51
|
Bloodworth NC, West JD, Merryman WD. Microvessel mechanobiology in pulmonary arterial hypertension: cause and effect. Hypertension 2015; 65:483-9. [PMID: 25534705 PMCID: PMC4326545 DOI: 10.1161/hypertensionaha.114.04652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nathaniel C Bloodworth
- From the Departments of Biomedical Engineering (N.C.B., W.D.M.) and Pulmonary and Critical Care Medicine (J.D.W.), Vanderbilt University, Nashville, TN
| | - James D West
- From the Departments of Biomedical Engineering (N.C.B., W.D.M.) and Pulmonary and Critical Care Medicine (J.D.W.), Vanderbilt University, Nashville, TN
| | - W David Merryman
- From the Departments of Biomedical Engineering (N.C.B., W.D.M.) and Pulmonary and Critical Care Medicine (J.D.W.), Vanderbilt University, Nashville, TN.
| |
Collapse
|
52
|
Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater 2015; 14:133-45. [PMID: 25458466 DOI: 10.1016/j.actbio.2014.11.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/13/2014] [Accepted: 11/20/2014] [Indexed: 11/21/2022]
Abstract
Structure-based constitutive models might help in exploring mechanisms by which arterial wall histology is linked to wall mechanics. This study aims to validate a recently proposed structure-based constitutive model. Specifically, the model's ability to predict mechanical biaxial response of porcine aortic tissue with predefined collagen structure was tested. Histological slices from porcine thoracic aorta wall (n=9) were automatically processed to quantify the collagen fiber organization, and mechanical testing identified the non-linear properties of the wall samples (n=18) over a wide range of biaxial stretches. Histological and mechanical experimental data were used to identify the model parameters of a recently proposed multi-scale constitutive description for arterial layers. The model predictive capability was tested with respect to interpolation and extrapolation. Collagen in the media was predominantly aligned in circumferential direction (planar von Mises distribution with concentration parameter bM=1.03 ± 0.23), and its coherence decreased gradually from the luminal to the abluminal tissue layers (inner media, b=1.54 ± 0.40; outer media, b=0.72 ± 0.20). In contrast, the collagen in the adventitia was aligned almost isotropically (bA=0.27 ± 0.11), and no features, such as families of coherent fibers, were identified. The applied constitutive model captured the aorta biaxial properties accurately (coefficient of determination R(2)=0.95 ± 0.03) over the entire range of biaxial deformations and with physically meaningful model parameters. Good predictive properties, well outside the parameter identification space, were observed (R(2)=0.92 ± 0.04). Multi-scale constitutive models equipped with realistic micro-histological data can predict macroscopic non-linear aorta wall properties. Collagen largely defines already low strain properties of media, which explains the origin of wall anisotropy seen at this strain level. The structure and mechanical properties of adventitia are well designed to protect the media from axial and circumferential overloads.
Collapse
|
53
|
Chow MJ, Turcotte R, Lin CP, Zhang Y. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen. Biophys J 2015; 106:2684-92. [PMID: 24940786 DOI: 10.1016/j.bpj.2014.05.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/04/2014] [Accepted: 05/05/2014] [Indexed: 01/01/2023] Open
Abstract
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.
Collapse
Affiliation(s)
- Ming-Jay Chow
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - Raphaël Turcotte
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Center for Systems Biology, Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles P Lin
- Center for Systems Biology, Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts.
| |
Collapse
|
54
|
Shah SB, Witzenburg C, Hadi MF, Wagner HP, Goodrich JM, Alford PW, Barocas VH. Prefailure and failure mechanics of the porcine ascending thoracic aorta: experiments and a multiscale model. J Biomech Eng 2014; 136:021028. [PMID: 24402447 DOI: 10.1115/1.4026443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/08/2014] [Indexed: 11/08/2022]
Abstract
Ascending thoracic aortic aneurysms (ATAA) have a high propensity for dissection, which occurs when the hemodynamic load exceeds the mechanical strength of the aortic media. Despite our recognition of this essential fact, the complex architecture of the media has made a predictive model of medial failure-even in the relatively simple case of the healthy vessel-difficult to achieve. As a first step towards a general model of ATAA failure, we characterized the mechanical behavior of healthy ascending thoracic aorta (ATA) media using uniaxial stretch-to-failure in both circumferential (n = 11) and axial (n = 11) orientations and equibiaxial extensions (n = 9). Both experiments demonstrated anisotropy, with higher tensile strength in the circumferential direction (2510 ± 439.3 kPa) compared to the axial direction (750 ± 102.6 kPa) for the uniaxial tests, and a ratio of 1.44 between the peak circumferential and axial loads in equibiaxial extension. Uniaxial tests for both orientations showed macroscopic tissue failure at a stretch of 1.9. A multiscale computational model, consisting of a realistically aligned interconnected fiber network in parallel with a neo-Hookean solid, was used to describe the data; failure was modeled at the fiber level, with an individual fiber failing when stretched beyond a critical threshold. The best-fit model results were within the 95% confidence intervals for uniaxial and biaxial experiments, including both prefailure and failure, and were consistent with properties of the components of the ATA media.
Collapse
|
55
|
Sangartit W, Kukongviriyapan U, Donpunha W, Pakdeechote P, Kukongviriyapan V, Surawattanawan P, Greenwald SE. Tetrahydrocurcumin protects against cadmium-induced hypertension, raised arterial stiffness and vascular remodeling in mice. PLoS One 2014; 9:e114908. [PMID: 25502771 PMCID: PMC4263715 DOI: 10.1371/journal.pone.0114908] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cadmium (Cd) is a nonessential heavy metal, causing oxidative damage to various tissues and associated with hypertension. Tetrahydrocurcumin (THU), a major metabolite of curcumin, has been demonstrated to be an antioxidant, anti-diabetic, anti-hypertensive and anti-inflammatory agent. In this study, we investigated the protective effect of THU against Cd-induced hypertension, raised arterial stiffness and vascular remodeling in mice. METHODS Male ICR mice received CdCl2 (100 mg/l) via drinking water for 8 weeks. THU was administered intragastrically at dose of 50 or 100 mg/kg/day concurrently with Cd treatment. RESULTS Administration of CdCl2 significantly increased arterial blood pressure, blunted vascular responses to vasoactive agents, increased aortic stiffness, and induced hypertrophic aortic wall remodeling by increasing number of smooth muscle cells and collagen deposition, decreasing elastin, and increasing matrix metalloproteinase (MMP)-2 and MMP-9 levels in the aortic medial wall. Supplementation with THU significantly decreased blood pressure, improved vascular responsiveness, and reversed the structural and mechanical alterations of the aortas, including collagen and elastin deposition. The reduction on the adverse response of Cd treatment was associated with upregulated eNOS and downregulated iNOS protein expressions, increased nitrate/nitrite level, alleviated oxidative stress and enhanced antioxidant glutathione. Moreover, THU also reduced the accumulation of Cd in the blood and tissues. CONCLUSIONS Our results suggest that THU ameliorates cadmium-induced hypertension, vascular dysfunction, and arterial stiffness in mice through enhancing NO bioavailability, attenuating oxidative stress, improving vascular remodeling and decreasing Cd accumulation in other tissues. THU has a beneficial effect in moderating the vascular alterations associated with Cd exposure.
Collapse
Affiliation(s)
- Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanida Donpunha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Praphassorn Surawattanawan
- Research and Development Institute, The Government Pharmaceutical Organization, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Stephen E. Greenwald
- Pathology Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 1BB, United Kingdom
| |
Collapse
|
56
|
Wang R, Gleason RL. Residual shear deformations in the coronary artery. J Biomech Eng 2014; 136:061004. [PMID: 24686990 DOI: 10.1115/1.4027331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Indexed: 11/08/2022]
Abstract
Quantifying arterial residual deformations is critical for understanding the stresses and strains within the arterial wall during physiological and pathophysiological conditions. This study presents novel findings on residual shear deformations in the left anterior descending coronary artery. Residual shear deformations are most evident when thin, long axial strips are cut from the artery. These strips deform into helical configurations when placed in isotonic solution. A residual shear angle is introduced as a parameter to quantify the residual shear deformations. Furthermore, a stress analysis is performed to study the effects of residual shear deformations on the intramural shear stress distribution of an artery subjected to pressure, axial stretch, and torsion using numerical simulation. The results from the stress analyses suggest that residual shear deformations can significantly modulate the intramural shear stress across the arterial wall.
Collapse
|
57
|
Calle EA, Vesuna S, Dimitrievska S, Zhou K, Huang A, Zhao L, Niklason LE, Levene MJ. The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs. Tissue Eng Part C Methods 2014; 20:570-7. [PMID: 24251630 PMCID: PMC4074743 DOI: 10.1089/ten.tec.2013.0538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/05/2013] [Indexed: 01/14/2023] Open
Abstract
Recent advances in three-dimensional (3D) tissue engineering have concomitantly generated a need for new methods to visualize and assess the tissue. In particular, methods for imaging intact volumes of whole tissue, rather than a single plane, are required. Herein, we describe the use of multiphoton microscopy, combined with optical clearing, to noninvasively probe decellularized lung extracellular matrix scaffolds and decellularized, tissue-engineered blood vessels. We also evaluate recellularized lung tissue scaffolds. In addition to nondestructive imaging of tissue volumes greater than 4 mm(3), the lung tissue can be visualized using three distinct signals, combined or singly, that allow for simple separation of cells and different components of the extracellular matrix. Because the 3D volumes are not reconstructions, they do not require registration algorithms to generate digital volumes, and maintenance of isotropic resolution is not required when acquiring stacks of images. Once a virtual volume of tissue is generated, structures that have innate 3D features, such as the lumens of vessels and airways, are easily animated and explored in all dimensions. In blood vessels, individual collagen fibers can be visualized at the micron scale and their alignment assessed at various depths through the tissue, potentially providing some nondestructive measure of vessel integrity and mechanics. Finally, both the lungs and vessels assayed here were optically cleared, imaged, and visualized in a matter of hours, such that the added benefits of these techniques can be achieved with little more hassle or processing time than that associated with traditional histological methods.
Collapse
Affiliation(s)
- Elizabeth A. Calle
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Sam Vesuna
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Sashka Dimitrievska
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Kevin Zhou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Angela Huang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Liping Zhao
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| | - Michael J. Levene
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|
58
|
Huang AH, Niklason LE. Engineering of arteries in vitro. Cell Mol Life Sci 2014; 71:2103-18. [PMID: 24399290 PMCID: PMC4024341 DOI: 10.1007/s00018-013-1546-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
This review will focus on two elements that are essential for functional arterial regeneration in vitro: the mechanical environment and the bioreactors used for tissue growth. The importance of the mechanical environment to embryological development, vascular functionality, and vascular graft regeneration will be discussed. Bioreactors generate mechanical stimuli to simulate biomechanical environment of arterial system. This system has been used to reconstruct arterial grafts with appropriate mechanical strength for implantation by controlling the chemical and mechanical environments in which the grafts are grown. Bioreactors are powerful tools to study the effect of mechanical stimuli on extracellular matrix architecture and mechanical properties of engineered vessels. Hence, biomimetic systems enable us to optimize chemo-biomechanical culture conditions to regenerate engineered vessels with physiological properties similar to those of native arteries. In addition, this article reviews various bioreactors designed especially to apply axial loading to engineered arteries. This review will also introduce and examine different approaches and techniques that have been used to engineer biologically based vascular grafts, including collagen-based grafts, fibrin-gel grafts, cell sheet engineering, biodegradable polymers, and decellularization of native vessels.
Collapse
Affiliation(s)
- Angela H Huang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA,
| | | |
Collapse
|
59
|
Chaterji S, Kim P, Choe SH, Tsui JH, Lam CH, Ho DS, Baker AB, Kim DH. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function. Tissue Eng Part A 2014; 20:2115-26. [PMID: 24694244 DOI: 10.1089/ten.tea.2013.0455] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vascular smooth muscle cells (vSMCs) retain the ability to undergo modulation in their phenotypic continuum, ranging from a mature contractile state to a proliferative, secretory state. vSMC differentiation is modulated by a complex array of microenvironmental cues, which include the biochemical milieu of the cells and the architecture and stiffness of the extracellular matrix. In this study, we demonstrate that by using UV-assisted capillary force lithography (CFL) to engineer a polyurethane substratum of defined nanotopography and stiffness, we can facilitate the differentiation of cultured vSMCs, reduce their inflammatory signature, and potentially promote the optimal functioning of the vSMC contractile and cytoskeletal machinery. Specifically, we found that the combination of medial tissue-like stiffness (11 MPa) and anisotropic nanotopography (ridge width_groove width_ridge height of 800_800_600 nm) resulted in significant upregulation of calponin, desmin, and smoothelin, in addition to the downregulation of intercellular adhesion molecule-1, tissue factor, interleukin-6, and monocyte chemoattractant protein-1. Further, our results allude to the mechanistic role of the RhoA/ROCK pathway and caveolin-1 in altered cellular mechanotransduction pathways via differential matrix nanotopography and stiffness. Notably, the nanopatterning of the stiffer substrata (1.1 GPa) resulted in the significant upregulation of RhoA, ROCK1, and ROCK2. This indicates that nanopatterning an 800_800_600 nm pattern on a stiff substratum may trigger the mechanical plasticity of vSMCs resulting in a hypercontractile vSMC phenotype, as observed in diabetes or hypertension. Given that matrix stiffness is an independent risk factor for cardiovascular disease and that CFL can create different matrix nanotopographic patterns with high pattern fidelity, we are poised to create a combinatorial library of arterial test beds, whether they are healthy, diseased, injured, or aged. Such high-throughput testing environments will pave the way for the evolution of the next generation of vascular scaffolds that can effectively crosstalk with the scaffold microenvironment and result in improved clinical outcomes.
Collapse
Affiliation(s)
- Somali Chaterji
- 1 Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin , Austin, Texas
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Wang R, Raykin J, Li H, Gleason RL, Brewster LP. Differential mechanical response and microstructural organization between non-human primate femoral and carotid arteries. Biomech Model Mechanobiol 2014; 13:1041-51. [PMID: 24532266 DOI: 10.1007/s10237-014-0553-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/08/2014] [Indexed: 01/13/2023]
Abstract
Unique anatomic locations and physiologic functions predispose different arteries to varying mechanical responses and pathologies. However, the underlying causes of these mechanical differences are not well understood. The objective of this study was to first identify structural differences in the arterial matrix that would account for the mechanical differences between healthy femoral and carotid arteries and second to utilize these structural observations to perform a microstructurally motivated constitutive analysis. Femoral and carotid arteries were subjected to cylindrical biaxial loading and their microstructure was quantified using two-photon microscopy. The femoral arteries were found to be less compliant than the carotid arteries at physiologic loads, consistent with previous studies, despite similar extracellular compositions of collagen and elastin ([Formula: see text]). The femoral arteries exhibited significantly less circumferential dispersion of collagen fibers ([Formula: see text]), despite a similar mean fiber alignment direction as the carotid arteries. Elastin transmural distribution, in vivo axial stretch, and opening angles were also found to be distinctly different between the arteries. Lastly, we modeled the arteries' mechanical behaviors using a microstructural-based, distributed collagen fiber constitutive model. With this approach, the material parameters of the model were solved using the experimental microstructural observations. The findings of this study support an important role for microstructural organization in arterial stiffness.
Collapse
Affiliation(s)
- Ruoya Wang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA,
| | | | | | | | | |
Collapse
|
61
|
Polzer S, Gasser TC, Forsell C, Druckmüllerova H, Tichy M, Staffa R, Vlachovsky R, Bursa J. Automatic identification and validation of planar collagen organization in the aorta wall with application to abdominal aortic aneurysm. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1395-1404. [PMID: 24016340 DOI: 10.1017/s1431927613013251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Arterial physiology relies on a delicate three-dimensional (3D) organization of cells and extracellular matrix, which is remarkably altered by vascular diseases like abdominal aortic aneurysms (AAA). The ability to explore the micro-histology of the aorta wall is important in the study of vascular pathologies and in the development of vascular constitutive models, i.e., mathematical descriptions of biomechanical properties of the wall. The present study reports and validates a fast image processing sequence capable of quantifying collagen fiber organization from histological stains. Powering and re-normalizing the histogram of the classical fast Fourier transformation (FFT) is a key step in the proposed analysis sequence. This modification introduces a powering parameter w, which was calibrated to best fit the reference data obtained using classical FFT and polarized light microscopy (PLM) of stained histological slices of AAA wall samples. The values of w = 3 and 7 give the best correlation (Pearson's correlation coefficient larger than 0.7, R 2 about 0.7) with the classical FFT approach and PLM measurements. A fast and operator independent method to identify collagen organization in the arterial wall was developed and validated. This overcomes severe limitations of currently applied methods like PLM to identify collagen organization in the arterial wall.
Collapse
Affiliation(s)
- Stanislav Polzer
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Chen H, Slipchenko MN, Liu Y, Zhao X, Cheng JX, Lanir Y, Kassab GS. Biaxial deformation of collagen and elastin fibers in coronary adventitia. J Appl Physiol (1985) 2013; 115:1683-93. [PMID: 24092692 DOI: 10.1152/japplphysiol.00601.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The microstructural deformation-mechanical loading relation of the blood vessel wall is essential for understanding the overall mechanical behavior of vascular tissue in health and disease. We employed simultaneous mechanical loading-imaging to quantify in situ deformation of individual collagen and elastin fibers on unstained fresh porcine coronary adventitia under a combination of vessel inflation and axial extension loading. Specifically, the specimens were imaged under biaxial loads to study microscopic deformation-loading behavior of fibers in conjunction with morphometric measurements at the zero-stress state. Collagen fibers largely orientate in the longitudinal direction, while elastin fibers have major orientation parallel to collagen, but with additional orientation angles in each sublayer of the adventitia. With an increase of biaxial load, collagen fibers were uniformly stretched to the loading direction, while elastin fibers gradually formed a network in sublayers, which strongly depended on the initial arrangement. The waviness of collagen decreased more rapidly at a circumferential stretch ratio of λθ = 1.0 than at λθ = 1.5, while most collagen became straightened at λθ = 1.8. These microscopic deformations imply that the longitudinally stiffer adventitia is a direct result of initial fiber alignment, and the overall mechanical behavior of the tissue is highly dependent on the corresponding microscopic deformation of fibers. The microstructural deformation-loading relation will serve as a foundation for micromechanical models of the vessel wall.
Collapse
Affiliation(s)
- Huan Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | | | | | | | | | | | | |
Collapse
|
63
|
Chen H, Luo T, Zhao X, Lu X, Huo Y, Kassab GS. Microstructural constitutive model of active coronary media. Biomaterials 2013; 34:7575-83. [PMID: 23859656 DOI: 10.1016/j.biomaterials.2013.06.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/21/2013] [Indexed: 11/15/2022]
Abstract
Although vascular smooth muscle cells (VSMCs) are pivotal in physiology and pathology, there is a lack of detailed morphological data on these cells. The objective of this study was to determine dimensions (width and length) and orientation of swine coronary VSMCs and to develop a microstructural constitutive model of active media. The dimensions, spatial aspect ratio and orientation angle of VSMCs measured at zero-stress state were found to follow continuous normal (or bimodal normal) distributions. The VSMCs aligned off circumferential direction of blood vessels with symmetrical polar angles 18.7° ± 10.9°, and the local VSMC deformation was affine with tissue-level deformation. A microstructure-based active constitutive model was developed to predict the biaxial vasoactivity of coronary media, based on experimental measurements of geometrical and deformation features of VSMCs. The results revealed that the axial active response of blood vessels is associated with multi-axial contraction as well as oblique VSMC arrangement. The present morphological database is essential for developing accurate structural models and is seminal for understanding the biomechanics of muscular vessels.
Collapse
Affiliation(s)
- Huan Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | | | | | | | | | | |
Collapse
|
64
|
Zhang W, Soman P, Meggs K, Qu X, Chen S. Tuning the Poisson's Ratio of Biomaterials for Investigating Cellular Response. ADVANCED FUNCTIONAL MATERIALS 2013; 23:10.1002/adfm.201202666. [PMID: 24076754 PMCID: PMC3785557 DOI: 10.1002/adfm.201202666] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cells sense and respond to mechanical forces, regardless of whether the source is from a normal tissue matrix, an adjacent cell or a synthetic substrate. In recent years, cell response to surface rigidity has been extensively studied by modulating the elastic modulus of poly(ethylene glycol) (PEG)-based hydrogels. In the context of biomaterials, Poisson's ratio, another fundamental material property parameter has not been explored, primarily because of challenges involved in tuning the Poisson's ratio in biological scaffolds. Two-photon polymerization is used to fabricate suspended web structures that exhibit positive and negative Poisson's ratio (NPR), based on analytical models. NPR webs demonstrate biaxial expansion/compression behavior, as one or multiple cells apply local forces and move the structures. Unusual cell division on NPR structures is also demonstrated. This methodology can be used to tune the Poisson's ratio of several photocurable biomaterials and could have potential implications in the field of mechanobiology.
Collapse
|
65
|
Chai CK, Akyildiz AC, Speelman L, Gijsen FJ, Oomens CW, van Sambeek MR, van der Lugt A, Baaijens FP. Local axial compressive mechanical properties of human carotid atherosclerotic plaques—characterisation by indentation test and inverse finite element analysis. J Biomech 2013; 46:1759-66. [PMID: 23664315 DOI: 10.1016/j.jbiomech.2013.03.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 10/26/2022]
|
66
|
Hansen L, Parker I, Roberts LM, Sutliff RL, Platt MO, Gleason RL. Azidothymidine (AZT) leads to arterial stiffening and intima-media thickening in mice. J Biomech 2013; 46:1540-7. [PMID: 23623314 PMCID: PMC4518204 DOI: 10.1016/j.jbiomech.2013.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 02/07/2023]
Abstract
HIV positive patients on highly active antiretroviral therapy (HAART) have shown elevated incidence of a number of non-AIDS defining co-morbidities, including cardiovascular disease. Given that HAART regimens contain a combination of at least three drugs, that disease management often requires adjustment of these regimens, and HIV, independent of HAART, also plays a role in development of co-morbidities, determining the role of specific HAART drugs and HIV infection itself from clinical data remains challenging. To characterize specific mediators and underlying mechanisms of disease, in vitro and in vivo animal models are required, in parallel with clinical data. Given its low cost azidothymidine (AZT) contributes to the backbone of a large proportion of HAART treated patients in the developing world where much of the global burden of HIV resides. The goal of this study was to test the hypothesis that AZT can lead to proatherogenic changes including the subclinical markers of arterial stiffening and intima-media thickening in mice. AZT (100mg/kg) or vehicle was administered to wild-type FVB/N mice via oral gavage for 35 days. Cylindrical biaxial biomechanical tests on the common carotid arteries and suprarenal aortas exhibited arterial stiffening in AZT mice compared to controls. Multiphoton microscopy and histology demonstrated that AZT led to increased intima-media thickness. These data correlated with decreased elastin content and increased protease activity as measured by cathepsin zymography; no differences were observed in collagen content or organization, in vivo axial stretch, or opening angle. Thus, this study suggests the drug AZT has significant effects on the development of subclinical markers of atherosclerosis.
Collapse
Affiliation(s)
- Laura Hansen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ivana Parker
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - LaDeidra Monet Roberts
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Roy L. Sutliff
- Department of Medicine, Emory University, Atlanta VAMC, Atlanta, GA, USA
| | - Manu O. Platt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rudolph L. Gleason
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
67
|
Hansen L, Parker I, Sutliff RL, Platt MO, Gleason RL. Endothelial dysfunction, arterial stiffening, and intima-media thickening in large arteries from HIV-1 transgenic mice. Ann Biomed Eng 2013; 41:682-93. [PMID: 23180031 PMCID: PMC4487412 DOI: 10.1007/s10439-012-0702-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/09/2012] [Indexed: 11/25/2022]
Abstract
HIV patients on highly active antiretroviral therapy (HAART) exhibit elevated incidence of cardiovascular disease (CVD), including a higher risk of myocardial infarction and prevalence of atherosclerotic lesions, as well as increases in markers of subclinical atherosclerosis including increased carotid artery intima-media thickness (c-IMT), increased arterial stiffness, and impaired flow-mediated dilation. Both HAART and HIV-infection are independent risk factors for atherosclerosis and myocardial infarction. Studies implicate the HIV proteins tat, gp120, vpu, and nef in early on-set atherosclerosis. The objective of this study was to quantify the role of expression of HIV-1 proteins on the vascular function, biomechanics, and geometry of common carotid arteries and aortas. This study employed NL4-3Δ gag/pol transgenic mice (HIV-Tg), which contain the genetic sequence for the HIV-1 proteins env, tat, nef, rev, vif, vpr, and vpu but lacks the gag and pol genes and reports that HIV-Tg mice have impaired aortic endothelial function, increased c-IMT, and increased arterial stiffness. Further, HIV-Tg arteries show decreased elastin content, increased cathepsin K and cathepsin S activity, and increased mechanical residual stress. Thus, mice that express HIV proteins exhibit pre-clinical markers of atherosclerosis and these markers correlate with changes in markers of vascular remodeling. These findings are consistent with the hypothesis that HIV-proteins, independent of HAART treatment or HIV infection, could play a role in of the development of CVD.
Collapse
Affiliation(s)
- Laura Hansen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Ivana Parker
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Roy L. Sutliff
- Department Medicine, Emory University/Atlanta VAMC, Atlanta, GA
| | - Manu O. Platt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Rudolph L. Gleason
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
68
|
Kelleher JE, Siegmund T, Du M, Naseri E, Chan RW. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1625-36. [PMID: 23464032 PMCID: PMC3606228 DOI: 10.1121/1.4776204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One of the primary mechanisms to vary one's vocal frequency is through vocal fold length changes. As stress and deformation are linked to each other, it is hypothesized that the anisotropy in the biomechanical properties of the vocal fold tissue would affect the phonation characteristics. A biomechanical model of vibrational frequency rise during vocal fold elongation is developed which combines an advanced biomechanical characterization protocol of the vocal fold tissue with continuum beam models. Biomechanical response of the tissue is related to a microstructurally informed, anisotropic, nonlinear hyperelastic constitutive model. A microstructural characteristic (the dispersion of collagen) was represented through a statistical orientation function acquired from a second harmonic generation image of the vocal ligament. Continuum models of vibration were constructed based upon Euler-Bernoulli and Timoshenko beam theories, and applied to the study of the vibration of a vocal ligament specimen. From the natural frequency predictions in dependence of elongation, two competing processes in frequency control emerged, i.e., the applied tension raises the frequency while simultaneously shear deformation lowers the frequency. Shear becomes much more substantial at higher modes of vibration and for highly anisotropic tissues. The analysis was developed as a case study based on a human vocal ligament specimen.
Collapse
Affiliation(s)
- Jordan E Kelleher
- Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
69
|
Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 2013; 9:861-88. [DOI: 10.1002/term.1697] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/08/2012] [Accepted: 12/20/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Enrico Ercolani
- Department of Industrial Engineering, INSTM Research Unit Roma Tor Vergata; University of Rome ‘Tor Vergata’; Via del Politecnico 1 00133 Rome Italy
| | - Costantino Del Gaudio
- Department of Industrial Engineering, INSTM Research Unit Roma Tor Vergata; University of Rome ‘Tor Vergata’; Via del Politecnico 1 00133 Rome Italy
| | - Alessandra Bianco
- Department of Industrial Engineering, INSTM Research Unit Roma Tor Vergata; University of Rome ‘Tor Vergata’; Via del Politecnico 1 00133 Rome Italy
| |
Collapse
|
70
|
Soman P, Chen S. Projection Printing of Three-Dimensional Tissue Scaffolds with Tunable Poisson’s Ratio. Biofabrication 2013. [DOI: 10.1016/b978-1-4557-2852-7.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
71
|
Ko ACT, Ridsdale A, Mostaço-Guidolin LB, Major A, Stolow A, Sowa MG. Nonlinear optical microscopy in decoding arterial diseases. Biophys Rev 2012; 4:323-334. [PMID: 28510209 PMCID: PMC5425695 DOI: 10.1007/s12551-012-0077-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/12/2012] [Indexed: 11/30/2022] Open
Abstract
Pathological understanding of arterial diseases is mainly attributable to histological observations based on conventional tissue staining protocols. The emerging development of nonlinear optical microscopy (NLOM), particularly in second-harmonic generation, two-photon excited fluorescence and coherent Raman scattering, provides a new venue to visualize pathological changes in the extracellular matrix caused by atherosclerosis progression. These techniques in general require minimal tissue preparation and offer rapid three-dimensional imaging. The capability of label-free microscopic imaging enables disease impact to be studied directly on the bulk artery tissue, thus minimally perturbing the sample. In this review, we look at recent progress in applications related to arterial disease imaging using various forms of NLOM.
Collapse
Affiliation(s)
- Alex C-T Ko
- National Research Council Canada, Institute for Biodiagnostics, 435 Ellice Avenue, Winnipeg, Manitoba, Canada, R3B 1Y6.
| | - Andrew Ridsdale
- National Research Council Canada, Steacie Institute for Molecular Sciences, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6
| | - Leila B Mostaço-Guidolin
- Department of Electrical and Computer Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, Manitoba, Canada, R3T 5V6
| | - Arkady Major
- Department of Electrical and Computer Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, Manitoba, Canada, R3T 5V6
| | - Albert Stolow
- National Research Council Canada, Steacie Institute for Molecular Sciences, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6
| | - Michael G Sowa
- National Research Council Canada, Institute for Biodiagnostics, 435 Ellice Avenue, Winnipeg, Manitoba, Canada, R3B 1Y6
| |
Collapse
|
72
|
Characterizing the collagen fiber orientation in pericardial leaflets under mechanical loading conditions. Ann Biomed Eng 2012. [PMID: 23180029 DOI: 10.1007/s10439-012-0696-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves' behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space.
Collapse
|
73
|
Winters DG, Smith DR, Schlup P, Bartels RA. Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope. BIOMEDICAL OPTICS EXPRESS 2012; 3:2004-2011. [PMID: 23024896 PMCID: PMC3447544 DOI: 10.1364/boe.3.002004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 05/26/2023]
Abstract
Three-dimensional second-harmonic fields, sample orientation, and susceptibility ratios of biological samples are measured using polarization-resolved second-harmonic generation (SHG) microscopy. The three-dimensional (3D) polarization is gathered by measurement of a series of holograms for which excitation and analyzer polarizations are systematically varied, and the 3D SHG field is recovered through numerical back propagation. Harmonophore orientation is resolved in 3D from a sub-set of polarization-resolved SHG holograms. We further expand on previous approaches for the determination of susceptibility ratios, adding the calculation of multiple ratio values to allow intrinsic verification.
Collapse
Affiliation(s)
- David G. Winters
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado,
USA
| | - David R. Smith
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado,
USA
| | - Philip Schlup
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado,
USA
| | - Randy A. Bartels
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado,
USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado,
USA
| |
Collapse
|
74
|
A comparative analysis of the collagen architecture in the carotid artery: Second harmonic generation versus diffusion tensor imaging. Biochem Biophys Res Commun 2012; 426:54-8. [DOI: 10.1016/j.bbrc.2012.08.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 11/22/2022]
|
75
|
Lillie M, Armstrong T, Gérard S, Shadwick R, Gosline J. Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: Assessing elastin's role in mechanical homeostasis. J Biomech 2012; 45:2133-41. [DOI: 10.1016/j.jbiomech.2012.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/05/2012] [Accepted: 05/24/2012] [Indexed: 11/26/2022]
|
76
|
Schriefl AJ, Reinisch AJ, Sankaran S, Pierce DM, Holzapfel GA. Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues. J R Soc Interface 2012; 9:3081-93. [PMID: 22764133 DOI: 10.1098/rsif.2012.0339] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this work, we outline an automated method for the extraction and quantification of material parameters characterizing collagen fibre orientations from two-dimensional images. Morphological collagen data among different length scales were obtained by combining the established methods of Fourier power spectrum analysis, wedge filtering and progressive regions of interest splitting. Our proposed method yields data from which we can determine parameters for computational modelling of soft biological tissues using fibre-reinforced constitutive models and gauge the length scales most appropriate for obtaining a physically meaningful measure of fibre orientations, which is representative of the true tissue morphology of the two-dimensional image. Specifically, we focus on three parameters quantifying different aspects of the collagen morphology: first, using maximum-likelihood estimation, we extract location parameters that accurately determine the angle of the principal directions of the fibre reinforcement (i.e. the preferred fibre directions); second, using a dispersion model, we obtain dispersion parameters quantifying the collagen fibre dispersion about these principal directions; third, we calculate the weighted error entropy as a measure of changes in the entire fibre distributions at different length scales, as opposed to their average behaviour. With fully automated imaging techniques (such as multiphoton microscopy) becoming increasingly popular (which often yield large numbers of images to analyse), our method provides an ideal tool for quickly extracting mechanically relevant tissue parameters which have implications for computational modelling (e.g. on the mesh density) and can also be used for the inhomogeneous modelling of tissues.
Collapse
Affiliation(s)
- Andreas J Schriefl
- Institute of Biomechanics, Center of Biomedical Engineering, Graz University of Technology, Kronesgasse 5-I, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
77
|
Spatial tuning of negative and positive Poisson's ratio in a multi-layer scaffold. Acta Biomater 2012; 8:2587-94. [PMID: 22465577 DOI: 10.1016/j.actbio.2012.03.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/11/2012] [Accepted: 03/21/2012] [Indexed: 11/21/2022]
Abstract
While elastic modulus is tunable in tissue engineering scaffolds, it is substantially more challenging to tune the Poisson's ratio of scaffolds. In certain biological applications, scaffolds with a tunable Poisson's ratio may be more suitable for emulating the behavior of native tissue mechanics. Here, we design and fabricate a scaffold, which exhibits simultaneous negative and positive Poisson's ratio behavior. Custom-made digital micro-mirror device stereolithography was used to fabricate single- and multiple-layer scaffolds using polyethylene glycol-based biomaterial. These scaffolds are composed of pore structures having special geometries, and deformation mechanisms, which can be tuned to exhibit both negative Poisson's ratio (NPR) and positive Poisson's ratio (PPR) behavior in a side-to-side or top-to-bottom configuration. Strain measurement results demonstrate that analytical deformation models and simulations accurately predict the Poisson's ratios of both the NPR and PPR regions. This hybrid Poisson's ratio property can be imparted to any photocurable material, and potentially be applicable in a variety of biomedical applications.
Collapse
|
78
|
Wan W, Dixon JB, Gleason RL. Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters. Biophys J 2012; 102:2916-25. [PMID: 22735542 DOI: 10.1016/j.bpj.2012.04.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 04/13/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022] Open
Abstract
Changes in the local mechanical environment and tissue mechanical properties affect the biological activity of cells and play a key role in a variety of diseases, such as cancer, arthritis, nephropathy, and cardiovascular disease. Constitutive relations have long been used to predict the local mechanical environment within biological tissues and to investigate the relationship between biological responses and mechanical stimuli. Recent constitutive relations for soft tissues consider both material and structural properties by incorporating parameters that describe microstructural organization, such as fiber distributions, fiber angles, fiber crimping, and constituent volume fractions. The recently developed technique of imaging the microstructure of a single artery as it undergoes multiple deformations provides quantitative structural data that can reduce the number of estimated parameters by using parameters that are truly experimentally intractable. Here, we employed nonlinear multiphoton microscopy to quantify collagen fiber organization in mouse carotid arteries and incorporated measured fiber distribution data into structurally motivated constitutive relations. Microscopy results demonstrate that collagen fibers deform in an affine manner over physiologically relevant deformations. The incorporation of measured fiber angle distributions into constitutive relations improves the model's predictive accuracy and does not significantly reduce the goodness of fit. The use of measured structural parameters rather than estimated structural parameters promises to improve the predictive capabilities of the local mechanical environment, and to extend the utility of intravital imaging methods for estimating the mechanical behavior of tissues using in situ structural information.
Collapse
Affiliation(s)
- William Wan
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
79
|
Fozdar DY, Soman P, Lee JW, Han LH, Chen S. Three-Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson's Ratio. ADVANCED FUNCTIONAL MATERIALS 2011; 21:2712-2720. [PMID: 21841943 PMCID: PMC3155506 DOI: 10.1002/adfm.201002022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Young's modulus and Poisson's ratio of a porous polymeric construct (scaffold) quantitatively describe how it supports and transmits external stresses to its surroundings. While Young's modulus is always non-negative and highly tunable in magnitude, Poisson's ratio can, indeed, take on negative values despite the fact that it is non-negative for virtually every naturally occurring and artificial material. In some applications, a construct having a tunable negative Poisson's ratio (an auxetic construct) may be more suitable for supporting the external forces imposed upon it by its environment. Here, three-dimensional polyethylene glycol scaffolds with tunable negative Poisson's ratios are fabricated. Digital micromirror device projection printing (DMD-PP) is used to print single-layer constructs composed of cellular structures (pores) with special geometries, arrangements, and deformation mechanisms. The presence of the unit-cellular structures tunes the magnitude and polarity (positive or negative) of Poisson's ratio. Multilayer constructs are fabricated with DMD-PP by stacking the single-layer constructs with alternating layers of vertical connecting posts. The Poisson's ratios of the single- and multilayer constructs are determined from strain experiments, which show (1) that the Poisson's ratios of the constructs are accurately predicted by analytical deformation models and (2) that no slipping occurrs between layers in the multilayer constructs and the addition of new layers does not affect Poisson's ratio.
Collapse
Affiliation(s)
- David Y. Fozdar
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keaton St., ETC 1.210A, Austin, TX 78712, USA
| | - Pranav Soman
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Atkinson Hall, MC-0448, La Jolla, CA 92093, USA
| | - Jin Woo Lee
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Atkinson Hall, MC-0448, La Jolla, CA 92093, USA
| | - Li-Hsin Han
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr., Edwards R132, Stanford, CA 94305, USA
| | | |
Collapse
|
80
|
Localised micro-mechanical stiffening in the ageing aorta. Mech Ageing Dev 2011; 132:459-67. [PMID: 21777602 PMCID: PMC3192262 DOI: 10.1016/j.mad.2011.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/09/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022]
Abstract
Age-related loss of tissue elasticity is a common cause of human morbidity and arteriosclerosis (vascular stiffening) is associated with the development of both fatal strokes and heart failure. However, in the absence of appropriate micro-mechanical testing methodologies, multiple structural remodelling events have been proposed as the cause of arteriosclerosis. Therefore, using a model of ageing in female sheep aorta (young: <18 months, old: >8 years) we: (i) quantified age-related macro-mechanical stiffness, (ii) localised in situ micro-metre scale changes in acoustic wave speed (a measure of tissue stiffness) and (iii) characterised collagen and elastic fibre remodelling. With age, there was an increase in both macro-mechanical stiffness and mean microscopic wave speed (and hence stiffness; young wave speed: 1701 ± 1 m s−1, old wave speed: 1710 ± 1 m s−1, p < 0.001) which was localized to collagen fibril-rich regions located between large elastic lamellae. These micro-mechanical changes were associated with increases in both collagen and elastic fibre content (collagen tissue area, young: 31 ± 2%, old: 40 ± 4%, p < 0.05; elastic fibre tissue area, young: 55 ± 3%, old: 69 ± 4%, p < 0.001). Localised collagen fibrosis may therefore play a key role in mediating age-related arteriosclerosis. Furthermore, high frequency scanning acoustic microscopy is capable of co-localising micro-mechanical and micro-structural changes in ageing tissues.
Collapse
|
81
|
A constrained von Mises distribution to describe fiber organization in thin soft tissues. Biomech Model Mechanobiol 2011; 11:475-82. [PMID: 21739088 DOI: 10.1007/s10237-011-0326-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
The semi-circular von Mises distribution is widely used to describe the unimodal planar organization of fibers in thin soft tissues. However, it cannot accurately describe the isotropic subpopulation of fibers present in such tissues, and therefore an improved mathematical description is needed. We present a modified distribution, formed as a weighted mixture of the semi-circular uniform distribution and the semi-circular von Mises distribution. It is described by three parameters: β, which weights the contribution from each mixture component; k, the fiber concentration factor; and θ ( p ), the preferred fiber orientation. This distribution was used to fit data obtained by small-angle light scattering experiments from various thin soft tissues. Initial use showed that satisfactory fits of fiber distributions could be obtained (error generally < 1%), but at the cost of non-physically meaningful values of k and β. To address this issue, an empirical constraint between the parameters k and β was introduced, resulting in a constrained 2-parameter fiber distribution. Compared to the 3-parameter distribution, the constrained 2-parameter distribution fits experimental data well (error generally < 2%) and had the advantage of producing physically meaningful parameter values. In addition, the constrained 2-parameter approach was more robust to experimental noise. The constrained 2-parameter fiber distribution can replace the semi-circular von Mises distribution to describe unimodal planar organization of fibers in thin soft tissues. Inclusion of such a function in constitutive models for finite element simulations should provide better quantitative estimates of soft tissue biomechanics under normal and pathological conditions.
Collapse
|
82
|
Keyes JT, Haskett DG, Utzinger U, Azhar M, Vande Geest JP. Adaptation of a planar microbiaxial optomechanical device for the tubular biaxial microstructural and macroscopic characterization of small vascular tissues. J Biomech Eng 2011; 133:075001. [PMID: 21823753 PMCID: PMC3383843 DOI: 10.1115/1.4004495] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/24/2011] [Indexed: 11/08/2022]
Abstract
Murine models of disease are a powerful tool for researchers to gain insight into disease formation, progression, and therapies. The biomechanical indicators of diseased tissue provide a unique insight into some of these murine models, since the biomechanical properties in scenarios such as aneurysm and Marfan syndrome can dictate tissue failure and mortality. Understanding the properties of the tissue on the macroscopic scale has been shown to be important, as one can then understand the tissue's ability to withstand the high stresses seen in the cardiac pulsatile cycle. Alterations in the biomechanical response can foreshadow prospective mechanical failure of the tissue. These alterations are often seen on the microstructural level, and obtaining detailed information on such changes can offer a better understanding of the phenomena seen on the macroscopic level. Unfortunately, mouse models present problems due to the size and delicate features in the mechanical testing of such tissues. In addition, some smaller arteries in large-animal studies (e.g., coronary and cerebral arteries) can present the same issues, and are sometimes unsuitable for planar biaxial testing. The purpose of this paper is to present a robust method for the investigation of the mechanical properties of small arteries and the classification of the microstructural orientation and degree of fiber alignment. This occurs through the cost-efficient modification of a planar biaxial tester that works in conjunction with a two-photon nonlinear microscope. This system provides a means to further investigate how microstructure and mechanical properties are modified in diseased transgenic animals where the tissue is in small tube form. Several other hard-to-test tubular specimens such as cerebral aneurysm arteries and atherosclerotic coronary arteries can also be tested using the described modular device.
Collapse
Affiliation(s)
| | - Darren G. Haskett
- Graduate Interdisciplinary Program in Biomedical Engineering,
The University of Arizona, Tucson, AZ 85721
| | - Urs Utzinger
- Graduate Interdisciplinary Program in Biomedical Engineering,
BIO5 Institute for Biocollaborative Research, Department of
Biomedical Engineering, The University of Arizona, Tucson, AZ
85721
| | - Mohamad Azhar
- BIO5 Institute for Biocollaborative Research, Department of Cell Biology
and Anatomy, The University of Arizona, Tucson, AZ 85721
| | - Jonathan P. Vande Geest
- Graduate Interdisciplinary Program in Biomedical Engineering,
The Department of Aerospace and Mechanical Engineering,
BIO5 Institute for Biocollaborative Research, Department of
Biomedical Engineering, The University of Arizona, Tucson, AZ
85721 e-mail:
| |
Collapse
|
83
|
Keyes JT, Borowicz SM, Rader JH, Utzinger U, Azhar M, Vande Geest JP. Design and demonstration of a microbiaxial optomechanical device for multiscale characterization of soft biological tissues with two-photon microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:167-175. [PMID: 21226989 PMCID: PMC4272388 DOI: 10.1017/s1431927610094341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The biomechanical response of tissues serves as a valuable marker in the prediction of disease and in understanding the related behavior of the body under various disease and age states. Alterations in the macroscopic biomechanical response of diseased tissues are well documented; however, a thorough understanding of the microstructural events that lead to these changes is poorly understood. In this article we introduce a novel microbiaxial optomechanical device that allows two-photon imaging techniques to be coupled with macromechanical stimulation in hydrated planar tissue specimens. This allows that the mechanical response of the microstructure can be quantified and related to the macroscopic response of the same tissue sample. This occurs without the need to fix tissue in strain states that could introduce a change in the microstructural configuration. We demonstrate the passive realignment of fibrous proteins under various types of loading, which demonstrates the ability of tissue microstructure to reinforce itself in periods of high stress. In addition, the collagen and elastin response of tissue during viscoelastic behavior is reported showing interstitial fluid movement and fiber realignment potentially responsible for the temporal behavior. We also demonstrate that nonhomogeneities in fiber strain exist over biaxial regions of assumed homogeneity.
Collapse
Affiliation(s)
- Joseph T. Keyes
- Graduate Interdisciplinary Program in Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Stacy M. Borowicz
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Jacob H. Rader
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Urs Utzinger
- Graduate Interdisciplinary Program in Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute for Biocollaborative Research, The University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Mohamad Azhar
- BIO5 Institute for Biocollaborative Research, The University of Arizona, Tucson, AZ 85721, USA
- Department of Cell Biology and Anatomy, The University of Arizona, Tucson, AZ 85721, USA
| | - Jonathan P. Vande Geest
- Graduate Interdisciplinary Program in Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute for Biocollaborative Research, The University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|