51
|
Low DA, Shibasaki M, Davis SL, Keller DM, Crandall CG. Does local heating-induced nitric oxide production attenuate vasoconstrictor responsiveness to lower body negative pressure in human skin? J Appl Physiol (1985) 2007; 102:1839-43. [PMID: 17272405 DOI: 10.1152/japplphysiol.01181.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that local heating-induced nitric oxide (NO) production attenuates cutaneous vasoconstrictor responsiveness. Eleven subjects (6 men, 5 women) had four microdialysis membranes placed in forearm skin. Two membranes were perfused with 10 mM of N(G)-nitro-L-arginine (L-NAME) and two with Ringer solution (control), and all sites were locally heated to 34 degrees C. Subjects then underwent 5 min of 60-mmHg lower body negative pressure (LBNP). Two sites (a control and an L-NAME site) were then heated to 39 degrees C, while the other two sites were heated to 42 degrees C. At the L-NAME sites, skin blood flow was elevated using 0.75-2 mg/ml of adenosine in the perfusate solution (Adn + L-NAME) to a similar level relative to control sites. Subjects then underwent another 5 min of 60-mmHg LBNP. At 34 degrees C, cutaneous vascular conductance (CVC) decreased (Delta) similarly at both control and L-NAME sites during LBNP (Delta7.9 +/- 3.0 and Delta3.4 +/- 0.8% maximum, respectively; P > 0.05). The reduction in CVC to LBNP was also similar between control and Adn + L-NAME sites at 39 degrees C (control Delta11.4 +/- 2.5 vs. Adn + L-NAME Delta7.9 +/- 2.0% maximum; P > 0.05) and 42 degrees C (control Delta1.9 +/- 2.7 vs. Adn + L-NAME Delta 4.2 +/- 2.7% maximum; P > 0.05). However, the decrease in CVC at 42 degrees C, regardless of site, was smaller than at 39 degrees C (P < 0.05). These results do not support the hypothesis that local heating-induced NO production attenuates cutaneous vasoconstrictor responsiveness during high levels of LBNP. However, elevated local temperature, per se, attenuates cutaneous vasoconstrictor responsiveness to LBNP, presumably through non-nitric oxide mechanisms.
Collapse
Affiliation(s)
- David A Low
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, TX 75231, USA
| | | | | | | | | |
Collapse
|
52
|
Jones SB, Muthu K, Shankar R, Gamelli RL. Significance of the adrenal and sympathetic response to burn injury. TOTAL BURN CARE 2007:343-360. [DOI: 10.1016/b978-1-4160-3274-8.50028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
53
|
Uji M, Yoshida KI, Shintani-Ishida K, Morimoto K. Sex difference in norepinephrine surge in response to psychological stress through nitric oxide in rats. Life Sci 2006; 80:860-6. [PMID: 17173936 DOI: 10.1016/j.lfs.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 10/19/2006] [Accepted: 11/03/2006] [Indexed: 11/24/2022]
Abstract
Psychological stress elevates blood pressure through sympathetic nerve activation. This pressor response is supposedly associated with cardiovascular events. We investigated a sex difference in the pressor response and norepinephrine surge to cage-switch stress in rats. Wistar male and female rats were catheterized for blood pressure monitoring and blood sampling. Six days post-surgery, the rats were exposed to the cage-switch stress and blood samples were collected at rest and 30 min after the start of the stress. The stress-induced pressor response was greater in the male than in the female rats. The stress significantly increased the norepinephrine level in the male, but not in the female rats. Pre-treatment with N(G)-nitro-l-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase inhibitor, attenuated the norepinephrine response significantly in the male rats. There was no sex difference in the endothelial NO synthase expression in the gastrocnemius muscle. However the phosphorylation at serine 1177, a marker for eNOS activation, was higher in the male than in the female rats. These results suggest that NO is involved in the norepinephrine surge to psychological stress in the male rats, but not in the female rats. This is the first report on a sex difference in the norepinephrine surge in response to psychological stress through NO, in association with pressor response.
Collapse
Affiliation(s)
- Masami Uji
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishi-machi, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
54
|
McNeill B, Perry SF. The interactive effects of hypoxia and nitric oxide on catecholamine secretion in rainbow trout (Oncorhynchus mykiss). J Exp Biol 2006; 209:4214-23. [PMID: 17050836 DOI: 10.1242/jeb.02519] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYExperiments were performed to test the hypothesis that exposure of rainbow trout to repetitive hypoxia would result in a decreased capacity of chromaffin cells to secrete catecholamines owing to increased production of nitric oxide(NO), a potent inhibitor of catecholamine secretion. A partial sequence of trout neuronal nitric oxide synthase (nNOS) was cloned and its mRNA was found to be present in the posterior cardinal vein (PCV), the predominant site of chromaffin cells in trout. Using heterologous antibodies, nNOS and endothelial NOS (eNOS) were localized in close proximity to the chromaffin cells of the PCV.Exposure of trout to acute hypoxia (5.33 kPa for 30 min) in vivoresulted in significant increases in plasma catecholamine and NO levels. However, after 4 days of twice-daily exposures to hypoxia, the elevation of plasma catecholamine levels during hypoxia was markedly reduced. Associated with the reduction in plasma catecholamine levels during acute hypoxia was a marked increase in basal and hypoxia-evoked circulating levels of NO that became apparent after 2-4 days of repetitive hypoxia. The capacity of the chromaffin cells of the hypoxia-exposed fish to secrete catecholamine was assessed by electrical stimulation of an in situ saline-perfused PCV preparation. Compared with control (normoxic) fish, the PCV preparations derived from fish exposed to repeated hypoxia displayed a significant reduction in electrically evoked catecholamine secretion that was concomitant with a marked increased in NO production. This additional rise in NO secretion in preparations derived from hypoxic fish was prevented after adding NOS inhibitors to the perfusate; concomitantly, the reduction in catecholamine secretion was prevented. The increased production of NO during hypoxia in vivo and during electrical stimulation in situ was consistent with significant elevations of nNOS mRNA and protein; eNOS protein was unaffected. These results suggest that the reduced capacity of trout chromaffin cells to secrete catecholamines after repeated hypoxia reflects an increase in the expression of nNOS and a subsequent increase in NO production during chromaffin-cell activation.
Collapse
Affiliation(s)
- Brian McNeill
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
55
|
Westfall TC, Yang CL, Chen X, Naes L, Vickery L, Macarthur H, Han S. A novel mechanism prevents the development of hypertension during chronic cold stress. ACTA ACUST UNITED AC 2006; 25:171-7. [PMID: 16176449 DOI: 10.1111/j.1474-8673.2005.00349.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1 Chronic cold exposure of rats (7 days in a cold room at 4 degrees C) attenuated the sympathetic nerve stimulation (NS)-induced overflow of noradrenaline (NE) (measured by high-performance liquid chromatography, coupled to electrochemical detection) appearing in the perfusate/superfusate of the perfused mesenteric arterial bed as well as the increase in the perfusion pressure. 2 The same type of cold exposure resulted in an increase in tyrosine hydroxylase (TH) gene expression measured in the superior cervical ganglion and NE content measured in the mesenteric artery obtained from cold-exposed rats. 3 Addition of sodium nitroprusside, a nitric oxide (NO) donor, to the buffer perfusing the mesenteric arterial bed obtained from rats maintained at room temperature also resulted in an attenuation of the NS-induced overflow of NE and increase in perfusion pressure. 4 N(c)-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, placed in the drinking water prevented the attenuation of the pre- and post-junctional responses to NS of the mesenteric arterial bed obtained from cold-exposed rats. 5 L-NAME treatment also increased the cold-induced elevation of blood pressure seen in whole animals. 6 The present results are consistent with the idea that cold exposure leads to a concomitant increase in sympathetic nerve activity and production of NO. We hypothesize that the increase in production and release of NO results in a decrease in the biologically active form of NE despite increased synthesis and release of the catecholamine. 7 It is concluded that the above-mentioned interactions serve as a protective mechanism offsetting the increased release and action of NE from sympathetic nerves and thus preventing the development of hypertension.
Collapse
Affiliation(s)
- T C Westfall
- Department of Pharmacological and Physiological Science, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Campese VM, Mitra N, Sandee D. Hypertension in renal parenchymal disease: why is it so resistant to treatment? Kidney Int 2006; 69:967-73. [PMID: 16528245 DOI: 10.1038/sj.ki.5000177] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between hypertension and chronic renal disease is well known. The pathogenesis of hypertension in patients with chronic kidney disease (CKD) is complex and multifactorial, which may explain why it is resistant to treatment. The traditional paradigm is that hypertension in CKD is due either to an excess of intravascular volume (volume dependent) or to excessive activation of the renin-angiotensin system in relation to the state of sodium/volume balance (renin-dependent hypertension). This review focuses on the importance of less established mechanisms, such as increased activity of the sympathetic nervous system, increased endothelin production, decreased availability of endothelium-derived vasodilators and structural changes of the arteries, renal ischemia, and sleep apnea.
Collapse
Affiliation(s)
- V M Campese
- Department of Medicine, Division of Nephrology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | |
Collapse
|
57
|
Sabatier MJ, Stoner L, Reifenberger M, McCully K. Doppler ultrasound assessment of posterior tibial artery size in humans. JOURNAL OF CLINICAL ULTRASOUND : JCU 2006; 34:223-30. [PMID: 16673363 DOI: 10.1002/jcu.20229] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PURPOSE The difference between structural remodeling and changes in tone of peripheral arteries in the lower extremities has not been evaluated. The purpose of this study was to (1) evaluate the day-to-day reproducibility and interobserver reliability (IOR) of posterior tibial artery (PTA) diameter measurements and (2) evaluate the effect of posture on PTA diameter at rest (Drest), during 10 minutes of proximal cuff occlusion (Dmin), and after the release of cuff occlusion (Dmax), as well as range (Dmax - Dmin) and constriction [(Dmax - Drest)/(Dmax - Dmin) x 100] in vivo. METHODS We used B-mode sonography to image the PTA during each condition. RESULTS Day-to-day reliability was good for Drest (intraclass correlation coefficient [ICC] 0.95; mean difference 4.2%), Dmin (ICC 0.93; mean difference 5.4%), and Dmax (ICC 0.99; mean difference 2.2%). The coefficient of repeatability for IOR was 70.5 microm, with a mean interobserver error of 4.7 microm. The seated position decreased Drest (2.6 +/- 0.2 to 2.4 +/- 0.3 mm; p = 0.002), increased Dmin (2.1 +/- 0.2 to 2.4 +/- 0.2 mm; p = 0.001), and decreased Dmax (3.1 +/- 0.4 to 2.8 +/- 0.3 mm; p < 0.001) compared with the supine position. The seated position also decreased arterial range (Dmax - Dmin) from 0.9 +/- 0.2 to 0.5 +/- 0.1 mm (p = 0.003) and increased basal arterial constriction from 57 +/- 19% to 105 +/- 27% (p = 0.007). CONCLUSIONS The system employed for measuring PTA diameter yields unbiased and consistent estimates. Furthermore, lower extremity arterial constriction and range change with posture in a manner consistent with known changes in autonomic activity.
Collapse
Affiliation(s)
- Manning J Sabatier
- Department of Exercise Science, University of Georgia, Athens, 30602, USA.
| | | | | | | |
Collapse
|
58
|
Hodges GJ, Zhao K, Kosiba WA, Johnson JM. The involvement of nitric oxide in the cutaneous vasoconstrictor response to local cooling in humans. J Physiol 2006; 574:849-57. [PMID: 16728451 PMCID: PMC1817728 DOI: 10.1113/jphysiol.2006.109884] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cutaneous vascular conductance (CVC) declines in response to local cooling (LC). Previous work indicates that at least part of the vasoconstrictor response to LC may be through an inhibitory effect on nitric oxide synthase (NOS) activity. In this study we further tested that notion. A total of eight (6 male, 2 female) subjects participated (Part 1 n = 7; Part 2 n = 5, 4 of whom participated in Part 1). Skin blood flow was monitored by laser-Doppler flowmetry. Control of local skin and body temperatures was achieved with Peltier cooler/heater probe holders and water perfused suits, respectively. Microdialysis fibres were inserted aseptically. Saline, L-NAME (20 mM; to inhibit NOS activity) and sodium nitroprusside (SNP 10 microM) were infused by microdialysis. Bretylium tosylate (BT), to block adrenergic function, was administered by iontophoresis. CVC was calculated from blood flow and blood pressure. Part 1 was designed to determine the relative roles of the NO and the adrenergic systems. The infusion of L-NAME elicited a 35 +/- 4% decrease in CVC at the L-NAME and BT + L-NAME sites (P < 0.05); subsequent slow LC (34-24 degrees C) for 35 min caused a significant (P < 0.05) decrease in CVC at control sites (68 +/- 4%) and at the BT treated sites (39 +/- 5%). LC caused a further 23 +/- 5% of initial baseline decrease in CVC at the L-NAME treated sites (P < 0.05). Importantly, CVC at the BT + L-NAME sites was unaffected by LC (P > 0.05). Part 2 was designed to test whether LC influences were specific to the NOS enzymes. Two sites were pretreated with both BT and L-NAME. After 50 min, SNP was added as an NO donor to restore baseline CVC at one site. The same LC process as in Part 1 was applied. There was a 24 +/- 10% decrease (P < 0.05) in CVC at sites with baseline CVC restored, while, as in Part 1, there was no change (P > 0.05) at sites treated with BT + L-NAME only. These data suggest that the vasoconstriction with slow LC is due to a combination of increased noradrenaline release and decreased activity of both NOS per se and of process(es) downstream of NOS.
Collapse
Affiliation(s)
- Gary J Hodges
- Department of Physiology-MSC 7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
59
|
Bennet L, Booth L, Malpas SC, Quaedackers JS, Jensen E, Dean J, Gunn AJ. Acute systemic complications in the preterm fetus after asphyxia: role of cardiovascular and blood flow responses. Clin Exp Pharmacol Physiol 2006; 33:291-9. [PMID: 16620290 DOI: 10.1111/j.1440-1681.2006.04364.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Poor perfusion of the kidneys and gut, and associated functional impairment, are major problems in the first days of life in very preterm infants. These complications can be associated with a substantial mortality and further problems such as reduced kidney growth and chronic renal problems in later childhood. 2. There is very little information, and consequently considerable debate, about how or even whether to improve perfusion of the vital organs of this most vulnerable group of babies. Current treatments simply do not consistently improve babies' perfusion generally or kidney and gut perfusion and function in particular. 3. In this review we critically examine clinical and experimental evidence that suggests that exposure to low oxygen levels before and during birth may be a significant contributor to impaired systemic perfusion, and highlight areas requiring further research. 4. This knowledge is essential to develop and refine ways of improving perfusion of the kidneys and other vital organs in premature babies.
Collapse
Affiliation(s)
- L Bennet
- Department of Physiology, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
In this review, we outline the application and contribution of transgenic technology to establishing the genetic basis of blood pressure regulation and its dysfunction. Apart from a small number of examples where high blood pressure is the result of single gene mutation, essential hypertension is the sum of interactions between multiple environmental and genetic factors. Candidate genes can be identified by a variety of means including linkage analysis, quantitative trait locus analysis, association studies, and genome-wide scans. To test the validity of candidate genes, it is valuable to model hypertension in laboratory animals. Animal models generated through selective breeding strategies are often complex, and the underlying mechanism of hypertension is not clear. A complementary strategy has been the use of transgenic technology. Here one gene can be selectively, tissue specifically, or developmentally overexpressed, knocked down, or knocked out. Although resulting phenotypes may still be complicated, the underlying genetic perturbation is a starting point for identifying interactions that lead to hypertension. We recognize that the development and maintenance of hypertension may involve many systems including the vascular, cardiac, and central nervous systems. However, given the central role of the kidney in normal and abnormal blood pressure regulation, we intend to limit our review to models with a broadly renal perspective.
Collapse
Affiliation(s)
- Linda J Mullins
- Molecular Physiology Laboratory, Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
61
|
Guix FX, Uribesalgo I, Coma M, Muñoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76:126-52. [PMID: 16115721 DOI: 10.1016/j.pneurobio.2005.06.001] [Citation(s) in RCA: 480] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is a molecule with pleiotropic effects in different tissues. NO is synthesized by NO synthases (NOS), a family with four major types: endothelial, neuronal, inducible and mitochondrial. They can be found in almost all the tissues and they can even co-exist in the same tissue. NO is a well-known vasorelaxant agent, but it works as a neurotransmitter when produced by neurons and is also involved in defense functions when it is produced by immune and glial cells. NO is thermodynamically unstable and tends to react with other molecules, resulting in the oxidation, nitrosylation or nitration of proteins, with the concomitant effects on many cellular mechanisms. NO intracellular signaling involves the activation of guanylate cyclase but it also interacts with MAPKs, apoptosis-related proteins, and mitochondrial respiratory chain or anti-proliferative molecules. It also plays a role in post-translational modification of proteins and protein degradation by the proteasome. However, under pathophysiological conditions NO has damaging effects. In disorders involving oxidative stress, such as Alzheimer's disease, stroke and Parkinson's disease, NO increases cell damage through the formation of highly reactive peroxynitrite. The paradox of beneficial and damaging effects of NO will be discussed in this review.
Collapse
Affiliation(s)
- F X Guix
- Laboratori de Fisiologia Molecular, Unitat de Senyalització Cellular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Carrer Dr. Aiguader, 80, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
62
|
Han S, Chen X, Yang CL, Vickery L, Wu Y, Naes L, Macarthur H, Westfall TC. Influence of cold stress on neuropeptide Y and sympathetic neurotransmission. Peptides 2005; 26:2603-9. [PMID: 15992963 DOI: 10.1016/j.peptides.2005.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/27/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
Chronic cold stress of rats (4 degrees C; 1-3 weeks) induced a marked increase in gene expression (adrenal medulla; superior cervical ganglia), tissue content (mesenteric arterial bed) and nerve stimulation-induced overflow of NPY-immunoreactivity (NPYir) from the perfused mesenteric arterial bed. In contrast increased NPY neurotransmission was offset by an apparent decrease in the evoked overflow of norepinephrine (NE) due to a presumed deactivation of NE by nitric oxide (NO), despite increased sympathetic nerve activity. The net effect of these offsetting system was no change in basal or the evoked increase in perfusion pressure (sympathetic tone). It is concluded that differences in NPY and NE transmission act as an important compensatory mechanism preventing dramatic changes in arterial pressure when sympathetic nerve activity is high during cold stress.
Collapse
Affiliation(s)
- Songping Han
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Stewart JM, Medow MS, Glover JL, Montgomery LD. Persistent splanchnic hyperemia during upright tilt in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2005; 290:H665-73. [PMID: 16143646 PMCID: PMC4513355 DOI: 10.1152/ajpheart.00784.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous investigations have allowed for stratification of patients with postural tachycardia syndrome (POTS) on the basis of peripheral blood flow. One such subset, comprising "normal-flow POTS" patients, is characterized by normal peripheral resistance and blood volume in the supine position but thoracic hypovolemia and splanchnic blood pooling in the upright position. We studied 32 consecutive 14- to 22-yr-old POTS patients comprising 13 with low-flow POTS, 14 with normal-flow POTS, and 5 with high-flow POTS and 12 comparably aged healthy volunteers. We measured changes in impedance plethysmographic (IPG) indexes of blood volume and blood flow within thoracic, splanchnic, pelvic (upper leg), and lower leg regional circulations in the supine posture and during incremental tilt to 20 degrees, 35 degrees, and 70 degrees. We validated IPG measures of thoracic and splanchnic blood flow against indocyanine green dye-dilution measurements. We validated IPG leg blood flow against venous occlusion plethysmography. Control subjects developed progressive vasoconstriction with incremental tilt. Splanchnic blood flow was increased in the supine position in normal-flow POTS, despite marked peripheral vasoconstriction, and did not change during incremental tilt, producing progressive splanchnic hypervolemia. Absolute hypovolemia was present in low-flow POTS, all supine flows and volumes were reduced, there was no vasoconstriction with tilt in all segments, and segmental volumes tended to increase uniformly throughout tilt. Lower body (pelvic and leg) flows were increased in high-flow POTS at all angles, with consequent lower body hypervolemia during tilt. Our main finding is selective and maintained orthostatic splanchnic vasodilation in normal-flow POTS, despite marked peripheral vasoconstriction in these same patients. Local splanchnic vasoregulatory factors may counteract vasoconstriction and venoconstriction in these patients. Lower body vasoconstriction in high-flow POTS was abnormal, and vasoconstriction in low-flow POTS was sustained at initially elevated supine levels.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| | | | | | | |
Collapse
|
64
|
McNeill B, Perry SF. Nitric oxide and the control of catecholamine secretion in rainbow trout Oncorhynchus mykiss. ACTA ACUST UNITED AC 2005; 208:2421-31. [PMID: 15939781 DOI: 10.1242/jeb.01636] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An in situ saline-perfused posterior cardinal vein preparation was used to assess the role of nitric oxide (NO) in the regulation of basal and stimulus-evoked catecholamine secretion from rainbow trout Oncorhynchus mykiss chromaffin cells. Addition of the NO donor, sodium nitroprusside (SNP) to the inflowing perfusate abolished catecholamine secretion during electrical field stimulation, thereby establishing the potential for NO to act as a potent inhibitor of catecholamine release. A possible role for endogenously produced NO was established by demonstrating that stimulus-evoked (depolarizing levels of KCl or electrical field stimulation) catecholamine secretion was markedly stimulated in the presence of the nitric oxide synthase (NOS) inhibitors l-NAME and 7-NI. Although in vitro experiments demonstrated that catecholamine degradation was enhanced by NO in a dose-dependent manner, the dominant factor contributing to the reduction in catecholamine appearance in the perfusate was specific inhibition of catecholamine secretion. Subsequent experiments were performed to identify the NOS isoform(s) contributing to the inhibition of stimulus-evoked catecholamine secretion. Inducible NOS (iNOS; an enzyme that can be activated in the absence of Ca2+), although present in the vicinity of the chromaffin cells (based on mRNA measurements), does not appear to play a role because stimulus-evoked NO production was eliminated during perfusion with Ca2+-free saline. The potential involvement of endothelial NOS (eNOS) was revealed by showing that hypoxic perfusate evoked NO production and corresponded with an inhibition of stimulus-evoked catecholamine secretion; chemical removal of the endothelium (using saponin) prevented the production of NO during hypoxia. However, because removal of the endothelium did not affect NO production during electrical field stimulation, it would appear that the neuronal form of NOS (nNOS) is the key isoform modulating catecholamine secretion from trout chromaffin cells.
Collapse
Affiliation(s)
- B McNeill
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | | |
Collapse
|
65
|
Stewart JM, Medow MS, Montgomery LD, Glover JL, Millonas MM. Splanchnic hyperemia and hypervolemia during Valsalva maneuver in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2005; 289:H1951-9. [PMID: 15964926 PMCID: PMC4513369 DOI: 10.1152/ajpheart.00194.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Prior work demonstrated dependence of the change in blood pressure during the Valsalva maneuver (VM) on the extent of thoracic hypovolemia and splanchnic hypervolemia. Thoracic hypovolemia and splanchnic hypervolemia characterize certain patients with postural tachycardia syndrome (POTS) during orthostatic stress. These patients also experience abnormal phase II hypotension and phase IV hypertension during VM. We hypothesize that reduced splanchnic arterial resistance explains aberrant VM results in these patients. We studied 17 POTS patients aged 15-23 yr with normal resting peripheral blood flow by strain gauge plethysmography and 10 comparably aged healthy volunteers. All had normal blood volumes by dye dilution. We assessed changes in estimated thoracic, splanchnic, pelvic-thigh, and lower leg blood volume and blood flow by impedance plethysmography throughout VM performed in the supine position. Baseline splanchnic blood flow was increased and calculated arterial resistance was decreased in POTS compared with control subjects. Splanchnic resistance decreased and flow increased in POTS subjects, whereas splanchnic resistance increased and flow decreased in control subjects during stage II of VM. This was associated with increased splanchnic blood volume, decreased thoracic blood volume, increased heart rate, and decreased blood pressure in POTS. Pelvic and leg resistances were increased above control and remained so during stage IV of VM, accounting for the increased blood pressure overshoot in POTS. Thus splanchnic hyperemia and hypervolemia are related to excessive phase II blood pressure reduction in POTS despite intense peripheral vasoconstriction. Factors other than autonomic dysfunction may play a role in POTS.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| | | | | | | | | |
Collapse
|
66
|
Durand S, Davis SL, Cui J, Crandall CG. Exogenous nitric oxide inhibits sympathetically mediated vasoconstriction in human skin. J Physiol 2004; 562:629-34. [PMID: 15539401 PMCID: PMC1665503 DOI: 10.1113/jphysiol.2004.075747] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two experiments were performed to identify whether nitric oxide (NO) inhibits sympathetically mediated vasoconstriction in human skin. In eight subjects increasing doses of sodium nitroprusside (SNP; 8.4 x 10(-6)-8.4 x 10(-3)m) were administered via intradermal microdialysis. At each dose of SNP, cutaneous vasoconstrictor responsiveness was assessed during a 3 min whole-body cold stress. The relative reduction in forearm cutaneous vascular conductance (CVC) during the cold stress was significantly attenuated for SNP doses greater than 8.4 x 10(-4)m (control: 63.0 +/- 4.1%, SNP 8.4 x 10(-6)m: 57.1 +/- 4.7%, SNP 8.4 x 10(-5)m: 57.0 +/- 3.6%, SNP 8.4 x 10(-4)m: 44.5 +/- 5.4% and SNP 8.4 x 10(-3)m: 28.8 +/- 7.9%). The second experiment was performed to identify whether this response was due to NO attenuating sympathetically mediated vasoconstriction or due to a non-specific effect of an elevated CVC secondary to SNP administration. In seven subjects forearm CVC during a whole-body cold stress was assessed at two sites: at a site dilated via microdialysis administration of SNP and at a site dilated with isoproterenol (ISO). CVC was not different between sites prior to (SNP: 0.42 +/- 0.11; ISO: 0.46 +/- 0.11 AU mmHg(-1) (AU, arbitrary units), P > 0.05) or following drug infusion (SNP: 1.36 +/- 0.21; ISO: 1.27 +/- 0.23 AU mmHg(-1), P > 0.05). The reduction in CVC during the subsequent cold stress was significantly less at the SNP site (38.1 +/- 6.2%) relative to the ISO site (65.0 +/- 5.5%; P= 0.007). These data suggest NO is capable of inhibiting sympathetically mediated vasoconstriction in the cutaneous vasculature.
Collapse
Affiliation(s)
- S Durand
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, 7232 Greenville Avenue, Dallas, TX 75231, USA
| | | | | | | |
Collapse
|
67
|
Kolo LL, Westfall TC, Macarthur H. Modulation of neurotransmitter release by NO is altered in mesenteric arterial bed of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2004; 287:H1842-7. [PMID: 15205164 DOI: 10.1152/ajpheart.00013.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) reacts with catecholamines resulting in their deactivation. In the present study with the use of the perfused mesenteric arterial bed as a model of the sympathetic neuroeffector junction, the NO synthase (NOS) inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) resulted in the enhancement of the periarterial nerve stimulation-induced increase in perfusion pressure and norepinephrine overflow while decreasing neuropeptide Y (NPY) overflow. These changes were prevented by l-arginine, demonstrating that the effects of l-NAME were specific to the inhibition of NOS. From the fact that norepinephrine acts on prejunctional α2-adrenoceptors to inhibit the evoked release of sympathetic cotransmitters, we carried out experiments in the presence of the α2-adrenergic receptor antagonist yohimbine to investigate the possibility that the decrease in NPY observed in the presence of l-NAME was due to the increase in bioactive norepinephrine acting on its autoreceptor. Periarterial nerve stimulation in the presence of both l-NAME and yohimbine prevented the previously observed decrease in NPY, indicating that the cause of this decrease was, as predicted, due to α2-adrenoceptor activation. The periarterial nerve stimulation-induced increase of norepinephrine overflow was greater in the spontaneously hypertensive rat compared with normotensive rats. In contrast to what was observed in the isolated perfused mesenteric arterial bed obtained from normotensive animals, inhibition of NOS did not result in a further increase in the overflow of norepinephine or in a subsequent decrease in NPY. These results demonstrate that, in addition to being a direct vasodilator, NO, by deactivating norepinephrine, can modulate sympathetic neurotransmission and that this modulation is altered in the spontaneously hypertensive rat.
Collapse
Affiliation(s)
- Lacy L Kolo
- Department of Pharmacological and Physiological Science, Saint Louis University, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | |
Collapse
|
68
|
Quaedackers JS, Roelfsema V, Heineman E, Gunn AJ, Bennet L. The role of the sympathetic nervous system in postasphyxial intestinal hypoperfusion in the pre-term sheep fetus. J Physiol 2004; 557:1033-44. [PMID: 15073276 PMCID: PMC1665158 DOI: 10.1113/jphysiol.2004.062554] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Asphyxia in utero in pre-term fetuses is associated with evolving hypoperfusion of the gut after the insult. We examined the role of the sympathetic nervous system (SNS) in mediating this secondary hypoperfusion. Gut blood flow changes were also assessed during postasphyxial seizures. Preterm fetal sheep at 70% of gestation (103-104 days, term is 147 days) underwent sham asphyxia or asphyxia induced by 25 min of complete cord occlusion and fetuses were studied for 3 days afterwards. Phentolamine (10 mg bolus plus 10 mg h(-1)i.v.) or saline was infused for 8 h starting 15 min after the end of asphyxia or sham asphyxia. Phentolamine blocked the fall in superior mesenteric artery blood flow (SMABF) after asphyxia and there was a significant decrease in MAP for the first 3 h of infusion (33 +/- 1.6 mmHg versus vehicle 36.7 +/- 0.8 mmHg, P < 0.005). During seizures SMABF fell significantly (8.3 +/- 2.3 versus 11.4 +/- 2.7 ml min(-1), P < 0.005), and SMABF was more than 10% below baseline for 13.0 +/- 1.7 min per seizure (versus seizure duration of 78.1 +/- 7.2 s). Phentolamine was associated with earlier onset of seizures (5.0 +/- 0.4 versus 7.1 +/- 0.7 h, P < 0.05), but no change in amplitude or duration, and prevented the fall in SMABF. In conclusion, the present study confirms the hypothesis that postasphyxial hypoperfusion of the gut is strongly mediated by the SNS. The data highlight the importance of sympathetic activity in the initial elevation of blood pressure after asphyxia and are consistent with a role for the mesenteric system as a key resistance bed that helps to maintain perfusion in other, more vulnerable systems.
Collapse
Affiliation(s)
- Josine S Quaedackers
- Department of Anatomy, The University of Auckland, Private Bag 92019 Auckland, New Zealand
| | | | | | | | | |
Collapse
|