51
|
Lajoinie G, De Cock I, Coussios CC, Lentacker I, Le Gac S, Stride E, Versluis M. In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications. BIOMICROFLUIDICS 2016; 10:011501. [PMID: 26865903 PMCID: PMC4733084 DOI: 10.1063/1.4940429] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 05/08/2023]
Abstract
Besides their use as contrast agents for ultrasound imaging, microbubbles are increasingly studied for a wide range of therapeutic applications. In particular, their ability to enhance the uptake of drugs through the permeabilization of tissues and cell membranes shows great promise. In order to fully understand the numerous paths by which bubbles can interact with cells and the even larger number of possible biological responses from the cells, thorough and extensive work is necessary. In this review, we consider the range of experimental techniques implemented in in vitro studies with the aim of elucidating these microbubble-cell interactions. First of all, the variety of cell types and cell models available are discussed, emphasizing the need for more and more complex models replicating in vivo conditions together with experimental challenges associated with this increased complexity. Second, the different types of stabilized microbubbles and more recently developed droplets and particles are presented, followed by their acoustic or optical excitation methods. Finally, the techniques exploited to study the microbubble-cell interactions are reviewed. These techniques operate over a wide range of timescales, or even off-line, revealing particular aspects or subsequent effects of these interactions. Therefore, knowledge obtained from several techniques must be combined to elucidate the underlying processes.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Ine De Cock
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
| | | | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
| | - Séverine Le Gac
- MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford , Oxford, United Kingdom
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| |
Collapse
|
52
|
Bouakaz A, Zeghimi A, Doinikov AA. Sonoporation: Concept and Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:175-89. [PMID: 26486338 DOI: 10.1007/978-3-319-22536-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Contrast agents for ultrasound are now routinely used for diagnosis and imaging. In recent years, new promising possibilities for targeted drug delivery have been proposed that can be realized by using the microbubble composing ultrasound contrast agents (UCAs). The microbubbles can carry drugs and selectively adhere to specific sites in the human body. This capability, in combination with the effect known as sonoporation, provides great possibilities for localized drug delivery. Sonoporation is a process in which ultrasonically activated UCAs, pulsating nearby biological barriers (cell membrane or endothelial layer), increase their permeability and thereby enhance the extravasation of external substances. In this way drugs and genes can be delivered inside individual cells without serious consequences for the cell viability. Sonoporation has been validated both in-vitro using cell cultures and in-vivo in preclinical studies. However, today, the mechanisms by which molecules cross the biological barriers remain unrevealed despite a number of proposed theories. This chapter will provide a survey of the current studies on various hypotheses regarding the routes by which drugs are incorporated into cells or across the endothelial layer and possible associated microbubble acoustic phenomena.
Collapse
Affiliation(s)
- Ayache Bouakaz
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France.
| | - Aya Zeghimi
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Alexander A Doinikov
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
53
|
Nande R, Howard CM, Claudio PP. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art. Oncolytic Virother 2015; 4:193-205. [PMID: 27512682 PMCID: PMC4918399 DOI: 10.2147/ov.s66097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The field of ultrasound (US) has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB) are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites.
Collapse
Affiliation(s)
- Rounak Nande
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
54
|
Gu JY, Shi HF, Gao XL, Ma QQ, Zhang B. Effect of CXCR4 pretreated with ultrasound-exposed microbubbles on accelerating homing of bone marrow mesenchymal stem cells to ischemic myocardium in AMI rats. ASIAN PAC J TROP MED 2015; 8:766-71. [PMID: 26433665 DOI: 10.1016/j.apjtm.2015.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the role and potential mechanism of CXCR4 in promoting targeted homing of bone marrow mesenchymal stem cells (BMSCs) with ultrasound-exposed microbubbles (UM) pretreatment. METHODS Third generation BMSCs were divided into four groups control group, ultrasound (US) group, UM group and ultrasound-exposed microbubbles plus catalase group. RT-PCR and western blot were performed to determine the levels of CXCR4 mRNA transcription and protein expression, respectively. Third generation BMSCs were labeled with Fluo-α/AM and divided into three groups: control group, US group and UM group, and fluorescence intensities in the cells were observed immediately, 5 min and 15 min after intervention under fluorescence microscope. The calcium iron levels in the cells were analyzed. BMSCs were divided into five group: group A without calcium in the medium, group B, group C, group D and group E containing calcium chloride with concentration of l mol, 2 mol, 4 mol, anti-calcium-sensing receptor antibody, respectively. RT-PCR and western blot were performed to determine the levels of CXCR4 mRNA transcription and proteins expression of the third generation BMSCs of each group, respectively. RESULTS The levels of CXCR4 mRNA transcription and protein expression between US group and control group had no statistically significant difference (P > 0.05) shown by RT-PCR and western blot; the transcription level in the UM group was significantly higher than that in US group and control group (P < 0.05); and in the ultrasound-exposed microbubbles plus catalase group, the transcription level was much lower than that in UM group. Fluorescence intensify in the cells of US group had no significant difference compared with that in the cells of the control group (P > 0.05), which in the cells of UM group was significantly higher than that in the cells of both US group and control group (P < 0.05). Compared to group A, expressions of CXCR4 of group B to D were significantly increased in concentration-dependent manner showed by RT-PCR and western blot (P < 0.05). Compared to group C, expressions of CXCR4 of group E were significantly decreased (P < 0.05). CONCLUSIONS UM can promote the influx of calcium in BMSCs and increase mRNA transcription and protein expression of CXCR4. The latter may partly be caused by influx of calcium.
Collapse
Affiliation(s)
- Jun-Yi Gu
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Fen Shi
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiu-Li Gao
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qing-Qing Ma
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bo Zhang
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
55
|
Zhao L, Feng Y, Shi A, Zong Y, Wan M. Apoptosis Induced by Microbubble-Assisted Acoustic Cavitation in K562 Cells: The Predominant Role of the Cyclosporin A-Dependent Mitochondrial Permeability Transition Pore. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2755-64. [PMID: 26164288 DOI: 10.1016/j.ultrasmedbio.2015.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 05/24/2023]
Abstract
Acoustic cavitation of microbubbles has been described as inducing tumor cell apoptosis that is partly associated with mitochondrial dysfunction; however, the exact mechanisms have not been fully characterized. Here, low-intensity pulsed ultrasound (1 MHz, 0.3-MPa peak negative pressure, 10% duty cycle and 1-kHz pulse repetition frequency) was applied to K562 chronic myelogenous leukemia cells for 1 min with 10% (v/v) SonoVue microbubbles. After ultrasound exposure, the apoptotic index was determined by flow cytometry with annexin V-fluorescein isothiocyanate/propidium iodide. In addition, mitochondrial membrane potential (ΔΨm) was determined with the JC-1 assay. Translocation of apoptosis-associated protein cytochrome c was evaluated by Western blotting. We found that microbubble-assisted acoustic cavitation can increase the cellular apoptotic index, mitochondrial depolarization and cytochrome c release in K562 cells, compared with ultrasound treatment alone. Furthermore, mitochondrial dysfunction and apoptosis were significantly inhibited by cyclosporin A, a classic inhibitor of the mitochondrial permeability transition pore; however, the inhibitor of Bax protein, Bax-inhibiting peptide, could not suppress these effects. Our results suggest that mitochondrial permeability transition pore opening is involved in mitochondrial dysfunction after exposure to microbubble-assisted acoustic cavitation. Moreover, the release of cytochrome c from the mitochondria is dependent on cyclosporin A-sensitive mitochondrial permeability transition pore opening, but not formation of the Bax-voltage dependent anion channel complex or Bax oligomeric pores. These data provide more insight into the mechanisms underlying mitochondrial dysfunction induced by acoustic cavitation and can be used as a basis for therapy.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Yi Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China.
| | - Aiwei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China.
| |
Collapse
|
56
|
Ma J, Xu CS, Gao F, Chen M, Li F, Du LF. Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review). Mol Med Rep 2015; 12:4022-4028. [PMID: 26081968 DOI: 10.3892/mmr.2015.3941] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
The contrast enhanced imaging function of ultrasound contrast agents (UCAs) has been extensively investigated using physical acoustic signatures. It has a number of novel applications, including tissue‑specific molecular imaging and multi‑modal imaging. In addition there are numerous other therapeutic applications of UCAs, for example as vehicles for drug or gene delivery. These uses are discussed, as well as the acoustically‑induced biological effects, including ultrasound targeted microbubble destruction (UTMD). This review also explores the considerations for the safe use of UCA from an acoustic standpoint. The scope of the application of UCA has markedly expanded in recent years, and it is a rapidly growing field of medical research. The current article reviews recent advances in the diagnostic and therapeutic applications of ultrasound microbubble/nanobubble contrast agents.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chang Song Xu
- Department of Ultrasound, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Chen
- Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
57
|
Li S, Zhu C, Fang S, Zhang W, He N, Xu W, Kong R, Shang X. Ultrasound microbubbles enhance human β-defensin 3 against biofilms. J Surg Res 2015; 199:458-69. [PMID: 26119274 DOI: 10.1016/j.jss.2015.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/06/2015] [Accepted: 05/19/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The infection of orthopedic implantation devices with Staphylococcus has been a serious concern within the biomaterial community. Treatments are not always successful because of antibiotic-resistant bacteria biofilm infection. Recent studies have shown that combination of antibiotics with low-frequency ultrasound (US) can enhance the bactericidal activity effectively against the formation of biofilms in vitro pilot study. Meanwhile, microbubbles evolved as targeted drug-delivery agents can provide nuclei for inertial cavitation and lower the threshold for US-induced cavitation. Human β-defensin 3 (HBD-3) is a cationic antimicrobial peptide considered particularly promising for future bactericidal employment and has effect on antibiotic-resistant Staphylococcus biofilms. But the effect has not been reported when combined with US-targeted microbubble destruction (UTMD) in vivo. METHODS In this study, we evaluated the effect of HBD-3 combined with UTMD on two tested Staphylococcus by the spread plate method, crystal violet staining, confocal laser scanning microscopy, scanning electron microscopy, and real-time polymerase chain reaction. RESULTS In the study, we found that the biofilm densities, the percentage of live cells, and the viable counts of two tested Staphylococcus that recovered from the biofilm on the titanium surface in mice were significantly decreased in the group of the HBD-3 combined with UTMD, compared with those of other groups. Furthermore, in the experiment, we found out that UTMD could enhance HBD-3 activity, which inhibits the biofilm-associated genes expression of icaAD and the methicillin-resistance genes expression of MecA by promoting the icaR expression simultaneously. CONCLUSIONS The combination of HBD-3 with UTMD can play a significant role on the elimination of the antibiotic-resistant Staphylococcus biofilms in vivo.
Collapse
Affiliation(s)
- Shoumin Li
- Department of Orthopaedic Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Chen Zhu
- Department of Orthopaedic Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Shiyuan Fang
- Department of Orthopaedic Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Zhang
- Department of Geriatrics, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Nianan He
- Department of Ultrasound, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Wei Xu
- Department of Orthopaedic Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Rong Kong
- Department of Orthopaedic Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China.
| | - Xifu Shang
- Department of Orthopaedic Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
58
|
Liu X, Li W, Geng S, Meng QG, Bi ZG. Apoptosis induced by sonodynamic therapy in human osteosarcoma cells in vitro. Mol Med Rep 2015; 12:1183-8. [PMID: 25778820 DOI: 10.3892/mmr.2015.3479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/17/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the potential effect of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on MG-63 osteosarcoma cells. The HMME concentration was kept constant at 20 µg/ml and the MG-63 osteosarcoma cell line was exposed to ultrasound with an intensity of 1.0 W/cm2 for 30 sec. Cell cytotoxicity was quantified using an MTT assay 6 h after HMME-SDT. The intracellular localization of HMME was imaged using inverted confocal laser scanning microscopy. Apoptosis was investigated using flow cytometry with Annexin V-fluorescein isothiocyanate and propidium iodine staining. The cytotoxicity of HMME-mediated sonodynamic action on MG-63 cells was significantly higher than that of other treatments, including ultrasound alone, HMME alone and sham treatment. Flow cytometry demonstrated that HMME‑SDT action markedly enhanced the apoptotic rate of MG-63 cells. The mechanisms of apoptosis were analyzed by measuring the protein expression of poly ADP-ribose polymerase (PARP), cleaved PARP, procaspase-3, cleaved caspase-3 and cleaved caspase-9. The data demonstrated that HMME-SDT action markedly induced the apoptosis of MG-63 cells.
Collapse
Affiliation(s)
- Xing Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuo Geng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qing-Gang Meng
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zheng-Gang Bi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
59
|
Ma J, Xing LX, Shen M, Li F, Zhu MJ, Jin LF, Li Z, Gao F, Su Y, Duan YR, Du LF. Ultrasound contrast-enhanced imaging and in vitro antitumor effect of paclitaxel-poly(lactic-co-glycolic acid)-monomethoxypoly (ethylene glycol) nanocapsules with ultrasound-targeted microbubble destruction. Mol Med Rep 2014; 11:2413-20. [PMID: 25500683 PMCID: PMC4337512 DOI: 10.3892/mmr.2014.3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/02/2014] [Indexed: 11/20/2022] Open
Abstract
A combination of diagnostic and therapeutic ultrasound (US) techniques may be able to provide the basis of specific therapeutic protocols, particularly for the treatment of tumors. Nanotechnology may aid the progression towards the use of US for tumor diagnosis and targeted therapy. The current study investigated in vivo and in vitro US contrast imaging using nanocapsules (NCs), and also US and US-targeted microbubble destruction (UTMD) therapy using drug-loaded NCs for pancreatic cancer in vitro. In the current study, the NCs were made from the polymer nanomaterial poly(lactic-co-glycolic acid)-monomethoxypoly(ethylene glycol) (PLGA-mPEG), encapsulated with paclitaxel (PTX), to create PTX-PLGA-mPEG NCs. The PTX-PLGA-mPEG NCs were used as a US contrast agent (UCA), which produced satisfactory US contrast-enhanced images in vitro and in vivo of the rabbit kidneys, with good contrast compared with lesions in the peripheral regions. However, clear contrast-enhanced images were not obtained using PTX-PLGA-mPEG NCs as a UCA, when imaging the superficial pancreatic tumors of nude mice in vivo. Subsequently, fluorescence and flow cytometry were used to measure the NC uptake rate of pancreatic tumor cells under various US or UTMD conditions. An MTT assay was used to evaluate the efficiency of PTX and PTX-PLGA-mPEG NCs in killing tumor cells following 24 or 48 h of US or UTMD therapy, compared with controls. The specific US or UTMD conditions had been previously demonstrated to be optimal through repeated testing, to determine the conditions by which cells were not impaired and the efficiency of uptake of nanoparticles was highest. The current study demonstrated high cellular uptake rates of PLGA-mPEG NCs and high tumor cell mortality with PTX-PLGA-mPEG NCs under US or UTMD optimal conditions. It was concluded that the use of NCs in US-mediated imaging and antitumor therapy may provide a novel application for US.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ling Xi Xing
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Shen
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Jie Zhu
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Li Fang Jin
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhaojun Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yijin Su
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - You Rong Duan
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
60
|
Omata D, Negishi Y, Suzuki R, Oda Y, Endo-Takahashi Y, Maruyama K. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound. ADVANCES IN GENETICS 2014; 89:25-48. [PMID: 25620007 DOI: 10.1016/bs.adgen.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics.
Collapse
Affiliation(s)
- Daiki Omata
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryo Suzuki
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yusuke Oda
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| |
Collapse
|
61
|
Furusawa Y, Hassan MA, Zhao QL, Ogawa R, Tabuchi Y, Kondo T. Effects of therapeutic ultrasound on the nucleus and genomic DNA. ULTRASONICS SONOCHEMISTRY 2014; 21:2061-8. [PMID: 24657073 DOI: 10.1016/j.ultsonch.2014.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
In recent years, data have been accumulating on the ability of ultrasound to affect at a distance inside the cell. Previous conceptions about therapeutic ultrasound were mainly based on compromising membrane permeability and triggering some biochemical reactions. However, it was shown that ultrasound can access deep to the nuclear territory resulting in enhanced macromolecular localization as well as alterations in gene and protein expression. Recently, we have reported on the occurrence of DNA double-strand breaks in different human cell lines exposed to ultrasound in vitro with some insight into the subsequent DNA damage response and repair pathways. The impact of these observed effects again sways between extremes. It could be advantageous if employed in gene therapy, wound and bone fracture-accelerated healing to promote cellular proliferation, or in cancer eradication if the DNA lesions would culminate in cell death. However, it could be a worrying sign if they were penultimate to further cellular adaptations to stresses and thus shaking the safety of ultrasound application in diagnosis and therapy. In this review, an overview of the rationale of therapeutic ultrasound and the salient knowledge on ultrasound-induced effects on the nucleus and genomic DNA will be presented. The implications of the findings will be discussed hopefully to provide guidance to future ultrasound research.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Mariame A Hassan
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Al-Aini str., Cairo 11562, Egypt.
| | - Qing-Li Zhao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Ryohei Ogawa
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
62
|
Sengupta A, Dwivedi N, Kelly SC, Tucci L, Thadhani NN, Prausnitz MR. Poloxamer surfactant preserves cell viability during photoacoustic delivery of molecules into cells. Biotechnol Bioeng 2014; 112:405-15. [DOI: 10.1002/bit.25363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Aritra Sengupta
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta 30332 Georgia
| | - Nishant Dwivedi
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta 30332 Georgia
- School of Medicine; Boston University; Boston Massachusetts
| | - Sean C. Kelly
- School of Materials Science and Engineering; Georgia Institute of Technology; Atlanta Georgia
| | - Lara Tucci
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta 30332 Georgia
| | - Naresh N. Thadhani
- School of Materials Science and Engineering; Georgia Institute of Technology; Atlanta Georgia
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta 30332 Georgia
| |
Collapse
|
63
|
Matsuki N, Ishikawa T, Ichiba S, Shiba N, Ujike Y, Yamaguchi T. Oxygen supersaturated fluid using fine micro/nanobubbles. Int J Nanomedicine 2014; 9:4495-505. [PMID: 25285003 PMCID: PMC4181745 DOI: 10.2147/ijn.s68840] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbubbles show peculiar properties, such as shrinking collapse, long lifetime, high gas solubility, negative electric charge, and free radical production. Fluids supersaturated with various gases can be easily generated using microbubbles. Oxygen microbubble fluid can be very useful for oxygen delivery to hypoxic tissues. However, there have been no reports of comparative investigations into adding fluids containing oxygen fine micro/nanobubbles (OFM-NBs) to common infusion solutions in daily medical care. In this study, it was demonstrated that OFMNBs can generate oxygen-supersaturated fluids, and they may be sufficiently small to infuse safely into blood vessels. It was found that normal saline solution is preferable for generating an oxygen-rich infusion fluid, which is best administered as a 30-minute intravenous infusion. It was also concluded that dextran solution is suitable for drug delivery substances packing oxygen gas over a 1-hour intravenous infusion. In addition, normal saline solution containing OFMNBs was effective for improving blood oxygenation. Thus, the use of OFMNB-containing fluids is a potentially effective novel method for improving blood oxygenation in cases involving hypoxia, ischemic diseases, infection control, and anticancer chemoradiation therapies.
Collapse
Affiliation(s)
- Noriaki Matsuki
- Department of Biomedical Engineering, Graduate School of Engineering, Okayama University of Science, Okayama, Japan
| | - Takuji Ishikawa
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Shingo Ichiba
- Department of Emergency and Critical Care Medicine, Okayama University Hospital, Okayama, Japan
| | - Naoki Shiba
- Department of Emergency and Critical Care Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshihito Ujike
- Department of Emergency and Critical Care Medicine, Okayama University Hospital, Okayama, Japan
| | - Takami Yamaguchi
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
64
|
Abstract
Ultrasound-mediated gene delivery with microbubbles has emerged as an attractive nonviral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents, particularly in the presence of microbubbles, by increasing vascular and cell membrane permeability. Several preclinical studies have reported successful gene delivery into solid tumors with significant therapeutic effects using this novel approach. This review provides background information on gene therapy and ultrasound bioeffects and discusses the current progress and overall perspectives on the application of ultrasound and microbubble-mediated gene delivery in cancer.
Collapse
|
65
|
Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SAGM, Smith DEC, Juffermans LJM, Musters RJP, Roos D, Jakobs C, Blom HJ, Smulders YM, Krijnen PAJ, Stehouwer CDA, Rauwerda JA, van Hinsbergh VWM, Niessen HWM. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 2014; 67:341-52. [PMID: 22038300 PMCID: PMC3825580 DOI: 10.1007/s12013-011-9297-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01–2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47phox expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨm). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨm. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47phox, and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47phox in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47phox was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.
Collapse
Affiliation(s)
- Jessica A Sipkens
- Department of Pathology, VU University Medical Centre, Room 0E46, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Fan Z, Chen D, Deng CX. Characterization of the dynamic activities of a population of microbubbles driven by pulsed ultrasound exposure in sonoporation. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1260-72. [PMID: 24486236 PMCID: PMC4011999 DOI: 10.1016/j.ultrasmedbio.2013.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/19/2013] [Accepted: 12/03/2013] [Indexed: 05/05/2023]
Abstract
Ultrasound-driven microbubble activities have been exploited to transiently disrupt the cell membrane (sonoporation) for non-viral intracellular drug delivery and gene transfection both in vivo and in vitro. In this study, we investigated the dynamic behaviors of a population of microbubbles exposed to pulsed ultrasound and their impact on adherent cells in terms of intracellular delivery and cell viability. By systematically analyzing the bubble activities at time scales relevant to pulsed ultrasound exposure, we identified two quantification parameters that categorize the diverse bubble activities subjected to various ultrasound conditions into three characteristic behaviors: stable cavitation/aggregation (type I), growth/coalescence and translation (type II) and localized inertial cavitation/collapse (type III). Correlation of the bubble activities with sonoporation outcome suggested that type III behavior resulted in intracellular delivery, whereas type II behavior caused the death of a large number of cells. These results provide useful insights for rational selection of ultrasound parameters to optimize outcomes of sonoporation and other applications that exploit the use of ultrasound-driven bubble activities.
Collapse
Affiliation(s)
- Zhenzhen Fan
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan, USA
| | - Di Chen
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan, USA
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan, USA.
| |
Collapse
|
67
|
Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014; 72:28-48. [PMID: 24667643 DOI: 10.1016/j.addr.2014.03.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/11/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Ultrasound contrast agents are valuable in diagnostic ultrasound imaging, and they increasingly show potential for drug delivery. This review focuses on the acoustic behavior of flexible-coated microbubbles and rigid-coated microcapsules and their contribution to enhanced drug delivery. Phenomena relevant to drug delivery, such as non-spherical oscillations, shear stress, microstreaming, and jetting will be reviewed from both a theoretical and experimental perspective. Further, the two systems for drug delivery, co-administration and the microbubble as drug carrier system, are reviewed in relation to the microbubble behavior. Finally, future prospects are discussed that need to be addressed for ultrasound contrast agents to move from a pre-clinical tool into a clinical setting.
Collapse
|
68
|
Shimamura M, Nakagami H, Taniyama Y, Morishita R. Gene therapy for peripheral arterial disease. Expert Opin Biol Ther 2014; 14:1175-84. [PMID: 24766232 DOI: 10.1517/14712598.2014.912272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gene therapy has emerged as a novel therapy to promote angiogenesis in patients with critical limb ischemia (CLI) caused by peripheral artery disease. Researchers working in this area have focused on pro-angiogenic factors, such as VEGF, fibroblast growth factor (FGF) and hepatocyte growth factor (HGF). Based on the elaborate studies and favorable results of basic research using naked plasmid DNA (pDNA) encoding these growth factors, some clinical Phase I and Phase II trials have been performed. The results of these studies demonstrate the safety of these approaches and their potential for symptomatic improvement in CLI patients. However, the Phase III clinical trials have so far been limited to HGF gene therapy. Because one pitfall of the Phase III trials has been the limited transgene expression achieved using naked pDNA alone, the development of more efficient gene transfer systems, such as ultrasound microbubbles and the needleless injector, as well as the addition of other genes will make these novel therapies more effective and ease the symptoms of CLI. AREAS COVERED This study reviews the previously published basic research and clinical trials that have studied VEGF, FGF and HGF gene therapies for the treatment of CLI. Adjunctive therapies, such as the addition of prostacyclin synthase genes and the development of more efficient gene transfer techniques for pDNA, are also reviewed. EXPERT OPINION To date, clinical studies have demonstrated the safety of gene therapy in limb ischemia but the effectiveness of this treatment has not been determined. Larger clinical studies, as well as the development of more effective gene therapy, are needed to achieve and confirm beneficial effects.
Collapse
Affiliation(s)
- Munehisa Shimamura
- Osaka University, Kanazawa University and Hamamatsu University School of Medicine, United Graduate School of Child Development, Division of Vascular Medicine and Epigenetics, Department of Child Development , Suita , Japan
| | | | | | | |
Collapse
|
69
|
Zhu C, He N, Cheng T, Tan H, Guo Y, Chen D, Cheng M, Yang Z, Zhang X. Ultrasound-targeted microbubble destruction enhances human β-defensin 3 activity against antibiotic-resistant Staphylococcus biofilms. Inflammation 2014; 36:983-96. [PMID: 23519963 DOI: 10.1007/s10753-013-9630-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The infection of orthopedic implantation devices with Staphylococcus is a serious concern within the biomaterial community. Treatments are not always successful because of antibiotic-resistant bacteria and serious biofilm infections. Human β-defensin 3 (hBD-3) is considered to be the most promising class of defensin antimicrobial peptides and its effect on antibiotic-resistant Staphylococcus biofilms, combined with ultrasound (US)-targeted microbubble (MB) destruction (UTMD), has not been reported. In the study, we found that biofilm densities, the percentage of live cells and the viable counts of two tested Staphylococcus recovered from the biofilm were significantly decreased in the maximum concentration hBD-3 combined with UTMD compared with those of any other groups. Furthermore, results suggested that UTMD could also enhance 1MIC hBD-3 activity inhibiting the biofilm-associated genes expression of icaAD and the methicillin-resistance genes expression of MecA by simultaneously promoting the icaR expression. UTMD may have great potential for improving antibiotic activity against biofilm infections.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Browning RJ, Rajkumar V, Pedley RB, Eckersley RJ, Blower PJ. Prospects for enhancement of targeted radionuclide therapy of cancer using ultrasound. J Labelled Comp Radiopharm 2014; 57:279-84. [PMID: 24347456 DOI: 10.1002/jlcr.3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/29/2013] [Indexed: 01/18/2023]
Abstract
Ultrasound-mediated drug delivery is a promising means of enhancing delivery, distribution and effectiveness of drugs within tumours. In this review, prospects for exploiting ultrasound to improve the tumour delivery and distribution of radiolabelled antibodies for radioimmunotherapy and to overcome barriers imposed by tumour microenvironment are discussed.
Collapse
Affiliation(s)
- Richard J Browning
- King's College London, Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, 4th Floor Lambeth Wing, London, SE1 9EH, UK
| | | | | | | | | |
Collapse
|
71
|
Juffermans LJM, Meijering BDM, Henning RH, Deelman LE. Ultrasound and microbubble-targeted delivery of small interfering RNA into primary endothelial cells is more effective than delivery of plasmid DNA. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:532-540. [PMID: 24361223 DOI: 10.1016/j.ultrasmedbio.2013.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 06/03/2023]
Abstract
Ultrasound and microbubble-targeted delivery (UMTD) is a promising non-viral technique for genetic-based therapy. We found that UMTD of small interfering RNA (siRNA) is more effective than delivery of plasmid DNA (pDNA). UMTD (1 MHz, 0.22 MPa) of fluorescently labeled siRNA resulted in 97.9 ± 1.5% transfected cells, with siRNA localized homogenously in the cytoplasm directly after ultrasound exposure. UMTD of fluorescently labeled pDNA resulted in only 43.0 ± 4.2% transfected cells, with localization mainly in vesicular structures, co-localizing with endocytosis markers clathrin and caveolin. Delivery of siRNA against GAPDH (glyceraldehyde-3-phosphate dehydrogenase) effectively decreased protein levels to 24.3 ± 7.9% of non-treated controls (p < 0.01). In contrast, 24 h after delivery of pDNA encoding GAPDH, no increase in protein levels was detected. Transfection efficiency, verified with red fluorescently labeled pDNA encoding enhanced green fluorescent protein, revealed that of the transfected cells, only 2.0 ± 0.7% expressed the transgene. In conclusion, the difference in localization between siRNA and pDNA after UMTD is an important determinant of the effectiveness of these genetic-based technologies.
Collapse
Affiliation(s)
- Lynda J M Juffermans
- Departments of Physiology and Cardiology, VU University Medical Center, Amsterdam, The Netherlands; Department of Clinical Pharmacology, Groningen Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Bernadet D M Meijering
- Department of Clinical Pharmacology, Groningen Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacology, Groningen Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Leo E Deelman
- Department of Clinical Pharmacology, Groningen Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
72
|
Deng Z, Yan F, Jin Q, Li F, Wu J, Liu X, Zheng H. Reversal of multidrug resistance phenotype in human breast cancer cells using doxorubicin-liposome-microbubble complexes assisted by ultrasound. J Control Release 2013; 174:109-16. [PMID: 24287101 DOI: 10.1016/j.jconrel.2013.11.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/22/2013] [Accepted: 11/19/2013] [Indexed: 02/02/2023]
Abstract
The circumvention of multidrug resistance (MDR) plays a critically important role in the success of chemotherapy. The aim of this work is to investigate the effectiveness and possible mechanisms of the reversal of MDR phenotype in human breast cancer cells by using doxorubicin-liposome-microbubble complexes (DLMC) assisted by ultrasound (US). DLMC is fabricated through conjugating doxorubicin (DOX)-liposome (DL) to the surface of microbubbles (MBs) via the biotin-avidin linkage. The resulting drug-loaded complexes are then characterized and incubated with MCF-7/ADR human breast cancer cells and followed by US exposure. Our results show the more rapid cellular uptake, evident enhancement of nuclear accumulation and less drug efflux in the resistant cells treated by DLMC+US than those treated by DL, DL+verapamil under the same US treatment or DLMC without US. The enhanced drug delivery and cellular uptake also associated with the increase of cytotoxicity against MCF-7/ADR cells, lower MCF-7/ADR cell viability and higher apoptotic cells. Mechanism investigations further disclose a significant increase of reactive oxygen species (ROS) level, enhanced DNA damage and obvious reduction of P-glycoprotein expression in the resistant cells treated with DLMC+US compared with the control cases of cells treated by DLMC, DL+US or DL+verapamil+US. In conclusion, our study demonstrates that DLMC in combination with US may provide an effective delivery of drug to sensitize cells to circumvent MDR and to enhance the therapeutic index of the chemotherapy.
Collapse
Affiliation(s)
- Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Qiaofeng Jin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junru Wu
- Department of Physics, University of Vermont, Burlington, VT 05405, USA
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
73
|
Kooiman K, van der Steen AFW, de Jong N. Role of intracellular calcium and reactive oxygen species in microbubble-mediated alterations of endothelial layer permeability. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1811-5. [PMID: 24658714 DOI: 10.1109/tuffc.2013.2767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Drugs will be delivered to diseased tissue more efficiently if the vascular endothelial permeability is increased. Ultrasound in combination with an ultrasound contrast agent is known to increase the permeability of the endothelial layer, but the mechanism is not known. The goal of this study was to elucidate whether intracellular calcium ions, [Ca(2+)]i, and reactive oxygen species (ROS) are part of the mechanism that leads to an increased endothelial layer permeability following ultrasound and microbubble treatment. Human umbilical vein endothelial cells (HUVECs) treated for 2 min with ultrasound-activated microbubbles (1 MHz, 210 kPa, 10 000 cycles, 20 Hz repetition rate) had an increased permeability that lasted up to 12 h. Recovery of permeability after 2 h was only found when HUVECs were preincubated with the [Ca(2+)]i chelator BAPTA-AM or the antioxidant butylated hydroxytoluene (BHT). This suggests that both [Ca(2+)]i and ROS play an important role in the mechanism of increased permeability following ultrasound in combination with microbubble treatment.
Collapse
|
74
|
Ultrasound image-guided therapy enhances antitumor effect of cisplatin. J Med Ultrason (2001) 2013; 41:11-21. [DOI: 10.1007/s10396-013-0475-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 06/03/2013] [Indexed: 12/11/2022]
|
75
|
Ma J, DU LF, Chen M, Wang HH, Xing LX, Jing LF, Li YH. Drug-loaded nano-microcapsules delivery system mediated by ultrasound-targeted microbubble destruction: A promising therapy method. Biomed Rep 2013; 1:506-510. [PMID: 24648976 DOI: 10.3892/br.2013.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/15/2013] [Indexed: 11/06/2022] Open
Abstract
The nano-microcapsules drug delivery system is currently a promising method for the treatment of many types of diseases, particularly tumors. However, the drug delivery efficiency does not reach a satisfactory level to meet treatment demands. Therefore, the effectiveness of delivery needs to be improved. Based on the alterations in the structure and modification of nano-microcapsules, ultrasound-targeted microbubble destruction (UTMD), a safe physical targeted method, may increase tissue penetration and cell membrane permeability, aiding the drug-loaded nano-microcapsules ingress the interior of targeted tissues and cells. The effectiveness and exact mechanism of action of the drug-loaded nano-microcapsules delivery system mediated by UTMD have yet to be fully elucidated. In this study, the latest advancement in UTMD-mediated drug loaded nano-microcapsules system technology was reviewed and the hindrances of UTMD-mediated drug delivery were assessed, in combination with a prospective study. The findings suggested that the drug delivery efficiency of nano-microcapsules mediated by UTMD was distinctly improved. Thus, the UTMD-mediated drug-loaded nano-microcapsules delivery system may significantly improve the efficiency of drug delivery, which may be a promising new therapeutic method.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080; ; Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Lian Fang DU
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| | - Ming Chen
- Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Hang Hui Wang
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| | - Ling Xi Xing
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| | - Li Fang Jing
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| | - Yun Hua Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| |
Collapse
|
76
|
Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C. Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 2013; 525:191-9. [PMID: 23566843 DOI: 10.1016/j.gene.2013.03.095] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 11/29/2022]
Abstract
Microbubbles first developed as ultrasound contrast agents have been used to assist ultrasound for cellular drug and gene delivery. Their oscillation behavior during ultrasound exposure leads to transient membrane permeability of surrounding cells, facilitating targeted local delivery. The increased cell uptake of extracellular compounds by ultrasound in the presence of microbubbles is attributed to a phenomenon called sonoporation. In this review, we summarize current state of the art concerning microbubble-cell interactions and cellular effects leading to sonoporation and its application for gene delivery. Optimization of sonoporation protocol and composition of microbubbles for gene delivery are discussed.
Collapse
|
77
|
Zhao YZ, Lu CT, Li XK, Cai J. Ultrasound-mediated strategies in opening brain barriers for drug brain delivery. Expert Opin Drug Deliv 2013; 10:987-1001. [DOI: 10.1517/17425247.2013.787987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
78
|
Bai WK, Shen E, Hu B. Induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res 2013. [DOI: 10.1007/s11670-012-0277-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
79
|
Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK. Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 2013; 10:573-92. [PMID: 23448121 DOI: 10.1517/17425247.2013.772578] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery. AREAS COVERED The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies. EXPERT OPINION These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments.
Collapse
Affiliation(s)
- Jonathan T Sutton
- University of Cincinnati, College of Medicine, Internal Medicine, Division of Cardiovascular Diseases, and Biomedical Engineering Program, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
80
|
Bai WK, Shen E, Hu B. The induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res 2013; 24:368-73. [PMID: 23359780 DOI: 10.3978/j.issn.1000-9604.2012.08.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/06/2012] [Indexed: 11/14/2022] Open
Abstract
Ultrasound can be used not only in the examination, but also in the therapy, especially in the therapy of cancer, which has got effect in the treatment. Sonodynamic therapy is an experimental cancer therapy which uses ultrasound to enhance the cytotoxic effects of drugs known as sonosensitizers. It has been tested in vitro and in vivo. The ultrasound could penetrate the tissue and cell under some of conditions which directly changes the cell membranes permeability, thereby allowing the delivery of exogenous molecules into the cells in some degree. Ultrasound could inhibit the proliferation or induce the apoptosis of the cancer cell in vitro or in vivo. Recent research indicated low frequency and low intensity ultrasound could induce cells apoptosis, and which could be strengthened by sonodynamic sensitivities, microbubbles, chemotherapeutic drugs and so on. Most kinds of ultrasound suppressed the proliferation of cancer cell through inducing the apoptosis of cancer cell. The mechanism of apoptosis is not clear. In this review, we will focus on and discuss the mechanisms of the induction of the apoptosis of cancer cell by ultrasound.
Collapse
Affiliation(s)
- Wen-Kun Bai
- Department of Ultrasound In Medicine, Shanghai Jiao tong University Affiliated 6th People's Hospital, Shanghai Institute of Ultrasound In Medicine, Shanghai 200233, China; ; Department of Ultrasound In Medicine, Shandong University Affiliated Qian Fo Shan Hospital, Ji Nan 250014, China
| | | | | |
Collapse
|
81
|
Thomas DH, Butler M, Pelekasis N, Anderson T, Stride E, Sboros V. The acoustic signature of decaying resonant phospholipid microbubbles. Phys Med Biol 2013; 58:589-99. [DOI: 10.1088/0031-9155/58/3/589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
82
|
|
83
|
Thomas DH, Sboros V, Emmer M, Vos H, de Jong N. Microbubble oscillations in capillary tubes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:105-14. [PMID: 23287917 DOI: 10.1109/tuffc.2013.2542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In diagnostic medicine, microbubbles are used as contrast agents to image blood flow and perfusion in large and small vessels. The small vessels (the capillaries) have diameters from a few hundred micrometers down to less than 10 μ m. The effect of such microvessels surrounding the oscillating microbubbles is currently unknown, and is important for increased sensitivity in contrast diagnostics and manipulation of microbubbles for localized drug release. Here, oscillations of microbubbles in tubes with inner diameters of 25 μm and 160 ¿m are investigated using an ultra-high-speed camera at frame rates of ~12 million frames/s. A reduction of up to 50% in the amplitude of oscillation was observed for microbubbles in the smaller 25-μm tube, compared with those in a 160-μm tube. In the 25-μm tube, at 50 kPa, a 48% increase of microbubbles that did not oscillate above the noise level of the system was observed, indicating increased oscillation damping. No difference was observed between the resonance frequency curves calculated for microbubbles in 25-μm and 160-μm tubes. Although previous investigators have shown the effect of microvessels on microbubble oscillation at high ultrasound pressures, the present study provides the first optical images of low-amplitude microbubble oscillations in small tubes.
Collapse
Affiliation(s)
- David H Thomas
- Department of Medical Physics and Medical Engineering, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
84
|
Van Ruijssevelt L, Smirnov P, Yudina A, Bouchaud V, Voisin P, Moonen C. Observations on the viability of C6-glioma cells after sonoporation with low-intensity ultrasound and microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:34-45. [PMID: 23287911 DOI: 10.1109/tuffc.2013.2535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ultrasound (US) and microbubbles can be used to facilitate cellular uptake of drugs through a cavitationinduced enhancement of cell membrane permeability. The mechanism is, however, still incompletely understood. A direct contact between microbubbles and cell membrane is thought to be essential to create membrane perturbations lasting from seconds to minutes after US exposure of the cells. A recent study showed that the effect may even last up to 8 h after cavitation (with residual permeability up to 24 h after cavitation). In view of possible membrane damage, the purpose of this study was to further investigate the evolution of cell viability in the range of the 24-h temporal window. Furthermore, a description of the functional changes in tumor cells after US exposure was initiated to obtain a better understanding of the mechanism of membrane perturbation after sonication with microbubbles. Our results suggest that US does not reduce cell viability up to 24 h post-exposure. However, a perturbation of the entire cell population exposed to US was observed in terms of enzymatic activity and characteristics of the mitochondrial membrane. Furthermore, we demonstrated that US cavitation induces a transient loss of cell membrane asymmetry, resulting in phosphatidylserine exposure in the outer leaflet of the cell membrane.
Collapse
Affiliation(s)
- Lisbeth Van Ruijssevelt
- Laboratory for Molecular and Functional Imaging: from Physiology to Therapy, FRE 3313 CNRS /Universite Bordeaux S egalen, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
85
|
Castle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB. Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 2012. [PMID: 23203969 DOI: 10.1152/ajpheart.00265.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential clinical value of developing a novel, nonviral, ultrasound-directed gene and drug delivery system is immense. Investigators soon will initiate clinical trials with the goal of treating a wide variety of maladies using noninvasive, ultrasound-based technology. The ongoing, scientific validation associated with promising preclinical success portents a novel range of therapeutics. The clinical utility and eventual clinical successes await vigorous testing. This review highlights the recent successes and challenges within the field of ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Jason Castle
- General Electric Global Research, Niskayuna, New York, USA
| | | | | | | | | | | |
Collapse
|
86
|
Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges. Ther Deliv 2012; 3:1199-215. [PMID: 23116012 DOI: 10.4155/tde.12.100] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Having first been developed for ultrasound imaging, nowadays, microbubbles are proposed as tools for ultrasound-assisted gene delivery, too. Their behavior during ultrasound exposure causes transient membrane permeability of surrounding cells, facilitating targeted local delivery. The increased cell uptake of extracellular compounds by ultrasound in the presence of microbubbles is attributed to a phenomenon called sonoporation. Sonoporation has been successfully applied to deliver nucleic acids in vitro and in vivo in a variety of therapeutic applications. However, the biological and physical mechanisms of sonoporation are still not fully understood. In this review, we discuss recent data concerning microbubble--cell interactions leading to sonoporation and we report on the progress in ultrasound-assisted therapeutic gene delivery in different organs. In addition, we outline ongoing challenges of this novel delivery method for its clinical use.
Collapse
|
87
|
Zheng X, Du L, Wang H, Gu Q. A novel approach to attenuate proliferative vitreoretinopathy using ultrasound-targeted microbubble destruction and recombinant adeno-associated virus-mediated RNA interference targeting transforming growth factor-β2 and platelet-derived growth factor-B. J Gene Med 2012; 14:339-47. [PMID: 22499528 DOI: 10.1002/jgm.2629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND To date, with the exception of surgery, there are no satisfactory treatments available for proliferative vitreoretinopathy (PVR). Ultrasound-targeted microbubble destruction (UTMD) represents a new approach for the gene therapy of eye diseases. The present study aimed to investigate the feasibility of the attenuation of PVR by a combinatorial use of UTMD and recombinant adeno-associated virus (rAAV)-mediated RNA interference (RNAi) targeting transforming growth factor (TGF)-β2 and platelet-derived growth factor (PDGF)-B. METHODS One hundred and eighty rats of the PVR model were averagely divided into six groups (G). The left eyes, respectively, received an intravitreal injection as follows: normal saline (G1), rAAV2-control small interfering RNA (siRNA) (G2), rAAV2-TGF-β2-siRNA (G3), rAAV2-PDGF-B-siRNA (G4), rAAV2-TGF-β2-siRNA and rAAV2-PDGF-B-siRNA (G5, G6) on day 3 after PVR induction. In G6, a condition of UTMD was used additionally. On days 14 and 28, pathological changes of eye fundus were assessed by ophthalmoscopic and histopathologic examination, and the protein and mRNA levels of TGF-β2 and PDGF-B expression were tested using enzyme-linked immunosorbent assay and a reverse transcriptase-polymerase chain reaction, respectively. RESULTS The average grade scales of proliferation and the protein and mRNA expression levels of TGF-β2 and PDGF-B in G6 were all lower than that in G5 on day 28 (p<0.05, unpaired t-test). They were all lower in G5 and G6 than in G1, G2, G3 and G4 on day 28 (p<0.05, one-way analysis of variance), although the protein and mRNA expression levels of PDGF-B in G6 did not differ from that in G1, G2, G3, G4 and G5 on day 14. CONCLUSIONS The combinatorial use of UTMD and rAAV2-mediated RNAi targeting TGF-β2 and PDGF-B can serve as a novel approach to attenuate PVR.
Collapse
Affiliation(s)
- Xiaozhi Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, People's Republic of China
| | | | | | | |
Collapse
|
88
|
Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther Deliv 2012; 1:819-48. [PMID: 21785679 DOI: 10.4155/tde.10.66] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective delivery of therapeutic agents into the brain can greatly improve the treatments of neurological and neurodegenerative diseases. Application of focused ultrasound facilitated by microbubbles has shown the potential to deliver drugs across the blood-brain barrier into targeted sites within the brain noninvasively. This review provides a summary of the technological background and principle, highlights of recent significant developments and research progress, as well as a critical commentary on the challenges and future directions in the field. This review also outlines and discusses the tasks that researchers face in order to successfully translate the technology into a clinical reality, including obtaining improved understanding of the mechanisms, demonstration of therapeutic efficacy and safety for specific applications, and development of methodology for rational design to achieve optimized and consistent outcomes.
Collapse
|
89
|
Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT. Ultrasound enhanced growth and cholesterol removal of Lactobacillus fermentum FTDC 1311 in the parent cells but not the subsequent passages. ULTRASONICS SONOCHEMISTRY 2012; 19:901-908. [PMID: 22265020 DOI: 10.1016/j.ultsonch.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to evaluate the effect of ultrasound on the intestinal adherence ability, cell growth, and cholesterol removal ability of parent cells and subsequent passages of Lactobacillus fermentum FTDC 1311. Ultrasound significantly decreased the intestinal adherence ability of treated parent cells compared to that of the control by 11.32% (P<0.05), which may be due to the protein denaturation upon local heating. Growth of treated parent cells also decreased by 4.45% (P<0.05) immediately upon ultrasound (0-4h) and showed an increase (P<0.05) in the viability by 2.18-2.34% during the later stage of fermentation (12-20 h) compared to that of the control. In addition, an increase (P<0.05) in assimilation of cholesterol (>9.74%) was also observed for treated parent cells compared to that of the control, accompanied by increased (P<0.05) incorporation of cholesterol into the cellular membrane. This was supported by the increased ratio of membrane cholesterol:phospholipids (C:P), saturation of cholesterol in the apolar regions, upper phospholipids regions, and polar regions of membrane phospholipids of parent cells compared to that of the control (P<0.05). However, such traits were not inherited by the subsequent passages of treated cells (first, second, and third passages). Our data suggested that ultrasound treatment could be used to improve cholesterol removal ability of parent cells without inducing permanent damage/defects on treated cells of subsequent passages.
Collapse
Affiliation(s)
- H S Lye
- School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | | | | | | | |
Collapse
|
90
|
Browning RJ, Mulvana H, Tang MX, Hajnal JV, Wells DJ, Eckersley RJ. Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1067-1077. [PMID: 22502878 DOI: 10.1016/j.ultrasmedbio.2012.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Ultrasound and microbubble mediated gene transfection has great potential for site-selective, safe gene delivery. Albumin-based microbubbles have shown the greatest transfection efficiency but have not been optimised specifically for this purpose. Additionally, few studies have highlighted desirable properties for transfection specific microbubbles. In this article, microbubbles were made with 2% or 5% (w/v) albumin and 20% or 40% (w/v) dextrose solutions, yielding four distinct bubble types. These were acoustically characterised and their efficiency in transfecting a luciferase plasmid (pGL4.13) into female, CD1 mice myocardia was measured. For either albumin concentration, increasing the dextrose concentration increased scattering, attenuation and resistance to ultrasound, resulting in significantly increased transfection. A significant interaction was noted between albumin and dextrose; 2% albumin bubbles made with 20% dextrose showed the least transfection but the most transfection with 40% dextrose. This trend was seen for both nonlinear scattering and attenuation behaviour but not for resistance to ultrasound or total scatter. We have determined that the attenuation behaviour is an important microbubble characteristic for effective gene transfection using ultrasound. Microbubble behaviour can also be simply controlled by altering the initial ingredients used during manufacture.
Collapse
Affiliation(s)
- Richard J Browning
- Imaging Sciences Department, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
91
|
Blood oxygenation using microbubble suspensions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:571-8. [PMID: 22476882 DOI: 10.1007/s00249-012-0811-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/12/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Microbubbles have been used in a variety of fields and have unique properties, for example shrinking collapse, long lifetime, efficient gas solubility, a negatively charged surface, and the ability to produce free radicals. In medicine, microbubbles have been used mainly as diagnostic aids to scan various organs of the body, and they have recently been investigated for use in drug and gene delivery. However, there have been no reports of blood oxygenation by use of oxygen microbubble fluids without shell reagents. In this study, we demonstrated that nano or microbubbles can achieve oxygen supersaturation of fluids, and may be sufficiently small and safe for infusion into blood vessels. Although Po(2) increases in fluids resulting from use of microbubbles were inhibited by polar solvents, normal saline solution (NSS) was little affected. Thus, NSS is suitable for production of oxygen-rich fluid. In addition, oxygen microbubble NSS effectively improved hypoxic conditions in blood. Thus, use of oxygen microbubble (nanobubble) fluids is a potentially effective novel method for oxygenation of hypoxic tissues, for infection control, and for anticancer treatment.
Collapse
|
92
|
Tamosiūnas M, Jurkonis R, Mir LM, Lukosevicius A, Venslauskas MS, Satkauskas S. Adjustment of ultrasound exposure duration to microbubble sonodestruction kinetics for optimal cell sonoporation in vitro. Technol Cancer Res Treat 2012; 11:375-87. [PMID: 22376133 DOI: 10.7785/tcrt.2012.500285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell sonoporation enables the delivery of various exogenous molecules into the cells. To maximize the percentage of reversibly sonoporated cells and to increase cell viability we propose a model for implicit dosimetry for adjustment of ultrasound (US) exposure duration. The Chinese hamster ovary cell suspension was supplemented with microbubbles (MB) and exposed to US, operating at the frequency of 880kHz, with a 100% duty cycle and with an output peak negative pressure (PNP) of 500kPa for durations ranging from 0.5 to 30s. Using diagnostic B-scan imaging we showed that the majority of the MB at 500kPa US peak negative pressure undergo sonodestruction in less than a second. During this time maximal number of reversibly sonoporated cells was achieved. Increase of US exposure duration did not increase sonoporated cell number, however it induced additional cell viability decrease. Therefore aiming to achieve the highest level of reversibly sonoporated cells and also to preserve the highest level of cell viability, the duration of US exposure should not exceed the duration needed for complete MB sonodestruction.
Collapse
Affiliation(s)
- M Tamosiūnas
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, Kaunas LT-44404, Lithuania
| | | | | | | | | | | |
Collapse
|
93
|
Slikkerveer J, Kleijn SA, Appelman Y, Porter TR, Veen G, van Rossum AC, Kamp O. Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: pilot of the Sonolysis study. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:247-52. [PMID: 22178160 DOI: 10.1016/j.ultrasmedbio.2011.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/27/2011] [Accepted: 11/05/2011] [Indexed: 05/07/2023]
Abstract
In animal studies, transthoracic ultrasound and microbubbles have shown to dissolve thrombi in ST elevation myocardial infarction (STEMI). To examine this effect in patients, we have initiated the Sonolysis trial. In this pilot study of 10 patients with a first acute STEMI, we investigated the safety and feasibility of this trial. After pretreatment in the ambulance, five patients were randomized to receive microbubbles with three-dimensional (3-D) guided high mechanical index impulses (1.18) for 15 min, whereas the control group received placebo without ultrasound. Subsequently, primary percutaneous coronary intervention (PPCI) was performed, if indicated. All patients successfully underwent study treatment and PPCI. No significant difference between treatment and control group in safety (minor adverse events 2/5 vs. 2/5, p = NS) and outcome (TIMI III flow 3/5 vs. 1/5 respectively, p = 0.23) was recorded. These results demonstrate that the study protocol is feasible in the acute cardiac care setting and safe during treatment and follow-up.
Collapse
Affiliation(s)
- Jeroen Slikkerveer
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
94
|
Zhong W, Sit WH, Wan JMF, Yu ACH. Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2149-2159. [PMID: 22033133 DOI: 10.1016/j.ultrasmedbio.2011.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
Despite being a transient biophysical phenomenon, sonoporation is known to disturb the homeostasis of living cells. This work presents new evidence on how sonoporation may lead to antiproliferation effects including cell-cycle arrest and apoptosis through disrupting various cell signaling pathways. Our findings were obtained from sonoporation experiments conducted on HL-60 human promyelocytic leukemia cells (with 1% v/v microbubbles; 1 MHz ultrasound; 0.3 or 0.5MPa peak negative pressure; 10% duty cycle; 1 kHz pulse repetition frequency; 1 min exposure period). Membrane resealing in these sonoporated cells was first verified using scanning electron microscopy. Time-lapse flow cytometry analysis of cellular deoxyribonucleic acid (DNA) contents was then performed at four post-sonoporation time points (4 h, 8 h, 12 h and 24 h). Results indicate that an increasing trend in the apoptotic cell population can be observed for at least 12 h after sonoporation, whilst viable sonoporated cells are found to temporarily accumulate in the G(2)/M (gap-2/mitosis) phase of the cell cycle. Further analysis using western blotting reveals that sonoporation-induced apoptosis involves cleavage of poly adenosine diphosphate ribose polymerase (PARP) proteins: a pro-apoptotic hallmark related to loss of DNA repair functionality. Also, mitochondrial signaling seems to have taken part in triggering this cellular event as the expression of two complementary regulators for mitochondrial release of pro-apoptotic molecules, Bcl-2 (B-cell lymphoma 2) and Bax (Bcl-2-associated X), are seen to be imbalanced in sonoporated cells. Furthermore, sonoporation is found to induce cell-cycle arrest through perturbing the expression of various cyclin and Cdk (cyclin-dependent kinase) checkpoint proteins that play an enabling role in cell-cycle progression. These bioeffects should be taken into account when using sonoporation for therapeutic purposes.
Collapse
Affiliation(s)
- Wenjing Zhong
- Medical Engineering Program, The University of Hong Kong, Hong Kong SAR
| | | | | | | |
Collapse
|
95
|
Du J, Shi QS, Sun Y, Liu PF, Zhu MJ, Du LF, Duan YR. Enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine nanoparticles loading platelet-derived growth factor BB small interfering RNA by ultrasound and/or microbubbles to rat retinal pigment epithelium cells. J Gene Med 2011; 13:312-23. [PMID: 21674734 DOI: 10.1002/jgm.1574] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A novel small interfering RNA (siRNA) delivery method based on the combined use of nanoparticles (NPs) with ultrasound (US) and/or microbubbles (MBs) was introduced in the present study. We investigated the efficacy and safety of US and/or MBs-enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine (mPEG-PLGA-PLL) NPs loading platelet-derived growth factor BB (PDGF-BB) siRNA to rat retinal pigment epithelium (RPE)-J cells. METHODS The effect of US and/or MBs on the delivery of NPs containing Cy3-labeled siRNA was evaluated by fluorescence microscopy and flow cytometry. Potential toxicity of NPs and cell viability under different conditions of US and/or MBs were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. RESULTS The results obtained showed that low intensity US or 15-20% MBs could increase the delivery efficiency of a lower concentration of mPEG-PLGA-PLL NPs loading siRNA to RPE-J cells, whereas the combination of US with MBs under the optimal conditions for the enhancement of NPs delivery did not further increase the cellular uptake of NPs compared to either US or MBs alone (p = 0.072 and p = 0.488, respectively). Under the optimal condition for US-enhanced NPs delivery, the enhanced PDGF-BB gene silencing with a combination of US and NPs encapsulating siRNA resulted in a significant decrease of mRNA and protein expression levels compared to NPs alone. CONCLUSIONS US and/or MBs could be used safely to enhance the delivery of NPs loading siRNA to rat RPE-J cells. A combination of the chemical (mPEG-PLGA-PLL NPs loading siRNA) and physical (US) approaches could more effectively downregulate the mRNA and protein expression of PDGF-BB.
Collapse
Affiliation(s)
- Jing Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | | | | | | | | | | | | |
Collapse
|
96
|
Omata D, Negishi Y, Hagiwara S, Yamamura S, Endo-Takahashi Y, Suzuki R, Maruyama K, Nomizu M, Aramaki Y. Bubble Liposomes and Ultrasound Promoted Endosomal Escape of TAT-PEG Liposomes as Gene Delivery Carriers. Mol Pharm 2011; 8:2416-23. [DOI: 10.1021/mp200353m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daiki Omata
- Department of Drug
Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug
Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo 192-0392, Japan
| | - Shoko Hagiwara
- Department of Drug
Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo 192-0392, Japan
| | - Sho Yamamura
- Department of Drug
Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo 192-0392, Japan
| | - Yoko Endo-Takahashi
- Department of Drug
Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo 192-0392, Japan
| | - Ryo Suzuki
- Department of Biopharmaceutics, School of Pharmaceutical
Sciences, Teikyo University, Sagamihara,
Kanagawa 252-5195, Japan
| | - Kazuo Maruyama
- Department of Biopharmaceutics, School of Pharmaceutical
Sciences, Teikyo University, Sagamihara,
Kanagawa 252-5195, Japan
| | - Motoyoshi Nomizu
- Department of Clinical
Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo 192-0392, Japan
| | - Yukihiko Aramaki
- Department of Drug
Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo 192-0392, Japan
| |
Collapse
|
97
|
Kowalczuk L, Boudinet M, El Sanharawi M, Touchard E, Naud MC, Saïed A, Jeanny JC, Behar-Cohen F, Laugier P. In vivo gene transfer into the ocular ciliary muscle mediated by ultrasound and microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1814-1827. [PMID: 21963032 DOI: 10.1016/j.ultrasmedbio.2011.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/17/2011] [Accepted: 07/23/2011] [Indexed: 05/31/2023]
Abstract
This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases.
Collapse
Affiliation(s)
- Laura Kowalczuk
- Inserm U872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Use of EPR and FTIR to detect biological effects of ultrasound and microbubbles on a fibroblast cell line. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1115-20. [DOI: 10.1007/s00249-011-0738-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/06/2011] [Accepted: 07/19/2011] [Indexed: 12/20/2022]
|
99
|
Enhancement of vancomycin activity against biofilms by using ultrasound-targeted microbubble destruction. Antimicrob Agents Chemother 2011; 55:5331-7. [PMID: 21844319 DOI: 10.1128/aac.00542-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treating biofilm infections on implanted medical devices is formidable, even with extensive antibiotic therapy. The aim of this study was to investigate whether ultrasound (US)-targeted microbubble (MB) destruction (UTMD) could enhance vancomycin activity against Staphylococcus epidermidis RP62A biofilms. Twelve-hour biofilms were treated with vancomycin combined with UTMD. The vancomycin and MB (SonoVue) were used at concentrations of 100 μg/ml and 30% (vol/vol), respectively, in studies in vitro. After US exposure (0.08 MHz, 1.0 W/cm(2), 50% duty cycle, and 10-min duration), the biofilms were cultured at 37 °C for another 12 h. The results showed that many micropores were found in biofilms treated with vancomycin combined with UTMD. Biofilm densities (A(570) values) and the viable counts of S. epidermidis recovered from the biofilm were significantly decreased compared with those of any other groups. Furthermore, the highest percentage of dead cells was found, using confocal laser scanning microscopy, in the biofilm treated with vancomycin combined with UTMD. The viable counts of bacteria in biofilms in an in vivo rabbit model also confirmed the enhanced effect of vancomycin combined with UTMD. UTMD may have great potential for improving antibiotic activity against biofilm infections.
Collapse
|
100
|
Slikkerveer J, Veen G, Appelman Y, van Royen N, Kamp O. Therapeutic application of ultrasound: contrast-enhanced thrombolysis in acute ST-elevation myocardial infarction; the Sonolysis study. Neth Heart J 2011; 19:200-205. [PMID: 21475732 PMCID: PMC3058335 DOI: 10.1007/s12471-011-0100-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Contrast enhancement by microbubble infusion has proven its applicability in the field of diagnostic ultrasound. Recent studies also indicate a therapeutic effect of the combined use of ultrasound and microbubbles. Results from animal studies demonstrate that diagnostic ultrasound in combination with intravenous microbubbles can dissolve thrombi. So far, this effect has never been tested in patients with an acute ST-elevation myocardial infarction (STEMI). We recently launched a pilot study in acute STEMI patients to assess safety, feasibility and efficacy of the treatment in this patient group with transthoracic three-dimensional diagnostic ultrasound and intravenous microbubbles immediately after prehospital thrombolysis, but prior to primary percutaneous coronary intervention.
Collapse
Affiliation(s)
- J. Slikkerveer
- Department of Cardiology and Institute of Cardiovascular Research, VU University Medical Center, Room 4D194, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - G. Veen
- Department of Cardiology and Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Y. Appelman
- Department of Cardiology and Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - N. van Royen
- Department of Cardiology and Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - O. Kamp
- Department of Cardiology and Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|