51
|
Ticinesi A, Tana C, Nouvenne A. The intestinal microbiome and its relevance for functionality in older persons. Curr Opin Clin Nutr Metab Care 2019; 22:4-12. [PMID: 30489399 DOI: 10.1097/mco.0000000000000521] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article summarizes the advances of research on the role of the intestinal microbiota in influencing sarcopenia, frailty, and cognitive dysfunction in older individuals, and thus its relevance for healthy active ageing. RECENT FINDINGS Age-related alterations of intestinal microbiota composition may negatively influence muscle protein synthesis and function by promoting chronic systemic inflammation, insulin resistance, oxidative stress, and reducing nutrient bioavailability. However, this 'gut-muscle axis' hypothesis is not supported by human data to date. Some observational studies have instead demonstrated that, in older individuals, frailty and Alzheimer-type dementia are associated with fecal microbiota dysbiosis, that is, reduced biodiversity and overexpression of pathobionts. The main possible mechanisms of the 'gut-brain axis' in cognitive function modulation include effects on neurotransmission, neuroinflammation, and amyloid deposition. Conversely, longevity in good health may be associated with the maintenance of a fecal microbiota composition similar to that of healthy young adults. However, the role of gut microbiota as an independent modulator of frailty and cognition still remains uncertain, being influenced by several physiological factors, including diet and exercise. SUMMARY The intestinal microbiome composition represents a possible determinant of functional performance in older people, and a promising target for antiaging therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Claudio Tana
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
52
|
Li Z, Organ CL, Kang J, Polhemus DJ, Trivedi RK, Sharp TE, Jenkins JS, Tao YX, Xian M, Lefer DJ. Hydrogen Sulfide Attenuates Renin Angiotensin and Aldosterone Pathological Signaling to Preserve Kidney Function and Improve Exercise Tolerance in Heart Failure. ACTA ACUST UNITED AC 2018; 3:796-809. [PMID: 30623139 PMCID: PMC6315048 DOI: 10.1016/j.jacbts.2018.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
Cardioprotective effects of H2S have been well documented. However, the lack of evidence supporting the benefits afforded by delayed H2S therapy warrants further investigation. Using a murine model of transverse aortic constriction-induced heart failure, this study showed that delayed H2S therapy protects multiple organs including the heart, kidney, and blood-vessel; reduces oxidative stress; attenuates renal sympathetic and renin-angiotensin-aldosterone system pathological activation; and ultimately improves exercise capacity. These findings provide further insights into H2S-mediated cardiovascular protection and implicate the benefits of using H2S-based therapies clinically for the treatment of heart failure.
Collapse
Affiliation(s)
- Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Chelsea L. Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jianming Kang
- Department of Chemistry, Washington State University, Pullman, Washington
| | - David J. Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Rishi K. Trivedi
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Thomas E. Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jack S. Jenkins
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Ya-xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, Alabama
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington
| | - David J. Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Address for correspondence: Dr. David J. Lefer, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, 533 Bolivar Street, Room 408, New Orleans, Louisiana 70112.
| |
Collapse
|
53
|
Matsumura N, Takahara S, Maayah ZH, Parajuli N, Byrne NJ, Shoieb SM, Soltys CLM, Beker DL, Masson G, El-Kadi AO, Dyck JR. Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J Mol Cell Cardiol 2018; 125:162-173. [DOI: 10.1016/j.yjmcc.2018.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
|
54
|
Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients 2018; 10:nu10111651. [PMID: 30400297 PMCID: PMC6266067 DOI: 10.3390/nu10111651] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Resveratrol is a polyphenol which has been shown to have beneficial effects on metabolic syndrome-related alterations in experimental animals, including glucose and lipid homeostasis improvement and a reduction in fat mass, blood pressure, low-grade inflammation, and oxidative stress. Clinical trials have been carried out to address its potential; however, results are still inconclusive. Even though resveratrol is partly metabolized by gut microbiota, the relevance of this “forgotten organ” had not been widely considered. However, in the past few years, data has emerged suggesting that the therapeutic potential of this compound may be due to its interaction with gut microbiota, reporting changes in bacterial composition associated with beneficial metabolic outcomes. Even though data is still scarce and for the most part observational, it is promising nevertheless, suggesting that resveratrol supplementation could be a useful tool for the treatment of metabolic syndrome and its associated conditions.
Collapse
|
55
|
Reciprocal interactions between resveratrol and gut microbiota deepen our understanding of molecular mechanisms underlying its health benefits. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
56
|
Yu J, Zhu H, Taheri S, Perry S, Kindy MS. The Effect of Diet on Improved Endurance in Male C57BL/6 Mice. Nutrients 2018; 10:nu10081101. [PMID: 30115854 PMCID: PMC6115890 DOI: 10.3390/nu10081101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
The consumption of fruits and vegetables appears to help with maintaining an adequate level of exercise and improves endurance. However, the mechanisms that are involved in this process are not well understood. In the current study, the impact of diets enriched in fruits and vegetables (GrandFusion®) on exercise endurance was examined in a mouse model. GrandFusion (GF) diets increased mitochondrial DNA and enzyme activity, while they also stimulated mitochondrial mRNA synthesis in vivo. GF diets increased both the mRNA expression of factors involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (Tfam), estrogen-related receptor alpha (ERRα), nuclear respiratory factor 1 (NRF-1), cytochrome c oxidase IV (COXIV) and ATP synthase (ATPsyn). Mice treated with GF diets showed an increase in running endurance, rotarod perseverance and grip strength when compared to controls who were on a regular diet. In addition, GF diets increased the protein expression of phosphorylated AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC-1α and peroxisome proliferator-activated receptor delta (PPAR-δ), which was greater than exercise-related changes. Finally, GF reduced the expression of phosphorylated ribosomal protein S6 kinase 1 (p-S6K1) and decreased autophagy. These results demonstrate that GF diets enhance exercise endurance, which is mediated via mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | | | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
- NutriFusion®, LLC, Naples, FL 34109, USA.
- James A. Haley VA Medical Center, Tampa, FL 33612, USA.
- Shriners Hospital for Children, Tampa, FL 33612, USA.
| |
Collapse
|
57
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
58
|
Srilacorn C, Choosathan A, Seesuthok S, Kongna S, Kotirum S. Resveratrol has not been proven its enhancement of the physical activity among users: A systematic review and meta-analysis study. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
59
|
Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of Metabolic Flexibility in the Failing Heart. Front Cardiovasc Med 2018; 5:68. [PMID: 29928647 PMCID: PMC5997788 DOI: 10.3389/fcvm.2018.00068] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
To maintain its high energy demand the heart is equipped with a highly complex and efficient enzymatic machinery that orchestrates ATP production using multiple energy substrates, namely fatty acids, carbohydrates (glucose and lactate), ketones and amino acids. The contribution of these individual substrates to ATP production can dramatically change, depending on such variables as substrate availability, hormonal status and energy demand. This "metabolic flexibility" is a remarkable virtue of the heart, which allows utilization of different energy substrates at different rates to maintain contractile function. In heart failure, cardiac function is reduced, which is accompanied by discernible energy metabolism perturbations and impaired metabolic flexibility. While it is generally agreed that overall mitochondrial ATP production is impaired in the failing heart, there is less consensus as to what actual switches in energy substrate preference occur. The failing heart shift toward a greater reliance on glycolysis and ketone body oxidation as a source of energy, with a decrease in the contribution of glucose oxidation to mitochondrial oxidative metabolism. The heart also becomes insulin resistant. However, there is less consensus as to what happens to fatty acid oxidation in heart failure. While it is generally believed that fatty acid oxidation decreases, a number of clinical and experimental studies suggest that fatty acid oxidation is either not changed or is increased in heart failure. Of importance, is that any metabolic shift that does occur has the potential to aggravate cardiac dysfunction and the progression of the heart failure. An increasing body of evidence shows that increasing cardiac ATP production and/or modulating cardiac energy substrate preference positively correlates with heart function and can lead to better outcomes. This includes increasing glucose and ketone oxidation and decreasing fatty acid oxidation. In this review we present the physiology of the energy metabolism pathways in the heart and the changes that occur in these pathways in heart failure. We also look at the interventions which are aimed at manipulating the myocardial metabolic pathways toward more efficient substrate utilization which will eventually improve cardiac performance.
Collapse
Affiliation(s)
| | | | | | - Gary D. Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
60
|
Long-Term Resveratrol Supplementation as a Secondary Prophylaxis for Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4147320. [PMID: 29743980 PMCID: PMC5878880 DOI: 10.1155/2018/4147320] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Stroke is a leading cause of mortality worldwide, as well as a source of long-term disabilities and huge socioeconomic costs. This study investigates the effects of resveratrol, an antioxidant supplement, on blood pressure, weight status, glucose, and lipid profile in patients who had a stroke in the last 12 months. Two hundred and twenty-eight patients were divided into three groups: group I received only allopathic treatment (control group), while groups II and III received allopathic treatment with a daily supplementation of oral resveratrol (100 and 200 mg, resp.) for 12 months. In all groups, the changes of the studied parameters were monitored at 6 and 12 months from the initial evaluation. In groups II and III, resveratrol induced significant changes (p < 0.05) in the blood pressure, body mass index, as well as all parameters of the lipid profile, and glucose (in nondiabetic patients), compared to the control group. The supplementation of the allopathic treatment with resveratrol had a beneficial effect on all monitored parameters, which serve as major risk factors for stroke.
Collapse
|
61
|
Bird JK, Raederstorff D, Weber P, Steinert RE. Cardiovascular and Antiobesity Effects of Resveratrol Mediated through the Gut Microbiota. Adv Nutr 2017; 8:839-849. [PMID: 29141969 PMCID: PMC5682996 DOI: 10.3945/an.117.016568] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Encouraging scientific research into the health effects of dietary bioactive resveratrol has been confounded by its rapid first-pass metabolism, which leads to low in vivo bioavailability. Preliminary studies have shown that resveratrol can modulate gut microbiota composition, undergo biotransformation to active metabolites via the intestinal microbiota, or affect gut barrier function. In rodents, resveratrol can modify the relative Bacteroidetes:Firmicutes ratio and reverse the gut microbial dysbiosis caused by a high-fat diet. By upregulating the expression of genes involved in maintaining tight junctions between intestinal cells, resveratrol contributes to gut barrier integrity. The composition of the gut microbiome and rapid metabolism of resveratrol determines the production of resveratrol metabolites, which are found at greater concentrations in humans after ingestion than their parent molecule and can have similar biological effects. Resveratrol may affect cardiovascular risk factors such as elevated blood cholesterol or trimethylamine N-oxide concentrations. Modulating the composition of the gut microbiota by resveratrol may affect central energy metabolism and modify concentrations of satiety hormones to produce antiobesity effects. Encouraging research from animal models could be tested in humans.
Collapse
Affiliation(s)
- Julia K Bird
- Human Nutrition and Health, DSM Nutritional Products, Basel, Switzerland, and
| | - Daniel Raederstorff
- Human Nutrition and Health, DSM Nutritional Products, Basel, Switzerland, and
| | - Peter Weber
- Human Nutrition and Health, DSM Nutritional Products, Basel, Switzerland, and
| | - Robert E Steinert
- Human Nutrition and Health, DSM Nutritional Products, Basel, Switzerland, and,Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
62
|
Cavallari JF, Schertzer JD. Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity. J Obes Metab Syndr 2017; 26:161-171. [PMID: 31089513 PMCID: PMC6484920 DOI: 10.7570/jomes.2017.26.3.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Obesity is associated with increased risk of developing metabolic diseases such as type 2 diabetes. The origins of obesity are multi-factorial, but ultimately rooted in increased host energy accumulation or retention. The gut microbiota has been implicated in control of host energy balance and nutrient extraction from dietary sources. The microbiota also impacts host immune status and dysbiosis-related inflammation can augment insulin resistance, independently of obesity. Advances in microbial metagenomic analyses and directly manipulating bacterial-host models of obesity have contributed to our understanding of the relationship between gut bacteria and metabolic disease. Foodborne, or drug-mediated perturbations to the gut microbiota can increase metabolic inflammation, insulin resistance, and dysglycemia. There is now some evidence that specific bacterial species can influence obesity and related metabolic defects such as insulin sensitivity. Components of bacteria are sufficient to impact obesity-related changes in metabolism. In fact, different microbial components derived from the bacterial cell wall can increase or decrease insulin resistance. Improving our understanding of the how components of the microbiota alter host metabolism is positioned to aid in the development of dietary interventions, avoiding triggers of dysbiosis, and generating novel therapeutic strategies to combat increasing rates of obesity and diabetes.
Collapse
Affiliation(s)
- Joseph F. Cavallari
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario,
Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario,
Canada
| |
Collapse
|
63
|
Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker DL, Masson G, Fedak PW, Verma S, Dyck JR. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure. ACTA ACUST UNITED AC 2017; 2:347-354. [PMID: 30062155 PMCID: PMC6034464 DOI: 10.1016/j.jacbts.2017.07.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/20/2023]
Abstract
This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2) inhibitor empagliflozin improved heart failure (HF) outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.
Collapse
Affiliation(s)
- Nikole J. Byrne
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nirmal Parajuli
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jody L. Levasseur
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jamie Boisvenue
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Donna L. Beker
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Grant Masson
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W.M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jason R.B. Dyck
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Address for correspondence: Dr. Jason R.B. Dyck, 458 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|