51
|
Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR. Diabetic retinopathy: Breaking the barrier. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:229-241. [PMID: 28732591 PMCID: PMC5711541 DOI: 10.1016/j.pathophys.2017.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) remains a major complication of diabetes and a leading cause of blindness among adults worldwide. DR is a progressive disease affecting both type I and type II diabetic patients at any stage of the disease, and targets the retinal microvasculature. DR results from multiple biochemical, molecular and pathophysiological changes to the retinal vasculature, which affect both microcirculatory functions and ultimately photoreceptor function. Several neural, endothelial, and support cell (e.g., pericyte) mechanisms are altered in a pathological fashion in the hyperglycemic environment during diabetes that can disturb important cell surface components in the vasculature producing the features of progressive DR pathophysiology. These include loss of the glycocalyx, blood-retinal barrier dysfunction, increased expression of inflammatory cell markers and adhesion of blood leukocytes and platelets. Included in this review is a discussion of modifications that occur at or near the surface of the retinal vascular endothelial cells, and the consequences of these alterations on the integrity of the retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Alaa M Z Aldalati
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States.
| |
Collapse
|
52
|
Barros SP, Williams R, Offenbacher S, Morelli T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontol 2000 2017; 70:53-64. [PMID: 26662482 DOI: 10.1111/prd.12107] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 12/12/2022]
Abstract
In evaluating the pathogenesis of periodontal diseases, the diagnostic potential of gingival crevicular fluid has been extensively explored during the last twenty years, from initially just confirming health and disease states to more recently investigating it as a potential prognostic tool. As host susceptibility is a critical determinant in periodontal disease pathogenesis, the inflammatory mediator levels present in gingival crevicular fluid represent relevant risk indicators for disease activity. Considerable work has been carried out to identify the many different cytokine inflammatory pathways and microbial stimuli that are associated with periodontal disease pathogenesis. Now, 'omics' approaches aim to summarize how these pathways interact and probably converge to create critical inflammatory networks. More recently, gingival crevicular fluid metabolomics appears promising as an additional diagnostic method. Biofilm structure and the host inflammatory response to the microbial challenge may induce specific inflammatory signatures. Host genetics and epigenetics may also modulate microbial colonization, adding to the multiplicity of potential causal pathways. Omics analyses of gingival crevicular fluid, measuring microbial and host interactions in association with the onset and progression of periodontal diseases, still show the potential to expand the landscape for the discovery of diagnostic, prognostic and therapeutic markers.
Collapse
|
53
|
Yoon JH, Lee ES, Jeong Y. In vivo Imaging of the Cerebral Endothelial Glycocalyx in Mice. J Vasc Res 2017; 54:59-67. [PMID: 28365703 DOI: 10.1159/000457799] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/21/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Endothelial glycocalyx refers to the proteoglycan or glycoprotein layer of vessel walls and has critical physiological functions. Cerebral glycocalyx may have additional functions considering the blood-brain barrier and other features. However, the assessment of it has only been performed ex vivo, which includes processes presumably damaging the glycocalyx layer. Here we visualize and characterize the cerebral endothelial glycocalyx in vivo. METHODS We visualized and quantified the cerebral endothelial glycocalyx in vivo under a 2-photon microscope by tagging glycocalyx and vessel lumen with wheat germ agglutinin lectin and dextran, respectively. The radial intensity was analyzed to measure the thickness of the cerebral endothelial glycocalyx in each vessel type. RESULTS Cerebral arteries and capillaries have an intact endothelial glycocalyx, but veins and venules do not. The thickness of the glycocalyx layer in pial arteries, penetrating arteries, and capillaries was different; however, it was not correlated with the vessel diameter within each vessel type. CONCLUSION We characterized the distribution of the cerebral endothelial glycocalyx in vivo. Compared to the results from ex vivo studies, the layer is thicker, indicating that the layer may be damaged in ex vivo systems. We also observed an inhomogeneous cerebral endothelial glycocalyx distribution that might reflect the functional heterogeneity of the vessel type.
Collapse
Affiliation(s)
- Jin-Hui Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | |
Collapse
|
54
|
Lipowsky HH, Lescanic A. Inhibition of inflammation induced shedding of the endothelial glycocalyx with low molecular weight heparin. Microvasc Res 2017; 112:72-78. [PMID: 28347755 DOI: 10.1016/j.mvr.2017.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/15/2023]
Abstract
The endothelial surface layer (ESL) consists of the endothelial cell (EC) glycocalyx and adsorbed proteins, and forms a barrier between blood and the EC. Enzymatic shedding of the ESL in response to cytokines may expose receptors for leukocyte (WBC) adhesion and increase vascular permeability. Thus, intravital microscopy was used to explore stabilization of the ESL with low molecular weight heparin (LMWH) to mitigate structural changes with inflammation. Following bolus infusions (i.v.) of LMWH (0.12-1.6mg/kg), shedding of glycans in response to 10-7M fMLP was measured by loss of fluorescently labeled lectins bound to the EC and WBC-EC adhesion was monitored in post-capillary venules of rat mesentery. During a 30min exposure to fMLP, a 50% reduction in fluorescence (indicative of glycan shedding) occurred at the lowest dose of LMWH whereas a 50% increase occurred (indicative of ESL compaction) at the highest dose. Shedding was reduced by LMWH in a dose dependent manner with an EC50 of 0.6mg/kg. Concomitant WBC-EC adhesion increased over 3-fold for all doses of LMWH. However, at a dose of 1.6mg/kg, WBC-EC adhesion did not rise significantly during the initial 10min exposure to fMLP. Correlation of WBC adhesion with intensity of the lectin stain for all measurements revealed a significant 40% reduction in adhesion as intensity increased 50%. This relationship was attributed to LMWH inhibition of heparanase and/or binding to components of the glycocalyx that resulted in mitigation of glycan shedding, compaction of the lectin stain and stabilization of the glycocalyx.
Collapse
Affiliation(s)
- Herbert H Lipowsky
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Anne Lescanic
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
55
|
Uhl B, Hirn S, Immler R, Mildner K, Möckl L, Sperandio M, Bräuchle C, Reichel CA, Zeuschner D, Krombach F. The Endothelial Glycocalyx Controls Interactions of Quantum Dots with the Endothelium and Their Translocation across the Blood-Tissue Border. ACS NANO 2017; 11:1498-1508. [PMID: 28135073 DOI: 10.1021/acsnano.6b06812] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Advances in the engineering of nanoparticles (NPs), which represent particles of less than 100 nm in one external dimension, led to an increasing utilization of nanomaterials for biomedical purposes. A prerequisite for their use in diagnostic and therapeutic applications, however, is the targeted delivery to the site of injury. Interactions between blood-borne NPs and the vascular endothelium represent a critical step for nanoparticle delivery into diseased tissue. Here, we show that the endothelial glycocalyx, which constitutes a glycoprotein-polysaccharide meshwork coating the luminal surface of vessels, effectively controls interactions of carboxyl-functionalized quantum dots with the microvascular endothelium. Glycosaminoglycans of the endothelial glycocalyx were found to physically cover endothelial adhesion and signaling molecules, thereby preventing endothelial attachment, uptake, and translocation of these nanoparticles through different layers of the vessel wall. Conversely, degradation of the endothelial glycocalyx promoted interactions of these nanoparticles with microvascular endothelial cells under the pathologic condition of ischemia-reperfusion, thus identifying the injured endothelial glycocalyx as an essential element of the blood-tissue border facilitating the targeted delivery of nanomaterials to diseased tissue.
Collapse
Affiliation(s)
- Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Stephanie Hirn
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Karina Mildner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine , 48149 Münster, Germany
| | - Leonhard Möckl
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Christoph Bräuchle
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine , 48149 Münster, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| |
Collapse
|
56
|
Toikkanen V, Rinne T, Nieminen R, Moilanen E, Laurikka J, Porkkala H, Tarkka M, Mennander A. The Impact of Lung Ventilation on Some Cytokines after Coronary Artery Bypass Grafting. Scand J Surg 2016; 106:87-93. [DOI: 10.1177/1457496916641340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Aims: Cardiopulmonary bypass induces a systematic inflammatory response, which is partly understood by investigation of peripheral blood cytokine levels alone; the lungs may interfere with the net cytokine concentration. We investigated whether lung ventilation influences lung passage of some cytokines after coronary artery bypass grafting. Material and Methods: In total, 47 patients undergoing coronary artery bypass grafting were enrolled, and 37 were randomized according to the ventilation technique: (1) No-ventilation group, with intubation tube detached from the ventilator; (2) low tidal volume group, with continuous low tidal volume ventilation; and (3) continuous 10 cm H2O positive airway pressure. Ten selected patients undergoing surgery without cardiopulmonary bypass served as a referral group. Representative pulmonary and radial artery blood samples were collected for the evaluation of calculated lung passage (pulmonary/radial artery) of the pro-inflammatory cytokines (interleukin 6 and interleukin 8) and the anti-inflammatory interleukin 10 immediately after induction of anesthesia (T1), 1 h after restoring ventilation/return of flow in all grafts (T2), and 20 h after restoring ventilation/return of flow in all grafts (T3). Results: Pulmonary/radial artery interleukin 6 and pulmonary/radial artery interleukin 8 ratios ( p = 0.001 and p = 0.05, respectively) decreased, while pulmonary/radial artery interleukin 10 ratio ( p = 0.001) increased in patients without cardiopulmonary bypass as compared with patients with cardiopulmonary bypass. Conclusions: The pulmonary/radial artery equation is an innovative means for the evaluation of cytokine lung passage after coronary artery bypass grafting. The mode of lung ventilation has no impact on some cytokines after coronary artery bypass grafting in patients treated with cardiopulmonary bypass.
Collapse
Affiliation(s)
- V. Toikkanen
- Department of Cardiothoracic Surgery, Heart Center Co., Tampere University Hospital, University of Tampere, SDSKIR, Tampere, Finland
| | - T. Rinne
- Division of Cardiac Anesthesia, Heart Center Co., Tampere University Hospital, University of Tampere, Tampere, Finland
| | - R. Nieminen
- Department of Immunopharmacology, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - E. Moilanen
- Department of Immunopharmacology, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - J. Laurikka
- Department of Cardiothoracic Surgery, Heart Center Co., Tampere University Hospital, University of Tampere, SDSKIR, Tampere, Finland
| | - H. Porkkala
- Division of Cardiac Anesthesia, Heart Center Co., Tampere University Hospital, University of Tampere, Tampere, Finland
| | - M. Tarkka
- Department of Cardiothoracic Surgery, Heart Center Co., Tampere University Hospital, University of Tampere, SDSKIR, Tampere, Finland
| | - A. Mennander
- Department of Cardiothoracic Surgery, Heart Center Co., Tampere University Hospital, University of Tampere, SDSKIR, Tampere, Finland
| |
Collapse
|
57
|
Torres Filho IP, Torres LN, Salgado C, Dubick MA. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. Am J Physiol Heart Circ Physiol 2016; 310:H1468-78. [DOI: 10.1152/ajpheart.00006.2016] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/31/2016] [Indexed: 01/24/2023]
Abstract
The endothelial glycocalyx plays an essential role in many physiological functions and is damaged after hemorrhage. Fluid resuscitation may further change the glycocalyx after an initial hemorrhage-induced degradation. Plasma levels of syndecan-1 and heparan sulfate have been used as indirect markers for glycocalyx degradation, but the extent to which these measures are representative of the events in the microcirculation is unknown. Using hemorrhage and a wide range of resuscitation fluids, we studied quantitatively the relationship between plasma biomarkers and changes in microvascular parameters, including glycocalyx thickness. Rats were bled 40% of total blood volume and resuscitated with seven different fluids (fresh whole blood, blood products, and crystalloids). Intravital microscopy was used to estimate glycocalyx thickness in >270 postcapillary venules from 58 cremaster preparations in 9 animal groups; other microvascular parameters were measured using noninvasive techniques. Systemic physiological parameters and blood chemistry were simultaneously collected. Changes in glycocalyx thickness were negatively correlated with changes in plasma levels of syndecan-1 ( r = −0.937) and heparan sulfate ( r = −0.864). Changes in microvascular permeability were positively correlated with changes in both plasma biomarkers ( r = 0.8, P < 0.05). Syndecan-1 and heparan sulfate were also positively correlated ( r = 0.7, P < 0.05). Except for diameter and permeability, changes in local microcirculatory parameters (red blood cell velocity, blood flow, and wall shear rate) did not correlate with plasma biomarkers or glycocalyx thickness changes. This work provides a quantitative framework supporting plasma syndecan-1 and heparan sulfate as valuable clinical biomarkers of glycocalyx shedding that may be useful in guiding resuscitation strategies following hemorrhage.
Collapse
Affiliation(s)
- Ivo P. Torres Filho
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Luciana N. Torres
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Christi Salgado
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Michael A. Dubick
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| |
Collapse
|
58
|
Schött U, Solomon C, Fries D, Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med 2016; 24:48. [PMID: 27068016 PMCID: PMC4828893 DOI: 10.1186/s13049-016-0239-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/06/2016] [Indexed: 12/31/2022] Open
Abstract
The glycocalyx is a carbohydrate-rich layer that lines the luminal side of the vascular endothelium. Its soluble components exist in a dynamic equilibrium with the bloodstream and play an important role in maintaining endothelial layer integrity. However, the glycocalyx can be easily damaged and is extremely vulnerable to insults from a variety of sources, including inflammation, trauma, haemorrhagic shock, hypovolemia and ischaemia-reperfusion. Damage to the glycocalyx commonly precedes further damage to the vascular endothelium. Preclinical research has identified a number of different factors capable of protecting or regenerating the glycocalyx. Initial investigations suggest that plasma may convey protective and regenerative effects. However, it remains unclear which exact components or properties of plasma are responsible for this protective effect. Studies have reported protective effects for several plasma proteins individually, including antithrombin, orosomucoid and albumin; the latter of which may be of particular interest, due to the high levels of albumin present in plasma. A further possibility is that plasma is simply a better intravascular volume expander than other resuscitation fluids. It has also been proposed that the protective effects are mediated indirectly via plasma resuscitation-induced changes in gene expression. Further work is needed to determine the importance of specific plasma proteins or other factors for glycocalyx protection, particularly in a clinical setting.
Collapse
Affiliation(s)
- Ulf Schött
- Department of Clinical Sciences Lund, Medical Faculty, University of Lund, Lund, Sweden. .,Department of Intensive and Perioperative Care, Skane University Hospital, Lund, Sweden.
| | - Cristina Solomon
- Department of Anesthesiology, Perioperative Medicine and General Intensive Care, Paracelsus Medical University, Salzburg, Austria.,CSL Behring, Marburg, Germany
| | - Dietmar Fries
- Department of Surgical and General Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Peter Bentzer
- Department of Clinical Sciences Lund, Medical Faculty, University of Lund, Lund, Sweden.,Department of Intensive and Perioperative Care, Skane University Hospital, Lund, Sweden
| |
Collapse
|
59
|
Al-Khazraji BK, Jackson DN, Goldman D. A Microvascular Wall Shear Rate Function Derived From In Vivo Hemodynamic and Geometric Parameters in Continuously Branching Arterioles. Microcirculation 2016; 23:311-9. [PMID: 27018869 DOI: 10.1111/micc.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/26/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Conventional approaches to WSR estimation in the microcirculation involve assumptions that may result in under-/over-estimation of WSR. Therefore, our objectives were: (i) calculate WSR from RBC velocity profiles for a wide range of arteriolar diameters, (ii) provide an experimentally derived and straightforward WSR estimation function, and (iii) compare calculated to conventional WSR estimations. METHODS We characterized RBC velocity profiles in arterioles (n = 39) of branching networks (21-115 μm) in the rat gluteus maximus muscle (n = 6). Measures included mean and maximum velocities, CFL thickness, and RBC column edge velocity, and an experiment-based WSR function was derived. RESULTS CFL thickness (1-4.3 μm) positively correlated with arteriolar diameter (r(2) = 0.64). Results from the WSR equation were similar to values from edge RBC velocities/CFL. Experimental WSRs (1317-4334/sec) were independent of arteriolar diameter, and were greater than pseudoshear rates (for VRatio of 1.6, 2, or diameter-dependent VRatio function) (p < 0.05). CONCLUSION A WSR equation was derived from experimental hemodynamic parameters, and is adaptable to other velocity measurement techniques in order to obtain WSR and stress (when plasma viscosity is known). These findings provide insight on the nature of conventional WSR calculation methods in underestimating microvascular WSR values.
Collapse
Affiliation(s)
- Baraa K Al-Khazraji
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.,Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.,Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
60
|
Fung A, Zhao H, Yang B, Lian Q, Ma D. Ischaemic and inflammatory injury in renal graft from brain death donation: an update review. J Anesth 2016; 30:307-16. [DOI: 10.1007/s00540-015-2120-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022]
|
61
|
Dane MJC, van den Berg BM, Lee DH, Boels MGS, Tiemeier GL, Avramut MC, van Zonneveld AJ, van der Vlag J, Vink H, Rabelink TJ. A microscopic view on the renal endothelial glycocalyx. Am J Physiol Renal Physiol 2015; 308:F956-66. [PMID: 25673809 DOI: 10.1152/ajprenal.00532.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells perform key homeostatic functions such as regulating blood flow, permeability, and aiding immune surveillance for pathogens. While endothelial activation serves normal physiological adaptation, maladaptation of these endothelial functions has been identified as an important effector mechanism in the progression of renal disease as well as the associated development of cardiovascular disease. The primary interface between blood and the endothelium is the glycocalyx. This carbohydrate-rich gel-like structure with its associated proteins mediates most of the regulatory functions of the endothelium. Because the endothelial glycocalyx is a highly dynamic and fragile structure ex vivo, and traditional tissue processing for staining and perfusion-fixation usually results in a partial or complete loss of the glycocalyx, studying its dimensions and function has proven to be challenging. In this review, we will outline the core functions of the glycocalyx and focus on different techniques to study structure-function relationships in kidney and vasculature.
Collapse
Affiliation(s)
- Martijn J C Dane
- Department of Nephrology, Einthoven laboratory for Vascular Medicine, LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | - Bernard M van den Berg
- Department of Nephrology, Einthoven laboratory for Vascular Medicine, LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | - Dae Hyun Lee
- Department of Nephrology, Einthoven laboratory for Vascular Medicine, LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | - Margien G S Boels
- Department of Nephrology, Einthoven laboratory for Vascular Medicine, LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | - Gesa L Tiemeier
- Department of Nephrology, Einthoven laboratory for Vascular Medicine, LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | - M Cristina Avramut
- Department of Molecular Cell Biology, Section Electron Microscopy LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Nephrology, Einthoven laboratory for Vascular Medicine, LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Hans Vink
- Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Einthoven laboratory for Vascular Medicine, LUMC, Leiden University Medical Center, Leiden, The Netherlands;
| |
Collapse
|
62
|
YINI S, HENG Z, XIN A, XIAOCHUN M. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand 2015; 59:160-9. [PMID: 25312742 DOI: 10.1111/aas.12418] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND The constituents of vascular endothelial glycocalyx, such as syndecan-1 and heparan sulphate (HS), can be detected in the plasma of patients and animals with septic shock. However, the dynamics of glycocalyx degradation and its association with inflammation remains largely unknown. In this study, we investigated the association between the biomarkers of acute endothelial glycocalyx degradation and inflammatory factors. We also evaluated the effect of unfractionated heparin (UFH) on glycocalyx shedding in a canine septic shock model. METHODS Twenty adult beagle dogs were randomly allocated to one of the following four groups (n = 5): (1) a sham group; (2) a shock group [3.5 × 10(8) colony-forming unit (cfu) Escherichia coli (E. coli)/kg]; (3) a basic therapy group (sensitive antibiotics and 0.9% saline, 10 ml/kg/h); and (4) a heparin group (40 units/kg/h UFH plus basic therapy). After the onset of septic shock, systemic haemodynamic indices were measured. Endothelial glycocalyx degradation markers (i.e., syndecan-1, HS) and inflammatory factors [i.e., interleukin 6 (IL-6), tumour necrosis factor (TNF)-α], platelet count and activated partial thromboplastin time were measured at various time points. RESULTS A lethal dose of E. coli induced a progressive septic shock model. We observed increased syndecan-1 and HS levels, which correlated with IL-6 and TNF-α in the septic shock model. The glycocalyx shedding was reduced by UFH, which might be regulated by the inhibition of inflammatory factors. CONCLUSIONS A therapeutic dose of UFH can protect glycocalyx from shedding by inhibiting inflammation. Additional studies with larger sample sizes are needed to confirm our conclusions.
Collapse
Affiliation(s)
- S. YINI
- Department of Intensive Care Unit; The First Affiliated Hospital of China Medical University; Shenyang China
| | - Z. HENG
- Department of Intensive Care Unit; The First Affiliated Hospital of China Medical University; Shenyang China
| | - A. XIN
- Department of Intensive Care Unit; The First Affiliated Hospital of China Medical University; Shenyang China
| | - M. XIAOCHUN
- Department of Intensive Care Unit; The First Affiliated Hospital of China Medical University; Shenyang China
| |
Collapse
|
63
|
Hebbel RP. Ischemia-reperfusion injury in sickle cell anemia: relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematol Oncol Clin North Am 2014; 28:181-98. [PMID: 24589261 DOI: 10.1016/j.hoc.2013.11.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ischemia-reperfusion (I/R) physiology, also called reperfusion injury, instigates vascular and tissue injury in human disease states. This review describes why sickle cell anemia should be conceptualized in this fashion and how I/R physiology explains the genesis of characteristic aspects of vascular pathobiology and clinical disease in sickle cell anemia. The nature of I/R and its relevance to sickle cell anemia are discussed, with an emphasis on the acute chest syndrome, endothelial dysfunction with aberrant vasoregulation, circle of Willis vasculopathy, and inflammatory pain. Viewing sickle disease from this perspective elucidates defining pathophysiology and identifies a host of novel potential therapeutic targets.
Collapse
Affiliation(s)
- Robert P Hebbel
- Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota Medical School, 420 Delaware Street South East, Mayo Mail Code 480, Minneapolis, MN 55455, USA.
| |
Collapse
|
64
|
Stoler-Barak L, Moussion C, Shezen E, Hatzav M, Sixt M, Alon R. Blood vessels pattern heparan sulfate gradients between their apical and basolateral aspects. PLoS One 2014; 9:e85699. [PMID: 24465652 PMCID: PMC3899079 DOI: 10.1371/journal.pone.0085699] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS) was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs) of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM). This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | | | - Elias Shezen
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Miki Hatzav
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Michael Sixt
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Ronen Alon
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
65
|
Frati-Munari AC. [Medical significance of endothelial glycocalyx]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2013; 83:303-12. [PMID: 24280179 DOI: 10.1016/j.acmx.2013.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022] Open
Abstract
Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. It has several physiological roles: shear stress mechanotransduction to the endothelial cells, regulation of fluids and macromolecules vascular permeability, of coagulation cascade activation and fibrinolysis, and protects the endothelium from platelets and leukocytes adhesion. In general, glycocalyx protects vascular wall against pathogenic insults. The glycocalyx may be damaged by abnormal shear stress, reactive oxygen species, hypernatremia, hyperglycemia, hypercholesterolemia and inflammatory molecules, resulting in endothelial dysfunction, enhanced vascular permeability, lipoproteins leakage to subendothelial space, activation of plasma coagulation, and increased adherence of platelets and leukocytes to the endothelial cells. Shredding of glycocalyx appears as an important initial step in the pathophysiology of vascular diseases.
Collapse
|
66
|
Evaluation of resuscitation fluids on endothelial glycocalyx, venular blood flow, and coagulation function after hemorrhagic shock in rats. J Trauma Acute Care Surg 2013; 75:759-66. [DOI: 10.1097/ta.0b013e3182a92514] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
67
|
Lipowsky HH, Lescanic A. Shear-dependent adhesion of leukocytes and lectins to the endothelium and concurrent changes in thickness of the glycocalyx of post-capillary venules in the low-flow state. Microcirculation 2013; 20:149-57. [PMID: 22963321 DOI: 10.1111/micc.12013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/04/2012] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To elucidate shear-dependent effects of deformation of the endothelial glycocalyx on adhesion of circulating ligands in post-capillary venules, and delineate effect of MMPs. METHODS Adhesion of WBCs and lectin-coated FLMs (0.1 μm diameter) to EC of post-capillary venules in mesentery was examined during acute reductions in shear rates (γ·, hemorrhagic hypotension). Adhesion was examined with or without superfusion with 0.5 μm doxycycline to inhibit MMPs. Thickness of the glycocalyx was measured by exclusion of fluorescent 70 kDa dextran from the EC surface. RESULTS During superfusion with Ringers, rapid reductions in γ· resulted in a significant rise in WBC adhesion and a twofold rise in microsphere adhesion. With addition of doxycycline WBC and FLM adhesion increased twofold under high- and low-flow conditions. FLM adhesion was invariant with γ· throughout the network in the normal (high)-flow state. With reductions in γ·, thickness of the glycocalyx increased significantly, with or without doxycycline. CONCLUSIONS The concurrent increase in WBC and FLM adhesion with increased thickness of the glycocalyx during reductions in shear suggests that glycocalyx core proteins recoil from their deformed steady-state configuration, which increases exposure of binding sites for circulating ligands.
Collapse
Affiliation(s)
- Herbert H Lipowsky
- Department of Bioengineering, Penn State University, University Park, Pennsylvania, USA.
| | | |
Collapse
|
68
|
Lipowsky HH, Lescanic A. The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res 2013; 90:80-5. [PMID: 23899417 DOI: 10.1016/j.mvr.2013.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 06/26/2013] [Accepted: 07/19/2013] [Indexed: 12/23/2022]
Abstract
The structure and composition of the endothelial cell (EC) glycocalyx reflect a balance of the biosynthesis of glycans and their shear dependent removal. Shedding of glycans from the EC surface has been shown to occur in response to reactive oxygen species (ROS) and inflammatory mediators. Using sub-antimicrobial doses of doxycycline, a broad spectrum matrix metalloprotease (MMP) inhibitor, inhibition of chemoattractant induced glycan shedding has suggested that MMPs may be a major effector of the loss of glycans. However, it has also been reported that doxycycline is a scavenger of ROS that may also activate MMPs. To clarify the basis for doxycycline as an inhibitor of glycan shedding, the present studies were undertaken to determine its effect on ROS induced shedding in post-capillary venules of the exteriorized mesentery of the rat. To this end, hypoxanthine (HX) and xanthine oxidase (XO) were rapidly mixed on the mesenteric surface for a 2min period to generate superoxide anion (O2(-)·) and the time course of glycan shedding was monitored in post-capillary venules over a 30min period. Glycan shedding was quantitated by loss of adherent fluorescently labeled lectin coated microspheres (FLMs, 0.1μm diameter) that were systemically infused. It was found that HX/XO caused FLM adhesion to decrease 45% within 30min. This effect could be inhibited in a dose dependent manner by the addition of superoxide dismutase to the superfusion solution, thus confirming the role of O2(-)·. In contrast, 0.5μM doxycycline had no effect on FLM shedding in response to HX/XO, contrary to its ability to attenuate shedding in response to the chemoattractant fMLP. Thus it is suggested that the efficacy of doxycycline as an inhibitor of glycan shedding during inflammation arises from its ability to inhibit MMP activation.
Collapse
Affiliation(s)
- Herbert H Lipowsky
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
69
|
Oberleithner H. Vascular endothelium leaves fingerprints on the surface of erythrocytes. Pflugers Arch 2013; 465:1451-8. [PMID: 23665954 DOI: 10.1007/s00424-013-1288-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 01/21/2023]
Abstract
Gliding of red blood cells (RBC) through blood vessels is mediated by the negatively charged glycocalyx located on the surfaces of both RBC and endothelial cells (EC). In various vasculopathies, EC gradually lose this protective surface layer. As a consequence, RBC come into close physical contact with the vascular endothelium. It is hypothesized that the RBC glycocalyx could be adversely affected by a poor EC glycocalyx. This hypothesis was tested by evaluating the RBC and EC surface layers with atomic force microscopy techniques. In the first series of experiments, EC monolayers grown in culture were exposed to rhythmic drag forces exerted from a blood overlay (drag force treatment), and thereafter, the EC surface was investigated in terms of thickness and adhesiveness. In the second series, the glycocalyx of the EC monolayers was disturbed by enzymatic cleavage of negatively charged heparan sulfates before drag force treatment, and thereafter, the RBC surface was evaluated. In the third series, the RBC glycocalyx of the blood overlay was enzymatically disturbed before drag force treatment, and thereafter, the EC surface was evaluated. A strong positive correlation between the RBC and EC surface properties was found (r (2) = 0.95). An enzymatically affected EC glycocalyx lead to the shedding of the RBC glycocalyx and vice versa. It is concluded that there is physical interaction between the blood and endothelium. Apparently, the RBC glycocalyx reflects properties of the EC glycocalyx. This observation could have a significant impact on diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hans Oberleithner
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany,
| |
Collapse
|
70
|
Abstract
The pathophysiology of cerebral ischemia is traditionally understood in relation to reductions in cerebral blood flow (CBF). However, a recent reanalysis of the flow-diffusion equation shows that increased capillary transit time heterogeneity (CTTH) can reduce the oxygen extraction efficacy in brain tissue for a given CBF. Changes in capillary morphology are typical of conditions predisposing to stroke and of experimental ischemia. Changes in capillary flow patterns have been observed by direct microscopy in animal models of ischemia and by indirect methods in humans stroke, but their metabolic significance remain unclear. We modeled the effects of progressive increases in CTTH on the way in which brain tissue can secure sufficient oxygen to meet its metabolic needs. Our analysis predicts that as CTTH increases, CBF responses to functional activation and to vasodilators must be suppressed to maintain sufficient tissue oxygenation. Reductions in CBF, increases in CTTH, and combinations thereof can seemingly trigger a critical lack of oxygen in brain tissue, and the restoration of capillary perfusion patterns therefore appears to be crucial for the restoration of the tissue oxygenation after ischemic episodes. In this review, we discuss the possible implications of these findings for the prevention, diagnosis, and treatment of acute stroke.
Collapse
|
71
|
Stanley WC, Keehan KH. Update on innovative initiatives for the American Journal of Physiology-Heart and Circulatory Physiology. Am J Physiol Heart Circ Physiol 2013; 304:H1045-9. [PMID: 23457015 DOI: 10.1152/ajpheart.00082.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
72
|
Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, Prinz V, Dirnagl U, Endres M, Prinz M, Beschorner R, Harter PN, Mittelbronn M, Engelhardt B, Sorokin L. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol 2013; 125:395-412. [PMID: 23269317 PMCID: PMC3578720 DOI: 10.1007/s00401-012-1076-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 01/05/2023]
Abstract
The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.
Collapse
Affiliation(s)
- Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Caroline Mysiorek
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Roser Gorina
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Yu-Jung Cheng
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Sharang Ghavampour
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | | | - Ulrich Dirnagl
- Department of Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité University, Berlin, Germany
| | - Matthias Endres
- Department of Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité University, Berlin, Germany
| | - Marco Prinz
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Rudi Beschorner
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger Institute), University of Frankfurt, Frankfurt, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), University of Frankfurt, Frankfurt, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| |
Collapse
|
73
|
Torres Filho I, Torres LN, Sondeen JL, Polykratis IA, Dubick MA. In vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy. Microvasc Res 2012; 85:128-33. [PMID: 23154280 DOI: 10.1016/j.mvr.2012.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/25/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022]
Abstract
Hemorrhage is responsible for a large percentage of trauma-related deaths but the mechanisms underlying tissue ischemia are complex and not well understood. Despite the evidence linking glycocalyx degradation and hemorrhagic shock, there is no direct data obtained in vivo showing glycocalyx thickness reduction in skeletal muscle venules after hemorrhage. We hypothesize that damage to the endothelial glycocalyx is a key element in hemorrhage pathophysiology and tested the hypothesis that hemorrhage causes glycocalyx degradation in cremaster muscle microvessels. We utilized intravital microscopy to estimate glycocalyx thickness in 48 microvessels while other microvascular parameters were measured using non-invasive techniques. Systemic physiological parameters and blood chemistry were simultaneously collected. We studied 27 post-capillary venules (<16 μm diameter) of 8 anesthetized rats subjected to hemorrhage (40% of total blood volume). Six control rats were equally instrumented but not bled. Dextrans of different molecular weights labeled with FITC or Texas Red were injected. Glycocalyx thickness was estimated from the widths of the fluorescence columns and from anatomical diameter. While control rats did not show remarkable responses, a statistically significant decrease of about 59% in glycocalyx thickness was measured in venules after hemorrhagic shock. Venular glycocalyx thickness and local blood flow changes were correlated: venules with the greatest flow reductions showed the largest decreases in glycocalyx. These changes may have a significant impact in shock pathophysiology. Intravital microscopy and integrated systems such as the one described here may be important tools to identify mechanisms by which resuscitation fluids may improve tissue recovery and outcome following hemorrhage.
Collapse
Affiliation(s)
- Ivo Torres Filho
- Damage Control Resuscitation, United States Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA.
| | | | | | | | | |
Collapse
|
74
|
Jin XL, Li XH, Zhang LM, Zhao J. The interaction of leukocytes and adhesion molecules in mesenteric microvessel endothelial cells after internal capsule hemorrhage. Microcirculation 2012; 19:539-46. [PMID: 22510105 DOI: 10.1111/j.1549-8719.2012.00185.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the correlation between hemorheological variations and the expression of cell adhesion molecules in mesenteric microvessel endothelial cells after internal capsule hemorrhage. METHODS We established an internal capsule hemorrhage model. Then leukocyte-endothelium interaction was observed and hemorheological variations in mesenteric microvessels were evaluated in the following aspects: blood flow volume, diameter of microvessels, blood flow rate, and shear rate. We also measured the expression of vascular cell adhesion molecule-l and intercellular adhesion molecule-1 (ICAM-1) in mesenteric microvessel endothelial cells with immunohistochemistry stain. RESULTS Leukocyte-endothelium interaction intensified after internal capsule hemorrhage. Besides, blood flow volume and velocity decreased, diameter narrowed, and shear rate reduced. Immunohistochemical staining of vascular cell adhesion molecule-l and ICAM-1in mesenteric microvessel endothelial cells was stronger. CONCLUSIONS VCAM-1 and ICAM-1 expression in mesenteric microvessels increased as a result of decreased wall shear stress in stress state following internal capsule hemorrhage, and then further shear stress change from interaction of enhanced production of CAMs and leukocytes created a vicious cycle of leukocytes margination, adhesion, and transmigration that could ultimately result in stress gastrointestinal ulcer.
Collapse
Affiliation(s)
- Xue-Long Jin
- Department of Physiology, Tianjin Medical University, Tianjin, China
| | | | | | | |
Collapse
|