51
|
van der Laan M, Horvath SE, Pfanner N. Mitochondrial contact site and cristae organizing system. Curr Opin Cell Biol 2016; 41:33-42. [DOI: 10.1016/j.ceb.2016.03.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/19/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
52
|
Targeting fatty acid metabolism in heart failure: is it a suitable therapeutic approach? Drug Discov Today 2016; 21:1003-8. [DOI: 10.1016/j.drudis.2016.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 01/05/2023]
|
53
|
Emery SM, Dobrowsky RT. Promoting Neuronal Tolerance of Diabetic Stress: Modulating Molecular Chaperones. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:181-210. [PMID: 27133150 DOI: 10.1016/bs.irn.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The etiology of diabetic peripheral neuropathy (DPN) involves an interrelated series of metabolic and vascular insults that ultimately contribute to sensory neuron degeneration. In the quest to pharmacologically manage DPN, small-molecule inhibitors have targeted proteins and pathways regarded as "diabetes specific" as well as others whose activity are altered in numerous disease states. These efforts have not yielded any significant therapies, due in part to the complicating issue that the biochemical contribution of these targets/pathways to the progression of DPN does not occur with temporal and/or biochemical uniformity between individuals. In a complex, chronic neurodegenerative disease such as DPN, it is increasingly appreciated that effective disease management may not necessarily require targeting a pathway or protein considered to contribute to disease progression. Alternatively, it may prove sufficiently beneficial to pharmacologically enhance the activity of endogenous cytoprotective pathways to aid neuronal tolerance to and recovery from glucotoxic stress. In pursuing this paradigm shift, we have shown that modulating the activity and expression of molecular chaperones such as heat shock protein 70 (Hsp70) may provide translational potential for the effective medical management of insensate DPN. Considerable evidence supports that modulating Hsp70 has beneficial effects in improving inflammation, oxidative stress, and glucose sensitivity. Given the emerging potential of modulating Hsp70 to manage DPN, the current review discusses efforts to characterize the cytoprotective effects of this protein and the benefits and limitations that may arise in drug development efforts that exploit its cytoprotective activity.
Collapse
Affiliation(s)
- S M Emery
- The University of Kansas, Lawrence, KS, United States
| | - R T Dobrowsky
- The University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
54
|
Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, Fan GC, Lu Y, Abel ED, Greer PA, Peng T. Mitochondrial Calpain-1 Disrupts ATP Synthase and Induces Superoxide Generation in Type 1 Diabetic Hearts: A Novel Mechanism Contributing to Diabetic Cardiomyopathy. Diabetes 2016; 65:255-68. [PMID: 26470784 PMCID: PMC4686953 DOI: 10.2337/db15-0963] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/07/2015] [Indexed: 02/05/2023]
Abstract
Calpain plays a critical role in cardiomyopathic changes in type 1 diabetes (T1D). This study investigated how calpain regulates mitochondrial reactive oxygen species (ROS) generation in the development of diabetic cardiomyopathy. T1D was induced in transgenic mice overexpressing calpastatin, in mice with cardiomyocyte-specific capn4 deletion, or in their wild-type littermates by injection of streptozotocin. Calpain-1 protein and activity in mitochondria were elevated in diabetic mouse hearts. The increased mitochondrial calpain-1 was associated with an increase in mitochondrial ROS generation and oxidative damage and a reduction in ATP synthase-α (ATP5A1) protein and ATP synthase activity. Genetic inhibition of calpain or upregulation of ATP5A1 increased ATP5A1 and ATP synthase activity, prevented mitochondrial ROS generation and oxidative damage, and reduced cardiomyopathic changes in diabetic mice. High glucose concentration induced ATP synthase disruption, mitochondrial superoxide generation, and cell death in cardiomyocytes, all of which were prevented by overexpression of mitochondria-targeted calpastatin or ATP5A1. Moreover, upregulation of calpain-1 specifically in mitochondria induced the cleavage of ATP5A1, superoxide generation, and apoptosis in cardiomyocytes. In summary, calpain-1 accumulation in mitochondria disrupts ATP synthase and induces ROS generation, which promotes diabetic cardiomyopathy. These findings suggest a novel mechanism for and may have significant implications in diabetic cardiac complications.
Collapse
Affiliation(s)
- Rui Ni
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Pathology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Pathology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - David J Hill
- Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Tao Sun
- Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Richard B Gardiner
- Department of Biology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Pathology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
55
|
Abstract
Mitochondrial dynamics, fission and fusion, were first identified in yeast with investigation in heart cells beginning only in the last 5 to 7 years. In the ensuing time, it has become evident that these processes are not only required for healthy mitochondria, but also, that derangement of these processes contributes to disease. The fission and fusion proteins have a number of functions beyond the mitochondrial dynamics. Many of these functions are related to their membrane activities, such as apoptosis. However, other functions involve other areas of the mitochondria, such as OPA1's role in maintaining cristae structure and preventing cytochrome c leak, and its essential (at least a 10 kDa fragment of OPA1) role in mtDNA replication. In heart disease, changes in expression of these important proteins can have detrimental effects on mitochondrial and cellular function.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| | - T T Liu
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| |
Collapse
|
56
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
57
|
Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes. Biochem Biophys Res Commun 2015; 468:73-8. [PMID: 26546819 DOI: 10.1016/j.bbrc.2015.10.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring (14)C-CO2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation.
Collapse
|
58
|
Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, Petralia CC, Petralia A, Maiolino L, Serra A, Calabrese EJ, Calabrese V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 2015; 12:20. [PMID: 26543490 PMCID: PMC4634585 DOI: 10.1186/s12979-015-0046-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.
Collapse
Affiliation(s)
- Sandro Dattilo
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Cesare Mancuso
- />Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Guido Koverech
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Paola Di Mauro
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Maria Laura Ontario
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | | | - Antonino Petralia
- />Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Luigi Maiolino
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Agostino Serra
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Edward J. Calabrese
- />Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA USA
| | - Vittorio Calabrese
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| |
Collapse
|
59
|
Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 309:H1453-H1467. [PMID: 26386112 PMCID: PMC4666974 DOI: 10.1152/ajpheart.00554.2015] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities.
Collapse
Affiliation(s)
- Zoltán V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland; Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Peter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary; and
| | - Lucas Liaudet
- Department of Intensive Care Medicine BH 08-621-University Hospital Medical Center, Lausanne, Switzerland
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland;
| |
Collapse
|
60
|
Nichols CE, Shepherd DL, Knuckles TL, Thapa D, Stricker JC, Stapleton PA, Minarchick VC, Erdely A, Zeidler-Erdely PC, Alway SE, Nurkiewicz TR, Hollander JM. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol 2015; 309:H2017-30. [PMID: 26497962 DOI: 10.1152/ajpheart.00353.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/05/2015] [Indexed: 01/29/2023]
Abstract
Throughout the United States, air pollution correlates with adverse health outcomes, and cardiovascular disease incidence is commonly increased following environmental exposure. In areas surrounding active mountaintop removal mines (MTM), a further increase in cardiovascular morbidity is observed and may be attributed in part to particulate matter (PM) released from the mine. The mitochondrion has been shown to be central in the etiology of many cardiovascular diseases, yet its roles in PM-related cardiovascular effects are not realized. In this study, we sought to elucidate the cardiac processes that are disrupted following exposure to mountaintop removal mining particulate matter (PM MTM). To address this question, we exposed male Sprague-Dawley rats to PM MTM, collected within one mile of an active MTM site, using intratracheal instillation. Twenty-four hours following exposure, we evaluated cardiac function, apoptotic indices, and mitochondrial function. PM MTM exposure elicited a significant decrease in ejection fraction and fractional shortening compared with controls. Investigation into the cellular impacts of PM MTM exposure identified a significant increase in mitochondrial-induced apoptotic signaling, as reflected by an increase in TUNEL-positive nuclei and increased caspase-3 and -9 activities. Finally, a significant increase in mitochondrial transition pore opening leading to decreased mitochondrial function was identified following exposure. In conclusion, our data suggest that pulmonary exposure to PM MTM increases cardiac mitochondrial-associated apoptotic signaling and decreases mitochondrial function concomitant with decreased cardiac function. These results suggest that increased cardiovascular disease incidence in populations surrounding MTM mines may be associated with increased cardiac cell apoptotic signaling and decreased mitochondrial function.
Collapse
Affiliation(s)
- Cody E Nichols
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Danielle L Shepherd
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Travis L Knuckles
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia; West Virginia University, School of Public Health, Morgantown, West Virginia
| | - Dharendra Thapa
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Janelle C Stricker
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia; West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia
| | - Valerie C Minarchick
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia; West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia
| | - Aaron Erdely
- West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia; National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Patti C Zeidler-Erdely
- West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia; National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Stephen E Alway
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Timothy R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia; West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia
| | - John M Hollander
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia;
| |
Collapse
|
61
|
O'Connell GC, Nichols C, Guo G, Croston TL, Thapa D, Hollander JM, Pistilli EE. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome. Mitochondrion 2015; 25:87-97. [PMID: 26458787 DOI: 10.1016/j.mito.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.
Collapse
Affiliation(s)
| | | | - Ge Guo
- Division of Exercise Physiology, United States
| | | | | | - John M Hollander
- Division of Exercise Physiology, United States; Center for Cardiovascular and Respiratory Sciences, United States
| | - Emidio E Pistilli
- Division of Exercise Physiology, United States; Center for Cardiovascular and Respiratory Sciences, United States; Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
62
|
Jagannathan R, Thapa D, Nichols CE, Shepherd DL, Stricker JC, Croston TL, Baseler WA, Lewis SE, Martinez I, Hollander JM. Translational Regulation of the Mitochondrial Genome Following Redistribution of Mitochondrial MicroRNA in the Diabetic Heart. ACTA ACUST UNITED AC 2015; 8:785-802. [PMID: 26377859 DOI: 10.1161/circgenetics.115.001067] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/01/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cardiomyocytes are rich in mitochondria which are situated in spatially distinct subcellular regions, including those under the plasma membrane, subsarcolemmal mitochondria, and those between the myofibrils, interfibrillar mitochondria. We previously observed subpopulation-specific differences in mitochondrial proteomes following diabetic insult. The objective of this study was to determine whether mitochondrial genome-encoded proteins are regulated by microRNAs inside the mitochondrion and whether subcellular spatial location or diabetes mellitus influences the dynamics. METHODS AND RESULTS Using microarray technology coupled with cross-linking immunoprecipitation and next generation sequencing, we identified a pool of mitochondrial microRNAs, termed mitomiRs, that are redistributed in spatially distinct mitochondrial subpopulations in an inverse manner following diabetic insult. Redistributed mitomiRs displayed distinct interactions with the mitochondrial genome requiring specific stoichiometric associations with RNA-induced silencing complex constituents argonaute-2 (Ago2) and fragile X mental retardation-related protein 1 (FXR1) for translational regulation. In the presence of Ago2 and FXR1, redistribution of mitomiR-378 to the interfibrillar mitochondria following diabetic insult led to downregulation of mitochondrially encoded F0 component ATP6. Next generation sequencing analyses identified specific transcriptome and mitomiR sequences associated with ATP6 regulation. Overexpression of mitomiR-378 in HL-1 cells resulted in its accumulation in the mitochondrion and downregulation of functional ATP6 protein, whereas antagomir blockade restored functional ATP6 protein and cardiac pump function. CONCLUSIONS We propose mitomiRs can translationally regulate mitochondrially encoded proteins in spatially distinct mitochondrial subpopulations during diabetes mellitus. The results reveal the requirement of RNA-induced silencing complex constituents in the mitochondrion for functional mitomiR translational regulation and provide a connecting link between diabetic insult and ATP synthase function.
Collapse
Affiliation(s)
- Rajaganapathi Jagannathan
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Dharendra Thapa
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Cody E Nichols
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Danielle L Shepherd
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Janelle C Stricker
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Tara L Croston
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Walter A Baseler
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Sara E Lewis
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Ivan Martinez
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - John M Hollander
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown.
| |
Collapse
|
63
|
Wende AR. Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 2015; 10:25-38. [PMID: 26140508 PMCID: PMC4698356 DOI: 10.1002/prca.201500052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Cardiovascular complications are the leading cause of death in diabetic patients. Decades of research has focused on altered gene expression, altered cellular signaling, and altered metabolism. This work has led to better understanding of disease progression and treatments aimed at reversing or stopping this deadly process. However, one of the pieces needed to complete the puzzle and bridge the gap between altered gene expression and changes in signaling/metabolism is the proteome and its host of modifications. Defining the mechanisms of regulation includes examining protein levels, localization, and activity of the functional component of cellular machinery. Excess or misutilization of nutrients in obesity and diabetes may lead to PTMs contributing to cardiovascular disease progression. PTMs link regulation of metabolic changes in the healthy and diseased heart with regulation of gene expression itself (e.g. epigenetics), protein enzymatic activity (e.g. mitochondrial oxidative capacity), and function (e.g. contractile machinery). Although a number of PTMs are involved in each of these pathways, we will highlight the role of the serine and threonine O‐linked addition of β‐N‐acetyl‐glucosamine or O‐GlcNAcylation. This nexus of nutrient supply, utilization, and storage allows for the modification and translation of mitochondrial function to many other aspects of the cell.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
64
|
Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differ 2015; 23:380-92. [PMID: 26250910 DOI: 10.1038/cdd.2015.102] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/14/2015] [Accepted: 06/22/2015] [Indexed: 01/23/2023] Open
Abstract
The MICOS complex (mitochondrial contact site and cristae organizing system) is essential for mitochondrial inner membrane organization and mitochondrial membrane contacts, however, the molecular regulation of MICOS assembly and the physiological functions of MICOS in mammals remain obscure. Here, we report that Mic60/Mitofilin has a critical role in the MICOS assembly, which determines the mitochondrial morphology and mitochondrial DNA (mtDNA) organization. The downregulation of Mic60/Mitofilin or Mic19/CHCHD3 results in instability of other MICOS components, disassembly of MICOS complex and disorganized mitochondrial cristae. We show that there exists direct interaction between Mic60/Mitofilin and Mic19/CHCHD3, which is crucial for their stabilization in mammals. Importantly, we identified that the mitochondrial i-AAA protease Yme1L regulates Mic60/Mitofilin homeostasis. Impaired MICOS assembly causes the formation of 'giant mitochondria' because of dysregulated mitochondrial fusion and fission. Also, mtDNA nucleoids are disorganized and clustered in these giant mitochondria in which mtDNA transcription is attenuated because of remarkable downregulation of some key mtDNA nucleoid-associated proteins. Together, these findings demonstrate that Mic60/Mitofilin homeostasis regulated by Yme1L is central to the MICOS assembly, which is required for maintenance of mitochondrial morphology and organization of mtDNA nucleoids.
Collapse
|
65
|
Gorr MW, Wold LE. Mitofilin: Key factor in diabetic cardiomyopathy? J Mol Cell Cardiol 2015; 85:292-3. [DOI: 10.1016/j.yjmcc.2014.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
|
66
|
Abstract
SIGNIFICANCE Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca(2+) handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. RECENT ADVANCES Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. CRITICAL ISSUES Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. FUTURE DIRECTIONS Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction.
Collapse
Affiliation(s)
- Chad A Galloway
- 1Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Yisang Yoon
- 2Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
67
|
Kubli DA, Gustafsson ÅB. Unbreak my heart: targeting mitochondrial autophagy in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1527-44. [PMID: 25808102 PMCID: PMC4449713 DOI: 10.1089/ars.2015.6322] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Diabetes is strongly associated with increased incidence of heart disease and mortality due to development of diabetic cardiomyopathy. Even in the absence of cardiovascular disease, cardiomyopathy frequently arises in diabetic patients. Current treatment options for cardiomyopathy in diabetic patients are the same as for nondiabetic patients and do not address the causes underlying the loss of contractility. RECENT ADVANCES Although there are numerous distinctions between Type 1 and Type 2 diabetes, recent evidence suggests that the two disease states converge on mitochondria as an epicenter for cardiomyocyte damage. CRITICAL ISSUES Accumulation of dysfunctional mitochondria contributes to cardiac tissue injury in both acute and chronic conditions. Removal of damaged mitochondria by macroautophagy, termed "mitophagy," is critical for maintaining cardiomyocyte health and contractility both under normal conditions and during stress. However, very little is known about the involvement of mitophagy in the pathogenesis of diabetic cardiomyopathy. A growing interest in this topic has given rise to a wave of publications that aim at deciphering the status of autophagy and mitophagy in Type 1 and Type 2 diabetes. FUTURE DIRECTIONS This review summarizes these recent studies with the goal of drawing conclusions about the activation or suppression of autophagy and mitophagy in the diabetic heart. A better understanding of how autophagy and mitophagy are affected in the diabetic myocardium is still needed, as well as whether they can be targeted therapeutically.
Collapse
Affiliation(s)
- Dieter A Kubli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
68
|
Lau E, Huang D, Cao Q, Dincer TU, Black CM, Lin AJ, Lee JM, Wang D, Liem DA, Lam MP, Ping P. Spatial and temporal dynamics of the cardiac mitochondrial proteome. Expert Rev Proteomics 2015; 12:133-46. [PMID: 25752359 PMCID: PMC4721584 DOI: 10.1586/14789450.2015.1024227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers into the clinic.
Collapse
Affiliation(s)
- Edward Lau
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Derrick Huang
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Quan Cao
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - T. Umut Dincer
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Caitie M. Black
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Amanda J. Lin
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jessica M. Lee
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Ding Wang
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - David A. Liem
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Maggie P.Y. Lam
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Peipei Ping
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Departments of Medicine, and Bioinformatics, NIH Center of Excellence in Big Data Computing at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
69
|
Thapa D, Nichols CE, Lewis SE, Shepherd DL, Jagannathan R, Croston TL, Tveter KJ, Holden AA, Baseler WA, Hollander JM. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J Mol Cell Cardiol 2015; 79:212-23. [PMID: 25463274 PMCID: PMC4302057 DOI: 10.1016/j.yjmcc.2014.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
Abstract
Mitofilin, also known as heart muscle protein, is an inner mitochondrial membrane structural protein that plays a central role in maintaining cristae morphology and structure. It is a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex which is important for mitochondrial architecture and cristae morphology. Our laboratory has previously reported alterations in mitochondrial morphology and proteomic make-up during type 1 diabetes mellitus, with mitofilin being significantly down-regulated in interfibrillar mitochondria (IFM). The goal of this study was to investigate whether overexpression of mitofilin can limit mitochondrial disruption associated with the diabetic heart through restoration of mitochondrial morphology and function. A transgenic mouse line overexpressing mitofilin was generated and mice injected intraperitoneally with streptozotocin using a multi low-dose approach. Five weeks following diabetes mellitus onset, cardiac contractile function was assessed. Restoration of ejection fraction and fractional shortening was observed in mitofilin diabetic mice as compared to wild-type controls (P<0.05 for both). Decrements observed in electron transport chain (ETC) complex I, III, IV and V activities, state 3 respiration, lipid peroxidation as well as mitochondria membrane potential in type 1 diabetic IFM were restored in mitofilin diabetic mice (P<0.05 for all). Qualitative analyses of electron micrographs revealed restoration of mitochondrial cristae structure in mitofilin diabetic mice as compared to wild-type controls. Furthermore, measurement of mitochondrial internal complexity using flow cytometry displayed significant reduction in internal complexity in diabetic IFM which was restored in mitofilin diabetic IFM (P<0.05). Taken together these results suggest that transgenic overexpression of mitofilin preserves mitochondrial structure, leading to restoration of mitochondrial function and attenuation of cardiac contractile dysfunction in the diabetic heart.
Collapse
Affiliation(s)
- Dharendra Thapa
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Cody E Nichols
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Sara E Lewis
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Danielle L Shepherd
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Rajaganapathi Jagannathan
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Tara L Croston
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Kevin J Tveter
- West Virginia University School of Medicine, Department of Surgery, Morgantown, WV 26506, USA
| | - Anthony A Holden
- West Virginia University School of Medicine, Department of Surgery, Morgantown, WV 26506, USA
| | - Walter A Baseler
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - John M Hollander
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA.
| |
Collapse
|
70
|
Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:232-242. [PMID: 24997452 PMCID: PMC4277896 DOI: 10.1016/j.bbadis.2014.06.030] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022]
Abstract
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Zoltán V Varga
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA; Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Lucas Liaudet
- Department of Intensive Care Medicine BH 08-621-University Hospital Medical Center 1011 LAUSANNE Switzerland
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers NJ Medical School, USA
| | - Peter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Pál Pacher
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA.
| |
Collapse
|
71
|
Hypertension and Insulin Resistance: Implications of Mitochondrial Dysfunction. Curr Hypertens Rep 2014; 17:504. [DOI: 10.1007/s11906-014-0504-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
72
|
Zhang Y, Xu J, Luo YX, An XZ, Zhang R, Liu G, Li H, Chen HZ, Liu DP. Overexpression of mitofilin in the mouse heart promotes cardiac hypertrophy in response to hypertrophic stimuli. Antioxid Redox Signal 2014; 21:1693-707. [PMID: 24555791 DOI: 10.1089/ars.2013.5438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Mitofilin was originally described as a heart muscle protein because of its abundance in the heart tissue; however, its function in the heart is still to be elucidated. Thus, this study aims at investigating the role of mitofilin in the heart in response to hypertrophic stimuli. RESULTS In this study, a significant increase in mitofilin expression was observed in the hearts of patients with hypertrophic cardiomyopathy. Transgenic (TG) mice with cardiomyocyte-specific overexpression of mitofilin were generated, and cardiac hypertrophy was introduced by transverse aortic constriction (TAC) or chronic infusion of isoproterenol (ISO). In TG mice overexpressing mitofilin, the level of cardiac hypertrophy was significantly greater than that in wild-type (WT) mice after TAC and ISO stimulation. A detailed analysis showed that compared with WT mice, the level of reactive oxygen species was increased after TAC and ISO induction and mitochondrial oxidative phosphorylation (OXPHOS) activity in the TG hearts was lower. These alterations may contribute to the aggravated cardiac hypertrophy observed in response to TAC and ISO stimulation. CONCLUSION Over-expression of mitofilin promotes cardiac hypertrophy under pathological conditions both in vivo and in vitro. INNOVATION Mitofilin, a mitochondria protein, is shown to be related to cardiac hypertrophy for the first time, which enhances our understanding of the role of mitochondria in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yuan Zhang
- 1 State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Hollander JM, Thapa D, Shepherd DL. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 2014; 307:H1-14. [PMID: 24778166 DOI: 10.1152/ajpheart.00747.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle.
Collapse
|
74
|
Shen X, Young R, Canty JM, Qu J. Quantitative proteomics in cardiovascular research: global and targeted strategies. Proteomics Clin Appl 2014; 8:488-505. [PMID: 24920501 DOI: 10.1002/prca.201400014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/02/2014] [Accepted: 06/06/2014] [Indexed: 11/05/2022]
Abstract
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here, we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
75
|
Croston TL, Thapa D, Holden AA, Tveter KJ, Lewis SE, Shepherd DL, Nichols CE, Long DM, Olfert IM, Jagannathan R, Hollander JM. Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart. Am J Physiol Heart Circ Physiol 2014; 307:H54-65. [PMID: 24778174 DOI: 10.1152/ajpheart.00845.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mitochondrion has been implicated in the development of diabetic cardiomyopathy. Examination of cardiac mitochondria is complicated by the existence of spatially distinct subpopulations including subsarcolemmal (SSM) and interfibrillar (IFM). Dysfunction to cardiac SSM has been reported in murine models of type 2 diabetes mellitus; however, subpopulation-based mitochondrial analyses have not been explored in type 2 diabetic human heart. The goal of this study was to determine the impact of type 2 diabetes mellitus on cardiac mitochondrial function in the human patient. Mitochondrial subpopulations from atrial appendages of patients with and without type 2 diabetes were examined. Complex I- and fatty acid-mediated mitochondrial respiration rates were decreased in diabetic SSM compared with nondiabetic (P ≤ 0.05 for both), with no change in IFM. Electron transport chain (ETC) complexes I and IV activities were decreased in diabetic SSM compared with nondiabetic (P ≤ 0.05 for both), with a concomitant decline in their levels (P ≤ 0.05 for both). Regression analyses comparing comorbidities determined that diabetes mellitus was the primary factor accounting for mitochondrial dysfunction. Linear spline models examining correlative risk for mitochondrial dysfunction indicated that patients with diabetes display the same degree of state 3 and electron transport chain complex I dysfunction in SSM regardless of the extent of glycated hemoglobin (HbA1c) and hyperglycemia. Overall, the results suggest that independent of other pathologies, mitochondrial dysfunction is present in cardiac SSM of patients with type 2 diabetes and the degree of dysfunction is consistent regardless of the extent of elevated HbA1c or blood glucose levels.
Collapse
Affiliation(s)
- Tara L Croston
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Dharendra Thapa
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Anthony A Holden
- West Virginia University School of Medicine, Department of Surgery, Morgantown, West Virginia
| | - Kevin J Tveter
- West Virginia University School of Medicine, Department of Surgery, Morgantown, West Virginia
| | - Sara E Lewis
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Cody E Nichols
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Dustin M Long
- West Virginia University School of Public Health, Department of Biostatistics, Morgantown, West Virginia
| | - I Mark Olfert
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Rajaganapathi Jagannathan
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia;
| |
Collapse
|
76
|
Ma J, Farmer KL, Pan P, Urban MJ, Zhao H, Blagg BSJ, Dobrowsky RT. Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy. J Pharmacol Exp Ther 2014; 348:281-92. [PMID: 24263156 PMCID: PMC3912549 DOI: 10.1124/jpet.113.210435] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/20/2013] [Indexed: 01/15/2023] Open
Abstract
Impaired neuronal mitochondrial bioenergetics contributes to the pathophysiologic progression of diabetic peripheral neuropathy (DPN) and may be a focal point for disease management. We have demonstrated that modulating heat shock protein (Hsp) 90 and Hsp70 with the small-molecule drug KU-32 ameliorates psychosensory, electrophysiologic, morphologic, and bioenergetic deficits of DPN in animal models of type 1 diabetes. The current study used mouse models of type 1 and type 2 diabetes to determine the relationship of changes in sensory neuron mitochondrial bioenergetics to the onset of and recovery from DPN. The onset of DPN showed a tight temporal correlation with a decrease in mitochondrial bioenergetics in a genetic model of type 2 diabetes. In contrast, sensory hypoalgesia developed 10 weeks before the occurrence of significant declines in sensory neuron mitochondrial bioenergetics in the type 1 model. KU-32 therapy improved mitochondrial bioenergetics in both the type 1 and type 2 models, and this tightly correlated with a decrease in DPN. Mechanistically, improved mitochondrial function following KU-32 therapy required Hsp70, since the drug was ineffective in diabetic Hsp70 knockout mice. Our data indicate that changes in mitochondrial bioenergetics may rapidly contribute to nerve dysfunction in type 2 diabetes, but not type 1 diabetes, and that modulating Hsp70 offers an effective approach toward correcting sensory neuron bioenergetic deficits and DPN in both type 1 and type 2 diabetes.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Neuropathies/prevention & control
- Dose-Response Relationship, Drug
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/blood
- Hypoglycemic Agents/pharmacokinetics
- Hypoglycemic Agents/therapeutic use
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitochondria/drug effects
- Mitochondria/enzymology
- Mitochondria/metabolism
- Mitochondrial Dynamics/drug effects
- Neuritis/prevention & control
- Neurons/drug effects
- Neurons/enzymology
- Neurons/metabolism
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/blood
- Neuroprotective Agents/pharmacokinetics
- Neuroprotective Agents/therapeutic use
- Novobiocin/administration & dosage
- Novobiocin/analogs & derivatives
- Novobiocin/blood
- Novobiocin/pharmacokinetics
- Novobiocin/therapeutic use
- Oxidative Phosphorylation/drug effects
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/metabolism
Collapse
Affiliation(s)
- Jiacheng Ma
- Department of Pharmacology and Toxicology (J.M., K.L.F., P.P. M.J.U., R.T.D.) and Department of Medicinal Chemistry (H.Z., B.S.J.B.), The University of Kansas, Lawrence, Kansas
| | | | | | | | | | | | | |
Collapse
|
77
|
Joshi M, Kotha SR, Malireddy S, Selvaraju V, Satoskar AR, Palesty A, McFadden DW, Parinandi NL, Maulik N. Conundrum of pathogenesis of diabetic cardiomyopathy: role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria. Mol Cell Biochem 2013; 386:233-49. [PMID: 24307101 DOI: 10.1007/s11010-013-1861-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy and heart failure have been recognized as the leading causes of mortality among diabetics. Diabetic cardiomyopathy has been characterized primarily by the manifestation of left ventricular dysfunction that is independent of coronary artery disease and hypertension among the patients affected by diabetes mellitus. A complex array of contributing factors including the hypertrophy of left ventricle, alterations of metabolism, microvascular pathology, insulin resistance, fibrosis, apoptotic cell death, and oxidative stress have been implicated in the pathogenesis of diabetic cardiomyopathy. Nevertheless, the exact mechanisms underlying the pathogenesis of diabetic cardiomyopathy are yet to be established. The critical involvement of multifarious factors including the vascular endothelial dysfunction, microangiopathy, reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction has been identified in the mechanism of pathogenesis of diabetic cardiomyopathy. Although it is difficult to establish how each factor contributes to disease, the involvement of ROS and mitochondrial dysfunction are emerging as front-runners in the mechanism of pathogenesis of diabetic cardiomyopathy. This review highlights the role of vascular endothelial dysfunction, ROS, oxidative stress, and mitochondriopathy in the pathogenesis of diabetic cardiomyopathy. Furthermore, the review emphasizes that the puzzle has to be solved to firmly establish the mitochondrial and/or ROS mechanism(s) by identifying their most critical molecular players involved at both spatial and temporal levels in diabetic cardiomyopathy as targets for specific and effective pharmacological/therapeutic interventions.
Collapse
Affiliation(s)
- Mandip Joshi
- Department of Surgery, University of Connecticut Health Center, Farmington Avenue, Farmington, CT, 06032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Weston LA, Bauer KM, Hummon AB. Comparison of bottom-up proteomic approaches for LC-MS analysis of complex proteomes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2013; 5:10.1039/C3AY40853A. [PMID: 24288579 PMCID: PMC3839868 DOI: 10.1039/c3ay40853a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Discovery-based proteomic studies aim to answer important biological questions by identifying as many proteins as possible. In order to accomplish this lofty goal, an effort must be placed on determining an optimal workflow that maximizes protein identifications. In this study, we compare protein extraction, digestion and fractionation methods for bottom-up proteomics using a human colon cancer cell line as our model system. Four different buffers for protein extraction, two digestion approaches, as well as three sample fractionation methods were evaluated in order to determine an accessible workflow that gives maximal protein identifications. Samples comparing these workflows were analyzed via UPLC paired with tandem MS on a Q-Exactive mass spectrometer. Our goal is to determine an optimal workflow to enable users to maximize protein identifications. Our results show that an increased number of confident protein identifications are attained with a filter-aided digestion approach as compared to an in-solution digestion. Overall SDS-PAGE fractionation leads to higher numbers of identifications than SCX SpinTip and reverse phased cartridge platforms. The novel aspect of this work is the comparison of two readily available, offline platforms for fractionation in reference to a traditional technique, SDS-PAGE.
Collapse
Affiliation(s)
| | | | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
79
|
Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci 2013; 14:17319-46. [PMID: 23975169 PMCID: PMC3794730 DOI: 10.3390/ijms140917319] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress has been demonstrated to play a causal role in different vascular diseases, such as hypertension, diabetic vasculopathy, hypercholesterolemia and atherosclerosis. Indeed, increased reactive oxygen species (ROS) production is known to impair endothelial and vascular smooth muscle cell functions, contributing to the development of cardiovascular diseases. MicroRNAs (miRNAs) are non-coding RNA molecules that modulate the stability and/or the translational efficiency of target messenger RNAs. They have been shown to be modulated in most biological processes, including in cellular responses to redox imbalance. In particular, miR-200 family members play a crucial role in oxidative-stress dependent endothelial dysfunction, as well as in cardiovascular complications of diabetes and obesity. In addition, different miRNAs, such as miR-210, have been demonstrated to play a key role in mitochondrial metabolism, therefore modulating ROS production and sensitivity. In this review, we will discuss miRNAs modulated by ROS or involved in ROS production, and implicated in vascular diseases in which redox imbalance has a pathogenetic role.
Collapse
|
80
|
Croston TL, Shepherd DL, Thapa D, Nichols CE, Lewis SE, Dabkowski ER, Jagannathan R, Baseler WA, Hollander JM. Evaluation of the cardiolipin biosynthetic pathway and its interactions in the diabetic heart. Life Sci 2013; 93:313-22. [PMID: 23872101 DOI: 10.1016/j.lfs.2013.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
Abstract
AIMS We have previously reported alterations in cardiolipin content and inner mitochondrial membrane (IMM) proteomic make-up specifically in interfibrillar mitochondria (IFM) in the type 1 diabetic heart; however, the mechanism underlying this alteration is unknown. The goal of this study was to determine how the cardiolipin biosynthetic pathway and cardiolipin-IMM protein interactions are impacted by type 1 diabetes mellitus. MAIN METHODS Male FVB mice were made diabetic by multiple low-dose streptozotocin injections and sacrificed five weeks post-diabetic onset. Messenger RNA was measured and cardiac mitochondrial subpopulations were isolated. Further mitochondrial functional experimentation included evaluating the protein expression of the enzymes directly responsible for cardiolipin biosynthesis, as well as ATP synthase activity. Interactions between cardiolipin and ATP synthase subunits were also examined. KEY FINDINGS Western blot analysis revealed a significant decrease in cardiolipin synthase (CRLS) protein content in diabetic IFM, with a concomitant decrease in its activity. ATP synthase activity was also significantly decreased. We identified two novel direct interactions between two subunits of the ATP synthase F0 complex (ATP5F1 and ATP5H), both of which were significantly decreased in diabetic IFM. SIGNIFICANCE Overall, these results indicate that type 1 diabetes mellitus negatively impacts the cardiolipin biosynthetic pathway specifically at CRLS, contributing to decreased cardiolipin content and loss of interactions with key ATP synthase F0 complex constituents in the IFM.
Collapse
Affiliation(s)
- Tara L Croston
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Lipidomic characterization of streptozotocin-induced heart mitochondrial dysfunction. Mitochondrion 2013; 13:762-71. [PMID: 23665486 DOI: 10.1016/j.mito.2013.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/27/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022]
Abstract
Myocardial mitochondria dysfunction seems to represent an important pathogenic factor underlying cardiomyopathy, a common complication of type 1 diabetes mellitus (T1DM). Despite significant progress in the understanding of the molecular mechanisms of mitochondrial function in the heart, the interplay between phospholipids and membrane proteins of this organelle is still poorly comprehended. Using a well-characterized animal model of T1DM obtained by the administration of streptozotocin, phospholipid profiling of isolated mitochondria was performed using MS-based approaches, which was analyzed together with oxidative phosphorylation (OXPHOS) complexes activities and their susceptibility to oxidation, and the expression of cytochrome c, the uncoupling protein UCP-3 and the mitochondrial transcription factor Tfam. Although in higher amounts, mitochondria from T1DM heart presented lower OXPHOS activity and lower transcription ability. This profile was related to phospholipid (PL) remodeling characterized by higher phosphatidylcholine levels, lower phosphatidylglycerol, phosphatidylinositol and sphingomyelin content, higher amounts of long fatty acyl side chains and increased lipid peroxidation, particularly of cardiolipin (CL). CL peroxidation was paralleled by lower cytochrome c content. Though in higher levels, UCP-3 does not seem to protect heart mitochondrial PL and membrane proteins from the oxidative damage induced by four weeks of hyperglycemia. Taken together, our data suggest that PL remodeling of heart mitochondria is an early event in T1DM pathogenesis and is related with OXPHOS dysfunction.
Collapse
|
82
|
Kasumov T, Dabkowski ER, Shekar KC, Li L, Ribeiro RF, Walsh K, Previs SF, Sadygov RG, Willard B, Stanley WC. Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 2013; 304:H1201-14. [PMID: 23457012 DOI: 10.1152/ajpheart.00933.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditional proteomics provides static assessment of protein content, but not synthetic rates. Recently, proteome dynamics with heavy water ((2)H2O) was introduced, where (2)H labels amino acids that are incorporated into proteins, and the synthesis rate of individual proteins is calculated using mass isotopomer distribution analysis. We refine this approach with a novel algorithm and rigorous selection criteria that improve the accuracy and precision of the calculation of synthesis rates and use it to measure protein kinetics in spatially distinct cardiac mitochondrial subpopulations. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated from adult rats, which were given (2)H2O in the drinking water for up to 60 days. Plasma (2)H2O and myocardial (2)H-enrichment of amino acids were stable throughout the experimental protocol. Multiple tryptic peptides were identified from 28 proteins in both SSM and IFM and showed a time-dependent increase in heavy mass isotopomers that was consistent within a given protein. Mitochondrial protein synthesis was relatively slow (average half-life of 30 days, 2.4% per day). Although the synthesis rates for individual proteins were correlated between IFM and SSM (R(2) = 0.84; P < 0.0001), values in IFM were 15% less than SSM (P < 0.001). In conclusion, administration of (2)H2O results in stable enrichment of the cardiac precursor amino acid pool, with the use of refined analytical and computational methods coupled with cell fractionation one can measure synthesis rates for cardiac proteins in subcellular compartments in vivo, and protein synthesis is slower in mitochondria located among the myofibrils than in the subsarcolemmal region.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Baseler WA, Dabkowski ER, Jagannathan R, Thapa D, Nichols CE, Shepherd DL, Croston TL, Powell M, Razunguzwa TT, Lewis SE, Schnell DM, Hollander JM. Reversal of mitochondrial proteomic loss in Type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase. Am J Physiol Regul Integr Comp Physiol 2013; 304:R553-65. [PMID: 23408027 DOI: 10.1152/ajpregu.00249.2012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction is a contributor to diabetic cardiomyopathy. Previously, we observed proteomic decrements within the inner mitochondrial membrane (IMM) and matrix of diabetic cardiac interfibrillar mitochondria (IFM) correlating with dysfunctional mitochondrial protein import. The goal of this study was to determine whether overexpression of mitochondria phospholipid hydroperoxide glutathione peroxidase 4 (mPHGPx), an antioxidant enzyme capable of scavenging membrane-associated lipid peroxides in the IMM, could reverse proteomic alterations, dysfunctional protein import, and ultimately, mitochondrial dysfunction associated with the diabetic heart. MPHGPx transgenic mice and controls were made diabetic by multiple low-dose streptozotocin injections and examined after 5 wk of hyperglycemia. Five weeks after hyperglycemia onset, in vivo analysis of cardiac contractile function revealed decreased ejection fraction and fractional shortening in diabetic hearts that was reversed with mPHGPx overexpression. MPHGPx overexpression increased electron transport chain function while attenuating hydrogen peroxide production and lipid peroxidation in diabetic mPHGPx IFM. MPHGPx overexpression lessened proteomic loss observed in diabetic IFM. Posttranslational modifications, including oxidations and deamidations, were attenuated in diabetic IFM with mPHGPx overexpression. Mitochondrial protein import dysfunction in diabetic IFM was reversed with mPHGPx overexpression correlating with protein import constituent preservation. Ingenuity Pathway Analyses indicated that oxidative phosphorylation, tricarboxylic acid cycle, and fatty acid oxidation processes most influenced in diabetic IFM were preserved by mPHGPx overexpression. Specific mitochondrial networks preserved included complex I and II, mitochondrial ultrastructure, and mitochondrial protein import. These results indicate that mPHGPx overexpression can preserve the mitochondrial proteome and provide cardioprotective benefits to the diabetic heart.
Collapse
Affiliation(s)
- Walter A Baseler
- Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Wang H, Sreenivasan U, Gong DW, O'Connell KA, Dabkowski ER, Hecker PA, Ionica N, Konig M, Mahurkar A, Sun Y, Stanley WC, Sztalryd C. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J Lipid Res 2013; 54:953-65. [PMID: 23345411 DOI: 10.1194/jlr.m032466] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Presence of ectopic lipid droplets (LDs) in cardiac muscle is associated to lipotoxicity and tissue dysfunction. However, presence of LDs in heart is also observed in physiological conditions, such as when cellular energy needs and energy production from mitochondria fatty acid β-oxidation are high (fasting). This suggests that development of tissue lipotoxicity and dysfunction is not simply due to the presence of LDs in cardiac muscle but due at least in part to alterations in LD function. To examine the function of cardiac LDs, we obtained transgenic mice with heart-specific perilipin 5 (Plin5) overexpression (MHC-Plin5), a member of the perilipin protein family. Hearts from MHC-Plin5 mice expressed at least 4-fold higher levels of plin5 and exhibited a 3.5-fold increase in triglyceride content versus nontransgenic littermates. Chronic cardiac excess of LDs was found to result in mild heart dysfunction with decreased expression of peroxisome proliferator-activated receptor (PPAR)α target genes, decreased mitochondria function, and left ventricular concentric hypertrophia. Lack of more severe heart function complications may have been prevented by a strong increased expression of oxidative-induced genes via NF-E2-related factor 2 antioxidative pathway. Perilipin 5 regulates the formation and stabilization of cardiac LDs, and it promotes cardiac steatosis without major heart function impairment.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Zhang J, Lin A, Powers J, Lam MP, Lotz C, Liem D, Lau E, Wang D, Deng N, Korge P, Zong NC, Cai H, Weiss J, Ping P. Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial proteome design: from molecular identity to pathophysiological regulation. ACTA ACUST UNITED AC 2013; 139:395-406. [PMID: 22641634 PMCID: PMC3362520 DOI: 10.1085/jgp.201210797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Zhang
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 2013; 19:4806-17. [PMID: 23323621 DOI: 10.2174/1381612811319270003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/10/2013] [Indexed: 01/14/2023]
Abstract
The metabolic syndrome (MetS) is a cluster of risk factors including obesity, insulin resistance, dyslipidemia, elevated blood pressure and glucose intolerance. The MetS increases the risk for cardiovascular disease (CVD) and type 2 diabetes. Each component of the MetS causes cardiac dysfunction and their combination carries additional risk. The mechanisms underlying cardiac dysfunction in the MetS are complex and might include lipid accumulation, increased fibrosis and stiffness, altered calcium homeostasis, abnormal autophagy, altered substrate utilization, mitochondrial dysfunction and increased oxidative stress. Mitochondrial and extra-mitochondrial sources of reactive oxygen species (ROS) and reduced antioxidant defense mechanisms characterize the myocardium of humans and animals with the MetS. The mechanisms for increased cardiac oxidative stress in the MetS are not fully understood but include increased fatty acid oxidation, mitochondrial dysfunction and enhanced NADPH oxidase activity. Therapies aimed to reduce oxidative stress and enhance antioxidant defense have been employed to reduce cardiac dysfunction in the MetS in animals. In contrast, large scale clinical trials using antioxidants therapies for the treatment of CVD have been disappointing because of the lack of efficacy and undesired side effects. The focus of this review is to summarize the current knowledge about the mechanisms underlying cardiac dysfunction in the MetS with a special interest in the role of oxidative stress. Finally, we will update the reader on the results obtained with natural antioxidant and mitochondria-targeted antioxidant therapies for the treatment of CVD in the MetS.
Collapse
Affiliation(s)
- Olesya Ilkun
- Division of Endocrinology, Metabolism and Diabetes, Program in Human Molecular Biology & Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
87
|
Diabetes mellitus reduces the function and expression of ATP-dependent K⁺ channels in cardiac mitochondria. Life Sci 2012; 92:664-8. [PMID: 23261529 DOI: 10.1016/j.lfs.2012.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 11/20/2022]
Abstract
AIM Our goal was to determine the effects of type I diabetes mellitus on the function and expression of ATP-dependent K(+) channels in cardiac mitochondria (mitoKATP), composed of a pore-forming subunit (Kir6.1) and a diazoxide-sensitive sulphonylurea receptor (SUR1). We tested the hypothesis that diabetes reduces Kir6.1 and SUR1 expression as well as diazoxide-induced depolarization of mitochondrial membrane potential (ΔΨm). MAIN METHODS Male FVB mice were made diabetic for 5weeks with multiple low dose injections of streptozotocin. Cardiac mitochondria were separated into two populations: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). mitoKATP expression was determined via Western blot analysis of Kir6.1 and SUR1 proteins. mitoKATP function was determined by measuring ΔΨm with the potentiometric dye rhodamine 123. KEY FINDINGS Diabetes reduced Kir6.1 and SUR1 expression in IFM by over 40% (p<0.05 for both). Similarly, diabetes reduced Kir6.1 expression in SSM by approximately 40% (p<0.05); however, SUR1 expression was unaffected. Opening mitoKATP with diazoxide (100μM) depolarized control IFM ΔΨm by 80% of the valinomycin maximum; diabetic IFM depolarized only 30% (p<0.05). Diazoxide-induced depolarization was much less in SSM (20-30%) and unaffected by diabetes. SIGNIFICANCE Our data indicate that diabetes reduces mitoKATP expression and function in IFM. These changes in mitoKATP may provide an opportunity to understand mechanisms leading to diabetic cardiomyopathy and loss of cardioprotective mechanisms in the diabetic heart.
Collapse
|
88
|
Asemu G, O'Connell KA, Cox JW, Dabkowski ER, Xu W, Ribeiro RF, Shekar KC, Hecker PA, Rastogi S, Sabbah HN, Hoppel CL, Stanley WC. Enhanced resistance to permeability transition in interfibrillar cardiac mitochondria in dogs: effects of aging and long-term aldosterone infusion. Am J Physiol Heart Circ Physiol 2012; 304:H514-28. [PMID: 23241318 DOI: 10.1152/ajpheart.00674.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Functional differences between subsarcolemmal and interfibrillar cardiac mitochondria (SSM and IFM) have been observed with aging and pathological conditions in rodents. Results are contradictory, and there is little information from large animal models. We assessed the respiratory function and resistance to mitochondrial permeability transition (MPT) in SSM and IFM from healthy young (1 yr) and old (8 yr) female beagles and in old beagles with hypertension and left ventricular (LV) wall thickening induced by 16 wk of aldosterone infusion. MPT was assessed in SSM and IFM by Ca(2+) retention and swelling. Healthy young and old beagles had similar mitochondrial structure, respiratory function, and Ca(2+)-induced MPT within SSM and IFM subpopulations. On the other hand, oxidative capacity and resistance to Ca(2+)-induced MPT were significantly greater in IFM compared with SSM in all groups. Old beagles treated with aldosterone had greater LV wall thickness and worse diastolic filling but normal LV chamber volume and systolic function. Treatment with aldosterone did not alter mitochondrial respiratory function but accelerated Ca(2+)-induced MPT in SSM, but not IFM, compared with healthy old and young beagles. In conclusion, in a large animal model, oxidative capacity and resistance to MPT were greater in IFM than in SSM. Furthermore, aldosterone infusion increased susceptibility to MPT in SSM, but not IFM. Together this suggests that SSM are less resilient to acute stress than IFM in the healthy heart and are more susceptible to the development of pathology with chronic stress.
Collapse
Affiliation(s)
- Girma Asemu
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Baseler WA, Thapa D, Jagannathan R, Dabkowski ER, Croston TL, Hollander JM. miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol 2012; 303:C1244-51. [PMID: 23034391 DOI: 10.1152/ajpcell.00137.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dysfunctional mitochondria are central in the pathogenesis of diabetic cardiomyopathy. Mitochondrial proteomic alterations resulting from diabetes mellitus have been reported although the mechanisms driving changes in proteomic signatures are unknown. microRNAs (miRNAs) have been considered as potential regulators of proteins. The goal of this study was to determine whether miRNAs play a role in diabetes-induced mitochondrial proteomic alterations. Quanitative RT-PCR miRNA screening in diabetic mice, 5 wk following multiple low-dose streptozotocin treatment was associated with alteration in the expression of 29 miRNAs in the diabetic heart compared with control. Among those miRNAs upregulated in the diabetic heart was miR-141 (P < 0.002). miRNA target prediction analyses identified miR-141 as a potential regulator of the inner mitochondrial membrane phosphate transporter, solute carrier family 25 member 3 (Slc25a3), which provides inorganic phosphate to the mitochondrial matrix and is essential for ATP production. With the use of a luciferase reporter construct with a Slc25a3 3'-untranslated region (UTR) target sequence, overexpression of miR-141 downregulated luciferase activity levels confirming miR-141/Slc25a3 3'-UTR binding. miR-141 overexpression in HL-1 cells elicited a decrease in Slc25a3 protein content, ATP production and a decrease in ATP synthase activity, similar to the diabetic phenotype (P < 0.05, for both). Diabetic interfibrillar mitochondria (IFM) displayed decreased Slc25a3 protein content, which was inversely correlated with increased miR-141 expression. Further, diabetic IFM ATP synthase activity was also decreased (P < 0.05). Together these results indicate that miR-141 can regulate Slc25a3 protein expression in the diabetic heart. Further, diabetes-induced miRNA changes may influence mitochondrial proteomes and functional processes such as mitochondrial ATP production.
Collapse
Affiliation(s)
- Walter A Baseler
- Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|
90
|
Farmer KL, Li C, Dobrowsky RT. Diabetic peripheral neuropathy: should a chaperone accompany our therapeutic approach? Pharmacol Rev 2012; 64:880-900. [PMID: 22885705 PMCID: PMC3462992 DOI: 10.1124/pr.111.005314] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes that is associated with axonal atrophy, demyelination, blunted regenerative potential, and loss of peripheral nerve fibers. The development and progression of DPN is due in large part to hyperglycemia but is also affected by insulin deficiency and dyslipidemia. Although numerous biochemical mechanisms contribute to DPN, increased oxidative/nitrosative stress and mitochondrial dysfunction seem intimately associated with nerve dysfunction and diminished regenerative capacity. Despite advances in understanding the etiology of DPN, few approved therapies exist for the pharmacological management of painful or insensate DPN. Therefore, identifying novel therapeutic strategies remains paramount. Because DPN does not develop with either temporal or biochemical uniformity, its therapeutic management may benefit from a multifaceted approach that inhibits pathogenic mechanisms, manages inflammation, and increases cytoprotective responses. Finally, exercise has long been recognized as a part of the therapeutic management of diabetes, and exercise can delay and/or prevent the development of painful DPN. This review presents an overview of existing therapies that target both causal and symptomatic features of DPN and discusses the role of up-regulating cytoprotective pathways via modulating molecular chaperones. Overall, it may be unrealistic to expect that a single pharmacologic entity will suffice to ameliorate the multiple symptoms of human DPN. Thus, combinatorial therapies that target causal mechanisms and enhance endogenous reparative capacity may enhance nerve function and improve regeneration in DPN if they converge to decrease oxidative stress, improve mitochondrial bioenergetics, and increase response to trophic factors.
Collapse
Affiliation(s)
- Kevin L Farmer
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
91
|
Impaired protein quality control system underlies mitochondrial dysfunction in skeletal muscle of streptozotocin-induced diabetic rats. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1189-97. [DOI: 10.1016/j.bbadis.2012.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 11/20/2022]
|
92
|
Chen X, Wei S, Yang F. Mitochondria in the pathogenesis of diabetes: a proteomic view. Protein Cell 2012; 3:648-60. [PMID: 22729395 DOI: 10.1007/s13238-012-2043-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is a complex metabolic disorder characterized by chronic hyperglycemia due to absolute or relative lack of insulin. Though great efforts have been made to investigate the pathogenesis of diabetes, the underlying mechanism behind the development of diabetes and its complications remains unexplored. Cumulative evidence has linked mitochondrial modification to the pathogenesis of diabetes and its complications and they are also observed in various tissues affected by diabetes. Proteomics is an attractive tool for the study of diabetes since it allows researchers to compare normal and diabetic samples by identifying and quantifying the differentially expressed proteins in tissues, cells or organelles. Great progress has already been made in mitochondrial proteomics to elucidate the role of mitochondria in the pathogenesis of diabetes and its complications. Further studies on the changes of mitochondrial protein specifically post-translational modifications during the diabetic state using proteomic tools, would provide more information to better understand diabetes.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | |
Collapse
|
93
|
Kusuma BR, Zhang L, Sundstrom T, Peterson LB, Dobrowsky RT, Blagg BSJ. Synthesis and evaluation of novologues as C-terminal Hsp90 inhibitors with cytoprotective activity against sensory neuron glucotoxicity. J Med Chem 2012; 55:5797-812. [PMID: 22702513 DOI: 10.1021/jm300544c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Compound 2 (KU-32) is a first-generation novologue (a novobiocin-based, C-terminal, heat shock protein 90 (Hsp90) inhibitor) that decreases glucose-induced death of primary sensory neurons and reverses numerous clinical indices of diabetic peripheral neuropathy in mice. The current study sought to exploit the C-terminal binding site of Hsp90 to determine whether the optimization of hydrogen bonding and hydrophobic interactions of second-generation novologues could enhance neuroprotective activity. Using a series of substituted phenylboronic acids to replace the coumarin lactone of 2, we identified that electronegative atoms placed at the meta-position of the B-ring exhibit improved cytoprotective activity, which is believed to result from favorable interactions with Lys539 in the Hsp90 C-terminal binding pocket. Consistent with these results, a meta-3-fluorophenyl substituted novologue (13b) exhibited a 14-fold lower ED(50) for protection against glucose-induced toxicity of primary sensory neurons compared to 2.
Collapse
Affiliation(s)
- Bhaskar Reddy Kusuma
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | | | | | | | | | | |
Collapse
|
94
|
Zhang L, Zhao H, Blagg BSJ, Dobrowsky RT. C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. J Proteome Res 2012; 11:2581-93. [PMID: 22413817 DOI: 10.1021/pr300056m] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in which hyperglycemia-induced mitochondrial dysfunction and enhanced oxidative stress contribute to sensory neuron pathology. KU-32 is a novobiocin-based, C-terminal inhibitor of the molecular chaperone, heat shock protein 90 (Hsp90). KU-32 ameliorates multiple sensory deficits associated with the progression of DPN and protects unmyelinated sensory neurons from glucose-induced toxicity. Mechanistically, KU-32 increased the expression of Hsp70, and this protein was critical for drug efficacy in reversing DPN. However, it remained unclear if KU-32 had a broader effect on chaperone induction and if its efficacy was linked to improving mitochondrial dysfunction. Using cultures of hyperglycemically stressed primary sensory neurons, the present study investigated whether KU-32 had an effect on the translational induction of other chaperones and improved mitochondrial oxidative stress and bioenergetics. A variation of stable isotope labeling with amino acids in cell culture called pulse SILAC (pSILAC) was used to unbiasedly assess changes in protein translation. Hyperglycemia decreased the translation of numerous mitochondrial proteins that affect superoxide levels and respiratory activity. Importantly, this correlated with a decrease in mitochondrial oxygen consumption and an increase in superoxide levels. KU-32 increased the translation of Mn superoxide dismutase and several cytosolic and mitochondrial chaperones. Consistent with these changes, KU-32 decreased mitochondrial superoxide levels and significantly enhanced respiratory activity. These data indicate that efficacy of modulating molecular chaperones in DPN may be due in part to improved neuronal mitochondrial bioenergetics and decreased oxidative stress.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, Kansas 66045, United States
| | | | | | | |
Collapse
|
95
|
Ferreira RMP, Vitorino R, Padrão AI, Moreira-Gonçalves D, Alves RMP, Duarte JA, Amado F. Spatially distinct mitochondrial populations exhibit different mitofilin levels. Cell Biochem Funct 2012; 30:395-9. [DOI: 10.1002/cbf.2811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/06/2022]
Affiliation(s)
| | - Rui Vitorino
- QOPNA, Department of Chemistry; University of Aveiro; Aveiro; Portugal
| | - Ana Isabel Padrão
- QOPNA, Department of Chemistry; University of Aveiro; Aveiro; Portugal
| | | | | | | | | |
Collapse
|
96
|
Ares-Carrasco S, Picatoste B, Camafeita E, Carrasco-Navarro S, Zubiri I, Ortiz A, Egido J, López JA, Tuñón J, Lorenzo O. Proteome changes in the myocardium of experimental chronic diabetes and hypertension: role of PPARα in the associated hypertrophy. J Proteomics 2011; 75:1816-29. [PMID: 22234359 DOI: 10.1016/j.jprot.2011.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/02/2011] [Accepted: 12/16/2011] [Indexed: 01/22/2023]
Abstract
Diabetes with or without the presence of hypertension damages the heart. However, there is currently a lack of information about these associated pathologies and the alteration of linked proteins. For these reasons, we were interested in the potential synergistic interaction of diabetes and hypertension in the heart, focusing on the proteome characterization of the pathological phenotypes and the associated hypertrophic response. We treated normotensive and spontaneously hypertensive (SHR) rats with either streptozotocin or vehicle. After 22weeks, type-I diabetic (DM1), SHR, SHR/DM1 and control left-ventricles were studied using proteomic approaches. Proteomics revealed that long-term DM1, SHR and SHR/DM1 rats exhibited 24, 53 and 53 altered proteins in the myocardia, respectively. DM1 myocardium showed over-expression of apoptotic and cytoskeleton proteins, and down-regulation of anti-apoptotic and mitochondrial metabolic enzymes. In both SHR and SHR/DM1 these changes were exacerbated and free fatty-acid (FFA) ß-oxidation enzymes were additionally decreased. Furthermore, SHR/DM1 hearts exhibited a misbalance of specific pro-hypertrophic, anti-apoptotic and mitochondrial ATP-carrier factors, which could cause additional damage. Differential proteins were validated and then clustered into different biological pathways using bioinformatics. These studies suggested the implication of FFA-nuclear receptors and hypertrophic factors in these pathologies. Although key ß-oxidation enzymes were not stimulated in DM1 and hypertensive hearts, peroxisome proliferator-activated receptors-α (PPARα) were potentially activated for other responses. In this regard, PPARα stimulation reduced hypertrophy and pro-hypertrophic factors such as annexin-V in high-glucose and angiotensin-II induced cardiomyocytes. Thus, activation of PPARα could reflect a compensatory response to the metabolic-shifted, apoptotic and hypertrophic status of the hypertensive-diabetic cardiomyopathy.
Collapse
|
97
|
Hollander JM, Baseler WA, Dabkowski ER. Proteomic remodeling of mitochondria in heart failure. ACTA ACUST UNITED AC 2011; 17:262-8. [PMID: 22103917 DOI: 10.1111/j.1751-7133.2011.00254.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heart failure (HF) is a common disease that has been attributed, in part, to deprivation of cardiac energy. As a result, the interplay between metabolism and adenosine triphosphate production is fundamental in determining the mechanisms driving the disease progression. Due to its central role in energy production, metabolism, calcium homeostasis, and oxidative stress, the mitochondrion has been suggested to play a pivotal role in the progression of the heart to failure. Nevertheless, the mitochondrion's specific role(s) and the proteins contributing to the development and progression of HF are not entirely clear. Thus, changes in mitochondrial proteomic make-up during HF have garnered great interest. With the continued development of advanced tools for assessing proteomic make-up, characterization of mitochondrial proteomic changes during disease states such as HF are being realized. These studies have begun to identify potential biomarkers of disease progression as well as protein targets that may provide an avenue for therapeutic intervention. The goal of this review is to highlight some of the changes in mitochondrial proteomic make-up that are associated with the development of HF in an effort to identify target axes and candidate proteins contributing to disease development. Results from a number of different HF models will be evaluated to gain insight into some of the similarities and differences in mitochondrial proteomic alterations associated with morphological and functional changes that result from the disease. Congest Heart Fail.
Collapse
Affiliation(s)
- John M Hollander
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, USA.
| | | | | |
Collapse
|
98
|
Cui Z, Dewey S, Gomes AV. Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2011; 1:274-292. [PMID: 22254205 PMCID: PMC3253522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
Cardioproteomics (Cardiovascular proteomics) is fast becoming an indispensible technique in deciphering changes in signaling pathways that occur in cardiovascular diseases (CVDs). The quality and availability of the instruments and bioinformatics software used for cardioproteomics continues to improve, and these techniques are now available to most cardiovascular researchers either directly or indirectly via university core centers. The heart and aorta are specialized tissues which present unique challenges to investigate. Currently, the diverse range of proteomic techniques available for cardiovascular research makes the choice of the best method or best combination of methods for the disease parameter(s) being investigated as important as the equipment used. This review focuses on proteomic techniques and their applications which have advanced our understanding of the signaling mechanisms involved in CVDs at the levels of protein complex/protein-protein interaction, post-translational modifications and signaling induced protein changes.
Collapse
|