51
|
Affiliation(s)
- Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Germany
| |
Collapse
|
52
|
Feng D, DuMontier C, Pollak MR. Mechanical challenges and cytoskeletal impairments in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2018; 314:F921-F925. [PMID: 29363327 DOI: 10.1152/ajprenal.00641.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologically defined form of kidney injury typically mediated by podocyte dysfunction. Podocytes rely on their intricate actin-based cytoskeleton to maintain the glomerular filtration barrier in the face of mechanical challenges resulting from pulsatile blood flow and filtration of this blood flow. This review summarizes the mechanical challenges faced by podocytes in the form of stretch and shear stress, both of which may play a role in the progression of podocyte dysfunction and detachment. It also reviews how podocytes respond to these mechanical challenges in dynamic fashion through rearranging their cytoskeleton, triggering various biochemical pathways, and, in some disease states, altering their morphology in the form of foot process effacement. Furthermore, this review highlights the growing body of evidence identifying several mutations of important cytoskeleton proteins as causes of FSGS. Lastly, it synthesizes the above evidence to show that a better understanding of how these mutations leave podocytes vulnerable to the mechanical challenges they face is essential to better understanding the mechanisms by which they lead to disease. The review concludes with future research directions to fill this gap and some novel techniques with which to pursue these directions.
Collapse
Affiliation(s)
- Di Feng
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| | - Clark DuMontier
- Harvard Medical School , Boston, Massachusetts.,Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
53
|
De Vriese AS, Sethi S, Nath KA, Glassock RJ, Fervenza FC. Differentiating Primary, Genetic, and Secondary FSGS in Adults: A Clinicopathologic Approach. J Am Soc Nephrol 2018; 29:759-774. [PMID: 29321142 DOI: 10.1681/asn.2017090958] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
FSGS describes a renal histologic lesion with diverse causes and pathogenicities that are linked by podocyte injury and depletion. Subclasses of FSGS include primary, genetic, and secondary forms, the latter comprising maladaptive, viral, and drug-induced FSGS. Despite sharing certain clinical and histologic features, these subclasses differ noticeably in management and prognosis. Without an accepted nongenetic biomarker that discriminates among these FSGS types, classification of patients is often challenging. This review summarizes the clinical and histologic features, including the onset and severity of proteinuria as well as the presence of nephrotic syndrome, that may aid in identifying the specific FSGS subtype. The FSGS lesion is characterized by segmental sclerosis and must be differentiated from nonspecific focal global glomerulosclerosis. No light microscopic features are pathognomonic for a particular FSGS subcategory. The characteristics of podocyte foot process effacement on electron microscopy, while helpful in discriminating between primary and maladaptive FSGS, may be of little utility in detecting genetic forms of FSGS. When FSGS cannot be classified by clinicopathologic assessment, genetic analysis should be offered. Next generation DNA sequencing enables cost-effective screening of multiple genes simultaneously, but determining the pathogenicity of a detected genetic variant may be challenging. A more systematic evaluation of patients, as suggested herein, will likely improve therapeutic outcomes and the design of future trials in FSGS.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology, AZ Sint-Jan Brugge-Oostende, Brugge, Belgium;
| | | | - Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and
| | - Richard J Glassock
- Geffen School of Medicine at the University of California, Los Angeles, California
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
54
|
Srivastava T, Thiagarajan G, Alon US, Sharma R, El-Meanawy A, McCarthy ET, Savin VJ, Sharma M. Role of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract. Nephrol Dial Transplant 2018; 32:759-765. [PMID: 28339567 DOI: 10.1093/ndt/gfw430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) including solitary kidney constitute the main cause of progressive chronic kidney disease (CKD) in children. Children born with CAKUT develop signs of CKD only during adolescence and do not respond to renin-angiotensin-aldosterone system blockers. Early cellular changes underlying CKD progression to end-stage renal disease by early adulthood are not well understood. The mechanism of maladaptive hyperfiltration that occurs from loss of functional nephrons, including solitary kidney, is not clear. We re-examine the phenomenon of hyperfiltration in the context of biomechanical forces with special reference to glomerular podocytes. Capillary stretch exerts tensile stress on podocytes through the glomerular basement membrane. The flow of ultrafiltrate over the cell surface directly causes fluid flow shear stress (FFSS) on podocytes. FFSS on the podocyte surface increases 1.5- to 2-fold in animal models of solitary kidney and its effect on podocytes is a subject of ongoing research. Podocytes (i) are mechanosensitive to tensile and shear forces, (ii) use prostaglandin E2, angiotensin-II or nitric oxide for mechanoperception and (iii) use specific signaling pathways for mechanotransduction. We discuss (i) the nature of and differences in cellular responses to biomechanical forces, (ii) methods to study biomechanical forces and (iii) effects of biomechanical forces on podocytes and glomeruli. Future studies on FFSS will likely identify novel targets for strategies for early intervention to complement and strengthen the current regimen for treating children with CAKUT.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA.,Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Ganesh Thiagarajan
- School of Computing and Engineering, University of Missouri at Kansas City, MO, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ellen T McCarthy
- Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mukut Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| |
Collapse
|
55
|
Srivastava T, Dai H, Heruth DP, Alon US, Garola RE, Zhou J, Duncan RS, El-Meanawy A, McCarthy ET, Sharma R, Johnson ML, Savin VJ, Sharma M. Mechanotransduction signaling in podocytes from fluid flow shear stress. Am J Physiol Renal Physiol 2018; 314:F22-F34. [PMID: 28877882 PMCID: PMC5866353 DOI: 10.1152/ajprenal.00325.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
Recently, we and others have found that hyperfiltration-associated increase in biomechanical forces, namely, tensile stress and fluid flow shear stress (FFSS), can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocytes. Our previous work suggests that the cyclooxygenase-2 (COX-2)-PGE2-PGE2 receptor 2 (EP2) axis plays an important role in mechanoperception of FFSS in podocytes. To address mechanotransduction of the perceived stimulus through EP2, cultured podocytes were exposed to FFSS (2 dyn/cm2) for 2 h. Total RNA from cells at the end of FFSS treatment, 2-h post-FFSS, and 24-h post-FFSS was used for whole exon array analysis. Differentially regulated genes ( P < 0.01) were analyzed using bioinformatics tools Enrichr and Ingenuity Pathway Analysis to predict pathways/molecules. Candidate pathways were validated using Western blot analysis and then further confirmed to be resulting from a direct effect of PGE2 on podocytes. Results show that FFSS-induced mechanotransduction as well as exogenous PGE2 activate the Akt-GSK3β-β-catenin (Ser552) and MAPK/ERK but not the cAMP-PKA signal transduction cascades. These pathways are reportedly associated with FFSS-induced and EP2-mediated signaling in other epithelial cells as well. The current regimen for treating hyperfiltration-mediated injury largely depends on targeting the renin-angiotensin-aldosterone system. The present study identifies specific transduction mechanisms and provides novel information on the direct effect of FFSS on podocytes. These results suggest that targeting EP2-mediated signaling pathways holds therapeutic significance for delaying progression of chronic kidney disease secondary to hyperfiltration.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City , Kansas City, Missouri
| | - Hongying Dai
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Daniel P Heruth
- Department of Experimental and Translational Genetics Research, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Jianping Zhou
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - R Scott Duncan
- Department of Ophthalmology, University of Missouri at Kansas City , Kansas City, Missouri
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City , Kansas City, Missouri
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| | - Mukut Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
56
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
57
|
Abstract
In this article, I shall outline some of the most important aspects of the evidentiary basis of the so-called Kriz model for the development of glomerular sclerosis, a model that we continue to modify to this day. In my mind, the most important findings include the fact that podocytes are generally post-mitotic cells, so that loss of a significant number for any cause leads to podocyte insufficiency. Another pivotal finding is that in many experimental models and in human disease, podocytes detach from the GBM as living cells. These facts, together with biomechanical deduction, have led to the ongoing evolution of the original Heidelberg model.
Collapse
|
58
|
Ronco P, Debiec H. A podocyte view of membranous nephropathy: from Heymann nephritis to the childhood human disease. Pflugers Arch 2017; 469:997-1005. [PMID: 28597189 DOI: 10.1007/s00424-017-2007-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 10/25/2022]
Abstract
Membranous nephropathy (MN) is characterized by an accumulation of immune deposits on the subepithelial side of the glomerular basement membrane, which results in complement activation and proteinuria. Since 2002, several major antigens of the podocyte have been identified in human MN, the first one being neutral endopeptidase (NEP), the alloantigen involved in neonatal cases of MN that occur in newborns from NEP-deficient mothers. This discovery opened the field to the major advances that have occurred since then in the pathophysiology and treatment of MN. It is remarkable that experimental models such as Heymann nephritis and cationic bovine serum albumin-induced MN in the rabbit predicted the pathomechanisms of the human glomerulopathy. The podocyte is at the center of the pathogenesis of MN either by providing a source of endogenous antigens or by creating an environment favorable to deposition and accumulation of immune complexes containing exogenous (non-podocyte) antigens. The podocyte is also a victim of complement activation and antibody blocking activity against enzymes or receptors. A search for innovative drugs aimed at protecting this cell against complement activation and the effects of prolonged ER stress has become a priority.
Collapse
Affiliation(s)
- Pierre Ronco
- Inserm UMR_S 1155, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France. .,AP-HP, Hôpital Tenon, Service de Néphrologie et Dialyses, Paris, France.
| | - Hanna Debiec
- Inserm UMR_S 1155, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| |
Collapse
|
59
|
Kriz W, Lemley KV. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr Nephrol 2017; 32:405-417. [PMID: 27008645 DOI: 10.1007/s00467-016-3358-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Abstract
Podocytes are lost as viable cells by detachment from the glomerular basement membrane (GBM), possibly due to factors such as pressure and filtrate flow. Distension of glomerular capillaries in response to increased pressure is limited by the elastic resistance of the GBM. The endothelium and podocytes adapt to changes in GBM area. The slit diaphragm (SD) seems to adjust by shuttling SD components between the SD and the adjacent foot processes (FPs), resulting in changes in SD area that parallel those in perfusion pressure.Filtrate flow tends to drag podocytes towards the urinary orifice by shear forces, which are highest within the filtration slits. The SD represents an atypical adherens junction, mechanically interconnecting the cytoskeleton of opposing FPs and tending to balance the shear forces.If under pathological conditions, increased filtrate flows locally overtax the attachment of FPs, the SDs are replaced by occluding junctions that seal the slits and the attachment of podocytes to the GBM is reinforced by FP effacement. Failure of these temporary adaptive mechanisms results in a steady process of podocyte detachment due to uncontrolled filtrate flows through bare areas of the GBM and, subsequently, the labyrinthine subpodocyte spaces, presenting as pseudocysts. In our view, shear stress due to filtrate flow-not capillary hydrostatic pressure-is the major challenge to the attachment of podocytes to the GBM.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
60
|
Hyperfiltration-associated biomechanical forces in glomerular injury and response: Potential role for eicosanoids. Prostaglandins Other Lipid Mediat 2017; 132:59-68. [PMID: 28108282 DOI: 10.1016/j.prostaglandins.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 signaling provides an opportunity to identify targets and, for developing novel agents to complement currently available treatment.
Collapse
|
61
|
Paoli R, Samitier J. Mimicking the Kidney: A Key Role in Organ-on-Chip Development. MICROMACHINES 2016; 7:E126. [PMID: 30404298 PMCID: PMC6190229 DOI: 10.3390/mi7070126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022]
Abstract
Pharmaceutical drug screening and research into diseases call for significant improvement in the effectiveness of current in vitro models. Better models would reduce the likelihood of costly failures at later drug development stages, while limiting or possibly even avoiding the use of animal models. In this regard, promising advances have recently been made by the so-called "organ-on-chip" (OOC) technology. By combining cell culture with microfluidics, biomedical researchers have started to develop microengineered models of the functional units of human organs. With the capacity to mimic physiological microenvironments and vascular perfusion, OOC devices allow the reproduction of tissue- and organ-level functions. When considering drug testing, nephrotoxicity is a major cause of attrition during pre-clinical, clinical, and post-approval stages. Renal toxicity accounts for 19% of total dropouts during phase III drug evaluation-more than half the drugs abandoned because of safety concerns. Mimicking the functional unit of the kidney, namely the nephron, is therefore a crucial objective. Here we provide an extensive review of the studies focused on the development of a nephron-on-chip device.
Collapse
Affiliation(s)
- Roberto Paoli
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain.
| | - Josep Samitier
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain.
- Department of Electronics, Universitat de Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
62
|
Lemley KV. Glomerular pathology and the progression of chronic kidney disease. Am J Physiol Renal Physiol 2016; 310:F1385-8. [DOI: 10.1152/ajprenal.00099.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/20/2016] [Indexed: 11/22/2022] Open
Abstract
Structural studies of the glomerulus, largely undertaken in animal models, have informed our understanding of the progression of chronic kidney disease (CKD) for decades. A fundamental tenet of that understanding is that a loss of podocytes underlies progression in many or most cases of progressive CKD. Recent attempts have been made to reconcile earlier findings from glomerular physiology (the primacy of glomerular capillary hypertension in causation of secondary glomerular sclerosis) with structural findings and have suggested a more detailed model of the mechanisms underlying podocyte detachment as viable cells. A new appreciation of the main locus of mechanical challenges to the podocyte (in the filtration slit) may both explain the renoprotective action of some current therapies and help to suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Kevin V. Lemley
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California; and
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
63
|
Tomilin V, Mamenko M, Zaika O, Pochynyuk O. Role of renal TRP channels in physiology and pathology. Semin Immunopathol 2016; 38:371-383. [PMID: 26385481 PMCID: PMC4798925 DOI: 10.1007/s00281-015-0527-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023]
Abstract
Kidneys critically contribute to the maintenance of whole-body homeostasis by governing water and electrolyte balance, controlling extracellular fluid volume, plasma osmolality, and blood pressure. Renal function is regulated by numerous systemic endocrine and local mechanical stimuli. Kidneys possess a complex network of membrane receptors, transporters, and ion channels which allows responding to this wide array of signaling inputs in an integrative manner. Transient receptor potential (TRP) channel family members with diverse modes of activation, varied permeation properties, and capability to integrate multiple downstream signals are pivotal molecular determinants of renal function all along the nephron. This review summarizes experimental data on the role of TRP channels in a healthy mammalian kidney and discusses their involvement in renal pathologies.
Collapse
Affiliation(s)
- Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA.
| |
Collapse
|
64
|
Secondary Focal Segmental Glomerulosclerosis: From Podocyte Injury to Glomerulosclerosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1630365. [PMID: 27088082 PMCID: PMC4819087 DOI: 10.1155/2016/1630365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of proteinuria and nephrotic syndrome leading to end stage renal disease (ESRD). There are two types of FSGS, primary (idiopathic) and secondary forms. Secondary FSGS shows less severe clinical features compared to those of the primary one. However, secondary FSGS has an important clinical significance because a variety of renal diseases progress to ESRD thorough the form of secondary FSGS. The defining feature of FSGS is proteinuria. The key event of FSGS is podocyte injury which is caused by multiple factors. Unanswered questions about how these factors act on podocytes to cause secondary FSGS are various and ill-defined. In this review, we provide brief overview and new insights into FSGS, podocyte injury, and their potential linkage suggesting clues to answer for treatment of the disease.
Collapse
|
65
|
Organ-on-a-chip and the kidney. Kidney Res Clin Pract 2015; 34:165-9. [PMID: 26484042 PMCID: PMC4608869 DOI: 10.1016/j.krcp.2015.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/21/2022] Open
Abstract
Traditional approaches to pathophysiology are advancing but still have many limitations that arise from real biologic systems and their associated physiological phenomena being too complicated. Microfluidics is a novel technology in the field of engineering, which provides new options that may overcome these hurdles. Microfluidics handles small volumes of fluids and may apply to various applications such as DNA analysis chips, other lab-on-a-chip analyses, micropropulsion, and microthermal technologies. Among them, organ-on-a-chip applications allow the fabrication of minimal functional units of a single organ or multiple organs. Relevant to the field of nephrology, renal tubular cells have been integrated with microfluidic devices for making kidneys-on-a-chip. Although still early in development, kidneys-on-a-chip are showing potential to provide a better understanding of the kidney to replace some traditional animal and human studies, particularly as more cell types are incorporated toward the development of a complete glomeruli-on-a-chip.
Collapse
|
66
|
Maggiorani D, Dissard R, Belloy M, Saulnier-Blache JS, Casemayou A, Ducasse L, Grès S, Bellière J, Caubet C, Bascands JL, Schanstra JP, Buffin-Meyer B. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS One 2015; 10:e0131416. [PMID: 26146837 PMCID: PMC4493045 DOI: 10.1371/journal.pone.0131416] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.
Collapse
Affiliation(s)
- Damien Maggiorani
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Romain Dissard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Marcy Belloy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Laure Ducasse
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Sandra Grès
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Julie Bellière
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Cécile Caubet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Joost P. Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
- * E-mail:
| |
Collapse
|
67
|
Genetic homogeneity but IgG subclass-dependent clinical variability of alloimmune membranous nephropathy with anti-neutral endopeptidase antibodies. Kidney Int 2015; 87:602-9. [PMID: 25565308 DOI: 10.1038/ki.2014.381] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/09/2022]
Abstract
Alloimmune antenatal membranous nephropathy (MN) during pregnancy results from antibodies produced by a neutral endopeptidase (NEP)-deficient mother. Here we report two recent cases that provide clues to the severity of renal disease. Mothers of the two children had circulating antibodies against NEP showing the characteristic species-dependent pattern by immunofluorescence on kidney slices. A German mother produced predominantly anti-NEP IgG4 accompanied by a low amount of IgG1. Her child recovered renal function within a few weeks. In sharp contrast, an Italian mother mainly produced complement-fixing anti-NEP IgG1, which also inhibits NEP enzymatic activity, whereas anti-NEP IgG4 has a weak inhibitory potency. Her child was dialyzed for several weeks. A kidney biopsy performed at 12 days of age showed MN, ischemic glomeruli, and arteriolar and tubular lesions. A second biopsy performed at 12 weeks of age showed aggravation with an increased number of collapsed capillary tufts. Both mothers were homozygous for the truncating deletion mutation 466delC and were thus NEP deficient. The 466delC mutation, identified in three previously described families, suggests a founder effect. Because of the potential severity of alloimmune antenatal MN, it is essential to identify families at risk by the detection of anti-NEP antibodies and NEP antigen in urine. On the basis of the five families identified to date, we propose an algorithm for the diagnosis of the disease and the prevention of complications.
Collapse
|
68
|
Srivastava T, Alon US, Cudmore PA, Tarakji B, Kats A, Garola RE, Duncan RS, McCarthy ET, Sharma R, Johnson ML, Bonewald LF, El-Meanawy A, Savin VJ, Sharma M. Cyclooxygenase-2, prostaglandin E2, and prostanoid receptor EP2 in fluid flow shear stress-mediated injury in the solitary kidney. Am J Physiol Renal Physiol 2014; 307:F1323-33. [PMID: 25234310 DOI: 10.1152/ajprenal.00335.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hyperfiltration subjects podocytes to increased tensile stress and fluid flow shear stress (FFSS). We showed a 1.5- to 2.0-fold increase in FFSS in uninephrectomized animals and altered podocyte actin cytoskeleton and increased synthesis of prostaglandin E2 (PGE2) following in vitro application of FFSS. We hypothesized that increased FFSS mediates cellular changes through specific receptors of PGE2. Presently, we studied the effect of FFSS on cultured podocytes and decapsulated isolated glomeruli in vitro, and on solitary kidney in uninephrectomized sv129 mice. In cultured podocytes, FFSS resulted in increased gene and protein expression of cyclooxygenase (COX)-2 but not COX-1, prostanoid receptor EP2 but not EP4, and increased synthesis and secretion of PGE2, which were effectively blocked by indomethacin. Next, we developed a special flow chamber for applying FFSS to isolated glomeruli to determine its effect on an intact glomerular filtration barrier by measuring change in albumin permeability (Palb) in vitro. FFSS caused an increase in Palb that was blocked by indomethacin (P < 0.001). Finally, we show that unilateral nephrectomy in sv129 mice resulted in glomerular hypertrophy (P = 0.006), increased glomerular expression of COX-2 (P < 0.001) and EP2 (P = 0.039), and increased urinary albumin excretion (P = 0.001). Activation of the COX-2-PGE2-EP2 axis appears to be a specific response to FFSS in podocytes and provides a mechanistic basis for alteration in podocyte structure and the glomerular filtration barrier, leading to albuminuria in hyperfiltration-mediated kidney injury. The COX-2-PGE2-EP2 axis is a potential target for developing specific interventions to ameliorate the effects of hyperfiltration-mediated kidney injury in the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri;
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Patricia A Cudmore
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Belal Tarakji
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Alexander Kats
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - R Scott Duncan
- Section of Infectious Diseases, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mark L Johnson
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri; and
| | - Lynda F Bonewald
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri; and
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Virginia J Savin
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mukut Sharma
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
69
|
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 2014; 26:258-69. [PMID: 25060060 DOI: 10.1681/asn.2014030278] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Loss of podocytes underlies progression of CKD. Detachment of podocytes from the glomerular basement membrane (GBM) rather than apoptosis or necrosis seems to be the major mechanism of podocyte loss. Such detachment of viable podocytes may be caused by increased mechanical distending and shear forces and/or impaired adhesion to the GBM. This review considers the mechanical challenges that may lead to podocyte loss by detachment from the GBM under physiologic and pathophysiologic conditions, including glomerular hypertension, hyperfiltration, hypertrophy, and outflow of filtrate from subpodocyte spaces. Furthermore, we detail the cellular mechanisms by which podocytes respond to these challenges, discuss the protective effects of angiotensin blockade, and note the questions that must be addressed to better understand the relationship between podocyte detachment and progression of CKD.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Institutes of Transfusion Medicine and Immunology and Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California; and Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
70
|
Kriz W, Hähnel B, Hosser H, Rösener S, Waldherr R. Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front Endocrinol (Lausanne) 2014; 5:207. [PMID: 25566184 PMCID: PMC4264519 DOI: 10.3389/fendo.2014.00207] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023] Open
Abstract
Podocytes are lost by detachment from the GBM as viable cells; details are largely unknown. We studied this process in the rat after growth stimulation with FGF-2. Endothelial and mesangial cells responded by hyperplasia, podocytes underwent hypertrophy, but, in the long run, developed various changes that could either be interpreted showing progressing stages in detachment from the GBM or stages leading to a tighter attachment by foot process effacement (FPE). This occurred in microdomains within the same podocyte; thus, features of detachment and of reinforced attachment may simultaneously be found in the same podocyte. (1) Initially, hypertrophied podocytes underwent cell body attenuation and formed large pseudocysts, i.e., expansions of the subpodocyte space. (2) Podocytes entered the process of FPE starting with the retraction of foot processes (FPs) and the replacement of the slit diaphragm by occluding junctions, thereby sealing the filtration slits. Successful completion of this process led to broad attachments of podocyte cell bodies to the GBM. (3) Failure of sealing the slits led to gaps of varying width between retracting FPs facilitating the outflow of the filtrate from the GBM. (4) Since those gaps are frequently overarched by broadened primary processes, the drainage of the filtrate into the Bowman's space may be hindered leading to the formation of small pseudocysts associated with bare areas of GBM. (5) The merging of pseudocysts created a system of communicating chambers through which the filtrate has to pass to reach Bowman's space. Multiple flow resistances in series likely generated an expansile force on podocytes contributing to detachment. (6) Such a situation appears to proceed to complete disconnection generally of a group of podocytes owing to the junctional connections between them. (7) Since such groups of detaching podocytes generally make contact to parietal cells, they start the formation of tuft adhesions to Bowman's capsule.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Wilhelm Kriz, Zentrum für Biomedizin und Medizintechnik Mannheim, Institut für Neuroanatomie, Ludolf-Krehl-Str. 13-17, Tridomus C, Ebene 6, Mannheim D68167, Germany e-mail:
| | - Brunhilde Hähnel
- Institute of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hiltraud Hosser
- Institute of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Pathologie Heidelberg, Heidelberg, Germany
| | - Sigrid Rösener
- Global Non-Clinical Safety, Merck KGaA, Merck Serono, Darmstadt, Germany
| | | |
Collapse
|
71
|
Grabias BM, Konstantopoulos K. The physical basis of renal fibrosis: effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 2013; 306:F473-85. [PMID: 24352503 DOI: 10.1152/ajprenal.00503.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Healthy kidneys are continuously exposed to an array of physical forces as they filter the blood: shear stress along the inner lumen of the tubules, distension of the tubular walls in response to changing fluid pressures, and bending moments along both the cilia and microvilli of individual epithelial cells that comprise the tubules. Dysregulation of kidney homeostasis via underlying medical conditions such as hypertension, diabetes, or glomerulonephritis fundamentally elevates the magnitudes of each principle force in the kidney and leads to fibrotic scarring and eventual loss of organ function. The purpose of this review is to summarize the progress made characterizing the response of kidney cells to pathological levels of mechanical stimuli. In particular, we examine important, mechanically responsive signaling cascades and explore fundamental changes in renal cell homeostasis after cyclic strain or fluid shear stress exposure. Elucidating the effects of these disease-related mechanical imbalances on endogenous signaling events in kidney cells presents a unique opportunity to better understand the fibrotic process.
Collapse
Affiliation(s)
- Bryan M Grabias
- Dept. of Chemical and Biomolecular Engineering, The Johns Hopkins Univ., New Engineering Bldg. 114, 3400 N. Charles St., Baltimore, MD 21218.
| | | |
Collapse
|
72
|
Liu C, Li Q, Zhou X, Kolosov VP, Perelman JM. Cortactin mediates elevated shear stress-induced mucin hypersecretion via actin polymerization in human airway epithelial cells. Int J Biochem Cell Biol 2013; 45:2756-63. [DOI: 10.1016/j.biocel.2013.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/12/2013] [Accepted: 09/28/2013] [Indexed: 11/25/2022]
|
73
|
Srivastava T, Celsi GE, Sharma M, Dai H, McCarthy ET, Ruiz M, Cudmore PA, Alon US, Sharma R, Savin VA. Fluid flow shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 2013; 29:65-72. [PMID: 24166460 DOI: 10.1093/ndt/gft387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glomerular hyperfiltration is emerging as the key risk factor for progression of chronic kidney disease (CKD). Podocytes are exposed to fluid flow shear stress (FFSS) caused by the flow of ultrafiltrate within Bowman's space. The mechanism of hyperfiltration-induced podocyte injury is not clear. We postulated that glomerular hyperfiltration in solitary kidney increases FFSS over podocytes. METHODS Infant Sprague-Dawley rats at 5 days of age and C57BL/6J 14-week-old adult mice underwent unilateral nephrectomy. Micropuncture and morphological studies were then performed on 20- and 60-day-old rats. FFSS over podocytes in uninephrectomized rats and mice was calculated using the recently published equation by Friedrich et al. which includes the variables-single nephron glomerular filtration rate (SNGFR), filtration fraction (f), glomerular tuft diameter (2RT) and width of Bowman's space (s). RESULTS Glomerular hypertrophy was observed in uninephrectomized rats and mice. Uninephrectomized rats on Day 20 showed a 2.0-fold increase in SNGFR, 1.0-fold increase in 2RT and 2.1-fold increase in FFSS, and on Day 60 showed a 1.9-fold increase in SNGFR, 1.3-fold increase in 2RT and 1.5-fold increase in FFSS, at all values of modeled 's'. Similarly, uninephrectomized mice showed a 2- to 3-fold increase in FFSS at all values of modeled SNGFR. CONCLUSIONS FFSS over podocytes is increased in solitary kidneys in both infant rats and adult mice. This increase is a consequence of increased SNGFR. We speculate that increased FFSS caused by reduced nephron number contributes to podocyte injury and promotes the progression of CKD.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Diabetic nephropathy, by far, is the most common cause of end stage renal disease in the US and many other countries. In type 1 diabetes, the natural history of diabetic nephropathy is tightly linked to evolution of classic lesions of the disease, namely glomerular basement membrane thickening, increased mesangial matrix, and reduced glomerular filtration surface density. These lesions progress in parallel and correlate with increased albumin excretion rate and reduced glomerular filtration rate across a wide range of renal function. In fact, the vast majority of the variances of albumin excretion and glomerular filtration rates can be explained by these glomerular lesions alone in type 1 diabetic patients. Although, classic lesions of diabetic nephropathy, indistinguishable from those of type 1 diabetes, also occur in type 2 diabetes, renal lesions are more heterogeneous in type 2 diabetic patients with some patients developing more advanced vascular or chronic tubulointerstitial lesions than diabetic glomerulopathy. More research biopsy longitudinal studies, especially in type 2 diabetic patients, are needed to better understand various pathways of renal injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Cecilia Ponchiardi
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
75
|
Grabias BM, Konstantopoulos K. Notch4-dependent antagonism of canonical TGF-β1 signaling defines unique temporal fluctuations of SMAD3 activity in sheared proximal tubular epithelial cells. Am J Physiol Renal Physiol 2013; 305:F123-33. [PMID: 23576639 DOI: 10.1152/ajprenal.00594.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is thought to drive fibrogenesis in numerous organ systems. However, we recently established that ectopic expression of TGF-β1 abrogates collagen accumulation via canonical SMAD signaling mechanisms in a shear-induced model of kidney fibrosis. We herein delineate the temporal control of endogenous TGF-β1 signaling that generates sustained synchronous fluctuations in TGF-β1 cascade activation in shear-stimulated proximal tubule epithelial cells (PTECs). During 8-h exposure to physiological shear stress (0.3 dyn/cm²), PTECs experience in situ oscillatory concentrations of active endogenous TGF-β1 that are ~10-fold greater than those detected under higher stress regimes (2-4 dyn/cm²). The elevated levels of intrinsic TGF-β1 maturation observed under physiological conditions are accompanied by persistent downstream SMAD3 activation. Pathological shear stresses (2 dyn/cm²) first elicit temporal variations in phosphorylated SMAD3 with an apparent period of ~6 h, whereas even higher stresses (4 dyn/cm²) abolish SMAD3 activation. These divergent patterns of SMAD3 activation are attributed to varying levels of Notch4-dependent phospho-SMAD3 degradation. Depletion of Notch4 in shear-stimulated PTECs eventually increases the levels of active TGF-β1 protein by approximately fivefold, recovers stable SMAD phosphorylation and ubiquitinated SMAD species, and attenuates collagen accumulation. Collectively, these data establish Notch4 as a critical mediator of shear-induced fibrosis and further reinforce the renoprotective effects of canonical TGF-β1 signaling.
Collapse
Affiliation(s)
- Bryan M Grabias
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
76
|
Abstract
Progressive renal dysfunction is a major complication of type 1 diabetes. Studying relationships between evolution of diabetic nephropathy lesions and renal functional alterations (structural-functional relationships) helps to better understand the natural history of diabetic nephropathy. The focus of this review is our current understanding of the interplay between morphologic changes of diabetic nephropathy and glomerular filtration rate (GFR) loss. These morphologic changes often may not progress in parallel to each other or to the decline in GFR or increase in albumin excretion rate (AER). Quantitative measures of renal (mainly glomerular) structural changes can predict a substantially larger fraction of AER variability compared with that of GFR, especially using linear correlation analyses. However, nonlinear models better fit the structural-functional relationships across a wide range of GFRs and AERs. Currently, there are insufficient longitudinal data to show which structural changes predict the slope of GFR decline in type 1 diabetic patients. Based on cross-sectional studies, however, such a predictor would be about 10% more robust in patients whose GFR was 45 mL/min/1.73 m(2) or greater if comprised of a composite of glomerular, tubular, and interstitial parameters versus glomerular changes alone. For a slowly progressive disease, such as diabetic nephropathy, in which, especially in the earlier stages, it takes a long time for GFR to decline substantially, such predictors are much needed and, if sufficiently precise, could potentially serve as a surrogate of renal functional decline in clinical trials.
Collapse
Affiliation(s)
- Behzad Najafian
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
77
|
Schordan S, Grisk O, Schordan E, Miehe B, Rumpel E, Endlich K, Giebel J, Endlich N. OPN deficiency results in severe glomerulosclerosis in uninephrectomized mice. Am J Physiol Renal Physiol 2013; 304:F1458-70. [PMID: 23552865 DOI: 10.1152/ajprenal.00615.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteopontin (OPN) expression has been reported to be elevated in experimental models of renal injury such as arterial hypertension or diabetic nephropathy finally leading to focal segmental glomerulosclerosis (FSGS). FSGS is characterized by glomerular matrix deposition and loss or damage of podocytes that represent the main constituents of the glomerular filtration barrier. To evaluate the role of OPN in the kidney we investigated WT and OPN knockout mice (OPN-/-) without treatment, after uninephrectomy (UNX), as well as after UNX and desoxycorticosterone acetate (DOCA)-salt treatment with respect to urine parameters, glomerular morphology, and expression of podocyte markers. OPN-/- mice showed normal urine parameters while a thickening of the glomerular basement membrane was evident. Intriguingly, following UNX, OPN-/- mice exhibited prominent FSGS, proteinuria, and glomerular matrix deposition. Electron microscopy revealed bulgings of the glomerular basement membrane and occasionally an effacement of podocytes. After UNX and DOCA-salt treatment, severe glomerular lesions as well as proteinuria and albuminuria were seen in WT and OPN-/- mice. Moreover, we found a reduction of specific markers such as Wilm's tumor-1, podocin, and synaptopodin in both experimental groups indicating a loss of podocytes. Podocyte damage was accompanied by increased number of Ki-67-positive cells in the parietal epithelium of Bowman's capsule. We conclude that OPN plays a crucial role in adaptation of podocytes following renal ablation and is renoprotective when glomerular mechanical load is increased.
Collapse
Affiliation(s)
- Sandra Schordan
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Glomerular hypertension (ie, increased glomerular capillary pressure), has been shown to cause podocyte damage progressing to glomerulosclerosis in animal models. Increased glomerular capillary pressure results in an increase in wall tension that acts primarily as circumferential tensile stress on the capillary wall. The elastic properties of the glomerular basement membrane (GBM) and the elastic as well as contractile properties of the cytoskeleton of the endothelium and of podocyte foot processes resist circumferential tensile stress. Whether the contractile forces generated by podocytes are able to equal circumferential tensile stress to effectively counteract wall tension is an open question. Mechanical stress is transmitted from the GBM to the actin cytoskeleton of podocyte foot processes via cell-matrix contacts that contain mainly integrin α3β1 and a variety of linker, scaffolding, and signaling proteins, which are not well characterized in podocytes. We know from in vitro studies that podocytes are sensitive to stretch, however, the crucial mechanosensor in podocytes remains unclear. On the other hand, in vitro studies have shown that in stretched podocytes specific signaling cascades are activated, the synthesis and secretion of various hormones and their receptors are increased, cell-cycle arrest is reinforced, cell adhesion is altered through secretion of matricellular proteins and changes in integrin expression, and the actin cytoskeleton is reorganized in a way that stress fibers are lost. In summary, current evidence suggests that in glomerular hypertension podocytes primarily aim to maintain the delicate architecture of interdigitating foot processes in the face of an expanding GBM area.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
79
|
Tissue mechanics and fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:884-90. [PMID: 23434892 DOI: 10.1016/j.bbadis.2013.02.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 12/17/2022]
Abstract
Mechanical forces are essential to the development and progression of fibrosis, and are likely to be as important as soluble factors. These forces regulate the phenotype and proliferation of myofibroblasts and other cells in damaged tissues, the activation of growth factors, the structure and mechanics of the matrix, and, potentially, tissue patterning. Better understanding of the variety and magnitude of forces, the characteristics of those forces in biological tissues, and their impact on fibrosis in multiple tissues is needed and may lead to identification of important new therapeutic targets. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
80
|
Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte's response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 2013; 304:F333-47. [DOI: 10.1152/ajprenal.00478.2012] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Progressive loss of podocytes is the most frequent cause accounting for end-stage renal failure. Podocytes are complex, terminally differentiated cells incapable of replicating. Thus lost podocytes cannot be replaced by proliferation of neighboring undamaged cells. Moreover, podocytes occupy a unique position as epithelial cells, adhering to the glomerular basement membrane (GBM) only by their processes, whereas their cell bodies float within the filtrate in Bowman's space. This exposes podocytes to the danger of being lost by detachment as viable cells from the GBM. Indeed, podocytes are continually excreted as viable cells in the urine, and the rate of excretion dramatically increases in glomerular diseases. Given this situation, it is likely that evolution has developed particular mechanisms whereby podocytes resist cell detachment. Podocytes respond to stress and injury by undergoing tremendous changes in shape. Foot process effacement is the most prominent and, yet in some ways, the most enigmatic of those changes. This review summarizes the various structural responses of podocytes to injury, focusing on foot process effacement and detachment. We raise the hypothesis that foot process effacement represents a protective response of podocytes to escape detachment from the GBM.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isao Shirato
- Division of Nephrology, Department of Internal Medicine, Juntendo University, School of Medicine, Tokyo, Japan
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-City, Japan
| | - Michel LeHir
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; and
| | - Kevin V. Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
81
|
Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 2013; 9:200-10. [PMID: 23338211 DOI: 10.1038/nrneph.2012.291] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-matrix adhesion is crucial for maintaining the mechanical integrity of epithelial tissues. Podocytes--a key component of the glomerular filtration barrier--are exposed to permanent transcapillary filtration pressure and must therefore adhere tightly to the underlying glomerular basement membrane (GBM). The major cell-matrix adhesion receptor in podocytes is the integrin α3β1, which connects laminin 521 in the GBM through various adaptor proteins to the intracellular actin cytoskeleton. Other cell-matrix adhesion receptors expressed by podocytes include the integrins α2β1 and αvβ3, α-dystroglycan, syndecan-4 and type XVII collagen. Mutations in genes encoding any of the components critical for podocyte adhesion cause glomerular disease. This Review highlights recent advances in our understanding of the cell biology and genetics of podocyte adhesion with special emphasis on glomerular disease.
Collapse
Affiliation(s)
- Norman Sachs
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
82
|
Hu P, Xuan Q, Hu B, Lu L, Qin YH. Anti-neutral endopeptidase, natriuretic peptides disarrangement, and proteinuria onset in membranous nephropathy. Mol Biol Rep 2012; 40:2963-7. [PMID: 23271116 DOI: 10.1007/s11033-012-2367-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/17/2012] [Indexed: 11/30/2022]
Abstract
Neutral endopeptidase (NEP) is the first podocytic antigen responsible for human membranous nephropathy (MN). Besides the prevailing pathogenetic mechanism of immune complex, NEP is also involved in the metabolism of natriuretic peptides (NP). The identification of anti-NEP antibodies in human MN suggests that the decreased circulating NEP may down-regulate the NP catabolism. In this context, we hypothesize that NP disarrangement secondary to anti-NEP antibodies may account, in part, for the onset of proteinuria in MN. Whereas the pathways for the onset of proteinuria caused by elevated NP level are still obscure. The data presented in this review focus on those which support this hypothesis with regards to evidence from the glomerular haemodynamic changes, endothelial permeability, glomerular basement membrane disruption, and podocyte detachment.
Collapse
Affiliation(s)
- Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei 230022, People's Republic of China.
| | | | | | | | | |
Collapse
|
83
|
Srivastava T, McCarthy ET, Sharma R, Kats A, Carlton CG, Alon US, Cudmore PA, El-Meanawy A, Sharma M. Fluid flow shear stress upregulates prostanoid receptor EP2 but not EP4 in murine podocytes. Prostaglandins Other Lipid Mediat 2012; 104-105:49-57. [PMID: 23262148 DOI: 10.1016/j.prostaglandins.2012.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/30/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
Abstract
Podocytes in the glomerular filtration barrier regulate the passage of plasma proteins into urine. Capillary pressure and ultrafiltration impact the structure and function of podocytes. The mechanism of podocyte injury by fluid flow shear stress (FFSS) from hyperfiltration in chronic kidney disease (CKD) is not completely understood. Recently, we demonstrated increased synthesis of prostaglandin E2 in podocytes exposed to FFSS. Here, we determine the effect of FFSS on prostanoid receptors EP1-EP4 in cultured podocytes and in Os/+ mouse kidney, a model of hyperfiltration. Results of RT-PCR, qRT-PCR, immunoblotting and immunofluorescence studies indicate that cultured podocytes express EP1, EP2 and EP4 but not EP3. FFSS resulted in upregulated expression of only EP2 in podocytes. Kidney immunostaining showed significantly increased expression of EP2 in Os/+ mice compared with littermate controls. These novel results suggest that EP2 may be responsible for mediating podocyte injury from hyperfiltration-induced augmented FFSS in CKD.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Slater SC, Ramnath RD, Uttridge K, Saleem MA, Cahill PA, Mathieson PW, Welsh GI, Satchell SC. Chronic exposure to laminar shear stress induces Kruppel-like factor 2 in glomerular endothelial cells and modulates interactions with co-cultured podocytes. Int J Biochem Cell Biol 2012; 44:1482-90. [DOI: 10.1016/j.biocel.2012.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/01/2012] [Accepted: 05/25/2012] [Indexed: 12/16/2022]
|
85
|
Grabias BM, Konstantopoulos K. Epithelial-mesenchymal transition and fibrosis are mutually exclusive reponses in shear-activated proximal tubular epithelial cells. FASEB J 2012; 26:4131-41. [PMID: 22744866 DOI: 10.1096/fj.12-207324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Renal fibrosis (RF) is thought to be a direct consequence of dedifferentiation of resident epithelial cells via an epithelial-mesenchymal transition (EMT). Increased glomerular flow is a critical initiator of fibrogenesis. Yet, the responses of proximal tubular epithelial cells (PTECs) to fluid flow remain uncharacterized. Here, we investigate the effects of pathological shear stresses on the development of fibrosis in PTECs. Our data reveal that type I collagen accumulation in shear-activated PTECs is accompanied by a ∼40-60% decrease in cell motility, thus excluding EMT as a relevant pathological process. In contrast, static incubation of PTECs with TGFβ1 increases cell motility by ∼50%, and induces stable expression of key mesenchymal markers, including Snail1, N-cadherin, and vimentin. Ectopic expression of TGFβ1 in shear-activated PTECs fails to induce EMT-associated changes but abrogates collagen accumulation via SMAD2-dependent mechanisms. Shear-mediated inhibition of EMT occurs via cyclic oscillations in both ERK2 activity and downstream expression of EMT genes. A constitutive ERK2 mutant induces stable expression of Snail1, N-cadherin, and vimentin, and increases cell motility in shear-activated PTECs by 250% without concomitant collagen deposition. Collectively, our data reveal that RF not only occurs without EMT but also that these two responses represent mutually exclusive cell fates.
Collapse
Affiliation(s)
- Bryan M Grabias
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, New Engineering Bldg. 114, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
86
|
Abstract
Proteinuria is often accompanied by a pathological change in the glomerulus that is refereed as effacement of the podocyte foot processes. The highly dynamic podocyte foot processes contain an actin-based contractile apparatus comparable to that of pericytes, which needs to be precisely and temporally controlled to withstand high pressure in the capillaries and to maintain intact glomerular filtration properties. This review outlines the most recent concepts on the function of the podocyte contractile apparatus with a focus on the role of non-muscle myosins as they have been highlighted by studies in monogenic hereditary proteinuric diseases.
Collapse
Affiliation(s)
- Marina Noris
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases "Aldo e Cele Daccò", Department of Molecular Medicine, Ranica, Italy
| | - Giuseppe Remuzzi
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Ospedaliera, Ospedali Riuniti di Bergamo, Italy
| |
Collapse
|
87
|
Huang C, Bruggeman LA, Hydo LM, Miller RT. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp Cell Res 2012; 318:1075-85. [PMID: 22472346 DOI: 10.1016/j.yexcr.2012.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 02/06/2023]
Abstract
The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD(1), and PLD(2) to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD(1) but not PLD(2). The inhibition of shear stress-induced c-Src phosphorylation by PP(2) (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Chunfa Huang
- Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University, USA.
| | | | | | | |
Collapse
|
88
|
Affiliation(s)
- Vivette D D'Agati
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | | | |
Collapse
|
89
|
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a disease but a clinicopathologic entity. The term FSGS itself is a misnomer because its lesions are not always focal, segmental, or sclerotic. Its clinical expression also widely varies and is nonspecific. Confronted with such diversity, one cannot but translate the title of this contribution into a unifying version focusing on the podocyte, initial culprit, or victim of multiple processes leading to FSGS. Some have been identified in human glomerulopathies and/or in animal or cell culture models, and are classified as secondary. Genetic forms, nonsyndromic or syndromic, have adduced a wealth of knowledge on the slit diaphragm architecture and explain the reason for their steroid resistance. Others, mostly expressed by a nephrotic syndrome, will be considered as idiopathic until the offending factor(s) that affect the molecular array of the slit diaphragm filtration barrier are identified and counteracted. Recent research has lead to suggesting that FSGS is not a T-cell-driven autoimmune glomerulopathy. Thus, treatments considered as etiologic, including glucocorticoids and calcineurin inhibitors, are in fact endowed with a mode of action on podocytes that suggests that drugs used such as immunosuppressors also might be considered as antiproteinuric agents.
Collapse
|
90
|
Mele C, Iatropoulos P, Donadelli R, Calabria A, Maranta R, Cassis P, Buelli S, Tomasoni S, Piras R, Krendel M, Bettoni S, Morigi M, Delledonne M, Pecoraro C, Abbate I, Capobianchi MR, Hildebrandt F, Otto E, Schaefer F, Macciardi F, Ozaltin F, Emre S, Ibsirlioglu T, Benigni A, Remuzzi G, Noris M. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med 2011; 365:295-306. [PMID: 21756023 PMCID: PMC3701523 DOI: 10.1056/nejmoa1101273] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Focal segmental glomerulosclerosis is a kidney disease that is manifested as the nephrotic syndrome. It is often resistant to glucocorticoid therapy and progresses to end-stage renal disease in 50 to 70% of patients. Genetic studies have shown that familial focal segmental glomerulosclerosis is a disease of the podocytes, which are major components of the glomerular filtration barrier. However, the molecular cause in over half the cases of primary focal segmental glomerulosclerosis is unknown, and effective treatments have been elusive. METHODS We performed whole-genome linkage analysis followed by high-throughput sequencing of the positive-linkage area in a family with autosomal recessive focal segmental glomerulosclerosis (index family) and sequenced a newly discovered gene in 52 unrelated patients with focal segmental glomerulosclerosis. Immunohistochemical studies were performed on human kidney-biopsy specimens and cultured podocytes. Expression studies in vitro were performed to characterize the functional consequences of the mutations identified. RESULTS We identified two mutations (A159P and Y695X) in MYO1E, which encodes a nonmuscle class I myosin, myosin 1E (Myo1E). The mutations in MYO1E segregated with focal segmental glomerulosclerosis in two independent pedigrees (the index family and Family 2). Patients were homozygous for the mutations and did not have a response to glucocorticoid therapy. Electron microscopy showed thickening and disorganization of the glomerular basement membrane. Normal expression of Myo1E was documented in control human kidney-biopsy specimens in vivo and in glomerular podocytes in vitro. Transfection studies revealed abnormal subcellular localization and function of the A159P-Myo1E mutant. The Y695X mutation causes loss of calmodulin binding and of the tail domains of Myo1E. CONCLUSIONS MYO1E mutations are associated with childhood-onset, glucocorticoid-resistant focal segmental glomerulosclerosis. Our data provide evidence of a role of Myo1E in podocyte function and the consequent integrity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Caterina Mele
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
| | - Paraskevas Iatropoulos
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
| | - Roberta Donadelli
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
| | - Andrea Calabria
- Department of Medicine, Surgery and Dentistry, Università degli Studi di Milano, Milan, Italy
| | - Ramona Maranta
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
| | - Paola Cassis
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
| | - Simona Buelli
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Susanna Tomasoni
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Rossella Piras
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
| | - Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Serena Bettoni
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
| | - Marina Morigi
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Massimo Delledonne
- Center of Functional Genomics, Department of Biotechnologies, University of Verona, Verona Italy
| | - Carmine Pecoraro
- Department of Nephrology and Dialysis ‘Santobono’ Hospital, Napoli, Italy
| | | | | | - Friedhelm Hildebrandt
- Department of Pediatrics, University of Michigan, Ann Arbor MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor MI, USA
| | - Edgar Otto
- Department of Pediatrics, University of Michigan, Ann Arbor MI, USA
| | - Franz Schaefer
- Pediatric Nephrology Division, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Fabio Macciardi
- Department of Medicine, Surgery and Dentistry, Università degli Studi di Milano, Milan, Italy
| | - Fatih Ozaltin
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevinc Emre
- Department of Pediatric Nephrology, Instanbul Medical Faculty, Instanbul University, Instanbul, Turkey
| | - Tulin Ibsirlioglu
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ariela Benigni
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori Science and Technology Park Kilometro Rosso, Bergamo, Italy
- Unit of Nephrology and Dialysis, Ospedali Riuniti di Bergamo, Bergamo Italy
| | - Marina Noris
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases ‘Aldo e Cele Daccò’, Ranica, Bergamo, Italy
| |
Collapse
|
91
|
Stieger N, Worthmann K, Schiffer M. The role of metabolic and haemodynamic factors in podocyte injury in diabetes. Diabetes Metab Res Rev 2011; 27:207-15. [PMID: 21309047 DOI: 10.1002/dmrr.1164] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Podocyte loss is a common feature in human diabetes as well as in experimental diabetes in rodents. Almost all components of the diabetic milieu lead to serious podocyte stress, driving the cells towards cell cycle arrest and hypertrophy, detachment and apoptosis. Common pathway components induced by high glucose and advanced glycation end-products are reactive oxygen species, cyclin-dependent kinases (p27(Kip1)) and transforming growth factor-beta. In addition, mechanical stresses by stretch or shear forces, insulin deficiency or insulin resistance are independent components resulting in podocyte apoptosis and detachment. In this review, we discuss the common pathways leading to podocyte death as well as novel pathways and concepts of podocyte dedifferentiation and detachment that influence the progression of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Nicole Stieger
- Division of Nephrology, Department of Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | | | |
Collapse
|
92
|
Schordan S, Schordan E, Endlich K, Endlich N. AlphaV-integrins mediate the mechanoprotective action of osteopontin in podocytes. Am J Physiol Renal Physiol 2010; 300:F119-32. [PMID: 21048023 DOI: 10.1152/ajprenal.00143.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increased mechanical load in podocytes due to glomerular hypertension is one of the important factors leading to podocyte damage and chronic kidney disease. In previous studies, we have shown that mechanical stretch increases osteopontin (OPN) expression in podocytes and that exogenous OPN is mechanoprotective via facilitating cytoskeletal reorganization of podocytes. In the present study, we asked whether the mechanoprotective effect of OPN in podocytes is mediated through specific integrins and whether endogenous OPN of podocytes is required for mechanoprotection. Conditionally immortalized mouse podocytes and primary podocytes (PP) from OPN-/- and OPN+/+ mice were used. Cyclic biaxial mechanical stretch (0.5 Hz, 7% linear strain) was applied for up to 3 days. Stretch-induced cell loss was ∼30% higher in OPN-/- PP compared with OPN+/+ PP. Increased cell loss of OPN-/- PP was rescued by OPN coating. Analysis of integrin expression by RT-PCR, application of RGD and SLAYGLR peptides and anti-integrin antibodies, small-interfering RNA knockdown of integrins, and application of kinase inhibitors identified αV-integrins (αVβ1, αVβ3, and αVβ5) to mediate the mechano-protective effect of OPN in podocytes involving focal adhesion kinase, Src, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Our results demonstrate that endogenous OPN of podocytes plays a nonredundant role in podocyte adaptation to mechanical stretch, and that OPN signaling via α(V)-integrins may represent a relevant therapeutical target in podocytes.
Collapse
Affiliation(s)
- Sandra Schordan
- Department of Anatomy and Cell Biology, University of Greifswald, Greifswald, Germany
| | | | | | | |
Collapse
|
93
|
Dryer SE, Reiser J. TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 2010; 299:F689-701. [PMID: 20685822 DOI: 10.1152/ajprenal.00298.2010] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Loss or dysfunction of podocytes is a major cause of glomerular kidney disease. Several genetic forms of glomerular disease are caused by mutations in genes that encode structural elements of the slit diaphragm or the underlying cytoskeleton of podocyte foot processes. The recent discovery that gain-of-function mutations in Ca(2+)-permeable canonical transient receptor potential-6 channels (TRPC6) underlie a subset of familial forms of focal segmental glomerulosclerosis (FSGS) has focused attention on the basic cellular physiology of podocytes. Several recent studies have examined the role of Ca(2+) dynamics in normal podocyte function and their possible contributions to glomerular disease. This review summarizes the properties of TRPC6 and related channels, focusing on their permeation and gating properties, the nature of mutations associated with familial FSGS, and the role of TRPC channels in podocyte cell biology as well as in glomerular pathophysiology. TRPC6 interacts with several proteins in podocytes, including essential slit diaphragm proteins and mechanosensitive large-conductance Ca(2+)-activated K(+) channels. The signaling dynamics controlling ion channel function and localization in podocytes appear to be quite complex.
Collapse
Affiliation(s)
- Stuart E Dryer
- Dept. of Biology and Biochemistry, Univ. of Houston, 4800 Calhoun, Houston, TX 77204-5001, USA.
| | | |
Collapse
|
94
|
Chen J, Xu H, Shen Q, Guo W, Sun L. Effect of postnatal high-protein diet on kidney function of rats exposed to intrauterine protein restriction. Pediatr Res 2010; 68:100-4. [PMID: 20453715 DOI: 10.1203/pdr.0b013e3181e5bc33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Poor fetal growth is linked with long-term detrimental effects on health in late life. We have previously shown that maternal protein restriction leads to hypertension and a reduced number of glomeruli in adult offspring. The aim of this study was to investigate the influence of a postnatal high-protein (HP) diet on renal development and renal function in rats subjected to a low-protein (LP) diet in fetal life. Sprague-Dawley rats were fed an LP diet throughout pregnancy. Male pups were given either a normal-protein (NP) diet (LP/NP) or HP diet (LP/HP), and normal male pups as control (NP/NP). At 12 wk, LP/HP offspring displayed no increase in glomerular number but showed elevated blood pressure and proteinuria compared with the LP/NP group. There was minimal fusion of foot processes in LP/NP rats compared with a moderate fusion of foot processes and hyperplasia of mesangial cells in LP/HP rats. Renal desmin mRNA levels were elevated in both LP/NP and LP/HP groups but more significantly in the LP/HP group. This study suggests that postnatal HP diet amplifies the renal damage induced by fetal under-nutrition. Podocyte injury may be one of the mechanisms by which fetal protein restriction leads to proteinuria.
Collapse
Affiliation(s)
- Jing Chen
- Department of Nephrology, Children's Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
95
|
Kim EY, Suh JM, Chiu YH, Dryer SE. Regulation of podocyte BK(Ca) channels by synaptopodin, Rho, and actin microfilaments. Am J Physiol Renal Physiol 2010; 299:F594-604. [PMID: 20630939 DOI: 10.1152/ajprenal.00206.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mechanosensitive large-conductance Ca(2+)-activated K(+) channels encoded by the Slo1 gene (BK(Ca) channels) are expressed in podocytes. Here we show that BK(Ca) channels reciprocally coimmunoprecipitate with synaptopodin (Synpo) in mouse glomeruli, in mouse podocytes, and in a heterologous expression system (HEK293T cells) in which these proteins are transiently expressed. Synpo and Slo1 colocalize along the surface of the glomerular basement membrane in mouse glomeruli. Synpo interacts with BK(Ca) channels at COOH-terminal domains that overlap with an actin-binding domain on the channel molecule that is necessary for trafficking of BK(Ca) channels to the cell surface. Moreover, addition of exogenous beta-actin to mouse podocyte lysates reduces BK(Ca)-Synpo interactions. Coexpression of Synpo increases steady-state surface expression of BK(Ca) channels in HEK293T cells. However, Synpo does not affect the stability of cell surface BK(Ca) channels, suggesting a primary effect on the rate of forward trafficking, and Synpo coexpression does not affect BK(Ca) gating. Conversely, stable knockdown of Synpo expression in mouse podocyte cell lines reduces steady-state surface expression of BK(Ca) channels but does not affect total expression of BK(Ca) channels or their gating. The effects of Synpo on surface expression of BK(Ca) are blocked by inhibition of Rho signaling in HEK293T cells and in podocytes. Functional cell surface BK(Ca) channels in podocytes are also reduced by sustained (2 h) but not acute (15 min) depolymerization of actin with cytochalasin D. Synpo may regulate BK(Ca) channels through its effects on actin dynamics and by modulating interactions between BK(Ca) channels and regulatory proteins of the podocyte slit diaphragm.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Texas 77204-5001, USA
| | | | | | | |
Collapse
|
96
|
Srivastava T, McCarthy ET, Sharma R, Cudmore PA, Sharma M, Johnson ML, Bonewald LF. Prostaglandin E(2) is crucial in the response of podocytes to fluid flow shear stress. J Cell Commun Signal 2010; 4:79-90. [PMID: 20531983 PMCID: PMC2876242 DOI: 10.1007/s12079-010-0088-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 03/05/2010] [Indexed: 12/11/2022] Open
Abstract
Podocytes play a key role in maintaining and modulating the filtration barrier of the glomerulus. Because of their location, podocytes are exposed to mechanical strain in the form of fluid flow shear stress (FFSS). Several human diseases are characterized by glomerular hyperfiltration, such as diabetes mellitus and hypertension. The response of podocytes to FFSS at physiological or pathological levels is not known. We exposed cultured podocytes to FFSS, and studied changes in actin cytoskeleton, prostaglandin E(2) (PGE(2)) production and expression of cyclooxygenase-1 and-2 (COX-1, COX-2). FFSS caused a reduction in transversal F-actin stress filaments and the appearance of cortical actin network in the early recovery period. Cells exhibited a pattern similar to control state by 24 h following FFSS without significant loss of podocytes or apoptosis. FFSS caused increased levels of PGE(2) as early as 30 min after onset of shear stress, levels that increased over time. PGE(2) production by podocytes at post-2 h and post-24 h was also significantly increased compared to control cells (p < 0.039 and 0.012, respectively). Intracellular PGE(2) synthesis and expression of COX-2 was increased at post-2 h following FFSS. The expression of COX-1 mRNA was unchanged. We conclude that podocytes are sensitive and responsive to FFSS, exhibiting morphological and physiological changes. We believe that PGE(2) plays an important role in mechanoperception in podocytes.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO USA
| | - Ellen T. McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS USA
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Room F1-130, Building 15, 4801 Linwood Boulevard, Kansas City, MO 64128 USA
| | - Patricia A. Cudmore
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO USA
| | - Mukut Sharma
- Kidney Disease Center, Medical College of Wisconsin, Milwaukee, WI USA
| | - Mark L. Johnson
- Department of Oral Biology, University of Missouri at Kansas City—School of Dentistry, Kansas, MO USA
| | - Lynda F. Bonewald
- Department of Oral Biology, University of Missouri at Kansas City—School of Dentistry, Kansas, MO USA
| |
Collapse
|
97
|
Faour WH, Thibodeau JF, Kennedy CRJ. Mechanical stretch and prostaglandin E2 modulate critical signaling pathways in mouse podocytes. Cell Signal 2010; 22:1222-30. [PMID: 20362052 DOI: 10.1016/j.cellsig.2010.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/27/2022]
Abstract
Elevated glomerular capillary pressure (Pgc) and hyperglycemia contribute to glomerular filtration barrier injury observed in diabetic nephropathy (DN). Previous studies showed that hypertensive conditions alone or in combination with a diabetic milieu impact podocyte cellular function which results in podocyte death, detachment or hypertrophy. The present study was aimed at uncovering the initial signaling profile activated by Pgc (mimicked by in vitro mechanical stretch), hyperglycemia (high glucose (HG), 25mM d-glucose) and prostaglandin E(2) (PGE(2)) in conditionally-immortalized mouse podocytes. PGE(2) significantly reduced the active form of AKT by selectively blunting its phosphorylation on S473, but not on T308. AKT inhibition by PGE(2) was reversed following either siRNA-mediated EP(4) knockdown, PKA inhibition (H89), or phosphatase inhibition (orthovanadate). Podocytes treated for 20min with H(2)O(2) (10(-4)M), which mimics reactive oxygen species generation by cells challenged by hyperglycemic or enhanced Pgc conditions, significantly increased the levels of active p38 MAPK, AKT, JNK and ERK1/2. Interestingly, stretch and PGE(2) each significantly reduced H(2)O(2)-mediated AKT phosphorylation and was reversed by pretreatment with orthovanadate while stretch alone reduced GSK-3beta inhibitory phosphorylation at ser-9. Finally, mechanical stretch alone or in combination with HG, induced ERK1/2 and JNK activation, via the EGF receptor since AG1478, a specific EGF receptor kinase inhibitor, blocked this activation. These results show that cellular signaling in podocytes is significantly altered under diabetic conditions (i.e., hyperglycemia and increased Pgc). These changes in MAPKs and AKT activities might impact cellular integrity required for a functional glomerular filtration barrier thereby contributing to the onset of proteinuria in DN.
Collapse
Affiliation(s)
- Wissam H Faour
- School of Medicine, Lebanese American University, Byblos, Lebanon.
| | | | | |
Collapse
|
98
|
Ratelade J, Arrondel C, Hamard G, Garbay S, Harvey S, Biebuyck N, Schulz H, Hastie N, Pontoglio M, Gubler MC, Antignac C, Heidet L. A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes. Hum Mol Genet 2010; 19:1-15. [PMID: 19797313 DOI: 10.1093/hmg/ddp462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Wilms tumor-suppressor gene WT1, a key player in renal development, also has a crucial role in maintenance of the glomerulus in the mature kidney. However, molecular pathways orchestrated by WT1 in podocytes, where it is highly expressed, remain unknown. Their defects are thought to modify the cross-talk between podocytes and other glomerular cells and ultimately lead to glomerular sclerosis, as observed in diffuse mesangial sclerosis (DMS) a nephropathy associated with WT1 mutations. To identify podocyte WT1 targets, we generated a novel DMS mouse line, performed gene expression profiling in isolated glomeruli and identified excellent candidates that may modify podocyte differentiation and growth factor signaling in glomeruli. Scel, encoding sciellin, a protein of the cornified envelope in the skin, and Sulf1, encoding a 6-O endosulfatase, are shown to be expressed in wild-type podocytes and to be strongly down-regulated in mutants. Co-expression of Wt1, Scel and Sulf1 was also found in a mesonephric cell line, and siRNA-mediated knockdown of WT1 decreased Scel and Sulf1 mRNAs and proteins. By ChIP we show that Scel and Sulf1 are direct WT1 targets. Cyp26a1, encoding an enzyme involved in the degradation of retinoic acid, is shown to be up-regulated in mutant podocytes. Cyp26a1 may play a role in the development of glomerular lesions but does not seem to be regulated by WT1. These results provide novel clues in our understanding of normal glomerular function and early events involved in glomerulosclerosis.
Collapse
|
99
|
Lewko B, Stepinski J. Hyperglycemia and mechanical stress: Targeting the renal podocyte. J Cell Physiol 2009; 221:288-95. [DOI: 10.1002/jcp.21856] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
100
|
Fischer K, McDannold NJ, Zhang Y, Kardos M, Szabo A, Szabo A, Reusz GS, Jolesz FA. Renal ultrafiltration changes induced by focused US. Radiology 2009; 253:697-705. [PMID: 19703861 DOI: 10.1148/radiol.2532082100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To determine if focused ultrasonography (US) combined with a diagnostic microbubble-based US contrast agent can be used to modulate glomerular ultrafiltration and size selectivity. MATERIALS AND METHODS The experiments were approved by the animal care committee. The left kidney of 17 healthy rabbits was sonicated by using a 260-kHz focused US transducer in the presence of a microbubble-based US contrast agent. The right kidney served as the control. Three acoustic power levels were applied: 0.4 W (six rabbits), 0.9 W (six rabbits), and 1.7 W (five rabbits). Three rabbits were not treated with focused US and served as control animals. The authors evaluated changes in glomerular size selectivity by measuring the clearance rates of 3000- and 70,000-Da fluorescence-neutral dextrans. The creatinine clearance was calculated for estimation of the glomerular filtration rate. The urinary protein-creatinine ratio was monitored during the experiments. The authors assessed tubular function by evaluating the fractional sodium excretion, tubular reabsorption of phosphate, and gamma-glutamyltransferase-creatinine ratio. Whole-kidney histologic analysis was performed. For each measurement, the values obtained before and after sonication were compared by using the paired t test. RESULTS Significant (P < .05) increases in the relative (ratio of treated kidney value/nontreated kidney value) clearance of small- and large-molecule agents and the urine flow rates that resulted from the focused US treatments were observed. Overall, 1.23-, 1.23-, 1.61-, and 1.47-fold enhancement of creatinine clearance, 3000-Da dextran clearance, 70 000-Da dextran clearance, and urine flow rate, respectively, were observed. Focal tubular hemorrhage and transient functional tubular alterations were observed at only the highest (1.7-W) acoustic power level tested. CONCLUSION Glomerular ultrafiltration and size selectivity can be temporarily modified with simultaneous application of US and microbubbles. This method could offer new opportunities for treatment of renal disease.
Collapse
Affiliation(s)
- Krisztina Fischer
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Focused Ultrasound Laboratory, 221 Longwood Ave, Room 515, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|