51
|
Martins AR, Nachbar RT, Gorjao R, Vinolo MA, Festuccia WT, Lambertucci RH, Cury-Boaventura MF, Silveira LR, Curi R, Hirabara SM. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis 2012; 11:30. [PMID: 22360800 PMCID: PMC3312873 DOI: 10.1186/1476-511x-11-30] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/23/2012] [Indexed: 01/06/2023] Open
Abstract
Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.
Collapse
Affiliation(s)
- Amanda R Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Butantã, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Cao J, Sodhi K, Puri N, Monu SR, Rezzani R, Abraham NG. High fat diet enhances cardiac abnormalities in SHR rats: Protective role of heme oxygenase-adiponectin axis. Diabetol Metab Syndr 2011; 3:37. [PMID: 22196253 PMCID: PMC3261094 DOI: 10.1186/1758-5996-3-37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/23/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High dietary fat intake is a major risk factor for development of cardiovascular and metabolic dysfunction including obesity, cardiomyopathy and hypertension. METHODS The present study was designed to examine effect of high fat (HF) diet on cardio-vascular structure and function in spontaneously hypertensive rats (SHR), fed HF diet for 15 weeks, a phenotype designed to mimic metabolic syndrome. RESULTS Development of metabolic syndrome like phenotype was confirmed using parameters, including body weight, total cholesterol and blood pressure levels. High fat diet impaired vascular relaxation by acetylcholine and exacerbated cardiac dysfunction in SHRs as evidenced by lower left ventricular function, and higher coronary resistance (CR) as compared to controls (p < 0.05). The histological examination revealed significant myocardial and peri-vascular fibrosis in hearts from SHRs on HF diet. This cardiac dysfunction was associated with increased levels of inflammatory cytokines, COX-2, NOX-2, TxB2 expression and increase in superoxide (O2-) levels in SHR fed a HF diet (p < 0.05). HO-1 induction via cobalt-protoporphyrin (CoPP,3 mg/kg), in HF fed rats, not only improved cardiac performance parameters, but also prevented myocardial and perivascular fibrosis. These effects of CoPP were accompanied by enhanced levels of cardiac adiponectin levels, pAMPK, peNOS and iNOS expression; otherwise significantly attenuated (p < 0.05) in HF fed SHRs. Prevention of such beneficial effects of CoPP by the concurrent administration of the HO inhibitor stannic mesoporphyrin (SnMP) corroborates the role of HO system in mediating such effects. CONCLUSION In conclusion, this novel study demonstrates that up-regulation of HO-1 improves cardiac and vascular dysfunction by blunting oxidative stress, COX-2 levels and increasing adiponectin levels in hypertensive rats on HF diet.
Collapse
Affiliation(s)
- Jian Cao
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Komal Sodhi
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio, 43614, USA
| | - Nitin Puri
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio, 43614, USA
| | - Sumit R Monu
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio, 43614, USA
| | - Rita Rezzani
- Department of Biomedical Science, Division of Anatomy, University of Brescia, Brescia Italy
| | - Nader G Abraham
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio, 43614, USA
| |
Collapse
|
53
|
Beleznai T, Bagi Z. Activation of hexosamine pathway impairs nitric oxide (NO)-dependent arteriolar dilations by increased protein O-GlcNAcylation. Vascul Pharmacol 2011; 56:115-21. [PMID: 22155161 DOI: 10.1016/j.vph.2011.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/23/2011] [Accepted: 11/28/2011] [Indexed: 11/16/2022]
Abstract
We hypothesized that under high glucose conditions, activation of the hexosamine pathway leads to impaired nitric oxide (NO)-dependent arteriolar dilation. Skeletal muscle arterioles (diameter: ~160μm) isolated from male Wistar rats were exposed to normal glucose (NG, 5.5mmol/L) or high glucose concentrations (HG, 30mmol/L, for 2h) and agonist-induced diameter changes were measured with videomicroscopy. Western blots were performed to identify the vascular levels of protein O-linked-N-acetyl-glucosamine (O-GlcNAc) and phosphorylated endothelial NO synthase (eNOS). In arterioles exposed to HG, dilations to histamine were abolished compared to those exposed to NG (max: -6±6% and 69±9%, respectively), while acetylcholine-induced responses were not affected. Inhibition of NO synthesis with N(G)-nitro-l-arginine methyl ester (L-NAME) reduced histamine-induced dilations in NG arterioles, but it had no effect on microvessels exposed to HG. Dilations to the NO donor, sodium nitroprusside and constrictions to norepinephrine and serotonin were similar in the two groups. In the presence of the inhibitor of hexosamine pathway, azaserine, histamine-induced dilations were significantly augmented in arterioles exposed to HG (max: 67±2%). Moreover, exposure of vessels to glucosamine (5mmol/L, for 2h) resulted in reduced histamine-induced arteriolar dilations (max: 26±3%). The level of protein O-GlcNAcylation was increased, whereas the P-eNOS (Ser-1177) was decreased in HG exposed vessels. These findings indicate that a high concentration of glucose may lead to glucosamine formation, which impairs histamine-induced, NO-mediated arteriolar dilations. We propose that interfering with the hexosamine pathway may prevent microvascular complications in diabetes.
Collapse
Affiliation(s)
- Timea Beleznai
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
54
|
Haddock RE, Grayson TH, Morris MJ, Howitt L, Chadha PS, Sandow SL. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS One 2011; 6:e16423. [PMID: 21283658 PMCID: PMC3025034 DOI: 10.1371/journal.pone.0016423] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022] Open
Abstract
Background The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO)-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH) mechanism; which predominates in smaller resistance vessels and is characterized in this study. Methodology/Principal Findings Membrane potential, vessel diameter and luminal pressure were recorded in 4th order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat) over 16–20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat). Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SKCa/IKCa) inhibition; with such activity being impaired in obesity. SKCa-IKCa activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) and 1-ethyl-2-benzimidazolinone (1-EBIO), respectively, hyperpolarized and relaxed vessels from control and obese rats. IKCa-mediated EDH contribution was increased in obesity, and associated with altered IKCa distribution and elevated expression. In contrast, the SKCa-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (Kir) and Na+/K+-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential Kir expression and distribution. Although changes in medial properties occurred, obesity had no effect on myoendothelial gap junction density. Conclusion/Significance In obese rats, vasodilation to EDH is impaired due to changes in the underlying potassium channel signaling mechanisms. Whilst myoendothelial gap junction density is unchanged in arteries of obese compared to control, increased IKCa and Na+/K+-ATPase, and decreased Kir underlie changes in the EDH mechanism.
Collapse
Affiliation(s)
- Rebecca E. Haddock
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (REH); (SLS)
| | - T. Hilton Grayson
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lauren Howitt
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Preet S. Chadha
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shaun L. Sandow
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (REH); (SLS)
| |
Collapse
|
55
|
Beleznai T, Feher A, Spielvogel D, Lansman SL, Bagi Z. Arginase 1 contributes to diminished coronary arteriolar dilation in patients with diabetes. Am J Physiol Heart Circ Physiol 2011; 300:H777-83. [PMID: 21217072 DOI: 10.1152/ajpheart.00831.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginase 1, via competing with nitric oxide (NO) synthase for the substrate L-arginine, may interfere with NO-mediated vascular responses. We tested the hypothesis that arginase 1 contributes to coronary vasomotor dysfunction in patients with diabetes mellitus (DM). Coronary arterioles were dissected from the right atrial appendages of 41 consecutive patients with or without DM (the 2 groups suffered from similar comorbidities), and agonist-induced changes in diameter were measured with videomicroscopy. We found that the endothelium-dependent agonist ACh elicited a diminished vasodilation and caused constriction to the highest ACh concentration (0.1 μM) with a similar magnitude in patients with (18 ± 8%) and without (17 ± 9%) DM. Responses to ACh were not significantly affected by the inhibition of NO synthesis with N(G)-nitro-L-arginine methyl ester in either group. The NO donor sodium nitroprusside-dependent dilations were not different in patients with or without DM. Interestingly, we found that the presence of N(G)-hydroxy-L-arginine (10 μM), a selective inhibitor of arginase or application of L-arginine (3 mM), restored ACh-induced coronary dilations only in patients with DM (to 47 ± 6% and to 40 ± 19%, respectively) but not in subjects without DM. Correspondingly, the protein expression of arginase 1 was increased in coronary arterioles of patients with DM compared with subjects without diabetes. Moreover, using immunocytochemistry, we detected an abundant immunostaining of arginase 1 in coronary endothelial cells of patients with DM, which was colocalized with NO synthase. Collectively, we provided evidence for a distinct upregulation of arginase 1 in coronary arterioles of patients with DM, which contributes to a reduced NO production and consequently diminished vasodilation.
Collapse
Affiliation(s)
- Timea Beleznai
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
56
|
Dobretsov M, Backonja MM, Romanovsky D, Stimers JR. Animal Models of Diabetic Neuropathic Pain. ANIMAL MODELS OF PAIN 2011. [DOI: 10.1007/978-1-60761-880-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
57
|
Oxidative stress and inflammatory mediators contribute to endothelial dysfunction in high-fat diet-induced obesity in mice. J Hypertens 2010; 28:2111-9. [DOI: 10.1097/hjh.0b013e32833ca68c] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
58
|
Kim BH, Akoh CC, Lee BY. The Effects of High Dietary Lard on Hypertension Development in Spontaneously Hypertensive Rats. J Med Food 2010; 13:1263-72. [DOI: 10.1089/jmf.2010.1015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Byung Hee Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Casimir C. Akoh
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - Boo-Yong Lee
- Department of Biomedical Science, Cha University, Soengnam, Republic of Korea
| |
Collapse
|
59
|
St-Pierre P, Genders AJ, Keske MA, Richards SM, Rattigan S. Loss of insulin-mediated microvascular perfusion in skeletal muscle is associated with the development of insulin resistance. Diabetes Obes Metab 2010; 12:798-805. [PMID: 20649632 DOI: 10.1111/j.1463-1326.2010.01235.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM The aetiology of the development of type 2 diabetes remains unresolved. In the present study, we assessed whether an impairment of insulin-mediated microvascular perfusion occurs early in the onset of insulin resistance. MATERIALS AND METHODS Hooded Wistar rats were fed either a normal diet (ND) or a high-fat diet (HFD) for 4 weeks. Anaesthetized animals were subjected to an isoglycaemic hyperinsulinaemic clamp (3 or 10 mU/min/kg x 2 h), and measurements were made of glucose infusion rate (GIR), hindleg glucose uptake, muscle glucose uptake by 2-deoxy-d-glucose (R'g), glucose appearance (Ra), glucose disappearance (Rd), femoral blood flow (FBF) and hindleg 1-methylxanthine disappearance (1-MXD, an index of microvascular perfusion). RESULTS Compared with ND-fed animal, HFD feeding led to a mild increase in fasting plasma glucose and plasma insulin, without an increase in total body weight. During the clamps, HFD rats showed an impairment of insulin-mediated action on GIR, hindleg glucose uptake, R'g, Ra, Rd and FBF, with a greater loss of insulin responsiveness at 3 mU/min/kg than at 10 mU/min/kg. The HFD also impaired insulin-mediated microvascular perfusion as assessed by 1-MXD. Interestingly, 1-MXD was the only measurement that remained unresponsive to the higher dose of 10 mU/min/kg insulin. CONCLUSIONS We conclude that the early stage of insulin resistance is characterized by an impairment of the insulin-mediated microvascular responses in skeletal muscle. This is likely to cause greater whole body insulin resistance by limiting the delivery of hormones and nutrients to muscle.
Collapse
Affiliation(s)
- P St-Pierre
- Menzies Research Institute, University of Tasmania, Hobart, Australia
| | | | | | | | | |
Collapse
|
60
|
High-fat diet results in postprandial insulin resistance that involves parasympathetic dysfunction. Br J Nutr 2010; 104:1450-9. [DOI: 10.1017/s0007114510002400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Different diets have distinct impacts on glucose homoeostasis, for which insulin sensitivity (IS) after a meal (postprandial IS) is highly relevant. Postprandial IS depends upon hepatic parasympathetic activation and glutathione content elevation. We tested the hypothesis that postprandial IS is compromised in high-fat diet (HFD)-induced obesity. Sprague–Dawley rats were fed a standard diet (STD, n 10), 1-week HFD (n 9) or 4-week HFD (n 8). IS was tested in postprandial state using the rapid IS test (RIST) before and after the blockade of the parasympathetic nerves (atropine, 1 mg/kg); parasympathetic-dependent IS was obtained from the difference between control and post-atropine RIST. Fasting IS was also assessed in the STD-fed rats (n 4) and 4-week HFD-fed rats (n 3) using the RIST. Whole-body fat and regional fat pads were heavier in the 1-week HFD-fed rats (79·8 (se 7·9) and 23·7 (se 1·0) g, respectively) or 4-week HFD-fed rats (106·5 (se 6·1) and 30·1 (se 1·4) g, respectively) than in the STD-fed rats (32·5 (se 3·7) and 13·7 (se 1·0) g, respectively; P < 0·001). Fasted-state IS was similar between the groups studied. Postprandial IS was higher in the STD-fed rats (185·8 (se 5·6) mg glucose/kg body weight (bw)) than in both the 1-week HFD-fed rats (108·8 (se 2·9) mg glucose/kg bw; P < 0·001) and 4-week HFD-fed rats (69·3 (se 2·6) mg glucose/kg bw; P < 0·001). Parasympathetic-dependent IS was impaired in both HFD-fed groups (STD, 108·9 (se 3·9) mg glucose/kg bw; 1-week HFD, 38·6 (se 4·2) mg glucose/kg bw; 4-week HFD, 5·4 (se 1·7) mg glucose/kg bw; P < 0·001). Total (postprandial) and parasympathetic-dependent IS correlated negatively with whole-body fat (R2 0·81 and 0·87) and regional adiposity (R2 0·85 and 0·79). In conclusion, fat accumulation induced by HFD is associated with postprandial insulin resistance, but not with fasting insulin resistance. HFD-associated postprandial insulin resistance is largely mediated by impairment of parasympathetic-dependent insulin action, which correlates with adiposity.
Collapse
|
61
|
Prieto D, Kaminski PM, Bagi Z, Ahmad M, Wolin MS. Hypoxic relaxation of penile arteries: involvement of endothelial nitric oxide and modulation by reactive oxygen species. Am J Physiol Heart Circ Physiol 2010; 299:H915-24. [PMID: 20581086 DOI: 10.1152/ajpheart.00382.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although obesity-related cardiovascular disease and hypoxia are associated with erectile dysfunction, little is known about the direct effects of hypoxia on penile arteries. In the present study, the effects of acute hypoxia (Po(2) = approximately 10 Torr, 20 min) were investigated in isolated penile arteries to determine the influence of endothelium removal, nitric oxide (NO) synthase (NOS), cyclooxygenase (COX), NADPH oxidase, changes in reactive oxygen species (ROS), and a high-fat diet. Hypoxia-relaxed penile arteries contracted with phenylephrine by approximately 50%. Relaxation to hypoxia and acetylcholine was reduced by endothelium removal and by inhibition of NOS (N(omega)-nitro-l-arginine) and COX (indomethacin) but was enhanced by Tempol and by NADPH oxidase inhibition with apocynin and gp91ds-tat. Basal superoxide levels detected by lucigenin chemiluminescence were reduced by Tempol and gp91ds-tat and were enhanced by NOS blockade. Hypoxic relaxant responses were enhanced by catalase and ebselen. Exogenous peroxide evoked relaxations of penile arteries, which were partially inhibited by endothelium removal and by the inhibition of COX and extracellular signal-regulated mitogen-activated protein kinase (MAPK) but enhanced by p38 MAPK blockade. The NO-dependent component of relaxation to hypoxia was impaired in penile arteries from high-fat diet-fed, obese rats associated with increased superoxide production. Thus hypoxic relaxation of penile arteries is partially mediated by endothelial NO in a manner that is normally attenuated by endogenous ROS production. Obesity further increases superoxide production and impairs the influence of NO. Therefore, cardiovascular disease involving decreased NO bioavailability and/or enhanced ROS generation may contribute to erectile dysfunction through impairing the relaxation of penile arteries to hypoxia.
Collapse
Affiliation(s)
- Dolores Prieto
- Dept. of Physiology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| | | | | | | | | |
Collapse
|
62
|
Ketonen J, Pilvi T, Mervaala E. Caloric restriction reverses high-fat diet-induced endothelial dysfunction and vascular superoxide production in C57Bl/6 mice. Heart Vessels 2010; 25:254-62. [PMID: 20512454 DOI: 10.1007/s00380-009-1182-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 06/19/2009] [Indexed: 12/28/2022]
Abstract
Obesity is frequently associated with endothelial dysfunction. We hypothesized that high-fat feeding dysregulates the balance between endothelial derived nitric oxide and superoxide formation. Furthermore, we examined whether caloric restriction could reverse the detrimental vascular effects related to obesity. Male C57Bl/6 mice were fed with normal-fat diet (fat 17%) or high-fat diet (fat 60%) for 150 days. After establishment of obesity at day 100, a subgroup of obese mice were put on caloric restriction (CR) (70% of ad libitum energy intake) for an additional 50 days. At day 100, aortic rings from obese mice receiving high-fat diet showed impaired endothelium-dependent vasodilation in response to acetylcholine (ACh). Caloric restriction reversed high-fat diet-induced endothelial dysfunction. At day 150, impaired vasodilatory responses to ACh in obese mice without caloric restriction were markedly improved by preincubation with the tetrahydrobiopterin (BH(4)) precursor sepiapterin and L-arginine, a substrate for endothelial nitric oxide synthase (eNOS). Additionally, inhibition of vascular arginase by L-norvaline partially, and superoxide scavenging by Tiron completely, restored endothelial cell function. Obese mice showed increased vascular superoxide production, which was diminished by endothelial denudation, pretreated of the vascular rings with apocynin (an inhibitor of reduced nicotinamide adenine dinucleotide phosphate [NADPH] oxidase), oxypurinol (an inhibitor of xanthine oxidase), N(G)-nitro-L-arginine methyl ester (LNAME; an inhibitor of eNOS), or by adding the BH(4) precursor sepiapterin. Caloric restriction markedly attenuated vascular superoxide production. In obese mice on CR, endothelial denudation increased superoxide formation whereas vascular superoxide production was unaffected by L-NAME. Western blot analysis revealed decreased phosphorylated eNOS (Ser1177)-to-total eNOS expression ratio in obese mice as compared to lean controls, whereas the phospho-eNOS/NOS ratio in obese mice on CR did not differ from the lean controls. In conclusion, the present study suggests that caloric restriction reverses obesity induced endothelial dysfunction and vascular oxidative stress, and underscores the importance of uncoupled eNOS in the pathogenesis.
Collapse
Affiliation(s)
- Juha Ketonen
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland
| | | | | |
Collapse
|
63
|
Feher A, Rutkai I, Beleznai T, Ungvari Z, Csiszar A, Edes I, Bagi Z. Caveolin-1 limits the contribution of BK(Ca) channel to EDHF-mediated arteriolar dilation: implications in diet-induced obesity. Cardiovasc Res 2010; 87:732-9. [PMID: 20299334 DOI: 10.1093/cvr/cvq088] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS Caveolin-1 (Cav-1) interacts with large conductance Ca(2+)-activated potassium channels (BKCa) and likely exerts a negative regulatory effect on the channel activity. We investigated the role of Cav-1 in modulating BK(Ca) channel-mediated, endothelium-derived hyperpolarizing factor (EDHF)-dependent arteriolar dilation in normal condition and in an experimental model of obesity. METHODS AND RESULTS In isolated, pressurized (80 mmHg) gracilis muscle arterioles (approximately 100 microm) of Cav-1 knockout mice, acetylcholine (ACh)-induced, EDHF-mediated dilations were enhanced and were significantly reduced by the BK(Ca) channel inhibitor, iberiotoxin (IBTX), whereas IBTX had no effect on EDHF-mediated dilations in the wild-type mice. Dilations to the selective BK(Ca) channel opener, NS-1619 were augmented in the Cav-1 knockout mice. In high-fat diet-treated, obese rats ACh-induced coronary arteriolar dilations were preserved, whereas IBTX-sensitive, ACh-induced and also NS-1619-evoked vasodilations were augmented when compared with lean animals. In coronary arterioles of obese rats a reduced protein expression of Cav-1 was detected by western immunoblotting and immunohistochemistry. Moreover, in coronary arterioles of lean rats, disruption of caveolae with methyl-beta-cyclodextrin augmented IBTX-sensitive, ACh-induced, and also NS-1619-evoked dilations. CONCLUSION Thus, under normal conditions, Cav-1 limits the contribution of the BK(Ca) channel to EDHF-mediated arteriolar dilation. In obesity, a reduced expression of Cav-1 leads to greater contribution of the BK(Ca) channel to EDHF-mediated response, which seems essential for maintained coronary dilation.
Collapse
Affiliation(s)
- Attila Feher
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Aubin MC, Cardin S, Comtois P, Clément R, Gosselin H, Gillis MA, Le Quang K, Nattel S, Perrault LP, Calderone A. A high-fat diet increases risk of ventricular arrhythmia in female rats: enhanced arrhythmic risk in the absence of obesity or hyperlipidemia. J Appl Physiol (1985) 2010; 108:933-40. [PMID: 20133431 DOI: 10.1152/japplphysiol.01281.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity increases the incidence of cardiac arrhythmias and impairs wound healing. However, it is presently unknown whether a high-fat diet affects arrhythmic risk or wound healing before the onset of overt obesity or hyperlipidemia. After 8 wk of feeding a high-fat diet to adult female rats, a nonsignificant increase in body weight was observed and associated with a normal plasma lipid profile. Following ischemia/reperfusion injury, scar length (standard diet 0.29 +/- 0.09 vs. high-fat 0.32 +/- 0.13 cm), thickness (standard diet 0.047 +/- 0.02 vs. high-fat 0.059 +/- 0.01 cm), and collagen alpha(1) type 1 content (standard diet 0.21 +/- 0.04 vs. high-fat 0.20 +/- 0.04 arbitrary units/mm(2)) of infarcted hearts were not altered by the high-fat diet. However, the mortality rate was greatly increased 24 h postinfarction (from 5% to 46%, P < 0.01 for ischemia/reperfusion rats; from 20% to 89%, P < 0.0001, in complete-occlusion rats) in high-fat fed rats, in association with a higher prevalence of ventricular arrhythmias. Ventricular arrhythmia inducibility was also significantly increased in noninfarcted rats fed a high-fat diet. In the hearts of rats fed a high-fat diet, connexin-40 expression was absent, connexin-43 was hypophosphorylated and lateralized, and neurofilament-M immunoreactive fiber density (standard diet 2,020 +/- 260 vs. high-fat diet 2,830 +/- 250 microm(2)/mm(2)) and tyrosine hydroxylase protein expression were increased (P < 0.05). Thus, in the absence of overt obesity and hyperlipidemia, sympathetic hyperinnervation and an aberrant pattern of gap junctional protein expression and regulation in the heart of female rats fed a high-fat diet may have contributed in part to the higher incidence of inducible cardiac arrhythmias.
Collapse
Affiliation(s)
- Marie-Claude Aubin
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
n-3 fatty acids prevent whereas trans-fatty acids induce vascular inflammation and sudden cardiac death. Br J Nutr 2010; 102:1811-9. [PMID: 19822033 DOI: 10.1017/s0007114509992030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
n-3 PUFA have well-recognised cardio-beneficial effects. In contrast, premature coronary deaths are associated with consumption of high levels of trans-fatty acids (TFA). The present study determined the effects of n-3 PUFA and TFA on sudden cardiac death and vascular inflammation. A rat coronary ligation model was used to study the effect of fatty acids on sudden cardiac death, whereas a mouse femoral artery ligation model was used to study compensatory vascular remodelling. Human aortic endothelial cells (HAEC) were utilised for the in vitro studies to investigate expression of inflammatory molecules. Feeding animals an n-3 PUFA-enriched diet caused a sevenfold increase in plasma n-3 PUFA compared with that of the TFA-fed group, whereas a TFA-enriched diet caused a 2.5-fold increase in plasma TFA compared with the n-3 PUFA group. Animals on a TFA diet had a lower survival rate due to sudden cardiac death and exhibited variable degrees of aortic atherosclerotic lesions. Animals on a TFA diet had diminished hindlimb collateral growth, whereas animals on the n-3 PUFA diet exhibited extensive collateral growth about ligated regions. HAEC treated with TFA (trans-18 : 2) showed significantly increased expression of intracellular adhesion molecule-1 and nitrosylation of cellular proteins than those treated with DHA (n-3 PUFA, 22 : 6). The in vivo study demonstrates that, in contrast to TFA, n-3 PUFA improve animal survival after myocardial infarction, prevent development of atherosclerotic lesions and stimulate compensatory vascular remodelling. The in vitro study demonstrates that TFA induce, while n-3 PUFA prevent, vascular inflammation.
Collapse
|
66
|
Bagi Z. Mechanisms of coronary microvascular adaptation to obesity. Am J Physiol Regul Integr Comp Physiol 2009; 297:R556-67. [DOI: 10.1152/ajpregu.90817.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The metabolic syndrome (MetS) is associated with clustering of cardiovascular risk factors in individuals that may greatly increase their risk of developing coronary artery disease. Obesity and related metabolic dysfunction are the driving forces in the prevalence of MetS. It is believed that obesity has detrimental effects on cardiovascular function, but its overall impact on the vasomotor regulation of small coronary arteries is still debated. Emerging evidence indicates that in obesity coronary arteries adapt to hemodynamic changes via maintaining and/or upregulating cellular mechanism(s) intrinsic to the vascular wall. Among other factors, endothelial production of cyclooxygenase-2-derived prostacyclin and reactive oxygen species, as well as increased nitric oxide sensitivity and potassium channel activation in smooth muscle cells, have been implicated in maintaining coronary vasodilator function. This review aims to examine studies that have been primarily focused on alterations in coronary vasodilator function in obesity. A better understanding of cellular mechanisms that may contribute to coronary microvascular adaptation may provide insight into the sequence of pathological events in obesity and may allow the harnessing of these effects for therapeutic purposes.
Collapse
|
67
|
Bagi Z, Feher A, Beleznai T. Preserved coronary arteriolar dilatation in patients with type 2 diabetes mellitus: implications for reactive oxygen species. Pharmacol Rep 2009; 61:99-104. [PMID: 19307697 DOI: 10.1016/s1734-1140(09)70011-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/14/2009] [Indexed: 01/10/2023]
Abstract
Type 2 diabetes mellitus is associated with clustering of cardiovascular risk factors that may greatly increase individuals' risk of developing coronary artery disease. Type 2 diabetes is believed to impair coronary function. However, its impact on the vasomotor function of coronary resistance vessels in humans is still debated. Reduced, preserved or even augmented dilations of coronary arterioles have been reported in subjects with type 2 diabetes. Interestingly, recent studies have suggested that reactive oxygen species (ROS), particularly hydrogen peroxide, may compensate for the loss of the vasodilatory function of coronary microvessels during disease development. Recent interventional clinical trials have yielded largely negative results, and there has even been some suggestion of harm caused by attempts to reduce ROS. Thus, it is possible that interference with ROS-related signaling might paradoxically temper the function of coronary microvessels, predisposing patients to myocardial ischemia. In this review, we aim to highlight current findings supporting a potential role for ROS in preserving coronary arteriolar dilation in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Zsolt Bagi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
68
|
Navaneethan SD, Beddhu S. Associations of serum uric acid with cardiovascular events and mortality in moderate chronic kidney disease. Nephrol Dial Transplant 2009; 24:1260-6. [PMID: 19033255 PMCID: PMC2721426 DOI: 10.1093/ndt/gfn621] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 10/13/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is unclear whether the presence of kidney disease modifies the associations of uric acid with cardiovascular events and death. METHODS In the limited access, public use Atherosclerosis Risk In Communities (ARIC) database, associations of serum uric acid levels with cardiovascular events and death were analysed using a parametric proportional hazards model and the modification of these associations by the presence of CKD was assessed using a likelihood ratio test. RESULTS Of the 15 366 ARIC participants included in this analysis, 461 had CKD (eGFR <60 ml/min/1.73 m(2)). In both non-CKD and CKD sub-groups, participants with hyperuricaemia (> or = 7 mg/dl in men and > or = 6 mg/dl in women) compared to those with normal serum uric acid levels had higher waist circumference and fasting serum insulin levels. In the entire cohort, in a multivariate parametric proportional hazards model, each mg/dl increase in serum uric acid was associated with an increased hazard of cardiovascular events (HR 1.09, 95% CI 1.05-1.12) and death. A multiplicative interaction term of serum uric acid and CKD when added to the above models was significant (P < 0.001). The likelihood ratio test of the models with and without the interaction term was also significant (P < 0.001). In the non-CKD population, a multivariate analysis after adjusting for comorbidities and metabolic syndrome showed a significant association between hyperuricaemia and mortality (HR 1.18, 95% CI 1.04-1.33) but not for cardiovascular events (HR 1.07, 95% CI 0.96-1.19). In the CKD population, the association was not significant for both mortality and cardiovascular events. CONCLUSION We conclude that hyperuricaemia is associated with insulin resistance and mortality in the non-CKD population. The presence of CKD attenuates the associations of uric acid with mortality. Interventional studies are warranted to establish the biological role of hyperuricaemia in mortality in non-CKD and CKD populations.
Collapse
|
69
|
Chechi K, McGuire JJ, Cheema SK. Developmental programming of lipid metabolism and aortic vascular function in C57BL/6 mice: a novel study suggesting an involvement of LDL-receptor. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1029-40. [DOI: 10.1152/ajpregu.90932.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have previously shown that a maternal high-fat diet, rich in saturated fatty acids (SFA), alters the lipid metabolism of their adult offspring. The present study was designed to investigate 1) whether alterations in hepatic LDL-receptor (LDL-r) expression may serve as a potential mechanism of developmental programming behind the altered lipid metabolism of the offspring, 2) whether altered lipid metabolism leads to aortic vascular dysfunction in the offspring, 3) whether deleterious effects of SFA exposure preweaning are influenced by postweaning diet, and 4) whether gender-specific programming effects are observed. Female C57Bl/6 mice were fed a high-SFA diet or regular chow during gestation and lactation while their pups, both male and female, received either SFA or a chow diet after weaning. Male offspring obtained from mothers fed an SFA diet and those who continued on chow postweaning had higher plasma triglycerides and total cholesterol, whereas female offspring had higher plasma total and LDL cholesterol levels, lower hepatic LDL-r mRNA expression, and reduced aortic contractile responses compared with the offspring that were fed chow throughout the study. A comparison of the postweaning diet revealed significantly lower hepatic LDL-r expression along with significantly higher plasma LDL-cholesterol concentration in the female offspring that were obtained from mothers fed an SFA diet and who continued on an SFA diet postweaning, compared with the female offspring that were obtained from mothers fed an SFA diet but who continued on chow postweaning. In conclusion, we report a novel observation of hepatic LDL-r-mediated programming of altered lipid metabolism, along with aortic vascular dysfunction, in the female offspring of mothers fed a high-SFA diet. Male offspring only exhibited dyslipidemia, suggesting gender-mediated programming. This study further highlighted the role of postweaning diets in overriding the effects of maternal programming.
Collapse
|
70
|
Jiang B, Hebert VY, Khandelwal AR, Stokes KY, Dugas TR. HIV-1 antiretrovirals induce oxidant injury and increase intima-media thickness in an atherogenic mouse model. Toxicol Lett 2009; 187:164-71. [PMID: 19429260 DOI: 10.1016/j.toxlet.2009.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/21/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
A growing body of evidence suggests HIV patients are at a greater risk for developing atherosclerosis. However, clinical investigations have generated conflicting results with regard to whether antiretrovirals are independently involved in the development of HIV-associated atherosclerosis. By administering antiretrovirals in an atherogenic mouse model, we determined whether two commonly prescribed antiretrovirals, the protease inhibitor indinavir and the nucleoside reverse transcriptase inhibitor AZT, can induce premature atherosclerosis. C57BL/6 mice were administered an atherogenic diet+/-AZT, indinavir, or AZT plus indinavir for 20 weeks. Aortic intima-media thickness (IMT) and cross-sectional area (CSA) were determined. Compared to controls, treatment with AZT, indinavir or AZT plus indinavir, significantly increased aortic IMT and CSA. This suggests that antiretrovirals can directly exacerbate atherogenesis, in the absence of interaction with a retroviral infection. To elucidate the role of oxidant injury in the drug-induced initiation of atherosclerosis, a separate group of mice were treated for 2 weeks with an atherogenic diet+/-AZT, indinavir or AZT plus indinavir. Aortic reactive oxygen species (ROS) production and glutathione/glutathione disulfide (GSH/GSSG) ratios, as well as plasma levels of 8-isoprostanes (8-iso-PGF(2alpha)) and lipids were determined. At 2 weeks, aortic ROS was increased and GSH/GSSG ratios were decreased in all antiretroviral treatment groups. Plasma 8-iso-PGF(2alpha) was increased in the AZT and AZT plus indinavir-treated groups. At 20 weeks, increased ROS production was maintained for the AZT and indinavir treatment groups, and increased 8-iso-PGF(2alpha) levels remained elevated in the AZT treatment group. Cholesterol levels were moderately elevated in the AZT and AZT plus indinavir-treated groups at 2 but not 20 weeks. Conversely, indinavir treatment increased plasma cholesterol at 20 but not 2 weeks. Thus, though effects on plasma lipid levels occurred, with effects of the individual antiretrovirals variable across the treatment period, there was consistent evidence of oxidant injury across both early and late time points. Together with the known metabolic abnormalities induced by antiretrovirals, drug-induced oxidant production may contribute to the development of antiretroviral-associated atherosclerosis.
Collapse
Affiliation(s)
- Bo Jiang
- Departments of Pharmacology, Toxicology and Neuroscience and Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | | | | | | | | |
Collapse
|
71
|
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89:27-71. [PMID: 19126754 DOI: 10.1152/physrev.00014.2008] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.
Collapse
Affiliation(s)
- Nava Bashan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
72
|
c-Jun N-Terminal Kinase 2
Deficiency Protects Against Hypercholesterolemia-Induced Endothelial Dysfunction and Oxidative Stress. Circulation 2008; 118:2073-80. [DOI: 10.1161/circulationaha.108.765032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background—
Hypercholesterolemia-induced endothelial dysfunction due to excessive production of reactive oxygen species is a major trigger of atherogenesis. The c-Jun-N-terminal kinases (JNKs) are activated by oxidative stress and play a key role in atherogenesis and inflammation. We investigated whether
JNK2
deletion protects from hypercholesterolemia-induced endothelial dysfunction and oxidative stress.
Methods and Results—
Male
JNK2
knockout (
JNK2
−/−
) and wild-type (WT) mice (8 weeks old) were fed either a high-cholesterol diet (HCD; 1.25% total cholesterol) or a normal diet for 14 weeks. Aortic lysates of WT mice fed a HCD showed an increase in JNK phosphorylation compared with WT mice fed a normal diet (
P
<0.05). Endothelium-dependent relaxations to acetylcholine were impaired in WT HCD mice (
P
<0.05 versus WT normal diet). In contrast,
JNK2
−/−
HCD mice did not exhibit endothelial dysfunction (96±5% maximal relaxation in response to acetylcholine;
P
<0.05 versus WT HCD). Endothelium-independent relaxations were identical in all groups. A hypercholesterolemia-induced decrease in nitric oxide (NO) release of endothelial cells was found in WT but not in
JNK2
−/−
mice. In parallel, endothelial NO synthase expression was upregulated only in
JNK2
−/−
HCD animals, whereas the expression of antioxidant defense systems such as extracellular superoxide dismutase and manganese superoxide dismutase was decreased in WT but not in
JNK2
−/−
HCD mice. In contrast to
JNK2
−/−
mice, WT HCD displayed an increase in O
2
−
and ONOO
−
concentrations as well as nitrotyrosine staining and peroxidation.
Conclusions—
JNK2
plays a critical role as a mediator of hypercholesterolemia-induced endothelial dysfunction and oxidative stress. Thus,
JNK2
may provide a novel target for prevention of vascular disease and atherosclerosis.
Collapse
|
73
|
Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM. Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 2008; 335:165-89. [PMID: 18941783 DOI: 10.1007/s00441-008-0685-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 08/22/2008] [Indexed: 12/19/2022]
Abstract
Endothelial dysfunction comprises a number of functional alterations in the vascular endothelium that are associated with diabetes and cardiovascular disease, including changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. Hyperglycemia is a characteristic feature of type 1 and type 2 diabetes and plays a pivotal role in diabetes-associated microvascular complications. Although hyperglycemia also contributes to the occurrence and progression of macrovascular disease (the major cause of death in type 2 diabetes), other factors such as dyslipidemia, hyperinsulinemia, and adipose-tissue-derived factors play a more dominant role. A mutual interaction between these factors and endothelial dysfunction occurs during the progression of the disease. We pay special attention to the possible involvement of endoplasmic reticulum stress (ER stress) and the role of obesity and adipose-derived adipokines as contributors to endothelial dysfunction in type 2 diabetes. The close interaction of adipocytes of perivascular adipose tissue with arteries and arterioles facilitates the exposure of their endothelial cells to adipokines, particularly if inflammation activates the adipose tissue and thus affects vasoregulation and capillary recruitment in skeletal muscle. Hence, an initial dysfunction of endothelial cells underlies metabolic and vascular alterations that contribute to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Wineke Bakker
- Laboratory of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
74
|
Bourgoin F, Bachelard H, Badeau M, Mélançon S, Pitre M, Larivière R, Nadeau A. Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, high-sucrose diet. Am J Physiol Heart Circ Physiol 2008; 295:H1044-H1055. [DOI: 10.1152/ajpheart.00516.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.
Collapse
|
75
|
Stapleton PA, James ME, Goodwill AG, Frisbee JC. Obesity and vascular dysfunction. ACTA ACUST UNITED AC 2008; 15:79-89. [PMID: 18571908 DOI: 10.1016/j.pathophys.2008.04.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/18/2008] [Accepted: 04/28/2008] [Indexed: 01/04/2023]
Abstract
One of the most profound challenges facing public health and public health policy in Western society is the increased incidence and prevalence of both overweight and obesity. While this condition can have significant consequences for patient mortality and quality of life, it can be further exacerbated as overweight/obesity can be a powerful stimulus for the development of additional risk factors for a negative cardiovascular outcome, including increased insulin resistance, dyslipidemia and hypertension. This manuscript will present the effects of systemic obesity on broad issues of vascular function in both afflicted human populations and in the most relevant animal models. Among the topics that will be covered are alterations to vascular reactivity (both dilator and constrictor responses), adaptations in microvascular network and vessel wall structure, and alterations to the patterns of tissue/organ perfusion as a result of the progression of the obese condition. Additionally, special attention will be paid to the contribution of chronic inflammation as a contributor to alterations in vascular function, as well as the role of perivascular adipose tissue in terms of impacting vessel behavior. When taken together, it is clearly apparent that the development of the obese condition can have profound, and frequently difficult to predict, impacts on integrated vascular function. Much of this complexity appears to have its basis in the extent to which other co-morbidities associated with obesity (e.g., insulin resistance) are present and exert contributing effects.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
76
|
Abstract
Oxidative stress plays an important role in the pathogenesis of hypertension. A number of sources of reactive oxygen species have been identified including NADPH oxidase, endothelial NO synthase, and xanthine oxidase. Inhibitors of these systems reduce blood pressure in experimental models. Targeted overexpression of antioxidant systems and interference with expression of oxidant systems has also been successfully used in animal models of hypertension. It is expected that these strategies will eventually be translated to human disease, but currently, the specificity and toxicity of such measures are not yet fulfilling quality criteria for treatment of humans. In the meantime, presumably nontoxic measures, such as administration of antioxidant vitamins, are the only available treatments for oxidative stress in humans. In this review, we discuss strategies to target oxidative stress both in experimental models and in humans. We also discuss how patients could be selected who particularly benefit from antioxidant treatment. In clinical practice, diagnostic procedures beyond measurement of blood pressure will be necessary to predict the response to antioxidants; these procedures will include measurement of antioxidant status and detailed assessment of vascular structure and function.
Collapse
Affiliation(s)
- Christian Delles
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | | | | |
Collapse
|
77
|
Aubin MC, Lajoie C, Clément R, Gosselin H, Calderone A, Perrault LP. Female rats fed a high-fat diet were associated with vascular dysfunction and cardiac fibrosis in the absence of overt obesity and hyperlipidemia: therapeutic potential of resveratrol. J Pharmacol Exp Ther 2008; 325:961-8. [PMID: 18356487 DOI: 10.1124/jpet.107.135061] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
It remains presently unknown whether vascular reactivity is impaired and whether maladaptive cardiac remodeling occurs before the onset of overt obesity and in the absence of hyperlipidemia. Normal female rats were fed a high-fat diet for 8 weeks and were associated with a modest nonsignificant increase of body weight (standard diet, 300 +/- 10, versus high-fat diet, 329 +/- 14 g) and a normal plasma lipid profile. In rats fed a high-fat diet, systolic (171 +/- 7 mm Hg) and diastolic blood pressures (109 +/- 3) were increased compared to a standard diet (systolic blood pressure, 134 +/- 8; diastolic blood pressure, 96 +/- 5 mm Hg), and acetylcholine-dependent relaxation of isolated aortic rings (high-fat diet, 22 +/- 5%, versus standard diet, 53 +/- 8%) was significantly reduced. Furthermore, perivascular fibrosis was detected in the heart of rats fed a high-fat diet. The exogenous addition of resveratrol (trans-3,5,4'-trihydroxystilbene) (0.1 microM) to aortic rings isolated from rats fed a high-fat diet restored acetylcholine-mediated relaxation (47 +/- 9%). The administration of resveratrol (20 mg/kg/day for 8 weeks) to rats fed a high-fat diet prevented the increase in blood pressure and preserved acetylcholine-dependent relaxation of isolated aortic rings. However, resveratrol therapy failed to attenuate the perivascular fibrotic response. These data have demonstrated that a high-fat diet fed to normal female rats can elicit a hypertensive response and induce perivascular fibrosis before the development of overt obesity and in the absence of hyperlipidemia. Resveratrol therapy can prevent the hypertensive response in female rats fed a high-fat diet but is without effect on the progression of perivascular fibrosis.
Collapse
Affiliation(s)
- Marie-Claude Aubin
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
78
|
Pezzuto L, Bohlen HG. Extracellular arginine rapidly dilates in vivo intestinal arteries and arterioles through a nitric oxide mechanism. Microcirculation 2008; 15:123-35. [PMID: 18260003 DOI: 10.1080/10739680701447415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Arginine used for nitric oxide formation can be from intracellular stores or transported into cells. The study evaluated the rapidity, and primary site of NO and vascular resistance responses to arginine at near physiological concentrations (100-400 microM). METHODS Arginine was applied to a single arteriole through a micropipette to determine the fastest possible responses. For vascular blood flow and [NO] responses, arginine was added to the bathing media. RESULTS Dilation of single arterioles to arginine began in 10-15 seconds and application over the entire vasculature increased [NO] in approximately 60-90 seconds, and flow increased within 120-300 seconds. Resting periarteriolar [NO] for arterioles was 493.6 +/- 30.5 nM and increased to 696.1 +/- 68.2 and 820.1 +/- 110.5 nM at 200 and 400 microM L-arginine. The blood flow increased 50% at 400-1200 microM L-arginine. The reduced arterial resistance during topical arginine was significantly greater than microvascular resistance at 100 and 200 microM arginine. All responses were blocked by L-NAME. CONCLUSIONS This study demonstrated arterial resistance responses are as or more responsive to arginine induced NO formation as arterioles at near physiological concentrations of arginine. The vascular NO and resistance responses occurred rapidly at L-arginine concentrations at and below 400 microM, which predict arginine transport processes were involved.
Collapse
Affiliation(s)
- Laura Pezzuto
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, IN 46202, USA
| | | |
Collapse
|
79
|
Jebelovszki E, Kiraly C, Erdei N, Feher A, Pasztor ET, Rutkai I, Forster T, Edes I, Koller A, Bagi Z. High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation. Am J Physiol Heart Circ Physiol 2008; 294:H2558-64. [PMID: 18408126 DOI: 10.1152/ajpheart.01198.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.
Collapse
Affiliation(s)
- Eva Jebelovszki
- Second Department of Medicine and Center of Cardiology, University of Szeged, Szeged
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Witting PK, Rayner BS, Wu BJ, Ellis NA, Stocker R. Hydrogen peroxide promotes endothelial dysfunction by stimulating multiple sources of superoxide anion radical production and decreasing nitric oxide bioavailability. Cell Physiol Biochem 2007; 20:255-68. [PMID: 17762155 DOI: 10.1159/000107512] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2007] [Indexed: 11/19/2022] Open
Abstract
Hydrogen peroxide (H(2)O(2)) is an oxidant implicated in cell signalling and various pathologies, yet relatively little is known about its impact on endothelial cell function. Herein we studied the functional and biochemical changes in aortic vessels and cultured porcine aortic endothelial cells (PAEC) exposed to H(2)O(2). Exposure of aortic rings to 25 or 50 microM, but not 10 microM, H(2)O(2) for 60 min prior to constriction significantly decreased subsequent relaxation in response to acetylcholine (ACh), but not the nitric oxide ((.)NO) donor sodium nitroprusside. Treatment of PAEC with 50 microM H(2)O(2) significantly decreased ACh-induced accumulation of (.)NO, as measured with a (.)NO-selective electrode, yet such treatment increased nitric oxide synthase activity approximately 3-fold, as assessed by conversion of L-arginine to L-citrulline. Decreased (.)NO bioavailability was reflected in decreased cellular cGMP content, associated with increased superoxide anion radical (O(2)(-.)), and overcome by addition of polyethylene glycol superoxide dismutase. Increased cellular O(2)(-.) production was inhibited by allopurinol, diphenyliodonium and rotenone in an additive manner. The results show that exposure of endothelial cells to H(2)O(2) decreases the bioavailability of agonist-induced (.)NO as a result of increased production of O(2)(-.) likely derived from xanthine oxidase, NADPH-oxidase and mitochondria. These processes could contribute to H(2)O(2)-induced vascular dysfunction that may be relevant under conditions of oxidative stress such as inflammation.
Collapse
Affiliation(s)
- Paul K Witting
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | | | | | |
Collapse
|