anticancer
target, participates in
an array of biochemical activities, which range from the proteolysis
of defective proteins to antigen presentation. We report the preparation
of biochemically and photophysically distinct green, red, and far-red
real-time sensors designed to simultaneously monitor the proteasome’s
chymotrypsin-, trypsin-, and caspase-like activities, respectively.
These sensors were employed to assess the effect of simultaneous multiple
active site catalysis on the kinetic properties of the individual
subunits. Furthermore, we have found that the catalytic signature
of the proteasome varies depending on the source, cell type, and disease
state. Trypsin-like activity is more pronounced in yeast than in mammals,
whereas chymotrypsin-like activity is the only activity detectable
in B-cells (unlike other mammalian cells). Furthermore, chymotrypsin-like
activity is more prominent in transformed B cells relative to their
counterparts from healthy donors.
Collapse
Affiliation(s)
- Melanie A. Priestman
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Qunzhao Wang
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Finith E. Jernigan
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ruma Chowdhury
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Marion Schmidt
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - David S. Lawrence
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
59
|
Gemel J, Simon AR, Patel D, Xu Q, Matiukas A, Veenstra RD, Beyer EC. Degradation of a connexin40 mutant linked to atrial fibrillation is accelerated. J Mol Cell Cardiol 2014; 74:330-9. [PMID: 24973497 PMCID: PMC4135452 DOI: 10.1016/j.yjmcc.2014.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 12/31/2022]
Abstract
Several Cx40 mutants have been identified in patients with atrial fibrillation (AF). We have been working to identify physiological or cell biological abnormalities of several of these human mutants that might explain how they contribute to disease pathogenesis. Wild type (wt) Cx40 or four different mutants (P88S, G38D, V85I, and L229M) were expressed by the transfection of communication-deficient HeLa cells or HL-1 cardiomyocytes. Biophysical channel properties and the sub-cellular localization and protein levels of Cx40 were characterized. Wild type Cx40 and all mutants except P88S formed gap junction plaques and induced significant gap junctional conductances. The functional mutants showed only modest alterations of single channel conductances or gating by trans-junctional voltage as compared to wtCx40. However, immunoblotting indicated that the steady state levels of G38D, V85I, and L229M were reduced relative to wtCx40; most strikingly, G38D was only 20-31% of wild type levels. After the inhibition of protein synthesis with cycloheximide, G38D (and to a lesser extent the other mutants) disappeared much faster than wtCx40. Treatment with the proteasomal inhibitor, epoxomicin, greatly increased levels of G38D and restored the abundance of gap junctions and the extent of intercellular dye transfer. Thus, G38D, V85I, and L229M are functional mutants of Cx40 with small alterations of physiological properties, but accelerated degradation by the proteasome. These findings suggest a novel mechanism (protein instability) for the pathogenesis of AF due to a connexin mutation and a novel approach to therapy (protease inhibition).
Collapse
Affiliation(s)
- Joanna Gemel
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Adria R Simon
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Dakshesh Patel
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Qin Xu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Arvydas Matiukas
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Richard D Veenstra
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
60
|
Wang C, Wang X. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim Biophys Acta Mol Basis Dis 2014; 1852:188-94. [PMID: 25092168 DOI: 10.1016/j.bbadis.2014.07.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/07/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Proteotoxicity refers to the detrimental effects of damaged/misfolded proteins on the cell. Cardiac muscle is particularly susceptible to proteotoxicity because sustained and severe proteotoxic stress leads to cell death and the cardiac muscle has very limited self-renewal capacity. The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP) are two major pathways responsible for degradation of most cellular proteins. Alterations of UPS and ALP functions are associated with the accumulation of proteotoxic species in the heart, a key pathological feature of common forms of heart disease including idiopathic, ischemic, and pressure-overloaded cardiomyopathies and a large subset of congestive heart failure. Emerging evidence suggests that proteasome inhibition or impairment activates autophagy and conversely, acute ALP inhibition may sometimes increase intrinsic proteasome peptidase activities but chronic ALP inhibition hinders UPS performance in ubiquitinated protein degradation. The exact molecular basis on which the two degradative pathways interact remains largely undefined. Here we review current understanding of the roles of the UPS and autophagy in the control of cardiac proteotoxicity, with a specific focus on the crosstalk between the two pathways. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Changhua Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|
61
|
Tian Z, Wang C, Hu C, Tian Y, Liu J, Wang X. Autophagic-lysosomal inhibition compromises ubiquitin-proteasome system performance in a p62 dependent manner in cardiomyocytes. PLoS One 2014; 9:e100715. [PMID: 24959866 PMCID: PMC4069113 DOI: 10.1371/journal.pone.0100715] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/30/2014] [Indexed: 12/25/2022] Open
Abstract
Intracellular protein degradation is primarily performed by the ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP). The interplay between these two pathways has been rarely examined in intact animals and the mechanism underlying the interplay remains unclear. Hence, we sought to test in vivo and in vitro the impact of inhibition of the ALP on UPS proteolytic performance in cardiomyocytes and to explore the underlying mechanism. Transgenic mice ubiquitously expressing a surrogate UPS substrate (GFPdgn) were treated with bafilomycin-A1 (BFA) to inhibit the ALP. Myocardial and renal GFPdgn protein levels but not mRNA levels were increased at 24 hours but not 3 hours after the first injection of BFA. Myocardial protein abundance of key proteasome subunits and the activities of proteasomal peptidases were not discernibly altered by the treatment. In cultured neonatal rat ventricular myocytes (NRVMs), the surrogate UPS substrate GFPu and a control red fluorescence protein (RFP) were co-expressed to probe UPS performance. At 12 hours or 24 hours after ALP inhibition by 3-methyladenine (3-MA) or BFA, GFPu/RFP protein ratios and the protein half-life of GFPu were significantly increased, which is accompanied by increases in p62 proteins. Similar findings were obtained when ALP was inhibited genetically via silencing Atg7 or Rab7. ALP inhibition-induced increases in GFPu and p62 are co-localized in NRVMs. siRNA-mediated p62 knockdown prevented ALP inhibition from inducing GFPu accumulation in NRVMs. We conclude that in a p62-dependent fashion, ALP inhibition impairs cardiac UPS proteolytic performance in cardiomyocytes in vitro and in vivo.
Collapse
Affiliation(s)
- Zongwen Tian
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, United States of America
| | - Changhua Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, United States of America
| | - Chengjun Hu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, United States of America
| | - Yihao Tian
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, United States of America
| | - Jinbao Liu
- Protein Modification and Degradation Laboratory, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
62
|
Sandri M, Robbins J. Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol 2014; 71:3-10. [PMID: 24380730 PMCID: PMC4011959 DOI: 10.1016/j.yjmcc.2013.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/03/2013] [Accepted: 12/15/2013] [Indexed: 12/21/2022]
Abstract
In general, in most organ systems, intracellular protein homeostasis is the sum of many factors, including chromosomal state, protein synthesis, post-translational processing and transport, folding, assembly and disassembly into macromolecular complexes, protein stability and clearance. In the heart, there has been a focus on the gene programs that are activated during pathogenic processes, but the removal of damaged proteins and organelles has been underappreciated as playing an important role in the pathogenesis of heart disease. Proteotoxicity refers to the adverse effects of damaged or misfolded proteins and even organelles on the cell. At the cellular level, the ultimate outcome of uncontrolled or severe proteotoxicity is cell death; hence, the pathogenic impact of proteotoxicity is maximally manifested in organs with no or very poor regenerative capability such as the brain and the heart. Evidence for increased cardiac proteotoxicity is rapidly mounting for a large subset of congenital and acquired human heart disease. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteotoxicity as a major pathogenic factor in the heart. This dictates rigorous testing for the efficacy of proteotoxic attenuation as a new strategy to treat heart disease. This review article highlights some recent advances in our understanding of how misfolded proteins can injure and are handled in the cell, examining the emerging evidence for targeting proteotoxicity as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy."
Collapse
Affiliation(s)
- Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy; Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jeffrey Robbins
- The Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
63
|
Cui Z, Scruggs SB, Gilda JE, Ping P, Gomes AV. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 2014; 71:32-42. [PMID: 24140722 PMCID: PMC3990655 DOI: 10.1016/j.yjmcc.2013.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/21/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major intracellular degradation system, and its proper function is critical to the health and function of cardiac cells. Alterations in cardiac proteasomes have been linked to several pathological phenotypes, including cardiomyopathies, ischemia-reperfusion injury, heart failure, and hypertrophy. Defects in proteasome-dependent cellular protein homeostasis can be causal for the initiation and progression of certain cardiovascular diseases. Emerging evidence suggests that the UPS can specifically target proteins that govern pathological signaling pathways for degradation, thus altering downstream effectors and disease outcomes. Alterations in UPS-substrate interactions in disease occur, in part, due to direct modifications of 19S, 11S or 20S proteasome subunits. Post-translational modifications (PTMs) are one facet of this proteasomal regulation, with over 400 known phosphorylation sites, over 500 ubiquitination sites and 83 internal lysine acetylation sites, as well as multiple sites for caspase cleavage, glycosylation (such as O-GlcNAc modification), methylation, nitrosylation, oxidation, and SUMOylation. Changes in cardiac proteasome PTMs, which occur in ischemia and cardiomyopathies, are associated with changes in proteasome activity and proteasome assembly; however several features of this regulation remain to be explored. In this review, we focus on how some of the less common PTMs affect proteasome function and alter cellular protein homeostasis. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Ziyou Cui
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Sarah B Scruggs
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Peipei Ping
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
64
|
Wang X, Robbins J. Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 2013; 71:16-24. [PMID: 24239609 DOI: 10.1016/j.yjmcc.2013.11.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 01/08/2023]
Abstract
In the cell, the proteasome and lysosomes represent the most important proteolytic machineries, responsible for the protein degradation in the ubiquitin-proteasome system (UPS) and autophagy, respectively. Both the UPS and autophagy are essential to protein quality and quantity control. Alterations in cardiac proteasomal and lysosomal degradation are remarkably associated with most heart disease in humans and are implicated in the pathogenesis of congestive heart failure. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteasomal functional insufficiency or lysosomal insufficiency as a major pathogenic factor in the heart. This review article highlights some recent advances in the research into proteasome and lysosome protein degradation in relation to cardiac pathology and examines the emerging evidence for enhancing degradative capacities of the proteasome and/or lysosome as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, The Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
65
|
Liu S, Zhao C, Yang C, Li X, Huang H, Liu N, Li S, Wang X, Liu J. Gambogic acid suppresses pressure overload cardiac hypertrophy in rats. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2013; 3:227-238. [PMID: 24224134 PMCID: PMC3819582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Cardiac hypertrophy is a common response of the heart to a variety of cardiovascular stimuli. Pathological cardiac hypertrophy eventually leads to heart failure. Gambogic acid (GA) is a main active ingredient isolated from the gamboge resin of Garcinia hanburyi trees and has potent anti-tumor and anti-inflammatory effects that are associated with inhibition of the NF-κB pathway. We and others recently reported that GA can significantly inhibit the function of the proteasome with much less toxicity than conventional proteasome inhibitors. The increasing lines of evidence indicate that the inhibition of the proteasome can promote the regression of cardiac hypertrophy induced by pressure overload through the blockade of the NF-κB pathway. In the present study, we examined the effect of GA on pressure overload or isoproterenol infusion induced cardiac hypertrophy and fibrosis, and changes in myocardial NF-κB signaling. We observed that the heart weight/body weight ratio, the size of cardiomyocytes, interstitial fibrosis, and the reactivation of fetal genes (α-SK-actin and BNP mRNA) were markedly increased by abdominal aorta constriction (AAC) or isoproterenol infusion (ISO), all of which were effectively inhibited by GA treatment. Furthermore, GA treatment abolished proteasome chymotrypsin-like activity increases induced by AAC or ISO, led to increased myocardial IκB protein, decreased NF-κB p65 subunit levels in the nuclear fraction, decreased NF-κB DNA-binding activity, and reduced IL2 levels in the myocardium of rats subject to AAC or ISO. In conclusion, GA treatment can suppress cardiac hypertrophy and fibrosis induced by pressure overload or isoproterenol possibly through the inhibition of the proteasome and the NF-κB pathway, suggesting that GA treatment may provide a new strategy to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Shouting Liu
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
| | - Canguo Zhao
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
| | - Changshan Yang
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
| | - Xiaofen Li
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
| | - Hongbiao Huang
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
| | - Ningning Liu
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
- The Cardiovascular Institute, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhou, Guangdong 510260, China
| | - Shujue Li
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
- Guangdong Provincial Key Lab of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital, Guangzhou Medical UniversityGuangzhou, Guangdong 510230, China
| | - Xuejun Wang
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South DakotaVermillion, South Dakota 57069, USA
| | - Jinbao Liu
- Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical UniversityGuangdong 510182, China
| |
Collapse
|
66
|
Glembotski CC. Roles for ATF6 and the sarco/endoplasmic reticulum protein quality control system in the heart. J Mol Cell Cardiol 2013; 71:11-5. [PMID: 24140798 DOI: 10.1016/j.yjmcc.2013.09.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
The hypertrophic growth of cardiac myocytes is a highly dynamic process that underlies physiological and pathological adaptation of the heart. Accordingly, a better understanding of the molecular underpinnings of cardiac myocyte hypertrophy is required in order to fully appreciate the causes and functional consequences of the changes in the size of the healthy and diseased heart. Hypertrophy is driven by increases in cardiac myocyte protein, which must be balanced by cellular ability to maintain protein quality in order to avoid maladaptive accumulation of toxic misfolded proteins. Recent studies have shown that the endoplasmic reticulum (ER), which, in cardiac myocytes, comprises the sarco/endoplasmic reticulum (SR/ER), is the site of most protein synthesis. Thus, the protein quality control machinery located at the SR/ER is likely to be an important determinant of whether the heart responds adaptively to hypertrophic growth stimuli. The SR/ER-transmembrane protein, ATF6, serves a critical protein quality control function as a first responder to the accumulation of potentially toxic, misfolded proteins. Misfolded proteins transform ATF6 into a transcription factor that regulates a gene program that is partly responsible for enhancing protein quality control. Two ATF6-inducible genes that have been studied in the heart and shown to be adaptive are RCAN1 and Derl3, which encode proteins that decrease protein-folding demand, and enhance degradation of misfolded proteins, respectively. Thus, the ATF6-regulated SR/ER protein quality control system is important for maintaining protein quality during growth, making ATF6, and other components of the system, potentially attractive targets for the therapeutic management pathological cardiac hypertrophy. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Christopher C Glembotski
- San Diego State University Heart Institute, Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
67
|
Su H, Li J, Osinska H, Li F, Robbins J, Liu J, Wei N, Wang X. The COP9 signalosome is required for autophagy, proteasome-mediated proteolysis, and cardiomyocyte survival in adult mice. Circ Heart Fail 2013; 6:1049-57. [PMID: 23873473 DOI: 10.1161/circheartfailure.113.000338] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The COP9 signalosome (CSN) is an evolutionarily conserved protein complex composed of 8 unique protein subunits (CSN1 through CSN8). We have recently discovered in perinatal mouse hearts that CSN regulates not only proteasome-mediated proteolysis but also macroautophagy. However, the physiological significance of CSN in a post-mitotic organ of adult vertebrates has not been determined. We sought to study the physiological role of CSN8/CSN in adult mouse hearts. METHODS AND RESULTS Csn8 was conditionally ablated in the cardiomyocytes of adult mice (CSN8(CKO)) using a temporally controlled Cre-LoxP system. Loss of CSN8 accumulated the neddylated forms of cullins and noncullin proteins, increased ubiquitinated proteins, and stabilized a surrogate substrate of the proteasome in the heart. Autophagic flux was significantly decreased, whereas autophagosomes were markedly increased in CSN8(CKO) hearts, indicative of impaired autophagosome removal. Furthermore, we observed increased oxidized proteins, massive necrotic cardiomyocytes, and morphological and functional changes characteristic of dilated cardiomyopathy in CSN8(CKO) mice. CONCLUSIONS CSN deneddylates substrates more than cullins and is indispensable to cardiomyocyte survival in not only perinatal hearts but also adult hearts. CSN8/CSN regulates both proteasome-mediated proteolysis and the autophagic-lysosomal pathway, critical to the removal of oxidized proteins in the heart.
Collapse
Affiliation(s)
- Huabo Su
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Wang X. Repeated intermittent administration of a ubiquitous proteasome inhibitor leads to restrictive cardiomyopathy. Eur J Heart Fail 2013; 15:597-8. [PMID: 23639782 DOI: 10.1093/eurjhf/hft069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|