51
|
Hypoxia and Renal Tubulointerstitial Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:467-485. [PMID: 31399980 DOI: 10.1007/978-981-13-8871-2_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia, one of the most common causes of kidney injury, is a key pathological condition in various kidney diseases. Renal fibrosis is the terminal pathway involved in the continuous progression of chronic kidney disease (CKD), characterized by glomerulosclerosis and tubulointerstitial fibrosis (TIF). Recent studies have shown that hypoxia is a key factor promoting the progression of TIF. Loss of microvasculature, reduced oxygen dispersion, and metabolic abnormality of cells in the kidney are the main causes of the hypoxic state. Hypoxia can, in turn, profoundly affect the tubular epithelial cells, endothelial cells, pericytes, fibroblasts, inflammatory cells, and progenitor cells. In this chapter, we reviewed the critical roles of hypoxia in the pathophysiology of TIF and discussed the potential of anti-hypoxia as its promising therapeutic target.
Collapse
|
52
|
Leete J, Layton AT. Sex-specific long-term blood pressure regulation: Modeling and analysis. Comput Biol Med 2018; 104:139-148. [PMID: 30472496 DOI: 10.1016/j.compbiomed.2018.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/17/2023]
Abstract
Hypertension is a global health challenge: it affects one billion people worldwide and is estimated to account for >60% of all cases or types of cardiovascular disease. In part because sex differences in blood pressure regulation mechanisms are not sufficiently well understood, fewer hypertensive women achieve blood pressure control compared to men, even though compliance and treatment rates are generally higher in women. Thus, the objective of this study is to identify which factors contribute to the sexual dimorphism in response to anti-hypertensive therapies targeting the renin angiotensin system (RAS). To accomplish that goal, we develop sex-specific blood pressure regulation models. Sex differences in the RAS, baseline adosterone level, and the reactivity of renal sympathetic nervous activity (RSNA) are represented. A novel aspect of the model is the representation of sex-specific vasodilatory effect of the bound angiotensin II type two receptor (AT2R-bound Ang II) on renal vascular resistance. Model simulations suggest that sex differences in RSNA are the largest cause of female resistance to developing hypertension due to the direct influence of RSNA on afferent arteriole resistance. Furthermore, the model predicts that the sex-specific vasodilatory effects of AT2R-bound Ang II on renal vascular resistance may explain the higher effectiveness of angiotensin receptor blockers in treating hypertensive women (but not men), compared to angiotensin converting enzyme inhibitors.
Collapse
Affiliation(s)
- Jessica Leete
- Computational Biology & Bioinformatics Program, Duke University, Durham, NC, USA.
| | - Anita T Layton
- Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University, Durham, NC, USA; Department of Applied Mathematics and School of Pharmacy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
53
|
Li Q, McDonough AA, Layton HE, Layton AT. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am J Physiol Renal Physiol 2018; 315:F692-F700. [PMID: 29846110 PMCID: PMC6172582 DOI: 10.1152/ajprenal.00171.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
The goal of this study is to investigate the functional implications of the sexual dimorphism in transporter patterns along the proximal tubule. To do so, we have developed sex-specific computational models of solute and water transport in the proximal convoluted tubule of the rat kidney. The models account for the sex differences in expression levels of the apical and basolateral transporters, in single-nephron glomerular filtration rate, and in tubular dimensions. Model simulations predict that 70.6 and 38.7% of the filtered volume is reabsorbed by the proximal tubule of the male and female rat kidneys, respectively. The lower fractional volume reabsorption in females can be attributed to their smaller transport area and lower aquaporin-1 expression level. The latter also results in a larger contribution of the paracellular pathway to water transport. Correspondingly similar fractions (70.9 and 39.2%) of the filtered Na+ are reabsorbed by the male and female proximal tubule models, respectively. The lower fractional Na+ reabsorption in females is due primarily to their smaller transport area and lower Na+/H+ exchanger isoform 3 and claudin-2 expression levels. Notably, unlike most Na+ transporters, whose expression levels are lower in females, Na+-glucose cotransporter 2 (SGLT2) expression levels are 2.5-fold higher in females. Model simulations suggest that the higher SGLT2 expression in females may compensate for their lower tubular transport area to achieve a hyperglycemic tolerance similar to that of males.
Collapse
Affiliation(s)
- Qianyi Li
- Kuang Yaming Honors School, Nanjing University , Nanjing , China
| | - Alicia A McDonough
- Department of Integrative Anatomical Sciences, Kerck School of Medicine, University of Southern California , Los Angeles, California
| | - Harold E Layton
- Department of Mathematics, Duke University , Durham, North Carolina
| | - Anita T Layton
- Department of Mathematics, Duke University , Durham, North Carolina
- Departments of Biomedical Engineering and Medicine, Duke University , Durham, North Carolina
- Department of Applied Mathematics, University of Waterloo , Waterloo, Ontario , Canada
| |
Collapse
|
54
|
Abstract
The myogenic response is a key autoregulatory mechanism in the mammalian kidney. Triggered by blood pressure perturbations, it is well established that the myogenic response is initiated in the renal afferent arteriole and mediated by alterations in muscle tone and vascular diameter that counterbalance hemodynamic perturbations. The entire process involves several subcellular, cellular, and vascular mechanisms whose interactions remain poorly understood. Here, we model and investigate the myogenic response of a multicellular segment of an afferent arteriole. Extending existing work, we focus on providing an accurate—but still computationally tractable—representation of the coupling among the involved levels. For individual muscle cells, we include detailed Ca2+ signaling, transmembrane transport of ions, kinetics of myosin light chain phosphorylation, and contraction mechanics. Intercellular interactions are mediated by gap junctions between muscle or endothelial cells. Additional interactions are mediated by hemodynamics. Simulations of time-independent pressure changes reveal regular vasoresponses throughout the model segment and stabilization of a physiological range of blood pressures (80–180 mmHg) in agreement with other modeling and experimental studies that assess steady autoregulation. Simulations of time-dependent perturbations reveal irregular vasoresponses and complex dynamics that may contribute to the complexity of dynamic autoregulation observed in vivo. The ability of the developed model to represent the myogenic response in a multiscale and realistic fashion, under feasible computational load, suggests that it can be incorporated as a key component into larger models of integrated renal hemodynamic regulation.
Collapse
|
55
|
Layton AT. Sweet success? SGLT2 inhibitors and diabetes. Am J Physiol Renal Physiol 2018; 314:F1034-F1035. [PMID: 29357429 PMCID: PMC6032073 DOI: 10.1152/ajprenal.00557.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Anita T Layton
- Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University , Durham, North Carolina
| |
Collapse
|
56
|
Layton AT, Vallon V. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. Am J Physiol Renal Physiol 2018; 314:F969-F984. [PMID: 29361669 PMCID: PMC6031905 DOI: 10.1152/ajprenal.00551.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors enhance urinary glucose, Na+ and fluid excretion, and lower hyperglycemia in diabetes by targeting Na+ and glucose reabsorption along the proximal convoluted tubule. A goal of this study was to predict the effects of SGLT2 inhibitors in diabetic and nondiabetic patients with chronic kidney disease. To that end, we employed computational rat kidney models to explore how SGLT2 inhibition affects renal solute transport and metabolism when nephron populations are normal or reduced. Model simulations suggested that in a nondiabetic rat, acute and chronic SGLT2 inhibition induces glucosuria, diuresis, natriuresis, and kaliuresis. Those effects were stronger with chronic SGLT2 inhibition (due to SGLT1 downregulation) and tempered by nephron loss. In a diabetic rat with normal nephron number, acute SGLT2 inhibition similarly elevated urine fluid, Na+, and K+ excretion, whereas the urinary excretory effects of chronic SGLT2 inhibition were attenuated in proportion to its plasma glucose level lowering effect. Nephron loss in a diabetic kidney was predicted to lower the glucosuric and blood glucose-reducing effect of chronic SGLT2 inhibition, but due to the high luminal glucose delivery in the remaining hyperfiltering nephrons, nephron loss enhanced proximal tubular paracellular Na+ secretion, thereby augmenting the natriuretic, diuretic, and kaliuretic effects. A proposed shift in oxygen-consuming active transport to the outer medulla, which may simulate systemic hypoxia and enhance erythropoiesis, was also preserved with nephron loss. These effects may contribute to the protective effects of SGLT2 inhibitors on blood pressure and heart failure observed in diabetic patients with chronic kidney diseases.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University , Durham, North Carolina
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego , La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
57
|
Wei N, Layton AT. Theoretical assessment of the Ca2+ oscillations in the afferent arteriole smooth muscle cell of the rat kidney. INT J BIOMATH 2018. [DOI: 10.1142/s1793524518500432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The afferent arteriole (AA) of rat kidney exhibits the myogenic response, in which the vessel constricts in response to an elevation in blood pressure and dilates in response to a pressure reduction. Additionally, the AA exhibits spontaneous oscillations in vascular tone at physiological luminal pressures. These time-periodic oscillations stem from the dynamic exchange of Ca[Formula: see text] between the cytosol and the sarcoplasmic reticulum, coupled to the stimulation of Ca[Formula: see text]-activated potassium and chloride channels, and to the modulation of voltage-gated L-type Ca[Formula: see text] channels. The effects of physiological factors, including blood pressure and vasoactive substances, on AA vasomotion remain to be well characterized. In this paper, we analyze a mathematical model of Ca[Formula: see text] signaling in an AA smooth muscle cell. The model represents detailed transmembrane ionic transport, intracellular Ca[Formula: see text] dynamics as well as kinetics of nitric oxide (NO) and superoxide (O[Formula: see text]) formation, diffusion and reaction. NO is an important factor in the maintenance of blood pressure and O[Formula: see text] has been shown to contribute significantly to the functional alternations of blood vessels in hypertension. We perform a bifurcation analysis of the model equations to assess the effect of luminal pressure, NO and O[Formula: see text] on the behaviors of limit cycle oscillations.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Duke University, Durham NC, USA
| | | |
Collapse
|
58
|
Wei N, Gumz ML, Layton AT. Predicted effect of circadian clock modulation of NHE3 of a proximal tubule cell on sodium transport. Am J Physiol Renal Physiol 2018. [PMID: 29537313 DOI: 10.1152/ajprenal.00008.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Major renal functions such as renal blood flow, glomerular filtration rate, and urinary excretion are known to exhibit circadian oscillations. However, the underlying mechanisms that govern these variations have yet to be fully elucidated. To better understand the impact of the circadian clock on renal solute and water transport, we have developed a computational model of the renal circadian clock and coupled that model to an epithelial transport model of the proximal convoluted cell of the rat kidney. The activity of the Na+-H+ exchanger 3 (NHE3) is assumed to be regulated by changes in transcription of the NHE3 mRNA due to regulation by circadian clock proteins. The model predicts the rhythmic oscillations in NHE3 activity, which gives rise to significant daily fluctuations in Na+ and water transport of the proximal tubule cell. Additionally, the model predicts that 1) mutation in period 2 (Per2) or cryptochrome 1 (Cry1) preserves the circadian rhythm and modestly raises Na+ reabsorption; 2) mutation in Bmal1 or CLOCK eliminates the circadian rhythm and modestly lowers Na+ reabsorption; 3) mutation in Rev-Erb or ROR-related orphan receptor (Ror) has minimal impact on the circadian oscillations. The model represents the first step in building a tool set aimed at increasing our understanding of how the molecular clock affects renal ion transport and renal function, which likely has important implications for kidney disease.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Duke University , Durham, North Carolina
| | - Michelle L Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Anita T Layton
- Department of Mathematics, Duke University , Durham, North Carolina.,Departments of Biomedical Engineering and Medicine, Duke University , Durham, North Carolina.,Department of Applied Mathematics, University of Waterloo , Waterloo, Ontario, Canada
| |
Collapse
|
59
|
Layton AT, Edwards A, Vallon V. Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis. Am J Physiol Renal Physiol 2017; 314:F643-F657. [PMID: 29357444 DOI: 10.1152/ajprenal.00460.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We sought to decipher the mechanisms underlying the kidney's response to changes in K+ load and intake, under physiological and pathophysiological conditions. To accomplish that goal, we applied a published computational model of epithelial transport along rat nephrons in a sham rat, an uninephrectomized (UNX) rat, and a 5/6-nephrectomized (5/6-NX) rat that also considers adaptations in glomerular filtration rate and tubular growth. Model simulations of an acute K+ load indicate that elevated expression levels and activities of Na+/K+-ATPase, epithelial sodium channels, large-conductance Ca2+-activated K+ channels, and renal outer medullary K+ channels, together with downregulation of sodium-chloride cotransporters (NCC), increase K+ secretion along the connecting tubule, resulting in a >6-fold increase in urinary K+ excretion in sham rats, which substantially exceeds the filtered K+ load. In the UNX and 5/6-NX models, the acute K+ load is predicted to increase K+ excretion, but at significantly reduced levels compared with sham. Acute K+ load is accompanied by natriuresis in sham rats. Model simulations suggest that the lesser natriuretic effect observed in the nephrectomized groups may be explained by impaired NCC downregulation in these kidneys. At a single-nephron level, a high K+ intake raises K+ secretion along the connecting tubule and reabsorption along the collecting duct in sham, and even more in UNX and 5/6-NX. However, the increased K+ secretion per tubule fails to sufficiently compensate for the reduction in nephron number, such that nephrectomized rats have an impaired ability to excrete an acute or chronic K+ load.
Collapse
Affiliation(s)
- Anita T Layton
- Departments of Mathematics, Biomedical Engineering, and Medicine, Durham, North Carolina
| | - Aurélie Edwards
- Centre National de la Recherche Scientifique, ERL 8228, Paris, France, and Department of Biomedical Engineering, Boston University , Boston, Massachusetts
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California, and San Diego Veterans Affairs Healthcare System, San Diego, California
| |
Collapse
|
60
|
Layton AT. A new microscope for the kidney: mathematics. Am J Physiol Renal Physiol 2017; 312:F671-F672. [PMID: 28100504 DOI: 10.1152/ajprenal.00648.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/17/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| |
Collapse
|
61
|
Layton AT, Vallon V, Edwards A. A computational model for simulating solute transport and oxygen consumption along the nephrons. Am J Physiol Renal Physiol 2016; 311:F1378-F1390. [PMID: 27707705 DOI: 10.1152/ajprenal.00293.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2 ) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2 Under baseline conditions, the model predicted a whole kidney TNa/QO2 , which denotes the number of moles of Na+ reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na+], which raises paracellular TNa Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina;
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California, and San Diego Veterans Affairs Healthcare System, San Diego, California
| | - Aurélie Edwards
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and
| |
Collapse
|