51
|
Abstract
PURPOSE Homocysteine (Hcy) is an independent risk factor for cardiovascular diseases that impairs endothelial function. We investigated whether the impaired endothelial function can be restored by the eNOS transcription enhancer AVE3085 in porcine coronary arteries. The effects of AVE3085 against Hcy on eNOS-NO function were studied and further investigations were conducted to reveal the role of arginase and the signaling pathway of eNOS activation in the effect of AVE3085 on endothelial dysfunction caused by Hcy. METHODS Myograph study of vasorelaxation, electrochemical measurement of NO, RT-PCR and Western blot analysis of eNOS, iNOS expression, and eNOS phosphorylation were performed. Arginase activity was determined by urea production and O2 (.-) generation by lucigenin-enhanced chemiluminenscence. RESULTS Exposure to Hcy for 24 h attenuated bradykinin-induced relaxation and NO release, downregulated eNOS mRNA expression and protein expressions of eNOS and p-eNOS(Ser1177) whereas it upregulated iNOS expression. AVE3085 restored NO release and relaxation, enhanced eNOS but decreased iNOS expression. Inhibition of protein kinase Akt or PI3 kinase attenuated the effect of AVE3085 on relaxation and eNOS phosphorylation. Arginase activity and O2 (.-) production were inhibited by AVE3085 in Hcy-exposed vessels. CONCLUSIONS AVE3085 prevents Hcy-induced endothelial dysfunction in coronary arteries by preservation of NO production and suppression of O2 (.-) generation. Preservation of NO is attributed to upregulation of eNOS expression, activation of eNOS via phosphorylation of Ser1177 through a PI3 kinase/Akt-dependent pathway, and inhibition of arginase. Reduction of O2 (.-) generation results from reversal of eNOS uncoupling and inhibition of arginase and iNOS.
Collapse
|
52
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
53
|
Park E, Kwon BM, Jung IK, Kim JH. Hypoglycemic and antioxidant effects of jaceosidin in streptozotocin-induced diabetic mice. ACTA ACUST UNITED AC 2014. [DOI: 10.4163/jnh.2014.47.5.313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eunkyo Park
- Department of Home Economics, Graduate School, Chung-Ang University, Seoul 156-756, Korea
| | - Byoung-Mog Kwon
- Division of Biomedical Convergent, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Korea
| | - In-Kyung Jung
- Department of Physical Education, Chung-Ang University, Seoul 156-756, Korea
| | - Jung-Hyun Kim
- Department of Physical Education, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
54
|
Abu-Saleh N, Awad H, Khamaisi M, Armaly Z, Karram T, Heyman SN, Kaballa A, Ichimura T, Holman J, Abassi Z. Nephroprotective effects of TVP1022, a non-MAO inhibitor S-isomer of rasagiline, in an experimental model of diabetic renal ischemic injury. Am J Physiol Renal Physiol 2014; 306:F24-33. [DOI: 10.1152/ajprenal.00379.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic acute kidney injury (iAKI) in diabetes mellitus is associated with a rapid deterioration of kidney function, more than in nondiabetic subjects. TVP1022, a non-MAO inhibitor S-isomer of rasagiline, possesses antioxidative and antiapoptotic activities. The current study examines the effects of TVP1022 and tempol on iAKI in diabetic rats. Diabetes was induced by streptozotocin. iAKI was induced by clamping the left renal artery for 30 min in both diabetic and nondiabetic rats. The right intact kidney served as a control. Forty-eight hours following ischemia, urinary flow (V), sodium excretion (UNaV), and glomerular filtration rate (GFR) in both ischemic and nonischemic kidneys were determined. The nephroprotective effects of tempol and TVP1022 were examined in these rats. Hematoxylin and eosin staining, 4-hydroxynonenal (4-HNE) immunofluorescence, and nitrotyrosine immunohistochemistry were performed on renal tissues of the various experimental groups. Compared with normoglycemic rats, iAKI in diabetic animals caused more profound reductions in V, UNaV, and GFR. Tempol and TVP1022 treatment increased GFR two- and four-fold in diabetic ischemic kidney, respectively. Besides hemodynamic perturbations, iAKI markedly increased renal immunoreactive 4-HNE and nitrotyrosine staining in both diabetic and nondiabetic rats. Moreover, iAKI increased medullary necrosis, congestion, and casts. Noteworthy, these increases were to a larger extent in ischemic diabetic kidneys. TVP1022, and to a lesser extent tempol, decreased nitrotyrosine and 4-HNE immunoreactivities and necrosis and cast formation in the renal medulla. TVP1022 treatment improves renal dysfunction and histological changes in an iAKI diabetic model and suggests a role for TVP1022 therapy in kidney injury.
Collapse
Affiliation(s)
- Niroz Abu-Saleh
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
| | - Hoda Awad
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
| | - Mogher Khamaisi
- Institute of Endocrinology, Diabetes, and Metabolism and Internal Medicine C, Technion, IIT, Haifa, Israel
| | - Zaher Armaly
- Nephrology Department, EMMS Nazareth-The Nazareth Hospital, Nazareth, Israel
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Campus, Haifa, Israel
| | - Samuel N. Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel; and
| | - Aviva Kaballa
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
| | - Takaharu Ichimura
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - James Holman
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zaid Abassi
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
- Research Unit, Rambam Health Campus, Haifa, Israel
| |
Collapse
|
55
|
Wang T, Mao X, Li H, Qiao S, Xu A, Wang J, Lei S, Liu Z, Ng KFJ, Wong GT, Vanhoutte PM, Irwin MG, Xia Z. N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radic Biol Med 2013; 63:291-303. [PMID: 23747931 DOI: 10.1016/j.freeradbiomed.2013.05.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/07/2013] [Accepted: 05/29/2013] [Indexed: 01/02/2023]
Abstract
N-Acetylcysteine (NAC) and allopurinol (ALP) synergistically reduce myocardial ischemia reperfusion (MI/R) injury in diabetes. However, the mechanism is unclear. We postulated that NAC and ALP attenuated diabetic MI/R injury by up-regulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathways subsequent to adiponectin (APN) activation. Control (C) or streptozotocin-induced diabetic rats (D) were untreated or treated with NAC and ALP followed by MI/R. D rats displayed larger infarct size accompanied by decreased phosphorylation of Akt, STAT3 and decreased cardiac nitric oxide (NO) and APN levels. NAC and ALP decreased MI/R injury in D rats, enhanced phosphorylation of Akt and STAT3, and increased NO and APN. High glucose and hypoxia/reoxygenation exposure induced cell death and Akt and STAT3 inactivation in cultured cardiomyocytes, which were prevented by NAC and ALP. The PI3K inhibitor wortmannin and Jak2 inhibitor AG490 abolished the protection of NAC and ALP. Similarly, APN restored posthypoxic Akt and STAT3 activation and decreased cell death in cardiomyocytes. Gene silencing with AdipoR2 siRNA or STAT3 siRNA but not AdipoR1 siRNA abolished the protection of NAC and ALP. In conclusion, NAC and ALP prevented diabetic MI/R injury through PI3K/Akt and Jak2/STAT3 and cardiac APN may serve as a mediator via AdipoR2 in this process.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Babacanoglu C, Yildirim N, Sadi G, Pektas M, Akar F. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats. Food Chem Toxicol 2013; 60:160-7. [DOI: 10.1016/j.fct.2013.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
|
57
|
Wang T, Yao S, Xia Z, Irwin MG. Adiponectin: mechanisms and new therapeutic approaches for restoring diabetic heart sensitivity to ischemic post-conditioning. Front Med 2013; 7:301-5. [PMID: 23904036 DOI: 10.1007/s11684-013-0283-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
Systemic inflammatory response following myocardial ischemia-reperfusion injury (IRI) to a specific organ may cause injuries. Ischemic post-conditioning (IPostC) has emerged as a promising method for myocardial protection against IRI both in experimental and in clinical settings. Enhancement of endogenous nitric oxide (NO) is one of the major mechanisms by which IPostC confers cardioprotection. However, the sensitivity of the diabetic heart to IPostC is impaired and the underlying mechanism is unknown. Adiponectin (APN) is an adipocytederived plasma protein with anti-diabetic and anti-inflammatory properties. Plasma levels of APN are decreased in obese subjects and in patients with type 2 diabetes. APN supplementation has been shown to increase NO production and attenuate myocardial IRI in normal (non-diabetic) animals. However, the effect of APN on myocardial injury in diabetic subjects, especially its potential in restoring the sensitivity of the diabetic heart to IPostC has not been investigated. In the current paper, we discussed the possible reasons why the myocardium of diabetic subjects loses sensitivity to IPostC and also highlighted the potential effectiveness and mechanism of APN in restoring IPostC cardioprotection in diabetes. This review proposes to conduct studies that may facilitate the development of novel and optimal therapies to enhance cardioprotection in patients with severe diseases such as diabetes.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | |
Collapse
|
58
|
Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KF, Lau WB, Ma XL, Rodrigues B, Irwin MG, Xia Z. Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 2013; 62:2318-28. [PMID: 23474486 PMCID: PMC3712061 DOI: 10.2337/db12-1391] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC)β2 is preferably overexpressed in the diabetic myocardium, which induces cardiomyocyte hypertrophy and contributes to diabetic cardiomyopathy, but the underlying mechanisms are incompletely understood. Caveolae are critical in signal transduction of PKC isoforms in cardiomyocytes. Caveolin (Cav)-3, the cardiomyocyte-specific caveolar structural protein isoform, is decreased in the diabetic heart. The current study determined whether PKCβ2 activation affects caveolae and Cav-3 expression. Immunoprecipitation and immunofluorescence analysis revealed that high glucose (HG) increased the association and colocalization of PKCβ2 and Cav-3 in isolated cardiomyocytes. Disruption of caveolae by methyl-β-cyclodextrin or Cav-3 small interfering (si)RNA transfection prevented HG-induced PKCβ2 phosphorylation. Inhibition of PKCβ2 activation by compound CGP53353 or knockdown of PKCβ2 expression via siRNA attenuated the reductions of Cav-3 expression and Akt/endothelial nitric oxide synthase (eNOS) phosphorylation in cardiomyocytes exposed to HG. LY333531 treatment (for a duration of 4 weeks) prevented excessive PKCβ2 activation and attenuated cardiac diastolic dysfunction in rats with streptozotocin-induced diabetes. LY333531 suppressed the decreased expression of myocardial NO, Cav-3, phosphorylated (p)-Akt, and p-eNOS and also mitigated the augmentation of O2(-), nitrotyrosine, Cav-1, and iNOS expression. In conclusion, hyperglycemia-induced PKCβ2 activation requires caveolae and is associated with reduced Cav-3 expression in the diabetic heart. Prevention of excessive PKCβ2 activation attenuated cardiac diastolic dysfunction by restoring Cav-3 expression and subsequently rescuing Akt/eNOS/NO signaling.
Collapse
Affiliation(s)
- Shaoqing Lei
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Haobo Li
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Jinjin Xu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Yanan Liu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Xia Gao
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Junwen Wang
- Department of Biochemistry, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Kwok F.J. Ng
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xin-liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G. Irwin
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
- Corresponding author: Zhengyuan Xia,
| |
Collapse
|
59
|
Sartoretto SM, Santos-Eichler R, de Cássia A Tostes R, Carvalho MHC, Akamine EH, Fortes ZB. Role of nitric oxide and endothelin in endothelial maintenance of vasoconstrictor responses in aortas of diabetic female rats. J Diabetes 2013; 5:197-206. [PMID: 23061464 DOI: 10.1111/1753-0407.12011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/11/2012] [Accepted: 10/07/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Diabetes differentially affects the vascular system in males and females. Although various results have been reported, very few studies have focused on responses in females. In the present study, we investigated contractile responses to norepinephrine in aortas of alloxan-diabetic female rats and evaluated endothelial modulation of these responses. METHODS Concentration-response curves were constructed to norepinephrine in the absence or presence of N(G) -nitro-l-arginine methyl ester (l-NAME), indomethacin, losartan, tezosentan, and calphostin C; pre-pro-endothelin mRNA expression was evaluated; and norepinephrine-stimulated expression of phosphorylated (p-) Akt Ser(473) , p-endothelial nitric oxide synthase (eNOS) Ser(1177) , and p-eNOS Ser(633) was determined in endothelial cells incubated in the presence of low (5 mmol/L) or high (25 mmol/L) glucose concentrations. RESULTS Similar maximal responses (Rmax ) to norepinephrine were seen in control and diabetic endothelium-intact aortas; however, Rmax was reduced in diabetic endothelium-denuded aortas. Incubation of endothelium-intact aortas with 100 μmol/L l-NAME increased Rmax in the control group only. Inhibition of cyclo-oxygenase (10 μmol/L indomethacin) and blockade of angiotensin II receptors (10 μmol/L losartan) reduced Rmax in endothelium-intact aortas in both the control and diabetic groups. Blockade of endothelin receptors (0.1 μmol/L tezosentan) and inhibition of protein kinase C (PKC; 0.1 μmol/L calphostin C) reduced Rmax only in endothelium-intact aortas from diabetic rats. Pre-pro-endothelin mRNA expression was increased in aortas from diabetic female rats. Finally, p-Akt Ser(473) , p-eNOS Ser(1177) , and p-eNOS Ser(633) levels were enhanced after norepinephrine stimulation only in low glucose-treated endothelial cells. CONCLUSIONS In aortas of diabetic female rats, reductions in smooth muscle contractile responses to norepinephrine are counterbalanced by the endothelium via reduced eNOS activation and increased endothelin release and PKC activation.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Endothelins/metabolism
- Endothelium, Vascular/metabolism
- Female
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Nitric Oxide/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Vasoconstriction
Collapse
Affiliation(s)
- Simone M Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
60
|
Mourmoura E, Vial G, Laillet B, Rigaudière JP, Hininger-Favier I, Dubouchaud H, Morio B, Demaison L. Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetol 2013; 12:49. [PMID: 23530768 PMCID: PMC3620680 DOI: 10.1186/1475-2840-12-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/12/2022] Open
Abstract
Background There has been accumulating evidence associating diabetes mellitus and cardiovascular dysfunctions. However, most of the studies are focused on the late stages of diabetes and on the function of large arteries. This study aimed at characterizing the effects of the early phase of diabetes mellitus on the cardiac and vascular function with focus on the intact coronary microvasculature and the oxidative stress involved. Materials and methods Zucker diabetic fatty rats and their lean littermates fed with standard diet A04 (Safe) were studied at the 11th week of age. Biochemical parameters such as glucose, insulin and triglycerides levels as well as their oxidative stress status were measured. Their hearts were perfused ex vivo according to Langendorff and their cardiac activity and coronary microvascular reactivity were evaluated. Results Zucker fatty rats already exhibited a diabetic state at this age as demonstrated by the elevated levels of plasma glucose, insulin, glycated hemoglobin and triglycerides. The ex vivo perfusion of their hearts revealed a decreased cardiac mechanical function and coronary flow. This was accompanied by an increase in the overall oxidative stress of the organs. However, estimation of the active form of endothelial nitric oxide synthase and coronary reactivity indicated a preserved function of the coronary microvessels at this phase of the disease. Diabetes affected also the cardiac membrane phospholipid fatty acid composition by increasing the arachidonic acid and n-3 polyunsaturated fatty acids levels. Conclusions The presence of diabetes, even at its beginning, significantly increased the overall oxidative stress of the organs resulting to decreased cardiac mechanical activity ex vivo. However, adaptations were adopted at this early phase of the disease regarding the preserved coronary microvascular reactivity and the associated cardiac phospholipid composition in order to provide a certain protection to the heart.
Collapse
Affiliation(s)
- Evangelia Mourmoura
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Université Joseph Fourier, BP 53, Grenoble cedex 09 F-38041, France.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
The unfolded protein response to endoplasmic reticulum stress in cultured astrocytes and rat brain during experimental diabetes. Neurochem Int 2013; 62:784-95. [PMID: 23411409 DOI: 10.1016/j.neuint.2013.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/21/2022]
Abstract
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25mmol/L glucose for up to 4weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1-7months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4months, and p-IRE levels were transiently elevated at 3months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.
Collapse
|
62
|
Bhatwadekar AD, Yan Y, Qi X, Thinschmidt JS, Neu MB, Li Calzi S, Shaw LC, Dominiguez JM, Busik JV, Lee C, Boulton ME, Grant MB. Per2 mutation recapitulates the vascular phenotype of diabetes in the retina and bone marrow. Diabetes 2013; 62. [PMID: 23193187 PMCID: PMC3526035 DOI: 10.2337/db12-0172] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we assessed whether Per2 clock gene-mutant mice exhibit a vascular phenotype similar to diabetes. Per2 (B6.129-Per2(tm1Drw)/J) or wild-type control mice 4 and 12 months of age were used. To evaluate diabetes-like phenotype in Per2 mutant mice, retina was quantified for mRNA expression, and degree of diabetic retinopathy was evaluated. Bone marrow neuropathy was studied by staining femurs for tyrosine hydroxylase (TH) and neurofilament 200 (NF-200). The rate of proliferation and quantification of bone marrow progenitor cells (BMPCs) was performed, and a threefold decrease in proliferation and 50% reduction in nitric oxide levels were observed in Per2 mutant mice. TH-positive nerve processes and NF-200 staining were reduced in Per2 mutant mice. Both retinal protein and mRNA expression of endothelial nitric oxide synthase were decreased by twofold. Other endothelial function genes (VEGFR2, VEGFR1) were downregulated (1.5-2-fold) in Per2 mutant retinas, whereas there was an upregulation of profibrotic pathway mediated by transforming growth factor-β1. Our studies suggest that Per2 mutant mice recapitulate key aspects of diabetes without the metabolic abnormalities, including retinal vascular damage, neuronal loss in the bone marrow, and diminished BMPC function.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Increased iNOS activity in vascular smooth muscle cells from diabetic rats: Potential role of Ca2+/calmodulin-dependent protein kinase II delta 2 (CaMKIIδ2). Atherosclerosis 2013. [DOI: 10.1016/j.atherosclerosis.2012.10.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
64
|
Mathew E, Barletta MA, Lau-Cam CA. The Effects of Taurine and Thiotaurine on Oxidative Stress in the Aorta and Heart of Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:345-69. [DOI: 10.1007/978-1-4614-6130-2_28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
65
|
Mastrocola R, Barutta F, Pinach S, Bruno G, Perin PC, Gruden G. Hippocampal heat shock protein 25 expression in streptozotocin-induced diabetic mice. Neuroscience 2012; 227:154-62. [PMID: 23022217 DOI: 10.1016/j.neuroscience.2012.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Hippocampal abnormalities are believed to increase the risk of cognitive decline in diabetic patients. The underlying mechanism is unknown, but both hyperglycemia and oxidative stress have been implicated. Cellular stresses induce the expression of heat shock protein 25 (HSP25) and this results in cytoprotection. Our aim was to assess hippocampal expression of HSP25 in experimental diabetes. Mice were rendered diabetic by streptozotocin injection. Ten weeks after diabetes onset hippocampal HSP25 expression was studied by immunoblotting and immunohistochemistry (IHC). Expression of glial fibrillary acidic protein, nitrotyrosine, iNOS, HSP72, HSP90, and Cu/Zn superoxide dismutase (SOD) was assessed by either IHC or immunoblotting, Cu/Zn-SOD activity by enzymatic assay, and malondialdehyde (MDA) content by colorimetric assay. Hippocampal HSP25 was significantly increased in diabetic as compared to non-diabetic animals and localized predominantly within the pyramidal neurons layer of the CA1 area. This was paralleled by overexpression of nitrotyrosine, iNOS, SOD expression/activity, and enhanced MDA content. In experimental diabetes, HSP25 is overexpressed in the CA1 pyramidal neurons in parallel with markers of oxidative stress.
Collapse
Affiliation(s)
- R Mastrocola
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Italy.
| | | | | | | | | | | |
Collapse
|
66
|
Goodwill AG, Frisbee JC. Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome. Vascul Pharmacol 2012; 57:150-9. [PMID: 22796585 DOI: 10.1016/j.vph.2012.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/19/2012] [Accepted: 07/04/2012] [Indexed: 01/22/2023]
Abstract
The evolution of the metabolic syndrome in afflicted individuals is, in part, characterized by the development of a severely pro-oxidant state within the vasculature. It has been previously demonstrated by many investigators that this increasingly pro-oxidant state can have severe negative implications for many relevant processes within the vasculature, including the coordination of dilator/constrictor tone or reactivity, the structural adaptations of the vascular wall or distal networks, as well as the integrated regulation of perfusion resistance across and throughout the vascular networks. The purpose of this review article is to present the different sources of oxidant stress within the setting of the metabolic syndrome, the available mechanism for attempts at regulation and the vascular outcomes associated with this condition. It is anticipated that this overview will help readers and investigators to more effectively design experiments and interpret their results within the extremely complicated setting of metabolic syndrome.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | | |
Collapse
|
67
|
Cao J, Vecoli C, Neglia D, Tavazzi B, Lazzarino G, Novelli M, Masiello P, Wang YT, Puri N, Paolocci N, L'abbate A, Abraham NG. Cobalt-Protoporphyrin Improves Heart Function by Blunting Oxidative Stress and Restoring NO Synthase Equilibrium in an Animal Model of Experimental Diabetes. Front Physiol 2012; 3:160. [PMID: 22675305 PMCID: PMC3366474 DOI: 10.3389/fphys.2012.00160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/07/2012] [Indexed: 01/09/2023] Open
Abstract
Myocardial dysfunction and coronary macro/microvascular alterations are the hallmarks of diabetic cardiomyopathy and are ascribed to increased oxidative stress and altered nitric oxide synthase (NOS) activity. We hypothesize that pre-treatment by cobalt-protoporphyrin IX (CoPP) ameliorates both myocardial function and coronary circulation in streptozotocin (STZ)-induced diabetic rats. Isolated hearts from diabetic rats in Langendorff configuration displayed lower left ventricular function and higher coronary resistance (CR) compared to hearts from control animals. CoPP treatment of diabetic animals (0.3 mg/100 g body weight i.p., once a week for 3 weeks) significantly increased all the contractile/relaxation indexes (p < 0.01), while decreasing CR (p < 0.01). CoPP enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the significant (p < 0.05) decrease in heart % GSSG, [Formula: see text] and malondialdehyde (MDA) levels. CoPP increased adiponectin levels and phosphorylation of AKT and AMPK and reversed the eNOS/iNOS expression imbalance observed in the untreated diabetic heart. Furthermore, after CoPP treatment, a rise in malonyl-CoA as well as a decrease in acetyl-CoA was observed in diabetic hearts. In this experimental model of diabetic cardiomyopathy, CoPP treatment improved both cardiac function and coronary flow by blunting oxidative stress, restoring eNOS/iNOS expression balance and increasing HO-1 levels, thereby favoring improvement in both endothelial function and insulin sensitivity.
Collapse
Affiliation(s)
- Jian Cao
- First Geriatric Cardiology Division, Chinese PLA General Hospital Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Topal G, Koç E, Karaca Ç, Altuğ T, Ergin B, Demirci C, Melikoğlu G, Meriçli AH, Kucur M, Özdemir O, Uydeş Doğan BS. Effects of Crataegus microphylla
on Vascular Dysfunction in Streptozotocin-induced Diabetic Rats. Phytother Res 2012; 27:330-7. [DOI: 10.1002/ptr.4726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/20/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Gökçe Topal
- Faculty of Pharmacy, Department of Pharmacology; Istanbul University; 34116 Beyazıt Istanbul Turkey
| | - Ebru Koç
- Faculty of Pharmacy, Department of Pharmacology; Istanbul University; 34116 Beyazıt Istanbul Turkey
| | - Çetin Karaca
- Cerrahpaşa Medical Faculty, Experimental Animals Research Laboratory; Istanbul University; 34116 Beyazıt Istanbul Turkey
| | - Tuncay Altuğ
- Faculty of Medicine, Department of Medical Biology and Genetics; Istanbul Science University; 34116 Beyazıt Istanbul Turkey
| | - Bülent Ergin
- Faculty of Science, Department of Biology; Istanbul University; 34116 Beyazıt Istanbul Turkey
| | - Cihan Demirci
- Faculty of Science, Department of Biology; Istanbul University; 34116 Beyazıt Istanbul Turkey
| | - Gülay Melikoğlu
- Faculty of Pharmacy, Department of Pharmacognosy; Istanbul University; 34116 Beyazıt Istanbul Turkey
| | - Ali H. Meriçli
- Faculty of Pharmacy, Department of Pharmacognosy; Istanbul University; 34116 Beyazıt Istanbul Turkey
| | - Mine Kucur
- Cerrahpaşa Medical Faculty, Laboratory of Biochemistry; Istanbul University; 34116 Beyazıt Istanbul Turkey
| | - Osman Özdemir
- Faculty of Pharmacy, Department of Pharmacology; Cyprus International University; Haspolat, Lefkoşa TRNC Cyprus
| | - B. Sönmez Uydeş Doğan
- Faculty of Pharmacy, Department of Pharmacology; Istanbul University; 34116 Beyazıt Istanbul Turkey
| |
Collapse
|
69
|
The neuroprotective effect of agmatine after focal cerebral ischemia in diabetic rats. J Neurosurg Anesthesiol 2012; 24:39-50. [PMID: 21993016 DOI: 10.1097/ana.0b013e318235af18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Diabetes mellitus is a metabolic disorder associated with structural and functional alterations of various organ systems including the central nervous system. The aim of present study was to investigate the neuroprotective effect of agmatine (AGM) on cerebral ischemic damage in diabetic rats. METHODS Normoglycemic (n=30) and streptozocine-induced diabetic rats (n=82) were subjected to 30 minutes of suture-occlusion of the middle cerebral artery (MCAO) with 24 or 72 hours of reperfusion. Thirty-nine diabetic rats were treated with AGM (100 mg/kg, intraperitoneal) immediately after 30 minutes of MCAO. To evaluate the motor function, a modified neurological examination and rota-rod exercise were performed. The brain infarct volume and edema volume were assessed. Caspase-3 activity and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining were used to evaluate cellular apoptosis. Western blot and immunohistochemical analysis were performed to determine the expression of neuronal nitric oxide synthase (NOS) and inducible NOS in ischemic brain tissues. RESULTS AGM posttreatment improved the neurobehavioral activity of diabetic MCAO rats at 24 and 72 hours after reperfusion. The infarct size and edema volume were reduced in AGM-treated diabetic rats compared with those in diabetic rats without AGM posttreatment (P<0.01). Immunohistochemical analysis showed that AGM treatment significantly decreased the number of caspase-3-positive and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells in diabetic MCAO rats at 24 and 72 hours after reperfusion (P<0.01). Western blotting and immunohistochemistry results indicated that AGM treatment significantly decreased neuronal NOS and inducible NOS expression in diabetic rats at 24 and 72 hours after reperfusion (all P<0.05). CONCLUSIONS AGM posttreatment reduced cerebral infarct size and neurological deficit expression in diabetic rats subjected to MCAO. The reduced infarct size was associated with a decrease in apoptosis and NOS expression.
Collapse
|
70
|
Luo Q, Liu W, Chen J, Wang M, Zeng W, Chen Z, Cheng A. Nerve growth factor and inducible nitric oxide synthase expression in the mesencephalon and diencephalon, as well as visual- and auditory-related nervous tissues, in a macaque model of type 2 diabetes. Neural Regen Res 2012; 7:302-7. [PMID: 25806073 PMCID: PMC4353104 DOI: 10.3969/j.issn.1673-5374.2012.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 12/22/2011] [Indexed: 11/18/2022] Open
Abstract
The present study detected distribution and expression of nerve growth factor and inducible nitric oxide synthase in the mesencephalon and diencephalon, as well as visual- and auditory-related nervous tissues, in a macaque model of type 2 diabetes using immunohistochemistry. Results showed that nerve growth factor expression decreased, but inducible nitric oxide synthase expression increased, in the mesencephalon and diencephalon, as well as visual- and auditory- related nervous tissues. These results suggested that nerve growth factor and inducible nitric oxide synthase play an important role in regulating the development of diabetic visual- and auditory-related diseases.
Collapse
Affiliation(s)
- Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University/Key Laboratory of Animal Disease and Human Health of Sichuan Province, Ya’an 625014, Sichuan Province, China
- Experimental Animal Engineering Center, Sichuan Agricultural University/Provenance Source De pot of Macaque for National Experiment, Ya’an 625014, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University/Key Laboratory of Animal Disease and Human Health of Sichuan Province, Ya’an 625014, Sichuan Province, China
- Experimental Animal Engineering Center, Sichuan Agricultural University/Provenance Source De pot of Macaque for National Experiment, Ya’an 625014, Sichuan Province, China
| | - Jingyao Chen
- College of Veterinary Medicine, Sichuan Agricultural University/Key Laboratory of Animal Disease and Human Health of Sichuan Province, Ya’an 625014, Sichuan Province, China
- Experimental Animal Engineering Center, Sichuan Agricultural University/Provenance Source De pot of Macaque for National Experiment, Ya’an 625014, Sichuan Province, China
| | - Mingshu Wang
- College of Veterinary Medicine, Sichuan Agricultural University/Key Laboratory of Animal Disease and Human Health of Sichuan Province, Ya’an 625014, Sichuan Province, China
- Experimental Animal Engineering Center, Sichuan Agricultural University/Provenance Source De pot of Macaque for National Experiment, Ya’an 625014, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Wen Zeng
- Experimental Animal Engineering Center, Sichuan Agricultural University/Provenance Source De pot of Macaque for National Experiment, Ya’an 625014, Sichuan Province, China
- Sinopharm Center for Safety Evaluation and Research, Chengdu 610051, Sichuan Province, China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University/Key Laboratory of Animal Disease and Human Health of Sichuan Province, Ya’an 625014, Sichuan Province, China
- Experimental Animal Engineering Center, Sichuan Agricultural University/Provenance Source De pot of Macaque for National Experiment, Ya’an 625014, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University/Key Laboratory of Animal Disease and Human Health of Sichuan Province, Ya’an 625014, Sichuan Province, China
- Experimental Animal Engineering Center, Sichuan Agricultural University/Provenance Source De pot of Macaque for National Experiment, Ya’an 625014, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| |
Collapse
|
71
|
Xu X, Xiao H, Zhao J, Zhao T. Cardioprotective effect of sodium ferulate in diabetic rats. Int J Med Sci 2012; 9:291-300. [PMID: 22701336 PMCID: PMC3372935 DOI: 10.7150/ijms.4298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/29/2012] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) play important roles in the occurrence and development in diabetic cardiomyopathy (DC). Ferulic acid is one of the ubiquitous compounds in diet. Sodium ferulate (SF) is its sodium salt. SF has potent free radical scavenging activity and can effectively scavenge ROS. The study investigated the effect of SF on cardioprotection in diabetic rats. The diabetic rats induced by streptozotocin (STZ) were treated with SF (110mg/kg) by gavage per day for 12 weeks. Results showed that the levels of nitric oxide (NO) and superoxide dismutase (SOD) activity in plasma and myocardium in SF-treated group were significantly higher than those in diabetic control group. The levels of malondialdehyde (MDA) in plasma and myocardium in SF-treated group were significantly lower than those in diabetic control group. Expression of connective tissue growth factor (CTGF) in myocardium in SF-treated group was apparently lower than that in diabetic control group. Compared with normal control group, electron micrographs of myocardium in diabetic control group showed apparently abnormality, while that was significantly ameliorated in SF-treated group. The study demonstrated that SF has a cardioprotective effect via increasing SOD activity and NO levels in plasma and myocardium, inhibiting oxidative stress in plasma and myocardium, and inhibiting the expression of CTGF in myocardium in diabetes rats.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Endocrinology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, PR China
| | | | | | | |
Collapse
|
72
|
Vecoli C, Cao J, Neglia D, Inoue K, Sodhi K, Vanella L, Gabrielson KK, Bedja D, Paolocci N, L'abbate A, Abraham NG. Apolipoprotein A-I mimetic peptide L-4F prevents myocardial and coronary dysfunction in diabetic mice. J Cell Biochem 2011; 112:2616-26. [PMID: 21598304 DOI: 10.1002/jcb.23188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diabetes is a major health problem associated with adverse cardiovascular outcomes. The apolipoprotein A-I mimetic peptide L-4F is a putative anti-diabetic drug, has antioxidant and anti-inflammatory proprieties and improves endothelial function. In obese mice L-4F increases adiponectin levels, improving insulin sensitivity, and reducing visceral adiposity. We hypothesized that the pleiotropic actions of L-4F can prevent heart and coronary dysfunction in a mouse model of genetically induced Type II diabetes. We treated db/db mice with either L-4F or vehicle for 8 weeks. Trans-thoracic echocardiography was performed; thereafter, isolated hearts were subjected to ischemia/reperfusion (IR). Glucose, insulin, adiponectin, and pro-inflammatory cytokines (IL-1β, TNF-α, MCP-1) were measured in plasma and HO-1, pAMPK, peNOS, iNOS, adiponectin, and superoxide in cardiac tissue. In db/db mice L-4F decreased accumulation of subcutaneous and total fat, and increased insulin sensitivity and adiponectin levels while lowering inflammatory cytokines (P < 0.05). L-4F normalized in vivo left ventricular (LV) function of db/db mice, increasing (P < 0.05) fractional shortening and decreasing (P < 0.05) LV dimensions. In I/R experiments, L-4F prevented coronary microvascular resistance from increasing and LV function from deteriorating in the db/db mice. These changes were associated with increased cardiac expression of HO-1, pAMPK, peNOS, and adiponectin and decreased levels of superoxide and iNOS (P < 0.01). In the present study we showed that L-4F prevented myocardial and coronary functional abnormalities in db/db mice. These effects were associated with stimulation of HO-1 resulting in increased levels of anti-inflammatory, anti-oxidative, and vasodilatatory action through a mechanism involving increased levels of adiponectin, pAMPK, and peNOS.
Collapse
Affiliation(s)
- C Vecoli
- Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Pasarín M, Abraldes JG, Rodríguez-Vilarrupla A, La Mura V, García-Pagán JC, Bosch J. Insulin resistance and liver microcirculation in a rat model of early NAFLD. J Hepatol 2011; 55:1095-1102. [PMID: 21356259 DOI: 10.1016/j.jhep.2011.01.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/14/2011] [Accepted: 01/27/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Insulin contributes to vascular homeostasis in peripheral circulation, but the effects of insulin in liver microvasculature have never been explored. The aim of this study was to assess the vascular effects of insulin in the healthy and fatty liver. METHODS Wistar rats were fed a control or a high fat diet (HFD) for 3days, while treated with a placebo, the insulin-sensitizer metformin, or the iNOS inhibitor 1400W. Vascular responses to insulin were evaluated in the isolated liver perfusion model. Insulin sensitivity at the sinusoidal endothelium was tested by endothelium-dependent vasodilation in response to acetylcholine in the presence or absence of insulin and by the level of liver P-eNOS after an insulin injection. RESULTS Rats from the HFD groups developed liver steatosis. Livers from the control group showed a dose-dependent hepatic vasodilation in response to insulin, which was blunted in livers from HFD groups. Metformin restored liver vascular insulin-sensitivity. Pre-treatment with insulin enhanced endothelium-dependent vasodilation of the hepatic vasculature and induced hepatic eNOS phosphorylation in control rats but not in HFD rats. Treatment with metformin or 1400W restored the capacity of insulin to enhance endothelium dependent vasodilation and insulin induced eNOS phosphorylation in HFD rats. CONCLUSIONS The administration of a HFD induces insulin resistance in the liver sinusoidal endothelium, which is mediated, at least in part, through iNOS upregulation and can be prevented by the administration of metformin. Insulin resistance at the hepatic vasculature can be detected earlier than inflammation or any other sign of advanced NALFD.
Collapse
Affiliation(s)
- Marcos Pasarín
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-IDIBAPS, CIBERrehd, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
74
|
Krause B, Hanson M, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta 2011; 32:797-805. [PMID: 21798594 PMCID: PMC3218217 DOI: 10.1016/j.placenta.2011.06.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/27/2022]
Abstract
Nitric oxide (NO) is one of the most pleiotropic signaling molecules at systemic and cellular levels, participating in vascular tone regulation, cellular respiration, proliferation, apoptosis and gene expression. Indeed NO actively participates in trophoblast invasion, placental development and represents the main vasodilator in this tissue. Despite the large number of studies addressing the role of NO in the placenta, its participation in placental vascular development and the effect of altered levels of NO on placental function remains to be clarified. This review draws a time-line of the participation of NO throughout placental vascular development, from the differentiation of vascular precursors to the consolidation of vascular function are considered. The influence of NO on cell types involved in the origin of the placental vasculature and the expression and function of the nitric oxide synthases (NOS) throughout pregnancy are described. The developmental processes involved in the placental vascular bed are considered, such as the participation of NO in placental vasculogenesis and angiogenesis through VEGF and Angiopoietin signaling molecules. The role of NO in vascular function once the placental vascular tree has developed, in normal pregnancy as well as in pregnancy-related diseases, is then discussed.
Collapse
Affiliation(s)
- B.J. Krause
- Division of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - M.A. Hanson
- Institute of Developmental Sciences, Academic Unit of Human Development & Health, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - P. Casanello
- Division of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
75
|
Capellini VK, Baldo CF, Celotto AC, Batalhão ME, Cárnio EC, Rodrigues AJ, Evora PRB. Oxidative stress is not associated with vascular dysfunction in a model of alloxan-induced diabetic rats. ACTA ACUST UNITED AC 2011; 54:530-9. [PMID: 20857057 DOI: 10.1590/s0004-27302010000600004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/06/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To verify if an experimental model of alloxan-diabetic rats promotes oxidative stress, reduces nitric oxide bioavailability and causes vascular dysfunction, and to evaluate the effect of N-acetylcysteine (NAC) on these parameters. METHODS Alloxan-diabetic rats were treated or not with NAC for four weeks. Plasmatic levels of malondialdehyde (MDA) and nitrite/nitrate (NOx), the endothelial and inducible nitric oxide synthase (eNOS and iNOS) immunostaining and the vascular reactivity of aorta were compared among diabetic (D), treated diabetic (TD) and control (C) rats. RESULTS MDA levels increased in D and TD. NOx levels did not differ among groups. Endothelial eNOS immunostaining reduced and adventitial iNOS increased in D and TD. The responsiveness of rings to acetylcholine, sodium nitroprusside, and phenylephrine did not differ among groups. CONCLUSIONS NAC had no effect on the evaluated parameters and this experimental model did not promote vascular dysfunction despite the development of oxidative stress.
Collapse
Affiliation(s)
- Verena Kise Capellini
- Departamento de Cirurgia e Anatomia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
76
|
Roe ND, Ren J. Akt2 knockout mitigates chronic iNOS inhibition-induced cardiomyocyte atrophy and contractile dysfunction despite persistent insulin resistance. Toxicol Lett 2011; 207:222-31. [PMID: 21964073 DOI: 10.1016/j.toxlet.2011.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022]
Abstract
Increased levels of inducible nitric oxide synthase (iNOS) during cardiac stress such as ischemia-reperfusion, sepsis and hypertension may display both beneficial and detrimental roles in cardiac contractile performance. However, the precise role of iNOS in the maintenance of cardiac contractile function remains elusive. This study was designed to determine the impact of chronic iNOS inhibition on cardiac contractile function and the underlying mechanism involved with a special focus on the NO downstream signaling molecule Akt. Male C57 or Akt2 knockout [Akt2(-/-)] mice were injected with the specific iNOS inhibitor 1400W (2 mg/kg/d) or saline for 7 days. Both 1400W and Akt2 knockout dampened glucose and insulin tolerance without additive effects. Treatment of 1400W decreased heart and liver weights as well as cardiomyocyte cross-sectional area in C57 but not Akt2 knockout mice. 1400W but not Akt2 knockout compromised cardiomyocyte mechanical properties including decreased peak shortening and maximal velocity of shortening/relengthening, prolonged relengthening duration, reduced intracellular Ca(2+) release and decay rate, the effects of which were ablated or attenuated by Akt2 knockout. Akt2 knockout but not 1400W increased the levels of intracellular Ca(2+) regulatory proteins including SERCA2a and phospholamban phosphorylation. 1400W reduced the level of anti-apoptotic protein Bcl-2, the effect of which was unaffected by Akt2 knockout. Neither 1400W nor Akt2 knockout significantly affected ER stress, autophagy, the post-insulin receptor signaling Akt, GSK3β and AMPK, as well as the stress signaling IκB, JNK, ERK and p38 with the exception of elevated IκB phosphorylation with jointed effect of 1400W and Akt2 knockout. Taken together, these data indicated that an essential role of iNOS in the maintenance of cardiac morphology and function possibly through an Akt2-dependent mechanism.
Collapse
Affiliation(s)
- Nathan D Roe
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | |
Collapse
|
77
|
Wang T, Qiao S, Lei S, Liu Y, Ng KFJ, Xu A, Lam KSL, Irwin MG, Xia Z. N-acetylcysteine and allopurinol synergistically enhance cardiac adiponectin content and reduce myocardial reperfusion injury in diabetic rats. PLoS One 2011; 6:e23967. [PMID: 21912612 PMCID: PMC3166050 DOI: 10.1371/journal.pone.0023967] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/28/2011] [Indexed: 01/17/2023] Open
Abstract
Background Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Shigang Qiao
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Shaoqing Lei
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yanan Liu
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok F. J. Ng
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karen S. L. Lam
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael G. Irwin
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (ZX); (MGI)
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (ZX); (MGI)
| |
Collapse
|
78
|
Abstract
This review addresses the roles of Rho/Rho-kinase (ROCK) pathway in the pathogenesis of diabetes complications. Diabetes can cause many serious complications and can result in physical disability or even increased mortality. However, there are not many effective ways to treat these complications. The small guanosine-5'-triphosphate-binding protein Rho and its downstream target Rho-kinase mediate important cellular functions, such as cell morphology, motility, secretion, proliferation, and gene expression. Recently, the Rho/Rho-kinase pathway has attracted a great deal of attention in diabetes-related research. These studies have provided evidence that the activity and gene expression of Rho-kinase are upregulated in some tissues in animal models of type 1 or type 2 diabetes and in cell lines cultured with high concentrations of glucose. Inhibitors of Rho-kinase could prevent or ameliorate the pathological changes in diabetic complications. The inhibitory effects of statins on the Rho/Rho-kinase signalling pathway may also play a role in the prevention of diabetic complications. However, the precise molecular mechanism by which the Rho/Roh-kinase pathway participates in the development or progression of diabetic complications has not been extensively investigated. This article evaluates the relationship between Rho/Roh-kinase activation and diabetic complications, as well as the roles of Roh-kinase inhibitors and statins in the complications of diabetes, with the objective of providing a novel target for the treatment of long-term diabetic complications.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology, The Second Hospital of He Bei Medical University, Shijiazhuang, China
| | | |
Collapse
|
79
|
Sharma V, Sharma A, Saran V, Bernatchez PN, Allard MF, McNeill JH. β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions. Eur J Pharmacol 2011; 657:117-25. [DOI: 10.1016/j.ejphar.2011.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 01/15/2011] [Accepted: 01/25/2011] [Indexed: 01/22/2023]
|
80
|
Kusmic C, L'abbate A, Sambuceti G, Drummond G, Barsanti C, Matteucci M, Cao J, Piccolomini F, Cheng J, Abraham NG. Improved myocardial perfusion in chronic diabetic mice by the up-regulation of pLKB1 and AMPK signaling. J Cell Biochem 2010; 109:1033-44. [PMID: 20108250 DOI: 10.1002/jcb.22486] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies related impaired myocardial microcirculation in diabetes to oxidative stress and endothelial dysfunction. Thus, this study was aimed to determine the effect of up-regulating pAMPK-pAKT signaling on coronary microvascular reactivity in the isolated heart of diabetic mice. We measured coronary resistance in wild-type and streptozotocin (STZ)-treated mice, during perfusion pressure changes. Glucose, insulin, and adiponectin levels in plasma and superoxide formation, NOx levels and heme oxygenase (HO) activity in myocardial tissue were determined. In addition, the expression of HO-1, 3-nitrotyrosine, pLKB1, pAMPK, pAKT, and peNOS proteins in control and diabetic hearts were measured. Coronary response to changes in perfusion pressure diverged from control in a time-dependent manner following STZ administration. The responses observed at 28 weeks of diabetes (the maximum time examined) were mimicked by L-NAME administration to control animals and were associated with a decrease in serum adiponectin and myocardial pLKB1, pAMPK, pAKT, and pGSK-3 expression. Cobalt protoporphyrin treatment to induce HO-1 expression reversed the microvascular reactivity seen in diabetes towards that of controls. Up-regulation of HO-1 was associated with an increase in adiponectin, pLKB1, pAKT, pAMPK, pGSK-3, and peNOS levels and a decrease in myocardial superoxide and 3-nitrotyrosine levels. In the present study we describe the time course of microvascular functional changes during the development of diabetes and the existence of a unique relationship between the levels of serum adiponectin, pLKB1, pAKT, and pAMPK activation in diabetic hearts. The restoration of microvascular function suggests a new therapeutic approach to even advanced cardiac microvascular derangement in diabetes.
Collapse
|
81
|
Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, Ghirlanda G. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud 2010; 7:15-25. [PMID: 20703435 DOI: 10.1900/rds.2010.7.15] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the "final common pathway", through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients.
Collapse
Affiliation(s)
- Dario Pitocco
- Institute of Internal Medicine, Catholic University of Rome, Largo Agostino Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
82
|
Li Q, Verma A, Han PY, Nakagawa T, Johnson RJ, Grant MB, Campbell-Thompson M, Jarajapu YPR, Lei B, Hauswirth WW. Diabetic eNOS-knockout mice develop accelerated retinopathy. Invest Ophthalmol Vis Sci 2010; 51:5240-6. [PMID: 20435587 DOI: 10.1167/iovs.09-5147] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Dysfunction of endothelial nitric oxide synthase (eNOS) has been implicated in the pathogenesis of diabetic vascular complications. This study was undertaken to determine the role of eNOS in the development of diabetic retinopathy (DR), by investigating the functional consequences of its deficiency in the diabetic state. METHODS Diabetes was induced in eNOS-knockout (eNOS(-/-)) and C57B/6 mice by streptozotocin (STZ) injection. Retinal vasculature was evaluated by albumin extravasation, to quantitatively measure vascular permeability, and by trypsin-digested retinal vascular preparations, to quantify acellular capillaries. Gliosis was evaluated by immunofluorescent techniques. Retinal capillary basement membrane thickness was assessed by transmission electron microscopy. Total retinal nitric oxide level was assessed by measuring nitrate/nitrite using a fluorometric-based assay, iNOS expression was examined by real-time PCR. RESULTS Diabetic eNOS(-/-) mice exhibit more severe retinal vascular permeability than age-matched diabetic C57BL/6 mice, detectable as early as 3 weeks after diabetes induction. Diabetic eNOS(-/-) mice also show earlier onset and an increased number of acellular capillaries, sustained gliosis, and increased capillary basement membrane thickness. Total nitric oxide (NO) level was also increased, concomitant with elevated iNOS expression in diabetic eNOS(-/-) retina. CONCLUSIONS Diabetic eNOS(-/-) mice exhibit A significantly wider range of advanced retinal vascular complications than the age-matched diabetic C57BL/6 mice, supporting the notion that eNOS-derived NO plays an essential role in retinal vascular function. This mouse model also faithfully replicates many of the hallmarks of vascular changes associated with human retinopathy, thus providing a unique model to aid in understanding the pathologic mechanisms of and to develop effective therapeutic strategies for diabetic retinopathy.
Collapse
Affiliation(s)
- Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida 32610-0284, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Jarajapu YPR, Grant MB. The promise of cell-based therapies for diabetic complications: challenges and solutions. Circ Res 2010; 106:854-69. [PMID: 20299675 DOI: 10.1161/circresaha.109.213140] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of endothelial progenitor cells (EPCs) in human peripheral blood advanced the field of cell-based therapeutics for many pathological conditions. Despite the lack of agreement about the existence and characteristics of EPCs, autologous EPC populations represent a novel treatment option for complications requiring therapeutic revascularization and vascular repair. Patients with diabetic complications represent a population of patients that may benefit from cellular therapy yet their broadly dysfunctional cells may limit the feasibility of this approach. Diabetic EPCs have decreased migratory prowess and reduced proliferative capacity and an altered cytokine/growth factor secretory profile that can accelerate deleterious repair mechanisms rather than support proper vascular repair. Furthermore, the diabetic environment poses additional challenges for the autologous transplantation of cells. The present review is focused on correcting diabetic EPC dysfunction and the challenges involved in the application of cell-based therapies for treatment of diabetic vascular complications. In addition, ex vivo and in vivo functional manipulation(s) of EPCs to overcome these hurdles are discussed.
Collapse
Affiliation(s)
- Yagna P R Jarajapu
- Pharmacology and Therapeutics, College of Medicine, University of Florida, PO Box 100267, Gainesville, FL 32610-0267, USA
| | | |
Collapse
|
84
|
Li Calzi S, Neu MB, Shaw LC, Grant MB. Endothelial progenitor dysfunction in the pathogenesis of diabetic retinopathy: treatment concept to correct diabetes-associated deficits. EPMA J 2010; 1:88-100. [PMID: 21494317 PMCID: PMC3008583 DOI: 10.1007/s13167-010-0011-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progressive obliteration of the retinal microvessels is a characteristic of diabetic retinopathy and the resultant retinal ischemia can lead to sight-threatening macular edema, macular ischemia and ultimately preretinal neovascularization. Bone marrow derived endothelial progenitor cells (EPCs) play a critical role in vascular maintenance and repair. There is still great debate about the most appropriate markers that define an EPC. EPCs can be isolated using cell sorting by surface phenotype selection or in vitro cell culture. For freshly isolated cells, EPC cell sorting is heavily dependent on the surface markers used; EPCs can also be isolated by in vitro propagation of heterogeneous mixtures of cells in culture using adhesion to specific substrates and cell growth characteristics. in vitro isolation enables consistent reproducibility and using this approach at least two distinct types of EPCs with different angiogenic properties have been identified from adult peripheral and umbilical cord blood; early EPCs (eEPCs) and late outgrowth endothelial progenitor cells (OECs). Emerging studies demonstrate the potential of these cells in revascularization of ischemic/injured retina in animal models of retinal disease. Since ischemic retinopathies are leading causes of blindness, they are a potential disease target for EPC-based therapy. In this chapter, we summarize the current knowledge about EPCs and discuss the possibility of cellular therapy for treatment of diabetic macular ischemia and the vasodegenerative phase of diabetic retinopathy. We also report current pharmacological options that can be utilized to correct diabetes associated defects in EPCs so as to enhance the therapeutic utility of these cells.
Collapse
Affiliation(s)
- Sergio Li Calzi
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
85
|
Bhatwadekar AD, Shaw LC, Grant MB. Promise of endothelial progenitor cell for treatment of diabetic retinopathy. Expert Rev Endocrinol Metab 2010; 5:29-37. [PMID: 23678364 PMCID: PMC3652409 DOI: 10.1586/eem.09.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Progressive obliteration of the retinal microvessels is a characteristic of diabetic retinopathy. The resultant retinal ischemia leads to sight-threatening neovascularization and macular edema. Bone marrow-derived endothelial progenitor cells play a critical role in vascular maintenance and repair and forms the basis of cellular therapy for revascularization of ischemic myocardium and ischemic limbs. Emerging studies show potential of these cells in revascularization of ischemic retina and this review summarizes this possibility. We also report current pharmacological options to correct diabetes-associated defects in endothelial progenitor cells for their therapeutic transfer.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Dept of Pharmacology and Therapeutics, University of Florida, 1600 SW Archer Road Gainesville, FL 32610-0267, USA Tel.: + 1 352 392 9006 Fax: + 1 352 392 9696
| | - Lynn C Shaw
- Dept of Pharmacology and Therapeutics, University of Florida, 1600 SW Archer Road Gainesville, FL 32610-0267, USA Tel.: + 1 352 392 8020 Fax: + 1 352 392 9696
| | - Maria B Grant
- Author for correspondence Department of Pharmacology and Therapeutics, University of Florida, 1600 SW Archer Road Gainesville, FL 32610-0267, USA Tel: + 1 352 846 0978 Fax: + 1 352 392 9696
| |
Collapse
|
86
|
Klimas J, Kmecova J, Jankyova S, Yaghi D, Priesolova E, Kyselova Z, Musil P, Ochodnicky P, Krenek P, Kyselovic J, Matyas S. Pycnogenol®
improves left ventricular function in streptozotocin-induced diabetic cardiomyopathy in rats. Phytother Res 2009; 24:969-74. [PMID: 19957251 DOI: 10.1002/ptr.3015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
87
|
Nagareddy PR, Soliman H, Lin G, Rajput PS, Kumar U, McNeill JH, MacLeod KM. Selective inhibition of protein kinase C beta(2) attenuates inducible nitric oxide synthase-mediated cardiovascular abnormalities in streptozotocin-induced diabetic rats. Diabetes 2009; 58:2355-64. [PMID: 19587355 PMCID: PMC2750218 DOI: 10.2337/db09-0432] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Impaired cardiovascular function in diabetes is partially attributed to pathological overexpression of inducible nitric oxide synthase (iNOS) in cardiovascular tissues. We examined whether the hyperglycemia-induced increased expression of iNOS is protein kinase C-beta(2) (PKCbeta(2)) dependent and whether selective inhibition of PKCbeta reduces iNOS expression and corrects abnormal hemodynamic function in streptozotocin (STZ)-induced diabetic rats. RESEARCH DESIGN AND METHODS Cardiomyocytes and aortic vascular smooth muscle cells (VSMC) from nondiabetic rats were cultured in low (5.5 mmol/l) or high (25 mmol/l) glucose or mannitol (19.5 mmol/l mannitol + 5.5 mmol/l glucose) conditions in the presence of a selective PKCbeta inhibitor, LY333531 (20 nmol/l). Further, the in vivo effects of PKCbeta inhibition on iNOS-mediated cardiovascular abnormalities were tested in STZ-induced diabetic rats. RESULTS Exposure of cardiomyocytes to high glucose activated PKCbeta(2) and increased iNOS expression that was prevented by LY333531. Similarly, treatment of VSMC with LY333531 prevented high glucose-induced activation of nuclear factor kappaB, extracellular signal-related kinase, and iNOS overexpression. Suppression of PKCbeta(2) expression by small interference RNA decreased high-glucose-induced nuclear factor kappaB and extracellular signal-related kinase activation and iNOS expression in VSMC. Administration of LY333531 (1 mg/kg/day) decreased iNOS expression and formation of peroxynitrite in the heart and superior mesenteric arteries and corrected the cardiovascular abnormalities in STZ-induced diabetic rats, an action that was also observed with a selective iNOS inhibitor, L-NIL. CONCLUSIONS Collectively, these results suggest that inhibition of PKCbeta(2) may be a useful approach for correcting abnormal hemodynamics in diabetes by preventing iNOS mediated nitrosative stress.
Collapse
Affiliation(s)
- Prabhakara Reddy Nagareddy
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hesham Soliman
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Guorong Lin
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmesh S. Rajput
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ujendra Kumar
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John H. McNeill
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen M. MacLeod
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Kathleen M. MacLeod,
| |
Collapse
|
88
|
|
89
|
Abboud K, Bassila JC, Ghali-Ghoul R, Sabra R. Temporal changes in vascular reactivity in early diabetes mellitus in rats: role of changes in endothelial factors and in phosphodiesterase activity. Am J Physiol Heart Circ Physiol 2009; 297:H836-45. [PMID: 19542492 DOI: 10.1152/ajpheart.00102.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to study the influence of the duration of diabetes, the role of endothelial-derived vasodilators, and the role of phosphodiesterase (PDE) isoform activity in the early changes in vascular reactivity of aortic rings from diabetic rats. Diabetes mellitus was induced in female rats by intravenous streptozotocin (85 mg/kg). Two or 4 wk later, thoracic aortic rings from control and diabetic rats were isolated, and vascular responses to acetylcholine (ACh), S-nitroso-N-acetylpenicillamine (SNAP) [nitric oxide (NO) donor], DMPPO (PDE5 inhibitor), and phenylephrine (PE) were obtained in the presence and absence of endothelium or other drugs. PDE isoform activity was also measured. At 2 wk, responses to ACh and DMPPO were enhanced, whereas those to PE were attenuated in diabetic rats relative to controls. Indomethacin and SQ-29548 (a thromboxane A(2) receptor antagonist), but not N(G)-nitro-L-arginine methyl ester, corrected these differences. The responses to SNAP, and cAMP and cGMP hydrolytic activities, were similar in the two groups. In contrast, at 4 wk, ACh, DMPPO, and PE produced similar responses in the two groups: N(G)-nitro-L-arginine methyl ester rendered the response to PE lower in the diabetic group, and this was corrected by indomethacin, but not SQ-29548, treatment. The response to SNAP was greater in the diabetic group, and this was corrected by DMPPO. Activity of all PDEs was decreased at 4 wk. We conclude that, at 2 wk, there is modulation of thromboxane A(2) production, but no change in the NO system or PDE isoform activities. At 4 wk, a reduction in NO activity is superimposed; at this stage, PDE activity is reduced, together with increased production of vasodilating prostaglandins, possibly as a compensatory mechanism to maintain normal vascular reactivity.
Collapse
Affiliation(s)
- K Abboud
- Department of Pharmacology and Therapeutics, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | | | | | | |
Collapse
|
90
|
Tie L, Li XJ, Wang X, Channon KM, Chen AF. Endothelium-specific GTP cyclohydrolase I overexpression accelerates refractory wound healing by suppressing oxidative stress in diabetes. Am J Physiol Endocrinol Metab 2009; 296:E1423-9. [PMID: 19336662 PMCID: PMC2692395 DOI: 10.1152/ajpendo.00150.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/31/2009] [Indexed: 12/26/2022]
Abstract
Refractory wound is a severe complication that leads to limb amputation in diabetes. Endothelial nitric oxide synthase (eNOS) plays a key role in normal wound repair but is uncoupled in streptozotocin (STZ)-induced type 1 diabetes because of reduced cofactor tetrahydrobiopterin (BH(4)). We tested the hypothesis that overexpression of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for de novo BH(4) synthesis, retards NOS uncoupling and accelerates wound healing in STZ mice. Blood glucose levels were significantly increased in both male endothelium-specific GTPCH I transgenic mice (Tg-GCH; via a tie-2 promoter) and wild-type (WT) littermates 5 days after STZ regimen. A full-thickness excisional wound was created on mouse dorsal skin by a 4-mm punch biopsy. Wound closure was delayed in STZ mice, which was rescued in STZ Tg-GCH mice. Cutaneous BH(4) level was significantly reduced in STZ mice vs. WT mice, which was maintained in STZ Tg-GCH mice. In STZ mice, constitutive NOS (cNOS) activity and nitrite levels were decreased compared with WT mice, paralleled by increased superoxide anion (O(2)(-)) level and inducible NOS (iNOS) activity. In STZ Tg-GCH mice, nitrite level and cNOS activity were potentiated and O(2)(-) level and iNOS activity were suppressed compared with STZ mice. Thus endothelium-specific BH(4) overexpression accelerates wound healing in type 1 diabetic mice by enhancing cNOS activity and suppressing oxidative stress.
Collapse
Affiliation(s)
- Lu Tie
- VA Vascular Surgery Research, Dept. of Surgery, Univ. of Pittsburgh School of Medicine, 2W109 (151L-U VAPHS, University Dr., Pittsburgh, PA 15240, USA
| | | | | | | | | |
Collapse
|
91
|
Nagareddy PR, McNeill JH, MacLeod KM. Chronic inhibition of inducible nitric oxide synthase ameliorates cardiovascular abnormalities in streptozotocin diabetic rats. Eur J Pharmacol 2009; 611:53-9. [PMID: 19344709 DOI: 10.1016/j.ejphar.2009.03.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/11/2009] [Accepted: 03/23/2009] [Indexed: 02/05/2023]
Abstract
Previous studies from our lab have demonstrated cardiovascular abnormalities such as depressed mean arterial blood pressure and heart rate, endothelial dysfunction and attenuated pressor responses to vasoactive agents in streptozotocin diabetic rats. We investigated whether these abnormalities are due to diabetes-associated chronic activation of inducible nitric oxide synthase (iNOS). Control and streptozotocin (60 mg/kg, iv) diabetic rats were treated with either vehicle or N6-(1-Iminoethyl)-L-lysine dihydrochloride (L-NIL, 3 mg/kg/day, p.o), a specific inhibitor of iNOS for 8 weeks. At the end of treatment, the mean arterial blood pressure and heart rate were measured in freely moving conscious rats. Further, pressor responses to bolus doses of methoxamine were determined. Endothelial nitric oxide synthase (eNOS) and iNOS expression as well as nitrotyrosine (NT) levels were assessed in the heart and superior mesenteric arteries by western blot and immunohistochemistry. Untreated diabetic rats showed depressed mean arterial blood pressure and heart rate and exhibited vascular hyporeactivity that were significantly improved by treatment with L-NIL. Further, decreased eNOS expression and increased iNOS expression and activity were associated with increased NT levels in the heart and superior mesenteric arteries of untreated diabetic rats. L-NIL treatment of diabetic rats normalized the expression of eNOS and NT levels without any effect on iNOS expression in the heart and superior mesenteric arteries. The results of our study suggest that induction of iNOS in cardiovascular tissues contributes significantly to the depressed mean arterial blood pressure, heart rate and pressor responses to vasoactive agents. Chronic inhibition of iNOS in diabetes may prove beneficial in the treatment of cardiovascular abnormalities.
Collapse
|
92
|
Nacci C, Tarquinio M, De Benedictis L, Mauro A, Zigrino A, Carratù MR, Quon MJ, Montagnani M. Endothelial dysfunction in mice with streptozotocin-induced type 1 diabetes is opposed by compensatory overexpression of cyclooxygenase-2 in the vasculature. Endocrinology 2009; 150:849-61. [PMID: 18845644 PMCID: PMC2646543 DOI: 10.1210/en.2008-1069] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/26/2008] [Indexed: 11/19/2022]
Abstract
Cardiovascular complications of diabetes result from endothelial dysfunction secondary to persistent hyperglycemia. We investigated potential compensatory mechanisms in the vasculature that oppose endothelial dysfunction in diabetes. BALB/c mice were treated with streptozotocin (STZ) to induce type 1 diabetes (T1D). In mesenteric vascular beds (MVBs), isolated ex vivo from mice treated with STZ for 1 wk, dose-dependent vasorelaxation to acetylcholine (ACh) or sodium nitroprusside was comparable with that in age-matched control mice (CTRL). By contrast, MVBs from mice treated with STZ for 8 wk had severely impaired vasodilator responses to ACh consistent with endothelial dysfunction. Pretreatment of MVBs from CTRL mice with nitric oxide synthase inhibitor nearly abolished vasodilation to ACh. In MVB from 1-wk STZ-treated mice, vasodilation to ACh was only partially impaired by L-N(omega)-arginine methyl ester. Thus, vasculature of mice with T1D may have compensatory nitric oxide-independent mechanisms to augment vasodilation to ACh and oppose endothelial dysfunction. Indeed, pretreatment of MVBs isolated from 1-wk STZ-treated mice with NS-398 [selective cyclooxygenase (COX)-2 inhibitor] unmasked endothelial dysfunction not evident in CTRL mice pretreated without or with NS-398. Expression of COX-2 in MVBs, aortic endothelial cells, and aortic vascular smooth muscle cells from STZ-treated mice was significantly increased (vs. CTRL). Moreover, concentrations of the COX-2-dependent vasodilator 6-keto-prostaglandin F-1alpha was elevated in conditioned media from aorta of STZ-treated mice. We conclude that endothelial dysfunction in a mouse model of T1D is opposed by compensatory up-regulation of COX-2 expression and activity in the vasculature that may be relevant to developing novel therapeutic strategies for diabetes and its cardiovascular complications.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2/physiology
- Cyclooxygenase 2 Inhibitors/pharmacology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Male
- Mice
- Mice, Inbred BALB C
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase Type III/metabolism
- Nitrobenzenes/pharmacology
- Oncogene Protein v-akt/metabolism
- Streptozocin
- Sulfonamides/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Carmela Nacci
- Department of Pharmacology and Human Physiology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Arita R, Hata Y, Nakao S, Kita T, Miura M, Kawahara S, Zandi S, Almulki L, Tayyari F, Shimokawa H, Hafezi-Moghadam A, Ishibashi T. Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes 2009; 58:215-26. [PMID: 18840783 PMCID: PMC2606876 DOI: 10.2337/db08-0762] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Leukocyte adhesion in retinal microvasuculature substantially contributes to diabetic retinopathy. Involvement of the Rho/Rho kinase (ROCK) pathway in diabetic microvasculopathy and therapeutic potential of fasudil, a selective ROCK inhibitor, are investigated. RESEARCH DESIGN AND METHODS Localization of RhoA/ROCK and Rho activity were examined in retinal tissues of rats. Impact of intravitreal fasudil administration on retinal endothelial nitric oxide synthase (eNOS) and myosin phosphatase target protein (MYPT)-1 phosphorylation, intercellular adhesion molecule-1 (ICAM-1) expression, leukocyte adhesion, and endothelial damage in rat eyes were investigated. Adhesion of neutrophils from diabetic retinopathy patients or nondiabetic control subjects to cultured microvascular endothelial cells was quantified. The potential of fasudil for endothelial protection was investigated by measuring the number of adherent neutrophils and terminal transferase-mediated dUTP nick-end labeling-positive endothelial cells. RESULTS RhoA and ROCK colocalized predominantly in retinal microvessels. Significant Rho activation was observed in retinas of diabetic rats. Intravitreal fasudil significantly increased eNOS phosphorylation, whereas it reduced MYPT-1 phosphorylation, ICAM-1 expression, leukocyte adhesion, and the number of damaged endothelium in retinas of diabetic rats. Neutrophils from diabetic retinopathy patients showed significantly higher adhesion to cultured endothelium and caused endothelial apoptosis, which was significantly reduced by fasudil. Blockade of the Fas-FasL interaction prevented endothelial apoptosis. The protective effect of fasudil on endothelial apoptosis was significantly reversed by Nomega-nitro-l-arginine methyl ester, a NOS inhibitor, whereas neutrophil adhesion remained unaffected. CONCLUSIONS The Rho/ROCK pathway plays a critical role in diabetic retinal microvasculopathy. Fasudil protects the vascular endothelium by inhibiting neutrophil adhesion and reducing neutrophil-induced endothelial injury. ROCK inhibition may become a new strategy in the management of diabetic retinopathy, especially in its early stages.
Collapse
Affiliation(s)
- Ryoichi Arita
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Cignarella A, Bolego C, Pelosi V, Meda C, Krust A, Pinna C, Gaion RM, Vegeto E, Maggi A. Distinct roles of estrogen receptor-alpha and beta in the modulation of vascular inducible nitric-oxide synthase in diabetes. J Pharmacol Exp Ther 2009; 328:174-82. [PMID: 18832649 PMCID: PMC2685905 DOI: 10.1124/jpet.108.143511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/01/2008] [Indexed: 12/15/2022] Open
Abstract
Estrogen is known to affect vascular function and diabetes development, but the relative contribution of estrogen receptor (ER) isoforms is unclear. The aim of this study was to determine how individual ER isoforms modulate inflammatory enzymes in the vascular wall of control and streptozotocin (STZ)-injected rodents. Primary cultures of rat aortic smooth muscle cells (SMCs) were stimulated with inflammatory agents in the presence or absence of increasing concentrations of the ER alpha and ER beta-selective agonists 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and diarylpropionitrile (DPN), respectively. The production of inducible nitric-oxide synthase (iNOS), a classical indicator of vascular inflammation, was significantly reduced by PPT in control but not diabetic SMCs, whereas it was further enhanced by DPN treatment in both groups. This distinct action profile was not related to changes in ER transcriptional activity. However, extracellular signal-regulated kinase 1/2 signaling was activated by DPN but not by PPT in cytokine-treated SMCs. In cultured aortic rings from both normoglycemic and STZ-diabetic mice, pharmacological activation of ER alpha attenuated cytokine-driven iNOS induction by 30 to 50%. Vascular iNOS levels were decreased consistently when adding 1 nM 17beta-estradiol to aortic tissues from ER beta- but not ER alpha-knockout mice. These findings suggest a possible role for ER alpha-selective ligands in reducing vascular inflammatory responses under normo- and hyperglycemic conditions.
Collapse
Affiliation(s)
- Andrea Cignarella
- Department of Pharmacology and Anaesthesiology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Vareniuk I, Pavlov IA, Obrosova IG. Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin-induced mouse model of diabetes. Diabetologia 2008; 51:2126-33. [PMID: 18802679 PMCID: PMC3044437 DOI: 10.1007/s00125-008-1136-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS Evidence for the importance of peroxynitrite, a product of superoxide anion radical reaction with nitric oxide, in peripheral diabetic neuropathy is emerging. The role of specific nitric oxide synthase isoforms in diabetes-associated nitrosative stress and nerve fibre dysfunction and degeneration remains unknown. This study evaluated the contribution of inducible nitric oxide synthase (iNOS) to peroxynitrite injury to peripheral nerve and dorsal root ganglia and development of peripheral diabetic neuropathy. METHODS Control mice and mice with iNos (also known as Nos2) gene deficiency (iNos ( -/- )) were made diabetic with streptozotocin, and maintained for 6 weeks. Peroxynitrite injury was assessed by nitrotyrosine and poly(ADP-ribose) accumulation (immunohistochemistry). Thermal algesia was evaluated by paw withdrawal, tail-flick and hot plate tests, mechanical algesia by the Randall-Selitto test, and tactile allodynia by a von Frey filament test. RESULTS Diabetic wild-type mice displayed peroxynitrite injury in peripheral nerve and dorsal root ganglion neurons. They also developed motor and sensory nerve conduction velocity deficits, thermal and mechanical hypoalgesia, tactile allodynia and approximately 36% loss of intraepidermal nerve fibres. Diabetic iNos ( -/- ) mice did not display nitrotyrosine and poly(ADP-ribose) accumulation in peripheral nerve, but were not protected from nitrosative stress in dorsal root ganglia. Despite this latter circumstance, diabetic iNos ( -/- ) mice preserved normal nerve conduction velocities. Small-fibre sensory neuropathy was also less severe in diabetic iNos ( -/- ) than in wild-type mice. CONCLUSIONS/INTERPRETATION iNOS plays a key role in peroxynitrite injury to peripheral nerve, and functional and structural changes of diabetic neuropathy. Nitrosative stress in axons and Schwann cells, rather than dorsal root ganglion neurons, underlies peripheral nerve dysfunction and degeneration.
Collapse
Affiliation(s)
- I Vareniuk
- Pennington Biomedical Research Center, Louisiana State University System, LA 70808, USA
| | | | | |
Collapse
|
96
|
Fekete A, Rosta K, Wagner L, Prokai A, Degrell P, Ruzicska E, Vegh E, Toth M, Ronai K, Rusai K, Somogyi A, Tulassay T, Szabo AJ, Ver A. Na+,K+-ATPase is modulated by angiotensin II in diabetic rat kidney--another reason for diabetic nephropathy? J Physiol 2008; 586:5337-48. [PMID: 18818245 DOI: 10.1113/jphysiol.2008.156703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Angiotensin II (ANGII) plays a central role in the enhanced sodium reabsorption in early type 1 diabetes in man and in streptozotocin-induced (STZ) diabetic rats. This study investigates the effect of untreated STZ-diabetes leading to diabetic nephropathy in combination with ANGII treatment, on the abundance and localization of the renal Na(+),K(+)-ATPase (NKA), a major contributor of renal sodium handling. After 7 weeks of STZ-diabetes (i.v. 65 mg kg(-1)) a subgroup of control (C) and diabetic (D7) Wistar rats were treated with ANGII (s.c. minipump 33 microg kg(-1) h(-1) for 24 h; CA and D7A). We measured renal function and mRNA expression, protein level, Serin23 phosphorylation, subcellular distribution, and enzyme activity of NKA alpha-1 subunit in the kidney cortex. Diabetes increased serum creatinine and urea nitrogen levels (C versus D7), as did ANGII (C versus CA, D7 versus D7A). Both diabetes (C versus D7) and ANGII increased NKA alpha-1 protein level and enzyme activity (C versus CA, D7 versus D7A). Furthermore, the combination led to an additive increase (D7 versus D7A, CA versus D7A). NKA alpha-1 Ser23 phosphorylation was higher both in D7 and ANGII-treated rats in the non-cytoskeletal fraction, while no signal was detected in the cytoskeletal fraction. Control kidneys showed NKA alpha-1 immunopositivity on the basolateral membrane of proximal tubular cells, while both D7 and ANGII broadened NKA immunopositivity towards the cytoplasm. Our study demonstrates that diabetes mellitus (DM) increases the mRNA expression, protein level, Ser23 phosphorylation and enzyme activity of renal NKA, which is further elevated by ANGII. Despite an increase in total NKA quantity in diabetic nephropathy, the redistribution to the cystosol suggests the Na(+) pump is no longer functional. ANGII also caused translocation from the basolateral membrane, thus in diabetic states where ANGII level is acutely elevated, the loss of NKA will be exacerbated. This provides another mechanism by which ANGII blockade is likely to be protective.
Collapse
Affiliation(s)
- Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University Budapest, H-1082, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Song D, Yao R, Pang CC. Altered vasodilator role of nitric oxide synthase in the pancreas, heart and brain of rats with spontaneous type 2 diabetes. Eur J Pharmacol 2008; 591:177-81. [DOI: 10.1016/j.ejphar.2008.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/23/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
98
|
Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Flores-Hernandez J, Monjaraz E, Cogolludo A, Perez-Vizcaino F. Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. Am J Physiol Lung Cell Mol Physiol 2008; 295:L727-32. [PMID: 18723759 DOI: 10.1152/ajplung.90354.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent data suggest that diabetes is a risk factor for pulmonary hypertension. The aim of the present study was to analyze whether diabetes induces endothelial dysfunction in pulmonary arteries and the mechanisms involved. Male Sprague-Dawley rats were randomly divided into a control (saline) and a diabetic group (70 mg/kg(-1) streptozotocin). After 6 wk, intrapulmonary arteries were mounted for isometric tension recording, and endothelial function was tested by the relaxant response to acetylcholine. Protein expression and localization were measured by Western blot and immunohistochemistry and superoxide production by dihydroethidium staining. Pulmonary arteries from diabetic rats showed impaired relaxant response to acetylcholine and reduced vasoconstrictor response to the nitric oxide (NO) synthase inhibitor L-NAME, whereas the response to nitroprusside and the expression of endothelial NO synthase remained unchanged. Endothelial dysfunction was reversed by addition of superoxide dismutase or the NADPH oxidase inhibitor apocynin. An increase in superoxide production and increased expression of the NADPH oxidase regulatory subunit p47(phox) were also found in pulmonary arteries from diabetic rats. In conclusion, the pulmonary circulation is a target for diabetes-induced endothelial dysfunction via enhanced NADPH oxidase-derived superoxide production.
Collapse
Affiliation(s)
- Jose G Lopez-Lopez
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Lima LCJ, Assis GV, Hiyane W, Almeida WS, Arsa G, Baldissera V, Campbell CSG, Simões HG. Hypotensive effects of exercise performed around anaerobic threshold in type 2 diabetic patients. Diabetes Res Clin Pract 2008; 81:216-22. [PMID: 18571267 DOI: 10.1016/j.diabres.2008.04.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 04/28/2008] [Indexed: 12/17/2022]
Abstract
AIM To verify the occurrence of post-exercise hypotension (PEH) in type 2 diabetics (DM(2)) and the effects of exercise intensity on post-exercise blood pressure (BP). METHODS Eleven men and women with DM(2) (58.5+/-10.2 years; 160+/-0.1cm; 80.6+/-13.5kg; 31.2+/-3.8kg/m(2), 19+/-3.2mLkgmin(-1) of VO(2max), 155.0+/-39.2mgdL(-1) of fasting blood glucose and 126+/-10/75+/-7mmHg of resting BP) performed an incremental test (IT) for cardiovascular evaluation and anaerobic threshold (AT) determination. Then, participants randomly underwent 2 exercise sessions (90% and 110% AT) and a control session (CON). In all sessions, BP was measured at resting, during 20min of exercise/control and at each 15min through 120min of post-exercise recovery (R15-R120). RESULTS The mean results of systolic BP (SBP)/diastolic BP (DBP) over the 120min of recovery were 125+/-16/76+/-7mmHg, 122+/-13/75+/-6mmHg and 129+/-16/78+/-7mmHg, respectively for 90%, 110% and CON. Significant reductions of SBP occurred after 90% (R15-R45) and 110% (R15-R90), while only after 110% there were reductions of DBP (R15, R45) and MAP (R15, R45, R75, R90, R105). CONCLUSIONS Both exercise intensities evoked reductions in SBP while DBP and MAP were reduced only after 110%. Despite the higher intensity exercise to be more effective in promoting BP reductions, we suggest caution while prescribing exercise for DM(2).
Collapse
|
100
|
Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol 2008; 49:134-40. [PMID: 18692595 DOI: 10.1016/j.vph.2008.06.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a gaseous lipophilic free radical generated by three distinct isoforms of nitric oxide synthases (NOS), type 1 or neuronal (nNOS), type 2 or inducible (iNOS) and type 3 or endothelial NOS (eNOS). Expression of eNOS is altered in many types of cardiovascular disease, such as atherosclerosis, diabetes and hypertension. The ubiquitous chaperone heat shock protein 90 (hsp90) associates with NOS and is important for its proper folding and function. Current studies point toward a therapeutic potential by modulating hsp90-NOS association in various vascular diseases. Here we review the transcriptional regulation of endothelial NOS and factors affecting eNOS activity and function, as well as the important vascular pathologies associated with altered NOS function, focusing on the regulatory role of hsp90 and other factors in NO-associated pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anuran Chatterjee
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500, USA
| | | | | |
Collapse
|