51
|
Affiliation(s)
- Jianhua Xiong
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
52
|
Wick MJ, Loomis ZL, Harral JW, Le M, Wehling CA, Miller YE, Dempsey EC. Protection against vascular leak in neprilysin transgenic mice with complex overexpression pattern. Transgenic Res 2016; 25:773-784. [PMID: 27369050 DOI: 10.1007/s11248-016-9969-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Neprilysin (NEP) is a cell surface metallopeptidase found in many tissues. Based mostly on pharmacological manipulations, NEP has been thought to protect blood vessels from plasma extravasation. We have suggested that NEP may protect against pulmonary vascular injury. However, these prior studies did not utilize mice which overexpress NEP. The aims of the present investigation were to develop and characterize doubly transgenic (DT) mice that overexpress NEP universally and conditionally, and to investigate the protective effect that overexpressed NEP may have against plasma extravasation in the vasculature. The duodenum, which is often used to assess vascular permeability, and in which the NEP protein was overexpressed in our DT mice two-fold, was selected as our experimental preparation. We found that substance P-induced plasma extravasation was decreased substantially (3.5-fold) in the duodenums of our doxycycline-treated DT mice, giving independent evidence of NEP's protective effects against plasma extravasation. Transgenic lung NEP protein was not stably expressed in the DT mice, so we were not able to test the effect of NEP overexpression in the lung. Although initially overexpressed nearly nine-fold at that site, pulmonary NEP protein overexpression eventually dissipated. Surprisingly, at a time when there was no lung transgenic NEP protein overexpression, lung NEP mRNA expression was still increased 23-fold, indicating that the expression defect probably is not transcriptional. These studies help to characterize our complex transgenic model of NEP overexpression and further demonstrate NEP's protective effects against plasma extravasation.
Collapse
Affiliation(s)
- Marilee J Wick
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA. .,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.
| | - Zoe L Loomis
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Julie W Harral
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Mysan Le
- Denver VA Medical Center, Denver, CO, 80220, USA
| | | | - York E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.,Denver VA Medical Center, Denver, CO, 80220, USA
| | - Edward C Dempsey
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.,Denver VA Medical Center, Denver, CO, 80220, USA
| |
Collapse
|
53
|
West JD, Voss BM, Pavliv L, de Caestecker M, Hemnes AR, Carrier EJ. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload. Pulm Circ 2016; 6:211-23. [PMID: 27252848 DOI: 10.1086/686140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling.
Collapse
Affiliation(s)
- James D West
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bryan M Voss
- Cumberland Pharmaceuticals, Nashville, Tennessee, USA
| | - Leo Pavliv
- Cumberland Pharmaceuticals, Nashville, Tennessee, USA
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erica J Carrier
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
54
|
Bouhy D, Geuens T, De Winter V, Almeida-Souza L, Katona I, Weis J, Hochepied T, Goossens S, Haigh JJ, Janssens S, Timmerman V. Characterization of New Transgenic Mouse Models for Two Charcot-Marie-Tooth-Causing HspB1 Mutations using the Rosa26 Locus. J Neuromuscul Dis 2016; 3:183-200. [DOI: 10.3233/jnd-150144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Thomas Geuens
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Leonardo Almeida-Souza
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Istvan Katona
- Institute of Neuropathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Tino Hochepied
- Transgenic Mouse Core Facility, VIB Inflammation Research Center, Ghent University, Gent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Steven Goossens
- Department for Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Unit for Molecular and Cellular Oncology, VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Jody J. Haigh
- Department for Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Sophie Janssens
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
- Laboratory for Mucosal Immunology and Immunoregulation, VIB Inflammation Research Centre, Ghent University, Gent, Belgium
- Department of Internal Medicine, Ghent University, Gent, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
55
|
Francis M, Xu N, Zhou C, Stevens T. Transient Receptor Potential Channel 4 Encodes a Vascular Permeability Defect and High-Frequency Ca(2+) Transients in Severe Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1701-9. [PMID: 27083517 DOI: 10.1016/j.ajpath.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Abstract
The canonical transient receptor potential channel 4 (TRPC4) comprises an endothelial store-operated Ca(2+) entry channel, and TRPC4 inactivation confers a survival benefit in pulmonary arterial hypertension (PAH). Endothelial Ca(2+) signals mediated by TRPC4 enhance vascular permeability in vitro, but the contribution of TRPC4-dependent Ca(2+) signals to the regulation of endothelial permeability in PAH is poorly understood. We tested the hypothesis that TRPC4 increases vascular permeability and alters the frequency of endothelial Ca(2+) transients in PAH. We measured permeability in isolated lungs, and found that TRPC4 exaggerated permeability responses to thapsigargin in Sugen/hypoxia-treated PAH rats. We compared endothelial Ca(2+) activity of wild-type with TRPC4-knockout rats using confocal microscopy, and evaluated how Ca(2+) signals were influenced in response to thapsigargin and sequential treatment with acetylcholine. We found that thapsigargin-stimulated Ca(2+) signals were increased in PAH, and recovered by TRPC4 inactivation. Store depletion revealed bimodal Ca(2+) responses to acetylcholine, with both short- and long-duration populations. Our results show that TRPC4 underlies an exaggerated endothelial permeability response in PAH. Furthermore, TRPC4 increased the frequency of endothelial Ca(2+) transients in severe PAH, suggesting that TRPC4 provides a Ca(2+) source associated with endothelial dysfunction in the pathophysiology of PAH. This phenomenon represents a new facet of the etiology of PAH, and may contribute to PAH vasculopathy by enabling inflammatory mediator flux across the endothelial barrier.
Collapse
Affiliation(s)
- Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Ningyong Xu
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama.
| |
Collapse
|
56
|
West JD, Carrier EJ, Bloodworth NC, Schroer AK, Chen P, Ryzhova LM, Gladson S, Shay S, Hutcheson JD, Merryman WD. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension. PLoS One 2016; 11:e0148657. [PMID: 26863209 PMCID: PMC4749293 DOI: 10.1371/journal.pone.0148657] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/21/2022] Open
Abstract
Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein Receptors, Type II/deficiency
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Cell Movement/drug effects
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/prevention & control
- Indoles/pharmacology
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Transgenic
- Muscle Contraction/drug effects
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oligonucleotide Array Sequence Analysis
- Phosphorylation
- Protein Transport
- Receptor, Serotonin, 5-HT2B/genetics
- Receptor, Serotonin, 5-HT2B/metabolism
- Serotonin Antagonists/pharmacology
- Signal Transduction
- Urea/analogs & derivatives
- Urea/pharmacology
- Vascular Stiffness/drug effects
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- James D. West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, United States of America
- * E-mail: (JDW); (WDM)
| | - Erica J. Carrier
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, United States of America
| | - Nathaniel C. Bloodworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37232, United States of America
| | - Alison K. Schroer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37232, United States of America
| | - Peter Chen
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, United States of America
| | - Larisa M. Ryzhova
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37232, United States of America
| | - Santhi Gladson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, United States of America
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, United States of America
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37232, United States of America
| | - W. David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37232, United States of America
- * E-mail: (JDW); (WDM)
| |
Collapse
|
57
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
58
|
Amsalem AR, Marom B, Shapira KE, Hirschhorn T, Preisler L, Paarmann P, Knaus P, Henis YI, Ehrlich M. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor. Mol Biol Cell 2016; 27:716-30. [PMID: 26739752 PMCID: PMC4750929 DOI: 10.1091/mbc.e15-08-0547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/24/2015] [Indexed: 12/22/2022] Open
Abstract
The cytoplasmic extension of the long-form isoform of BMPRII, unique among TGF-β superfamily receptors, is found to regulate the translation of BMPRII and its clathrin-mediated endocytosis. Both processes reduce its cell surface levels. The higher expression of BMPRII-SF at the plasma membrane results in enhanced activation of Smad signaling. The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane.
Collapse
Affiliation(s)
- Ayelet R Amsalem
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Barak Marom
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren E Shapira
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Livia Preisler
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pia Paarmann
- Institute for Chemistry and Biochemistry, Freie Univesitaet Berlin, 1495 Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Univesitaet Berlin, 1495 Berlin, Germany
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
59
|
Bryant AJ, Robinson LJ, Moore CS, Blackwell TR, Gladson S, Penner NL, Burman A, McClellan LJ, Polosukhin VV, Tanjore H, McConaha ME, Gleaves LA, Talati MA, Hemnes AR, Fessel JP, Lawson WE, Blackwell TS, West JD. Expression of mutant bone morphogenetic protein receptor II worsens pulmonary hypertension secondary to pulmonary fibrosis. Pulm Circ 2015; 5:681-90. [PMID: 26697175 DOI: 10.1086/683811] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is often complicated by pulmonary hypertension (PH), and previous studies have shown a potential link between bone morphogenetic protein receptor II (BMPR2) and PH secondary to pulmonary fibrosis. We exposed transgenic mice expressing mutant BMPR2 and control mice to repetitive intraperitoneal injections of bleomycin for 4 weeks. The duration of transgene activation was too short for mutant BMPR2 mice to develop spontaneous PH. Mutant BMPR2 mice had increased right ventricular systolic pressure compared to control mice, without differences in pulmonary fibrosis. We found increased hypoxia-inducible factor (HIF)1-α stabilization in lungs of mutant-BMPR2-expressing mice compared to controls following bleomycin treatment. In addition, expression of the hypoxia response element protein connective tissue growth factor was increased in transgenic mice as well as in a human pulmonary microvascular endothelial cell line expressing mutant BMPR2. In mouse pulmonary vascular endothelial cells, mutant BMPR2 expression resulted in increased HIF1-α and reactive oxygen species production following exposure to hypoxia, both of which were attenuated with the antioxidant TEMPOL. These data suggest that expression of mutant BMPR2 worsens secondary PH through increased HIF activity in vascular endothelium. This pathway could be therapeutically targeted in patients with PH secondary to pulmonary fibrosis.
Collapse
Affiliation(s)
- Andrew J Bryant
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA ; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Linda J Robinson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christy S Moore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas R Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Santhi Gladson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Niki L Penner
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ankita Burman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lucas J McClellan
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Vasiliy V Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Melinda E McConaha
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Linda A Gleaves
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Megha A Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joshua P Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E Lawson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA ; Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA ; Department of Cell and Developmental Biology and Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James D West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
60
|
Awad KS, Elinoff JM, Wang S, Gairhe S, Ferreyra GA, Cai R, Sun J, Solomon MA, Danner RL. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 310:L187-201. [PMID: 26589479 DOI: 10.1152/ajplung.00303.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
A proliferative endothelial cell phenotype, inflammation, and pulmonary vascular remodeling are prominent features of pulmonary arterial hypertension (PAH). Bone morphogenetic protein type II receptor (BMPR2) loss-of-function is the most common cause of heritable PAH and has been closely linked to the formation of pathological plexiform lesions. Although some BMPR2 mutations leave ligand-dependent responses intact, the disruption of ligand-independent, noncanonical functions are universal among PAH-associated BMPR2 genotypes, but incompletely understood. This study examined the noncanonical signaling consequences of BMPR2 silencing in human pulmonary artery endothelial cells to identify potential therapeutic targets. BMPR2 siRNA silencing resulted in a proliferative, promigratory pulmonary artery endothelial cell phenotype and disruption of cytoskeletal architecture. Expression profiling closely reflected these phenotypic changes. Gene set enrichment and promoter analyses, as well as the differential expression of pathway components identified Ras/Raf/ERK signaling as an important consequence of BMPR2 silencing. Raf family members and ERK1/2 were constitutively activated after BMPR2 knockdown. Two Raf inhibitors, sorafenib and AZ628, and low-dose nintedanib, a triple receptor tyrosine kinase inhibitor upstream from Ras, reversed the abnormal proliferation and hypermotility of BMPR2 deficiency. Inhibition of dysregulated Ras/Raf/ERK signaling may be useful in reversing vascular remodeling in PAH.
Collapse
Affiliation(s)
- Keytam S Awad
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Jason M Elinoff
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Shuibang Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Salina Gairhe
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Gabriela A Ferreyra
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Rongman Cai
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Michael A Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and Cardiopulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
61
|
Chen X, Talati M, Fessel JP, Hemnes AR, Gladson S, French J, Shay S, Trammell A, Phillips JA, Hamid R, Cogan JD, Dawson EP, Womble KE, Hedges LK, Martinez EG, Wheeler LA, Loyd JE, Majka SJ, West J, Austin ED. Estrogen Metabolite 16α-Hydroxyestrone Exacerbates Bone Morphogenetic Protein Receptor Type II-Associated Pulmonary Arterial Hypertension Through MicroRNA-29-Mediated Modulation of Cellular Metabolism. Circulation 2015; 133:82-97. [PMID: 26487756 DOI: 10.1161/circulationaha.115.016133] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 10/02/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a proliferative disease of the pulmonary vasculature that preferentially affects women. Estrogens such as the metabolite 16α-hydroxyestrone (16αOHE) may contribute to PAH pathogenesis, and alterations in cellular energy metabolism associate with PAH. We hypothesized that 16αOHE promotes heritable PAH (HPAH) via microRNA-29 (miR-29) family upregulation and that antagonism of miR-29 would attenuate pulmonary hypertension in transgenic mouse models of Bmpr2 mutation. METHODS AND RESULTS MicroRNA array profiling of human lung tissue found elevation of microRNAs associated with energy metabolism, including the miR-29 family, among HPAH patients. miR-29 expression was 2-fold higher in Bmpr2 mutant mice lungs at baseline compared with controls and 4 to 8-fold higher in Bmpr2 mice exposed to 16αOHE 1.25 μg/h for 4 weeks. Blot analyses of Bmpr2 mouse lung protein showed significant reductions in peroxisome proliferator-activated receptor-γ and CD36 in those mice exposed to 16αOHE and protein derived from HPAH lungs compared with controls. Bmpr2 mice treated with anti-miR-29 (20-mg/kg injections for 6 weeks) had improvements in hemodynamic profile, histology, and markers of dysregulated energy metabolism compared with controls. Pulmonary artery smooth muscle cells derived from Bmpr2 murine lungs demonstrated mitochondrial abnormalities, which improved with anti-miR-29 transfection in vitro; endothelial-like cells derived from HPAH patient induced pluripotent stem cell lines were similar and improved with anti-miR-29 treatment. CONCLUSIONS 16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indexes of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH and reveals a possible novel therapeutic target.
Collapse
Affiliation(s)
- Xinping Chen
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Megha Talati
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Joshua P Fessel
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Anna R Hemnes
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Santhi Gladson
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Jaketa French
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Sheila Shay
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Aaron Trammell
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - John A Phillips
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Rizwan Hamid
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Joy D Cogan
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Elliott P Dawson
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Kristie E Womble
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Lora K Hedges
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Elizabeth G Martinez
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Lisa A Wheeler
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - James E Loyd
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Susan J Majka
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - James West
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Eric D Austin
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.).
| |
Collapse
|
62
|
Bloodworth NC, West JD, Merryman WD. Microvessel mechanobiology in pulmonary arterial hypertension: cause and effect. Hypertension 2015; 65:483-9. [PMID: 25534705 PMCID: PMC4326545 DOI: 10.1161/hypertensionaha.114.04652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nathaniel C Bloodworth
- From the Departments of Biomedical Engineering (N.C.B., W.D.M.) and Pulmonary and Critical Care Medicine (J.D.W.), Vanderbilt University, Nashville, TN
| | - James D West
- From the Departments of Biomedical Engineering (N.C.B., W.D.M.) and Pulmonary and Critical Care Medicine (J.D.W.), Vanderbilt University, Nashville, TN
| | - W David Merryman
- From the Departments of Biomedical Engineering (N.C.B., W.D.M.) and Pulmonary and Critical Care Medicine (J.D.W.), Vanderbilt University, Nashville, TN.
| |
Collapse
|
63
|
Yao C, Yu J, Taylor L, Polgar P, McComb ME, Costello CE. Protein Expression by Human Pulmonary Artery Smooth Muscle Cells Containing a BMPR2 Mutation and the Action of ET-1 as Determined by Proteomic Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 378:347-359. [PMID: 25866469 PMCID: PMC4387548 DOI: 10.1016/j.ijms.2014.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and remodeling. Increase in the population of vascular smooth muscle cells is among the key events contributing to the remodeling. Endothelin-1 (ET-1), a potent vasoconstrictor, is linked to the etiology and progression of PAH. Here we analyze changes in protein expressions in response to ET-1 in pulmonary arterial smooth muscle cells (PASMC) from a healthy Control (non-PAH) and a PAH subject presenting a bone morphogenetic protein type II receptor (BMPR2) mutation with exon 1-8 deletion. Protein expressions were analyzed by proteomic mass spectrometry using label-free quantitation and the correlations were subjected to Ingenuity™ Pathway Analysis. The results point to eIF2/mTOR/p70S6K, RhoA/actin cytoskeleton/integrin and protein unbiquitination as canonical pathways whose protein expressions increase with the development of PAH. These pathways have an intimal function in the PAH-related physiology of smooth muscle proliferation, apoptosis, contraction and cellular stress. Exposure of the cells to ET-1 further increases protein expression within these pathways. Thus our results show changes in signaling pathways as a consequence of PAH and the effect of ET-1 interference on Control and PAH-affected cells.
Collapse
Affiliation(s)
- Chunxiang Yao
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 USA
| | - Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Linda Taylor
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Peter Polgar
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Mark E. McComb
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 USA
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| |
Collapse
|
64
|
Hemnes AR, Trammell AW, Archer SL, Rich S, Yu C, Nian H, Penner N, Funke M, Wheeler L, Robbins IM, Austin ED, Newman JH, West J. Peripheral blood signature of vasodilator-responsive pulmonary arterial hypertension. Circulation 2014; 131:401-9; discussion 409. [PMID: 25361553 DOI: 10.1161/circulationaha.114.013317] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterogeneity in response to treatment of pulmonary arterial hypertension (PAH) is a major challenge to improving outcome in this disease. Although vasodilator-responsive PAH (VR-PAH) accounts for a minority of cases, VR-PAH has a pronounced response to calcium channel blockers and better survival than vasodilator-nonresponsive PAH (VN-PAH). We hypothesized that VR-PAH has a different molecular cause from VN-PAH that can be detected in the peripheral blood. METHODS AND RESULTS Microarrays of cultured lymphocytes from VR-PAH and VN-PAH patients followed at Vanderbilt University were performed with quantitative polymerase chain reaction performed on peripheral blood for the 25 most different genes. We developed a decision tree to identify VR-PAH patients on the basis of the results with validation in a second VR-PAH cohort from the University of Chicago. We found broad differences in gene expression patterns on microarray analysis including cell-cell adhesion factors and cytoskeletal and rho-GTPase genes. Thirteen of 25 genes tested in whole blood were significantly different: EPDR1, DSG2, SCD5, P2RY5, MGAT5, RHOQ, UCHL1, ZNF652, RALGPS2, TPD52, MKNL1, RAPGEF2, and PIAS1. Seven decision trees were built with the use of expression levels of 2 genes as the primary genes: DSG2, a desmosomal cadherin involved in Wnt/β-catenin signaling, and RHOQ, which encodes a cytoskeletal protein involved in insulin-mediated signaling. These trees correctly identified 5 of 5 VR-PAH patients in the validation cohort. CONCLUSIONS VR-PAH and VN-PAH can be differentiated with the use of RNA expression patterns in peripheral blood. These differences may reflect different molecular causes of the 2 PAH phenotypes. This biomarker methodology may identify PAH patients who have a favorable treatment response.
Collapse
Affiliation(s)
- Anna R Hemnes
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.).
| | - Aaron W Trammell
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Stephen L Archer
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Stuart Rich
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Chang Yu
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Hui Nian
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Niki Penner
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Mitchell Funke
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Lisa Wheeler
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Ivan M Robbins
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - Eric D Austin
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - John H Newman
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| | - James West
- From the Division of Allergy, Pulmonary, and Critical Care Medicine (A.R.H., A.W.T., N.P., M.F., L.W., I.M.R., J.H.N., J.W.) and Department of Biostatistics (C.Y., H.N.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.); Division of Cardiology, University of Chicago, Chicago, IL (S.R.); and Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (E.D.A.)
| |
Collapse
|
65
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 725] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
66
|
NF-κB Activation Exacerbates, but Is not Required for Murine Bmpr2-Related Pulmonary Hypertension. Diseases 2014. [DOI: 10.3390/diseases2020148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
67
|
West J, Austin E, Fessel JP, Loyd J, Hamid R. Rescuing the BMPR2 signaling axis in pulmonary arterial hypertension. Drug Discov Today 2014; 19:1241-5. [PMID: 24794464 DOI: 10.1016/j.drudis.2014.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disorder characterized by pulmonary arterial remodeling, increased right ventricular systolic pressure (RVSP), vasoconstriction and inflammation. The heritable form of PAH (HPAH) is usually (>80%) caused by mutations in the bone morphogenic protein receptor 2 (BMPR2) gene. Existing treatments for PAH typically focus on the end-stage sequelae of the disease, but do not address underlying mechanisms of vascular obstruction and blood flow and thus, in the long run, have limited effect because they treat the symptoms rather than the cause. Over the past decade, improved understanding of the molecular mechanisms behind the disease has enabled us to consider several novel therapeutic pathways. These include approaches directed toward BMPR2 gene expression, alternative splicing, downstream BMP signaling, metabolic pathways and the role of estrogens and estrogenic compounds in BMP signaling. It is likely that, ultimately, only one or two of these pathways will generate meaningful treatment options, however the potential benefits to PAH patients are still likely to be significant.
Collapse
Affiliation(s)
- James West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joshua P Fessel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James Loyd
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
68
|
Talati M, West J, Zaynagetdinov R, Hong CC, Han W, Blackwell T, Robinson L, Blackwell TS, Lane K. BMP pathway regulation of and by macrophages. PLoS One 2014; 9:e94119. [PMID: 24713633 PMCID: PMC3979749 DOI: 10.1371/journal.pone.0094119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/14/2014] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC) treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.
Collapse
Affiliation(s)
- Megha Talati
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - James West
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - Rinat Zaynagetdinov
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Charles C. Hong
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Wei Han
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tom Blackwell
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Linda Robinson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Timothy S. Blackwell
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kirk Lane
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
69
|
Hemnes AR, Brittain EL, Trammell AW, Fessel JP, Austin ED, Penner N, Maynard KB, Gleaves L, Talati M, Absi T, Disalvo T, West J. Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med 2014; 189:325-34. [PMID: 24274756 DOI: 10.1164/rccm.201306-1086oc] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Shorter survival in heritable pulmonary arterial hypertension (HPAH), often due to BMPR2 mutation, has been described in association with impaired right ventricle (RV) compensation. HPAH animal models are insulin resistant, and cells with BMPR2 mutation have impaired fatty acid oxidation, but whether these findings affect the RV in HPAH is unknown. OBJECTIVES To test the hypothesis that BMPR2 mutation impairs RV hypertrophic responses in association with lipid deposition. METHODS RV hypertrophy was assessed in two models of mutant Bmpr2 expression, smooth muscle-specific (Sm22(R899X)) and universal expression (Rosa26(R899X)). Littermate control mice underwent the same stress using pulmonary artery banding (Low-PAB). Lipid content was assessed in rodent and human HPAH RVs and in Rosa26(R899X) mice after metformin administration. RV microarrays were performed using human HPAH and control subjects. RESULTS RV/(left ventricle + septum) did not rise directly in proportion to RV systolic pressure in Rosa26(R899X) but did in Sm22(R899X) (P < 0.05). Rosa26(R899X) RVs demonstrated intracardiomyocyte triglyceride deposition not present in Low-PAB (P < 0.05). RV lipid deposition was identified in human HPAH RVs but not in controls. Microarray analysis demonstrated defects in fatty acid oxidation in human HPAH RVs. Metformin in Rosa26(R899X) mice resulted in reduced RV lipid deposition. CONCLUSIONS These data demonstrate that Bmpr2 mutation affects RV stress responses in a transgenic rodent model. Impaired RV hypertrophy and triglyceride and ceramide deposition are present as a function of RV mutant Bmpr2 in mice; fatty acid oxidation impairment in human HPAH RVs may underlie this finding. Further study of how BMPR2 mediates RV lipotoxicity is warranted.
Collapse
|
70
|
O'Connell C, O'Callaghan DS, Humbert M. Novel medical therapies for pulmonary arterial hypertension. Clin Chest Med 2014; 34:867-80. [PMID: 24267310 DOI: 10.1016/j.ccm.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Available targeted therapies for pulmonary arterial hypertension are capable only of slowing progression of the disease and a cure remains elusive. However with the improved understanding of the pulmonary vascular remodeling that characterizes the disease, there is optimism that the disconnect between preclinical and clinical studies may be bridged with some of the newer therapies that are now at different stages of clinical evaluation. This article examines the evidence behind these new candidate treatments that may become part of the arsenal available for clinicians managing this devastating disease.
Collapse
Affiliation(s)
- Caroline O'Connell
- Department of Respiratory Medicine, Mater Misericordiae University Hospital, 56 Eccles Street, Dublin 7, Ireland.
| | | | | |
Collapse
|
71
|
Fessel JP, Flynn CR, Robinson LJ, Penner NL, Gladson S, Kang CJ, Wasserman DH, Hemnes AR, West JD. Hyperoxia synergizes with mutant bone morphogenic protein receptor 2 to cause metabolic stress, oxidant injury, and pulmonary hypertension. Am J Respir Cell Mol Biol 2013; 49:778-87. [PMID: 23742019 DOI: 10.1165/rcmb.2012-0463oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) has been associated with a number of different but interrelated pathogenic mechanisms. Metabolic and oxidative stresses have been shown to play important pathogenic roles in a variety of model systems. However, many of these relationships remain at the level of association. We sought to establish a direct role for metabolic stress and oxidant injury in the pathogenesis of PAH. Mice that universally express a disease-causing mutation in bone morphogenic protein receptor 2 (Bmpr2) were exposed to room air or to brief daily hyperoxia (95% oxygen for 3 h) for 6 weeks, and were compared with wild-type animals undergoing identical exposures. In both murine tissues and cultured endothelial cells, the expression of mutant Bmpr2 was sufficient to cause oxidant injury that was particularly pronounced in mitochondrial membranes. With the enhancement of mitochondrial generation of reactive oxygen species by hyperoxia, oxidant injury was substantially enhanced in mitochondrial membranes, even in tissues distant from the lung. Hyperoxia, despite its vasodilatory actions in the pulmonary circulation, significantly worsened the PAH phenotype (elevated right ventricular systolic pressure, decreased cardiac output, and increased pulmonary vascular occlusion) in Bmpr2 mutant animals. These experiments demonstrate that oxidant injury and metabolic stress contribute directly to disease development, and provide further evidence for PAH as a systemic disease with life-limiting cardiopulmonary manifestations.
Collapse
Affiliation(s)
- Joshua P Fessel
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Yang YM, Lane KB, Sehgal PB. Subcellular mechanisms in pulmonary arterial hypertension: combinatorial modalities that inhibit anterograde trafficking and cause bone morphogenetic protein receptor type 2 mislocalization. Pulm Circ 2013; 3:533-50. [PMID: 24618539 DOI: 10.1086/674336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract The natural history of familial pulmonary arterial hypertension (PAH) typically involves mutations in and/or haploinsuffciency of BMPR2 (gene for bone morphogenetic protein receptor type 2) but with low penetrance (10%-15%), delayed onset (in the third or fourth decade), and a gender bias (two- to fourfold more prevalent in postpubertal women). Thus, investigators have sought an understanding of "second-hit" modalities that might affect BMPR2 anterograde trafficking and/or function. Indeed, vascular lung lesions in PAH have been reported to contain enlarged "vacuolated" endothelial and smooth muscle cells with dilated endoplasmic reticulum (ER) cisternae, increased ER structural protein reticulon 4 (also called Nogo-B), and enlarged and fragmented Golgi apparatus. We recently replicated this cellular phenotype in primary human pulmonary arterial endothelial cells and human pulmonary arterial smooth muscle cells in culture by acute knockdown of the estradiol 17β (E2)-responsive proteins signal transducer and activator of transcription 5a (STAT5a) and STAT5b using small interfering RNAs (siRNAs). We have now investigated whether functional haploinsufficiences of these molecules, alone or in combination with other modalities, might interfere with anterograde membrane trafficking using (a) the quantitative tsO45VSV-G-GFP trafficking assay and (b) assays for cell-surface localization of Flag-tagged BMPR2 molecules. The G glycoprotein of the vesicular stomatitis virus (VSV-G) trafficking assay was validated in EA.hy926 endothelial cells by showing that cells exposed to monocrotaline pyrrole displayed reduced anterograde trafficking. Thereafter, the combinatorial knockdowns of STAT5a, STAT5b, BMPR2, and/or endothelial nitric oxide synthase as well as exposure to E2 or 2-methoxyestradiol were observed to significantly inhibit VSV-G trafficking. These combinations also led to intracellular trapping of wild-type Flag-tagged BMPR2. Overexpression of the PAH disease-derived F14 and KDF mutants of BMPR2, which were trapped in the ER/Golgi, also inhibited VSV-G trafficking in trans. Moreover, probenecid, a chemical chaperone in clinical use today, partially restored cell-surface localization of the KDF but not the F14 mutant. These data identify several combinatorial modalities that inhibit VSV-G anterograde trafficking and cause mislocalization of BMPR2. These modalities merit consideration in defining aspects of the late-developing and gender-biased natural history of human PAH.
Collapse
Affiliation(s)
- Yang-Ming Yang
- 1 Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | | | | |
Collapse
|
73
|
Fessel JP, Chen X, Frump A, Gladson S, Blackwell T, Kang C, Johnson J, Loyd JE, Hemnes A, Austin E, West J. Interaction between bone morphogenetic protein receptor type 2 and estrogenic compounds in pulmonary arterial hypertension. Pulm Circ 2013; 3:564-77. [PMID: 24618541 DOI: 10.1086/674312] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract The majority of heritable pulmonary arterial hypertension (HPAH) cases are associated with mutations in bone morphogenetic protein receptor type 2 (BMPR2). BMPR2 mutation carries about a 20% lifetime risk of PAH development, but penetrance is approximately three times higher in females. Previous studies have shown a correlation between estrogen metabolism and penetrance, with increased levels of the estrogen metabolite 16α-hydroxyestrone (16αOHE) and reduced levels of the metabolite 2-methoxyestrogen (2ME) associated with increased risk of disease. The goal of this study was to determine whether 16αOHE increased and 2ME decreased penetrance of disease in Bmpr2 mutant mice and, if so, by what mechanism. We found that 16αOHE∶2ME ratio was high in male human HPAH patients. Bmpr2 mutant male mice receiving chronic 16αOHE had doubled disease penetrance, associated with reduced cardiac output. 2ME did not have a significant protective effect, either alone or in combination with 16αOHE. In control mice but not in Bmpr2 mutant mice, 16αOHE suppressed bone morphogenetic protein signaling, probably directly through suppression of Bmpr2 protein. Bmpr2 mutant pulmonary microvascular endothelial cells were insensitive to estrogen signaling through canonical pathways, associated with aberrant intracellular localization of estrogen receptor α. In both control and Bmpr2 mutant mice, 16αOHE was associated with suppression of cytokine expression but with increased alternate markers of injury, including alterations in genes related to thrombotic function, angiogenesis, planar polarity, and metabolism. These data support a causal relationship between increased 16αOHE and increased PAH penetrance, with the likely molecular mechanisms including suppression of BMPR2, alterations in estrogen receptor translocation, and induction of vascular injury and insulin resistance-related pathways.
Collapse
Affiliation(s)
- Joshua P Fessel
- 1 Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Brittain E, Penner NL, West J, Hemnes A. Echocardiographic assessment of the right heart in mice. J Vis Exp 2013. [PMID: 24326586 DOI: 10.3791/50912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Transgenic and toxic models of pulmonary arterial hypertension (PAH) are widely used to study the pathophysiology of PAH and to investigate potential therapies. Given the expense and time involved in creating animal models of disease, it is critical that researchers have tools to accurately assess phenotypic expression of disease. Right ventricular dysfunction is the major manifestation of pulmonary hypertension. Echocardiography is the mainstay of the noninvasive assessment of right ventricular function in rodent models and has the advantage of clear translation to humans in whom the same tool is used. Published echocardiography protocols in murine models of PAH are lacking. In this article, we describe a protocol for assessing RV and pulmonary vascular function in a mouse model of PAH with a dominant negative BMPRII mutation; however, this protocol is applicable to any diseases affecting the pulmonary vasculature or right heart. We provide a detailed description of animal preparation, image acquisition and hemodynamic calculation of stroke volume, cardiac output and an estimate of pulmonary artery pressure.
Collapse
Affiliation(s)
- Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | | | | | | |
Collapse
|
75
|
Knudsen L, Ochs K, Boxler L, Tornoe I, Lykke-Sorensen G, Mackay RM, Clark HW, Holmskov U, Ochs M, Madsen J. Surfactant protein D (SP-D) deficiency is attenuated in humanised mice expressing the Met(11)Thr short nucleotide polymorphism of SP-D: implications for surfactant metabolism in the lung. J Anat 2013; 223:581-92. [PMID: 24111992 DOI: 10.1111/joa.12120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 01/01/2023] Open
Abstract
Surfactant protein D (SP-D) is part of the innate immune system involved in lung homeostasis. SP-D knockout mice show accumulations of foamy alveolar macrophages, alveolar lipoproteinosis and pulmonary emphysema. Three single nucleotide polymorphisms (SNPs) have been described in the coding sequence of the human SP-D gene SFTPD. Clinical studies showed that the SNP SFTPD with a nucleotide change from A to C resulting in a Met to Thr substitution at position 11 in the protein (Met(11)Thr), is relevant. This study set out to create a humanised mouse model of the Met(11)Thr SNP. Transgenic mice lines expressing either Met(11) or Thr(11) SP-D under the control of the ubiquitously expressed pROSA26 promoter in C57Bl/6 SP-D deficient mice (DKO) was created. Both Met(11) (142 ± 52 ng mL(-1) ) and Thr(11) (228 ± 76 ng mL(-1) ) mice lines expressed human SP-D at almost similar levels. According to the literature this was within the range of SP-D levels found in wildtype (WT) mice (253 ± 22 ng mL(-1) ). Met(11) or Thr(11) SP-D in serum from transgenic mice bound maltose in a calcium-dependent manner, and binding was inhibited in the presence of EDTA or maltose. Bronchoalveolar lavage showed for both transgenic mice lines complementation of the DKO phenotype by restoring cell counts, phospholipid levels and protein content back to WT levels. Cytospins of BAL pellet cells showed a resemblance to WT but both mice lines showed some foamy alveolar macrophages. The stereological analysis showed for none of the mice lines a complete abrogation of emphysematous alterations. However, both Met(11) and Thr(11) mice lines were partially reverted back to a WT phenotype when compared with DKO mice, indicating important effects on surfactant metabolism in vivo.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Dempsie Y, MacRitchie NA, White K, Morecroft I, Wright AF, Nilsen M, Loughlin L, Mair KM, MacLean MR. Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension. Cardiovasc Res 2013; 99:24-34. [PMID: 23519266 PMCID: PMC3687748 DOI: 10.1093/cvr/cvt064] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/13/2013] [Accepted: 03/11/2013] [Indexed: 12/20/2022] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) occurs more frequently in women than men. Oestrogen and the oestrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1) play a role in the development of PAH. Anorectic drugs such as dexfenfluramine (Dfen) have been associated with the development of PAH. Dfen mediates PAH via a serotonergic mechanism and we have shown serotonin to up-regulate expression of CYP1B1 in human pulmonary artery smooth muscle cells (PASMCs). Thus here we assess the role of CYP1B1 in the development of Dfen-induced PAH. METHODS AND RESULTS Dfen (5 mg kg(-1) day(-1) PO for 28 days) increased right ventricular pressure and pulmonary vascular remodelling in female mice only. Mice dosed with Dfen showed increased whole lung expression of CYP1B1 and Dfen-induced PAH was ablated in CYP1B1(-/-) mice. In line with this, Dfen up-regulated expression of CYP1B1 in PASMCs from PAH patients (PAH-PASMCs) and Dfen-mediated proliferation of PAH-PASMCs was ablated by pharmacological inhibition of CYP1B1. Dfen increased expression of tryptophan hydroxylase 1 (Tph1; the rate-limiting enzyme in the synthesis of serotonin) in PAH-PASMCs and both Dfen-induced proliferation and Dfen-induced up-regulation of CYP1B1 were ablated by inhibition of Tph1. 17β-Oestradiol increased expression of both Tph1 and CYP1B1 in PAH-PASMCs, and Dfen and 17β-oestradiol had synergistic effects on proliferation of PAH-PASMCs. Finally, ovariectomy protected against Dfen-induced PAH in female mice. CONCLUSION CYP1B1 is critical in the development of Dfen-induced PAH in mice in vivo and proliferation of PAH-PASMCs in vitro. CYP1B1 may provide a novel therapeutic target for PAH.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors
- Aryl Hydrocarbon Hydroxylases/deficiency
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Cell Proliferation
- Cells, Cultured
- Cytochrome P-450 CYP1B1
- Dexfenfluramine
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Estradiol/pharmacology
- Familial Primary Pulmonary Hypertension
- Female
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Norfenfluramine/toxicity
- Ovariectomy
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Serotonin/metabolism
- Sex Factors
- Tryptophan Hydroxylase/metabolism
- Ventricular Function, Right
- Ventricular Pressure
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow University, West Medical Building, Glasgow G12 8QQ, UK
| |
Collapse
|
77
|
Austin ED, Lahm T, West J, Tofovic SP, Johansen AK, MacLean MR, Alzoubi A, Oka M. Gender, sex hormones and pulmonary hypertension. Pulm Circ 2013; 3:294-314. [PMID: 24015330 PMCID: PMC3757824 DOI: 10.4103/2045-8932.114756] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this "estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data.
Collapse
Affiliation(s)
- Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational, and Sleep Medicine and Richard L. Roudebush Veterans Affairs Medical Center, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James West
- Department of Medicine, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stevan P. Tofovic
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Katrine Johansen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, USA
| | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, USA
| | - Abdallah Alzoubi
- Department of Medicine and Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Masahiko Oka
- Department of Medicine and Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
78
|
Storck EM, Wojciak-Stothard B. Rho GTPases in pulmonary vascular dysfunction. Vascul Pharmacol 2013; 58:202-10. [DOI: 10.1016/j.vph.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/05/2012] [Accepted: 09/09/2012] [Indexed: 12/19/2022]
|
79
|
Maron BA, Opotowsky AR, Landzberg MJ, Loscalzo J, Waxman AB, Leopold JA. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail 2013; 15:277-83. [PMID: 23111998 PMCID: PMC3576899 DOI: 10.1093/eurjhf/hfs173] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/07/2012] [Accepted: 09/14/2012] [Indexed: 02/06/2023] Open
Abstract
AIMS Elevated levels of the mineralocorticoid hormone aldosterone are recognized as a modifiable contributor to the pathophysiology of select cardiovascular diseases due to left heart failure. In pulmonary arterial hypertension (PAH), pulmonary vascular remodelling induces right ventricular dysfunction and heart failure in the absence of left ventricular (LV) dysfunction. Hyperaldosteronism has emerged as a promoter of pulmonary vascular disease in experimental animal models of PAH; however, the extent to which hyperaldosteronism is associated with PAH in patients is unknown. Thus, the central aim of the current study is to determine if hyperaldosteronism is an unrecognized component of the PAH clinical syndrome. METHODS AND RESULTS Plasma aldosterone levels and invasive cardiopulmonary haemodynamic measurements were obtained for 25 patients referred for evaluation of unexplained dyspnoea or pulmonary hypertension. Compared with controls (n = 5), patients with PAH (n = 18) demonstrated significantly increased plasma aldosterone levels (1200.4 ± 423.9 vs. 5959.1 ± 2817.9 pg/mL, P < 0.02), mean pulmonary artery pressure (21.4 ± 5.0 vs. 45.5 ± 10.4 mmHg, P < 0.002), and pulmonary vascular resistance (PVR) (1.41 ± 0.6 vs. 7.3 ± 3.8 Wood units, P < 0.003) without differences in LV ejection fraction or pulmonary capillary wedge pressure between groups. Among patients not prescribed PAH-specific pharmacotherapy prior to cardiac catheterization, a subgroup of the cohort with severe pulmonary hypertension, aldosterone levels correlated positively with PVR (r = 0.72, P < 0.02) and transpulmonary gradient (r = 0.69, P < 0.02), but correlated inversely with cardiac output (r = -0.79, P < 0.005). CONCLUSIONS These data demonstrate a novel cardiopulmonary haemodynamic profile associated with hyperaldosteronism in patients: diminished cardiac output due to pulmonary vascular disease in the absence of LV heart failure.
Collapse
Affiliation(s)
- Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
Genetically modified mouse models have unparalleled power to determine the mechanisms behind different processes involved in the molecular and physiologic etiology of various classes of human pulmonary hypertension (PH). Processes known to be involved in PH for which there are extensive mouse models available include the following: (1) Regulation of vascular tone through secreted vasoactive factors; (2) regulation of vascular tone through potassium and calcium channels; (3) regulation of vascular remodeling through alteration in metabolic processes, either through alteration in substrate usage or through circulating factors; (4) spontaneous vascular remodeling either before or after development of elevated pulmonary pressures; and (5) models in which changes in tone and remodeling are primarily driven by inflammation. PH development in mice is of necessity faster and with different physiologic ramifications than found in human disease, and so mice make poor models of natural history of PH. However, transgenic mouse models are a perfect tool for studying the processes involved in pulmonary vascular function and disease, and can effectively be used to test interventions designed against particular molecular pathways and processes involved in disease.
Collapse
Affiliation(s)
- Mita Das
- Department of Internal Medicine, University of Arkansas Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | |
Collapse
|
81
|
Park SH, Chen WC, Hoffman C, Marsh LM, West J, Grunig G. Modification of hemodynamic and immune responses to exposure with a weak antigen by the expression of a hypomorphic BMPR2 gene. PLoS One 2013; 8:e55180. [PMID: 23383100 PMCID: PMC3558423 DOI: 10.1371/journal.pone.0055180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/19/2012] [Indexed: 01/13/2023] Open
Abstract
Background Hypomorphic mutations in the bone morphogenic protein receptor (BMPR2) confer a much greater risk for developing pulmonary arterial hypertension (PAH). However, not all carriers of a mutation in the BMPR2 gene suffer from PAH. We have previously shown that prolonged T helper 2 (Th2) responses in the lungs to a mild antigen delivered via the airways induce severe pulmonary arterial remodeling, but no pulmonary hypertension. The current studies were designed to test the idea that Th2 responses to a mild antigen together with the expression of a hypomorphic BMPR2 gene would trigger pulmonary hypertension. Methodology/Principal Findings Mice that expressed a hypomorphic BMPR2 transgene (transgene-positive) and transgene-negative mice were either exposed to saline, or primed and exposed to a mild antigen (Ovalbumin) over a prolonged period of time. Only transgene-positive but not transgene-negative mice exposed to antigen developed significantly increased right ventricular systolic pressures, while both groups showed pulmonary artery remodeling with severe muscularization and airway inflammation to a similar degree. Antigen exposure resulted in a smaller increase in the percentage of Interleukin (IL)-13 positive T cells in the lymph nodes, and in a smaller increase in resistin-like-molecule (RELM)α expression and a decreased ratio of expression of IL-33 relative to its receptor (IL-1-receptor-like 1, IL1RL1-ST2) in the right ventricles of transgene-positive mice compared to transgene-negative animals. Furthermore, only antigen-challenged transgene-positive mice showed a significant increase in Interferon (IFN)γ positive T cells over saline-exposed controls. Conclusions/Significance Our study suggests that exposure with a mild Th2 antigen can trigger pulmonary hypertension on the background of the expression of a hypomorphic BMPR2 gene and that conversely, the expression of the hypomorphic BMPR2 gene can alter the immune response to a mild, inhaled antigen.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Wen-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Carol Hoffman
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - James West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- Division of Pulmonary Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
82
|
West J, Niswender KD, Johnson JA, Pugh ME, Gleaves L, Fessel JP, Hemnes AR. A potential role for insulin resistance in experimental pulmonary hypertension. Eur Respir J 2012; 41:861-71. [PMID: 22936709 DOI: 10.1183/09031936.00030312] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patients with pulmonary arterial hypertension have increased prevalence of insulin resistance. We aimed to determine whether metabolic defects are associated with bone morphogenic protein receptor type 2 (Bmpr2) mutations in mice, and whether these may contribute to pulmonary vascular disease development. Metabolic phenotyping was performed on transgenic mice with inducible expression of Bmpr2 mutation, R899X. Phenotypic penetrance in Bmpr2(R899X) was assessed in a high-fat diet model of insulin resistance. Alterations in glucocorticoid responses were assessed in murine pulmonary microvascular endothelial cells and Bmpr2(R899X) mice treated with dexamethasone. Compared to controls, Bmpr2(R899X) mice showed increased weight gain and demonstrated insulin resistance as assessed by the homeostatic model assessment insulin resistance (1.0 ± 0.4 versus 2.2 ± 1.8) and by fat accumulation in skeletal muscle and decreased oxygen consumption. Bmpr2(R899X) mice fed a high-fat diet had strong increases in pulmonary hypertension penetrance (seven out of 11 versus three out of 11). In cell culture and in vivo experiments, Bmpr2 mutation resulted in a combination of constitutive glucocorticoid receptor activation and insensitivity. Insulin resistance is present as an early feature of Bmpr2 mutation in mice. Exacerbated insulin resistance through high-fat diet worsened pulmonary phenotype, implying a possible causal role in disease. Impaired glucocorticoid responses may contribute to metabolic defects.
Collapse
Affiliation(s)
- James West
- Pulmonary and Critical Care Medicine T1218 MCN, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | | | |
Collapse
|
83
|
Cogan J, Austin E, Hedges L, Womack B, West J, Loyd J, Hamid R. Role of BMPR2 alternative splicing in heritable pulmonary arterial hypertension penetrance. Circulation 2012; 126:1907-16. [PMID: 22923426 DOI: 10.1161/circulationaha.112.106245] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Bone morphogenic protein receptor 2 (BMPR2) gene mutations are the most common cause of heritable pulmonary arterial hypertension. However, only 20% of mutation carriers get clinical disease. Here, we explored the hypothesis that this reduced penetrance is due in part to an alteration in BMPR2 alternative splicing. METHODS AND RESULTS Our data showed that BMPR2 has multiple alternative spliced variants. Two of these, isoform-A (full length) and isoform-B (missing exon 12), were expressed in all tissues analyzed. Analysis of cultured lymphocytes of 47 BMPR2 mutation-positive heritable pulmonary arterial hypertension patients and 35 BMPR2 mutation-positive unaffected carriers showed that patients had higher levels of isoform-B compared with isoform-A (B/A ratio) than carriers (P=0.002). Furthermore, compared with cells with a low B/A ratio, cells with a high B/A ratio had lower levels of unphosphorylated cofilin after BMP stimulation. Analysis of exon 12 sequences identified an exonic splice enhancer that binds serine arginine splicing factor 2 (SRSF2). Because SRSF2 promotes exon inclusion, reduced SRSF2 expression would mean that exon 12 would not be included in final BMPR2 mRNA (thus promoting increased isoform-B formation). Western blot analysis showed that SRSF2 expression was lower in cells from patients compared with cells from carriers and that siRNA-mediated knockdown of SRSF2 in pulmonary microvascular endothelial cells resulted in elevated levels of isoform-B compared with isoform-A, ie, an elevated B/A ratio. CONCLUSIONS Alterations in BMPR2 isoform ratios may provide an explanation of the reduced penetrance among BMPR2 mutation carriers. This ratio is controlled by an exonic splice enhancer in exon 12 and its associated splicing factor, SRSF2.
Collapse
Affiliation(s)
- Joy Cogan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
West J, Loyd JE, Hamid R. Potential Interventions Against BMPR2-Related Pulmonary Hypertension. ACTA ACUST UNITED AC 2012. [DOI: 10.21693/1933-088x-11.1.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
For more than 60 years, researchers have sought to understand the molecular basis of idiopathic pulmonary arterial hypertension (PAH). Recognition of the heritable form of the disease led to the creation of patient registries in the 1980s and 1990s, and discovery of BMPR2 as the cause of roughly 80% of heritable PAH in 2000. With discovery of the disease gene came opportunity for intervention, with focus on 2 alternative approaches. First, it may be possible to correct the effects of BMPR2 mutation directly through interventions targeted at correction of trafficking defects, increasing expression of the unmutated allele, and correction of splicing defects. Second, therapeutic interventions are being targeted at the signaling consequences of BMPR2 mutation. In particular, therapies targeting cytoskeletal and metabolic defects caused by BMPR2 mutation are currently in trials, or will be ready for human trials in the near future. Translation of these findings into therapies is the culmination of decades of research, and holds great promise for treatment of the underlying molecular bases of disease.
Collapse
Affiliation(s)
- James West
- Vanderbilt University Medical Center, Department of Medicine, Nashville, Tennessee
| | - James E. Loyd
- Vanderbilt University Medical Center, Department of Medicine, Nashville, Tennessee
| | - Rizwan Hamid
- Vanderbilt University Medical Center, Departments of Genetics and Pediatrics, Nashville, Tennessee
| |
Collapse
|