51
|
Wu B, Yu J, Luo Y, Wu L, Zhang Z, Deng L. An Albumin-Enriched Nanocomplex Achieves Systemic Delivery of Clopidogrel Bisulfate to Ameliorate Renal Ischemia Reperfusion Injury in Rats. Mol Pharm 2022; 19:3934-3947. [PMID: 36067352 DOI: 10.1021/acs.molpharmaceut.2c00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, an albumin-enriched nanocomplex was developed for the solubilization and intravascular administration of clopidogrel bisulfate (CLP). In particular, CLP nanoparticles (HS-CLP-NPs) were synthesized via an improved nab-technology method using Solutol HS-15, and bovine serum albumin (BSA) was further enriched on the nanoparticle surface forming a protein corona (BH-CLP-NPs). BH-CLP-NPs displayed an average size of 163.4 ± 10.5 nm, a zeta potential of 1.85 ± 0.03 mV, an encapsulation efficiency of 99.9%, and a drug loading capacity of 32.9%. The cumulative release of CLP from BH-CLP-NPs reached about 60% within 168 h. The pharmacokinetic study on the CLP metabolite indicated that the BSA-enriched nanoparticle showed greater in vivo exposure. Pharmacodynamic studies in the renal ischemia/reperfusion injury rat model further demonstrated the renal protective effect of systemically administered BH-CLP-NPs against acute kidney injury with significantly downregulated blood urea nitrogen and creatinine levels. Overall, the albumin-enriched nanocomplexes offer a neat and efficient strategy for the development of poorly water-soluble drugs to achieve intravascular administration.
Collapse
Affiliation(s)
- Bangqing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Guiyang Public Health Clinical Center, Guiyang 550000, China
| | - Jiaojiao Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yiting Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lijun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
52
|
The VEGF Inhibitor Soluble Fms-like Tyrosine Kinase 1 Does Not Promote AKI-to-CKD Transition. Int J Mol Sci 2022; 23:ijms23179660. [PMID: 36077058 PMCID: PMC9456014 DOI: 10.3390/ijms23179660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Soluble Fms-like tyrosine kinase 1 (sFLT1) is an endogenous VEGF inhibitor. sFLT1 has been described as an anti-inflammatory treatment for diabetic nephropathy and heart fibrosis. However, sFLT1 has also been related to peritubular capillary (PTC) loss, which promotes fibrogenesis. Here, we studied whether transfection with sFlt1 aggravates experimental AKI-to-CKD transition and whether sFLT1 is increased in human kidney fibrosis. (2) Methods: Mice were transfected via electroporation with sFlt1. After confirming transfection efficacy, mice underwent unilateral ischemia/reperfusion injury (IRI) and were sacrificed 28 days later. Kidney histology and RNA were analyzed to study renal fibrosis, PTC damage and inflammation. Renal sFLT1 mRNA expression was measured in CKD biopsies and control kidney tissue. (3) Results: sFlt1 transfection did not aggravate renal fibrosis, PTC loss or macrophage recruitment in IRI mice. In contrast, higher transfection efficiency was correlated with reduced expression of pro-fibrotic and pro-inflammatory markers. In the human samples, sFLT1 mRNA levels were similar in CKD and control kidneys and were not correlated with interstitial fibrosis or PTC loss. (4) Conclusion: As we previously found that sFLT1 has therapeutic potential in diabetic nephropathy, our findings indicate that sFLT1 can be administered at a dose that is therapeutically effective in reducing inflammation, without promoting maladaptive kidney damage.
Collapse
|
53
|
Xu L, Guo J, Moledina DG, Cantley LG. Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition. Nat Commun 2022; 13:4892. [PMID: 35986026 PMCID: PMC9391331 DOI: 10.1038/s41467-022-32634-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/05/2022] [Indexed: 01/12/2023] Open
Abstract
Incomplete repair after acute kidney injury can lead to development of chronic kidney disease. To define the mechanism of this response, we compared mice subjected to identical unilateral ischemia-reperfusion kidney injury with either contralateral nephrectomy (where tubule repair predominates) or contralateral kidney intact (where tubule atrophy predominates). By day 14, the kidneys undergoing atrophy had more macrophages with higher expression of chemokines, correlating with a second wave of proinflammatory neutrophil and T cell recruitment accompanied by increased expression of tubular injury genes and a decreased proportion of differentiated tubules. Depletion of neutrophils and T cells after day 5 reduced tubular cell loss and associated kidney atrophy. In kidney biopsies from patients with acute kidney injury, T cell and neutrophil numbers negatively correlated with recovery of estimated glomerular filtration rate. Together, our findings demonstrate that macrophage persistence after injury promotes a T cell- and neutrophil-mediated proinflammatory milieu and progressive tubule damage.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA.
| | - Jiankan Guo
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Dennis G Moledina
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Lloyd G Cantley
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
54
|
Lai D, Wang L, Li JR, Chen C, Zhao WL, Yuan Q, Ma X, Zhang X. Transcriptional progressive patterns from mild to severe renal ischemia/reperfusion-induced kidney injury in mice. Front Genet 2022; 13:874189. [PMID: 35938014 PMCID: PMC9355309 DOI: 10.3389/fgene.2022.874189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
The renal ischemia/reperfusion (I/R)-induced acute kidney injury incidence after nephron-sparing surgery for localized renal tumors is 20%, but the biological determinant process of postoperative acute kidney injury remains unclear. Using Gene Expression Omnibus database (GSE192883) and several bioinformatics analyses (discrete time points analysis, gene set enrichment analysis, dynamic network biomarker analysis, etc), combined with the establishment of the I/R model for verification, we identified three progressive patterns involving five core pathways confirmed using gene set enrichment analysis and six key genes (S100a10, Pcna, Abat, Kmo, Acadm, and Adhfe1) verified using quantitative polymerase chain reaction The dynamic network biomarker (DNB) subnetwork composite index value is the highest in the 22-min ischemia group, suggesting the transcriptome expression level fluctuated sharply in this group, which means 22-min ischemia is an critical warning point. This study illustrates the core molecular progressive patterns from mild to severe I/R kidney injury, laying the foundation for precautionary biomarkers and molecular intervention targets for exploration. In addition, the safe renal artery blocking time of nephron-sparing surgery that we currently accept may not be safe anymore.
Collapse
Affiliation(s)
- Dong Lai
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lei Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia-Rui Li
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen-Lei Zhao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing Yuan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
55
|
Sun Z, Wu J, Bi Q, Wang W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res Ther 2022; 13:297. [PMID: 35841017 PMCID: PMC9284726 DOI: 10.1186/s13287-022-02986-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Human urine-derived stem cells (USCs)-derived exosomes (USC-Exo) could improve kidney ischemia/reperfusion injury (IRI), while the underlying mechanisms of this protective effect remain unclear. Methods Human USCs and USC-Exo were isolated and verified by morphology and specific biomarkers. The effects of USC-Exo on ferroptosis and kidney injury were detected in the IRI-induced acute kidney injury (AKI) model in C57BL/6 mice. The effects of USC-Exo on ferroptosis and lncRNA taurine-upregulated gene 1 (TUG1) were detected in hypoxia/reoxygenation (H/R)-treated human proximal tubular epithelial cells (HK-2). The interaction of SRSF1 and TUG1, ACSL4 was checked via RNA pull-down/RIP and RNA stability assays. The effects of LncRNA TUG1 on SRSF1/ACSL4-mediated ferroptosis were verified in H/R-treated HK-2 cells and the IRI-induced AKI mouse models. Results USC-Exo treatment improved kidney injury and ameliorated ferroptosis in IRI-induced AKI mouse models. USC-Exo were rich in lncRNA TUG1, which suppressed ferroptosis in HK-2 cells exposed to H/R. Mechanistically, lncRNA TUG1 regulates the stability of ACSL4 mRNA by interacting with RNA-binding protein SRSF1. In addition, SRSF1 upregulation or ACSL4 downregulation partially reversed the protective effect of lncRNA TUG1 on ferroptosis in H/R-treated HK-2 cells. Further, ACSL4 upregulation partially reversed TUG1’s repression on kidney injury and ferroptosis in IRI-induced AKI mice. Conclusion Collectively, lncRNA TUG1 carried by USC-Exo regulated ASCL4-mediated ferroptosis by interacting with SRSF1 and then protected IRI-induced AKI. Potentially, USC-Exo rich in lncRNA TUG1 can serve as a promising therapeutic method for IRI-AKI.
Collapse
Affiliation(s)
- Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Qing Bi
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
56
|
Sun D, Cui S, Ma H, Zhu P, Li N, Zhang X, Zhang L, Xuan L, Li J. Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115331. [PMID: 35489662 DOI: 10.1016/j.jep.2022.115331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute kidney injury (AKI) is a common clinical disease characterized by rapid loss of renal function. Salvianolate is a prescribed Chinese medicine derived from traditional Chinese medicine Salvia miltiorrhiza bunge that possesses many pharmacological effects, the active components extracted from Salvia miltiorrhiza bunge have been proved to protect ischemia-reperfusion (I/R)-AKI. AIM OF THE STUDY This study aims to validate the therapeutic effect of SAL on I/R-AKI, and explore its potential pharmacological mechanism. MATERIALS AND METHODS Mice were pretreated with/without salvianolate (10, 30, and 90 mg/kg) before renal ischemia-reperfusion operation. Serum creatinine, BUN, and H&E staining were performed to evaluate renal function. Immunofluorescence analysis was conducted to measure renal tubular injury including inflammatory factors and peroxide level. Apoptosis of the kidney tissues was determined by TUNEL assay. Keap1-Nrf2-ARE and apoptosis signaling pathways were measured by Western blot, RT-PCR, and YO-PRO-1 staining in kidneys or NRK52E cells. RESULTS Pretreatment with SAL effectively alleviated renal function and ameliorated epithelial tubular injury, oxidative stress, and inflammatory response. Furthermore, the mechanistic study demonstrated that the SAL exerts anti-apoptotic effects through activation of the Keap1-Nrf2-ARE signaling pathway in renal tubular cells. CONCLUSION These findings indicate the therapeutic benefit of salvianolate in the protection of renal injury from ischemia-reperfusion, and strengthen the evidence for the AKI treatment strategy by the anti-oxidative stress response, suggesting that SAL may be a potential agent for the treatment of AKI.
Collapse
Affiliation(s)
- Dan Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haijian Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Pengfei Zhu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ni Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lina Zhang
- Shanghai Green Valley Pharmaceutical Co.,Ltd, Shanghai, China
| | - Lijiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
57
|
Manganese Porphyrin Promotes Post Cardiac Arrest Recovery in Mice and Rats. BIOLOGY 2022; 11:biology11070957. [PMID: 36101338 PMCID: PMC9312251 DOI: 10.3390/biology11070957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Introduction Cardiac arrest (CA) and resuscitation induces global cerebral ischemia and reperfusion, causing neurologic deficits or death. Manganese porphyrins, superoxide dismutase mimics, are reportedly able to effectively reduce ischemic injury in brain, kidney, and other tissues. This study evaluates the efficacy of a third generation lipophilic Mn porphyrin, MnTnBuOE-2-PyP5+, Mn(III) ortho meso-tetrakis (N-n-butoxyethylpyridinium-2-yl)porphyrin (MnBuOE, BMX-001), in both mouse and rat models of CA. Methods Forty-eight animals were subjected to 8 min of CA and resuscitated subsequently by chest compression and epinephrine infusion. Vehicle or MnBuOE was given immediately after resuscitation followed by daily subcutaneous injections. Body weight, spontaneous activity, neurologic deficits, rotarod performance, and neuronal death were assessed. Kidney tubular injury was assessed in CA mice. Data were collected by the investigators who were blinded to the treatment groups. Results Vehicle mice had a mortality of 20%, which was reduced by 50% by MnBuOE. All CA mice had body weight loss, spontaneous activity decline, neurologic deficits, and decreased rotarod performance that were significantly improved at three days post MnBuOE daily treatment. MnBuOE treatment reduced cortical neuronal death and kidney tubular injury in mice (p < 0.05) but not hippocampus neuronal death (23% MnBuOE vs. 34% vehicle group, p = 0.49). In rats, they had a better body-weight recovery and increased rotarod latency after MnBuOE treatment when compared to vehicle group (p < 0.01 vs. vehicle). MnBuOE-treated rats had a low percentage of hippocampus neuronal death (39% MnBuOE vs. 49% vehicle group, p = 0.21) and less tubular injury (p < 0.05) relative to vehicle group. Conclusions We demonstrated the ability of MnBuOE to improve post-CA survival, as well as functional outcomes in both mice and rats, which jointly account for the improvement not only of brain function but also of the overall wellbeing of the animals. While MnBuOE bears therapeutic potential for treating CA patients, the females and the animals with comorbidities must be further evaluated before advancing toward clinical trials.
Collapse
|
58
|
Shin NS, Marlier A, Xu L, Doilicho N, Linberg D, Guo J, Cantley LG. Arginase-1 Is Required for Macrophage-Mediated Renal Tubule Regeneration. J Am Soc Nephrol 2022; 33:1077-1086. [PMID: 35577558 PMCID: PMC9161787 DOI: 10.1681/asn.2021121548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND After kidney injury, macrophages transition from initial proinflammatory activation to a proreparative phenotype characterized by expression of arginase-1 (Arg1), mannose receptor 1 (Mrc1), and macrophage scavenger receptor 1 (Msr1). The mechanism by which these alternatively activated macrophages promote repair is unknown. METHODS We characterized the macrophage and renal responses after ischemia-reperfusion injury with contralateral nephrectomy in LysM-Cre;Arg1fl/fl mice and littermate controls and used in vitro coculture of macrophages and tubular cells to determine how macrophage-expressed arginase-1 promotes kidney repair. RESULTS After ischemia-reperfusion injury with contralateral nephrectomy, Arg1-expressing macrophages were almost exclusively located in the outer stripe of the medulla adjacent to injured S3 tubule segments containing luminal debris or casts. Macrophage Arg1 expression was reduced by more than 90% in injured LysM-Cre;Arg1fl/fl mice, resulting in decreased mouse survival, decreased renal tubular cell proliferation and decreased renal repair compared with littermate controls. In vitro studies demonstrate that tubular cells exposed apically to dead cell debris secrete high levels of GM-CSF and induce reparative macrophage activation, with those macrophages in turn secreting Arg1-dependent factor(s) that directly stimulate tubular cell proliferation. CONCLUSIONS GM-CSF-induced, proreparative macrophages express arginase-1, which is required for the S3 tubular cell proliferative response that promotes renal repair after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Naomi S. Shin
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Arnaud Marlier
- Department of Cellular and Molecular Physiology, Centers for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut
| | - Leyuan Xu
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Natnael Doilicho
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jiankan Guo
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lloyd G. Cantley
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
59
|
Tang W, Panja S, Jogdeo CM, Tang S, Ding L, Yu A, Foster KW, Dsouza DL, Chhonker YS, Jensen-Smith H, Jang HS, Boesen EI, Murry DJ, Padanilam B, Oupický D. Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury. Biomaterials 2022; 285:121562. [PMID: 35552115 PMCID: PMC9133205 DOI: 10.1016/j.biomaterials.2022.121562] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/02/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decrease in renal function and impacts growing number of people worldwide. RNA interference (RNAi) showed potential to treat diseases with no or limited conventional therapies, including AKI. Suitable carriers are needed to protect and selectively deliver RNAi to target cells to fully explore this therapeutic modality. Here, we report on the synthesis of chitosan modified with α-cyclam-p-toluic acid (C-CS) as a novel siRNA carrier for targeted delivery to injured kidneys. We demonstrate that conjugation of the α-cyclam-p-toluic acid to chitosan imparts the C-CS polymer with targeting and antagonistic properties to cells overexpressing chemokine receptor CXCR4. In contrast, the parent α-cyclam-p-toluic acid showed no such properties. Self-assembled C-CS/siRNA nanoparticles rapidly accumulate in the injured kidneys and show long retention in renal tubules. Apoptosis and metabolic and inflammatory pathways induced by p53 are important pathological mechanisms in the development of AKI. Nanoparticles with siRNA against p53 (sip53) were formulated and intravenously injected for attenuation of IRI-AKI. Due to the favorable accumulation in injured kidneys, the treatment with C-CS/sip53 decreased renal injury, extent of renal apoptosis, macrophage and neutrophil infiltration, and improved renal function. Overall, our study suggests that C-CS/siRNA nanoparticles have the potential to effectively accumulate and deliver therapeutic siRNAs to injured kidneys through CXCR4 binding, providing a novel way for AKI therapy.
Collapse
Affiliation(s)
- Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Del L Dsouza
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Heather Jensen-Smith
- Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hee-Seong Jang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Erika I Boesen
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Babu Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
60
|
McLarnon SC, Johnson C, Giddens P, O'Connor PM. Hidden in Plain Sight: Does Medullary Red Blood Cell Congestion Provide the Explanation for Ischemic Acute Kidney Injury? Semin Nephrol 2022; 42:151280. [PMID: 36460572 DOI: 10.1016/j.semnephrol.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute kidney injury (AKI) represents a sudden reduction in renal function and is a major clinical problem with a high mortality rate. Despite decades of research, there are currently no direct therapies for AKI. The failure of therapeutic approaches identified in rodents to translate to human beings has led to questions regarding the appropriateness of these models. Our recent data indicate that there are two distinct processes driving tubular injury in the commonly used rat model of warm bilateral renal ischemia reperfusion injury, which often is used to mimic ischemic AKI. One results from the period of warm ischemia, manifesting as sublethal injury and coagulative necrosis of the proximal tubules in the renal cortex. This is the predominate type of injury observed 24 hours after reperfusion and the most well studied. The other results from red blood cell congestion of the outer medullary vasculature. This type of injury manifests as cell sloughing, along with the later formation of heme casts that fill distal nephron segments. Cell sloughing from congestion is most prominent in the early hours after reperfusion and often is masked by regeneration of the tubular epithelium by 24 hours postischemia. In this review, we argue that injury from outer medullary red blood cell congestion reflects the pathology observed in human kidneys and likely is representative of injury in most cases of ischemic AKI after shock. Greater focus on this congestive injury is likely to lead to improved translation in AKI.
Collapse
Affiliation(s)
- Sarah C McLarnon
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Chloe Johnson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Priya Giddens
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
61
|
Machado SE, Spangler D, Black LM, Traylor AM, Balla J, Zarjou A. A Reproducible Mouse Model of Moderate CKD With Early Manifestations of Osteoblastic Transition of Cardiovascular System. Front Physiol 2022; 13:897179. [PMID: 35574469 PMCID: PMC9099146 DOI: 10.3389/fphys.2022.897179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant public health challenge with a substantial associated risk of mortality, morbidity, and health care expenditure. Culprits that lead to development and progression of CKD are multifaceted and heterogenous in nature. This notion underscores the need for diversification of animal models to investigate its pathophysiology, related complications, and to subsequently enable discovery of novel therapeutics. Importantly, animal models that could recapitulate complications of CKD in both genders are desperately needed. Cardiovascular disease is the most common cause of death in CKD patients that may be due in part to high prevalence of vascular calcification (VC). Using DBA/2 mice that are susceptible to development of VC, we sought to investigate the feasibility and reproducibility of a unilateral ischemia-reperfusion model followed by contralateral nephrectomy (UIRI/Nx) to induce CKD and its related complications in female and male mice. Our results demonstrate that irrespective of gender, mice faithfully displayed complications of moderate CKD following UIRI/Nx as evidenced by significant rise in serum creatinine, albuminuria, higher degree of collagen deposition, elevated expression of classic fibrotic markers, higher circulating levels of FGF-23, PTH and hepcidin. Moreover, we corroborate the osteoblastic transition of aortic smooth muscle cells and cardiomyocytes based on higher levels of osteoblastic markers namely, Cbfa-1, osteopontin, osteocalcin, and osterix. Our data confirms a viable, and consistent model of moderate CKD and its associated complications in both male and female mice. Furthermore, early evidence of osteoblastic transition of cardiovascular system in this model confirms its suitability for studying and implementing potential preventive and/or therapeutic approaches that are urgently needed in this field.
Collapse
Affiliation(s)
- Sarah E Machado
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Daryll Spangler
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Laurence M. Black
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Amie M. Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - József Balla
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Division of Nephrology, Department of Medicine, Faculty of Medicine, Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary,*Correspondence: Abolfazl Zarjou,
| |
Collapse
|
62
|
Yao W, Chen Y, Li Z, Ji J, You A, Jin S, Ma Y, Zhao Y, Wang J, Qu L, Wang H, Xiang C, Wang S, Liu G, Bai F, Yang L. Single Cell RNA Sequencing Identifies a Unique Inflammatory Macrophage Subset as a Druggable Target for Alleviating Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103675. [PMID: 35112806 PMCID: PMC9036000 DOI: 10.1002/advs.202103675] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/11/2021] [Indexed: 05/08/2023]
Abstract
Acute kidney injury (AKI) is a complex clinical disorder associated with poor outcomes. Targeted regulation of the degree of inflammation has been a potential strategy for AKI management. Macrophages are the main effector cells of kidney inflammation. However, macrophage heterogeneity in ischemia reperfusion injury induced AKI (IRI-AKI) remains unclear. Using single-cell RNA sequencing of the mononuclear phagocytic system in the murine IRI model, the authors demonstrate the complementary roles of kidney resident macrophages (KRMs) and monocyte-derived infiltrated macrophages (IMs) in modulating tissue inflammation and promoting tissue repair. A unique population of S100a9hi Ly6chi IMs is identified as an early responder to AKI, mediating the initiation and amplification of kidney inflammation. Kidney infiltration of S100A8/A9+ macrophages and the relevance of renal S100A8/A9 to tissue injury is confirmed in human AKI. Targeting the S100a8/a9 signaling with small-molecule inhibitors exhibits renal protective effects represented by improved renal function and reduced mortality in bilateral IRI model, and decreased inflammatory response, ameliorated kidney injury, and improved long-term outcome with decreased renal fibrosis in the unilateral IRI model. The findings support S100A8/A9 blockade as a feasible and clinically relevant therapy potentially waiting for translation in human AKI.
Collapse
Affiliation(s)
- Weijian Yao
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Ying Chen
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Zehua Li
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Jing Ji
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Abin You
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Shanzhao Jin
- Biomedical Pioneering Innovation Center (BIOPIC)Beijing Advanced Innovation Center for Genomics (ICG)School of Life SciencesPeking UniversityBeijing100871China
| | - Yuan Ma
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Youlu Zhao
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Jinwei Wang
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Lei Qu
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Hui Wang
- Laboratory of Electron MicroscopyPathological CenterPeking University First HospitalBeijing100034China
| | - Chengang Xiang
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Suxia Wang
- Laboratory of Electron MicroscopyPathological CenterPeking University First HospitalBeijing100034China
| | - Gang Liu
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC)Beijing Advanced Innovation Center for Genomics (ICG)School of Life SciencesPeking UniversityBeijing100871China
| | - Li Yang
- Renal DivisionPeking University Institute of NephrologyKey Laboratory of Renal Disease‐Ministry of Health of ChinaKey Laboratory of CKD Prevention and Treatment (Peking University)‐Ministry of Education of ChinaResearch Units of Diagnosis and Treatment of Immune‐mediated Kidney Diseases‐Chinese Academy of Medical SciencesPeking University First HospitalXishiku Street #8Beijing100034China
| |
Collapse
|
63
|
Harwood R, Bridge J, Ressel L, Scarfe L, Sharkey J, Czanner G, Kalra PA, Odudu A, Kenny S, Wilm B, Murray P. Murine models of renal ischemia reperfusion injury: An opportunity for refinement using noninvasive monitoring methods. Physiol Rep 2022; 10:e15211. [PMID: 35266337 PMCID: PMC8907719 DOI: 10.14814/phy2.15211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Renal ischemia reperfusion injury (R-IRI) can cause acute kidney injury (AKI) and chronic kidney disease (CKD), resulting in significant morbidity and mortality. To understand the underlying mechanisms, reproducible small-animal models of AKI and CKD are needed. We describe how innovative technologies for measuring kidney function noninvasively in small rodents allow successful refinement of the R-IRI models, and offer the unique opportunity to monitor longitudinally in individual animals the transition from AKI to CKD. METHODS Male BALB/c mice underwent bilateral renal pedicle clamping (AKI) or unilateral renal pedicle clamping with delayed contralateral nephrectomy (CKD) under isoflurane anesthetic. Transdermal GFR monitoring and multispectral optoacoustic tomography (MSOT) in combination with statistical analysis were used to identify and standardize variables within these models. RESULTS Pre-clamping anesthetic time was one of the most important predictors of AKI severity after R-IRI. Standardizing pre-clamping time resulted in a more predictably severe AKI model. In the CKD model, MSOT demonstrated initial improvement in renal function, followed by significant progressive reduction in function between weeks 2 and 4. Performing contralateral nephrectomy on day 14 enabled the development of CKD with minimal mortality. CONCLUSIONS Noninvasive monitoring of global and individual renal function after R-IRI is feasible and reproducible. These techniques can facilitate refinement of kidney injury models and enable the degree of injury seen in preclinical models to be translated to those seen in the clinical setting. Thus, future therapies can be tested in a clinically relevant, noninvasive manner.
Collapse
Affiliation(s)
- Rachel Harwood
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
- Alder Hey Children's HospitalLiverpoolUK
| | - Joshua Bridge
- Department of BiostatisticsUniversity of LiverpoolLiverpoolUK
- Department of Eye and Vision ScienceUniversity of LiverpoolLiverpoolUK
| | - Lorenzo Ressel
- Department of Veterinary Pathology and Public HealthUniversity of LiverpoolLiverpoolUK
| | - Lauren Scarfe
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - Jack Sharkey
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - Gabriela Czanner
- Department of BiostatisticsUniversity of LiverpoolLiverpoolUK
- University of LiverpoolLiverpoolUK
- University of LiverpoolLiverpoolUK
| | - Philip A Kalra
- Division of Cardiovascular SciencesUniversity of ManchesterManchesterUK
- Salford Royal NHS Foundation TrustSalfordUK
| | - Aghogho Odudu
- Division of Cardiovascular SciencesUniversity of ManchesterManchesterUK
| | - Simon Kenny
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
- Alder Hey Children's HospitalLiverpoolUK
| | - Bettina Wilm
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - Patricia Murray
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
64
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
65
|
Li S, Zhuang K, He Y, Deng Y, Xi J, Chen J. Leptin relieves ischemia/reperfusion induced acute kidney injury through inhibiting apoptosis and autophagy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:8-17. [PMID: 35545358 PMCID: PMC10930488 DOI: 10.11817/j.issn.1672-7347.2022.210244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Acute kidney injury (AKI) can be caused by ischemia/reperfusion (I/R), nephrotoxin, and sepsis, with poor prognosis and high mortality. Leptin is a protein molecule that regulates the body's energy metabolism and reproductive activities via binding to its specific receptor. Leptin can inhibit cardiomyocyte apoptosis caused by I/R, but its effect on I/R kidney injury and the underlying mechanisms are still unclear. This study aims to investigate the effect and mechanisms of leptin on renal function, renal histopathology, apoptosis, and autophagy during acute I/R kidney injury. METHODS Healthy adult male mice were randomly divided into 4 groups: a sham+wild-type mice (ob/+) group, a sham+leptin gene-deficient mice (ob/ob) group, an I/R+ob/+ group, and an I/R+ob/ob group (n=8 per group). For sham operation, a longitudinal incision was made on the back of the mice to expose and separate the bilateral kidneys and renal arteries, and no subsequent treatment was performed. I/R treatment was ischemia for 30 min and reperfusion for 48 h. The levels of BUN and SCr were detected to evaluate renal function; HE staining was used to observe the pathological changes of renal tissue; TUNEL staining was used to observe cell apoptosis, and apoptosis-positive cells were counted; Western blotting was used to detect levels of apoptosis-related proteins (caspase 3, caspase 9), autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), LC3 I, LC3 II], mTOR-dependent signaling pathway proteins [phosphate and tension homology (PTEN), adenosine monophosphate-activated protein kinase (AMPK), protein kinase B (AKT), extracellular regulated protein kinase (ERK), phosphorylated PTEN (p-PTEN), phosphorylated AMPK (p-AMPK), phosphorylated AKT (p-AKT), phosphorylated ERK (p-ERK)]. RESULTS There was no significant difference in the levels of BUN and SCr between the sham+ob/+ group and the sham+ob/ob group (both P>0.05). The levels of BUN and SCr in the I/R+ob/+ group were significantly higher than those in the sham+ob/+ group (both P<0.05). Compared with the mice in the sham+ob/ob group or the I/R+ob/+ group, the levels of BUN and SCr in the I/R+ob/ob group were significantly increased (all P<0.05). There was no obvious damage to the renal tubules in the sham+ob/+ group and the sham+ob/ob group. Compared with sham+ob/+ group and sham+ob/ob group, both the I/R+ob/+ group and the I/R+ob/ob group had cell damage such as brush border shedding, vacuolar degeneration, and cast formation. Compared with the I/R+ob/+ group, the renal tubules of the mice in the I/R+ob/ob group were more severely damaged. The pathological score of renal tubular injury showed that the renal tubular injury was the most serious in the I/R+ob/ob group (P<0.05). Compared with the sham+ob/+ group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, the ratio of LC3 II to LC3 I was significantly increased, and the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/+ group (all P<0.05). Compared with the sham+ob/ob group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, and the ratio of LC3 II to LC3 I was significantly increased, while the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/ob group (all P<0.05). Compared with the I/R+ob/+ group, the levels of p-mTOR, p-PTEN, p-AMPK, p-AKT were more significantly down-regulated, while the levels of caspase 3, caspase 9, PTEN, and LC3 II were more significantly up-regulated, and the ratio of LC3 II to LC3 I was more significantly increase in the I/R+ob/ob group (all P<0.05). CONCLUSIONS Renal function and tubular damage, and elevated levels of apoptosis and autophagy are observed in mice kidneys after acute I/R. Leptin might relieve I/R induced AKI by inhibiting apoptosis and autophagy that through a complex network of interactions between mTOR-dependent signaling pathways.
Collapse
Affiliation(s)
- Siyao Li
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Kaiting Zhuang
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yi He
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yunzhen Deng
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Xi
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junxiang Chen
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
66
|
Xiang X, Dong G, Zhu J, Zhang G, Dong Z. Inhibition of HDAC3 protects against kidney cold storage/transplantation injury and allograft dysfunction. Clin Sci (Lond) 2022; 136:45-60. [PMID: 34918039 DOI: 10.1042/cs20210823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Cold storage/rewarming is an inevitable process for kidney transplantation from deceased donors, which correlates closely with renal ischemia-reperfusion injury (IRI) and the occurrence of delayed graft function. Histone deacetylases (HDAC) are important epigenetic regulators, but their involvement in cold storage/rewarming injury in kidney transplantation is unclear. In the present study, we showed a dynamic change of HDAC3 in a mouse model of kidney cold storage followed by transplantation. We then demonstrated that the selective HDAC3 inhibitor RGFP966 could reduce acute tubular injury and cell death after prolonged cold storage with transplantation. RGFP966 also improved renal function, kidney repair and tubular integrity when the transplanted kidney became the sole life-supporting graft in the recipient mouse. In vitro, cold storage of proximal tubular cells followed by rewarming induced remarkable cell death, which was suppressed by RGFP966 or knockdown of HDAC3 with shRNA. Inhibition of HDAC3 decreased the mitochondrial pathway of apoptosis and preserved mitochondrial membrane potential. Collectively, HDAC3 plays a pathogenic role in cold storage/rewarming injury in kidney transplantation, and its inhibition may be a therapeutic option.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| | - Jiefu Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Zhang
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| |
Collapse
|
67
|
Tanaka KI, Shimoda M, Kubota M, Takafuji A, Kawahara M, Mizushima T. Novel pharmacological effects of lecithinized superoxide dismutase on ischemia/reperfusion injury in the kidneys of mice. Life Sci 2022; 288:120164. [PMID: 34822794 DOI: 10.1016/j.lfs.2021.120164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is a major clinical problem because it can cause acute kidney injury (AKI) or lead to the transition from AKI to chronic kidney disease (CKD). Oxidative stress, which involves the production of reactive oxygen species (ROS), plays an important role in the development and exacerbation of I/R-induced kidney injury. However, we have previously reported that lecithinized superoxide dismutase (PC-SOD), a SOD derivative with high tissue affinity and high stability in plasma, has beneficial effects in various disease models because of its inhibitory effect on ROS production. Therefore, we aimed to determine the effects of intravenous PC-SOD administration in a mouse model of renal injury induced by I/R. PC-SOD markedly ameliorated the I/R-induced increases in markers of renal damage (urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, and interleukin-6) and tubular necrosis 48 h after the intervention. We also found that PC-SOD significantly ameliorated the I/R-induced increase in ROS production, using an ex vivo imaging system. Furthermore, PC-SOD inhibited the increases in expression of markers of fibrosis (α-smooth muscle actin and collagen 1A1) 96 h after, and renal fibrosis 25 days after I/R was induced. Finally, we found that PC-SOD ameliorated the I/R-induced AKI in mice with high-fat diet-induced prediabetes. These results suggest that PC-SOD inhibits AKI and the transition from AKI to CKD through the inhibition of ROS production. Therefore, we believe that PC-SOD may represent an effective therapeutic agent for I/R-induced renal injury.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Maho Kubota
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Ayaka Takafuji
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Tohru Mizushima
- LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022, Japan
| |
Collapse
|
68
|
Wen L, Li Y, Li S, Hu X, Wei Q, Dong Z. Glucose Metabolism in Acute Kidney Injury and Kidney Repair. Front Med (Lausanne) 2021; 8:744122. [PMID: 34912819 PMCID: PMC8666949 DOI: 10.3389/fmed.2021.744122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The kidneys play an indispensable role in glucose homeostasis via glucose reabsorption, production, and utilization. Conversely, aberrant glucose metabolism is involved in the onset, progression, and prognosis of kidney diseases, including acute kidney injury (AKI). In this review, we describe the regulation of glucose homeostasis and related molecular factors in kidneys under normal physiological conditions. Furthermore, we summarize recent investigations about the relationship between glucose metabolism and different types of AKI. We also analyze the involvement of glucose metabolism in kidney repair after injury, including renal fibrosis. Further research on glucose metabolism in kidney injury and repair may lead to the identification of novel therapeutic targets for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Ying Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| |
Collapse
|
69
|
El-Sayed SS, Shahin RM, Fahmy A, Elshazly SM. Quercetin ameliorated remote myocardial injury induced by renal ischemia/reperfusion in rats: Role of Rho-kinase and hydrogen sulfide. Life Sci 2021; 287:120144. [PMID: 34785193 DOI: 10.1016/j.lfs.2021.120144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 10/24/2022]
Abstract
AIMS This study was designated to investigate the means through which quercetin confers its cardioprotective action against remote cardiomyopathy elicited by renal ischemia/reperfusion (I/R). Potential involvement of hydrogen sulfide (H2S) and its related mechanisms were accentuated herein. MAIN METHODS In anesthetized male Wistar rats, renal I/R was induced by bilateral renal pedicles occlusion for 30 min (ischemia) followed by 24 h reperfusion. Quercetin (50 mg/kg, gavage) was administered at 5 h post reperfusion initiation and 2 h before euthanasia. Cystathionine β-synthase (CBS) inhibitor, amino-oxyacetic acid (AOAA; 10 mg/kg, i.p) was given 30 min prior to each quercetin dose. KEY FINDINGS Quercetin reversed renal I/R induced derangements; as quercetin administration improved renal function and reversed I/R induced histopathological changes in both myocardium and kidney. Further, quercetin enhanced renal CBS content/activity, while mitigated myocardial cystathionine ɤ-lyase (CSE) content/activity as well as myocardial H2S. On the other hand, quercetin augmented myocardial nitric oxide (NO), nuclear factor erythroid 2-related factor 2 (Nrf2) and its nuclear trasnslocation, glutamate cysteine ligase (GCL), reduced glutathione (GSH) and peroxiredoxin-2 (Prx2), while further reduced lipid peroxidation measured as malondialdehyde (MDA) as well as nuclear factor-kappa B (NF-κB), caspase-3 content and activity, and Rho-kinase activity. SIGNIFICANCE Cardioprotective effects of quercetin may be mediated through regulation of Rho-kinase pathway and H2S production.
Collapse
Affiliation(s)
- Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Rania M Shahin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Shimaa M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
70
|
Dietary intake of n-3 polyunsaturated fatty acids alters the lipid mediator profile of the kidney but does not attenuate renal insufficiency. Biochem Biophys Res Commun 2021; 582:49-56. [PMID: 34689105 DOI: 10.1016/j.bbrc.2021.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022]
Abstract
The efficacy of n-3 polyunsaturated fatty acids (PUFAs) in improving outcomes in a renal ischemia-reperfusion injury (IRI) model has previously been reported. However, the underlying mechanisms remain poorly understood and few reports demonstrate how dietary n-3 PUFAs influence the composition of membrane phospholipids in the kidney. Additionally, it has not been elucidated whether perilla oil (PO), which is mainly composed of the n-3 alpha-linolenic acid, mitigates renal IRI. In this study, we investigated the effect of dietary n-3 PUFAs (PO), compared with an n-6 PUFA-rich soybean oil (SO) diet, on IRI-induced renal insufficiency in a rat model. Levels of membrane phospholipids containing n-3 PUFAs were higher in the kidney of PO-rich diet-fed rats than the SO-rich diet-fed rats. Levels of blood urea nitrogen and serum creatinine were significantly higher in the ischemia-reperfusion group than the sham group under both dietary conditions. However, no significant differences were observed in blood urea nitrogen, serum creatinine, or histological damage between PO-rich diet-fed rats and SO-rich diet-fed rats. In the kidney of PO-rich diet-fed rats, levels of arachidonic acid and arachidonic acid-derived pro-inflammatory lipid mediators were lower than SO-rich diet-fed rats. Eicosapentaenoic acid and eicosapentaenoic acid-derived lipid mediators were significantly higher in the kidney of PO-rich than SO-rich diet-fed rats. These results suggest that dietary n-3 PUFAs alter the fatty acid composition of membrane phospholipids and lipid mediators in the kidney; however, this does not attenuate renal insufficiency or histological damage in a renal IRI model.
Collapse
|
71
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
72
|
Kitani T, Kidokoro K, Nakata T, Kirita Y, Nakamura I, Nakai K, Yagi-Tomita A, Ida T, Uehara-Watanabe N, Ikeda K, Yamashita N, Humphreys BD, Kashihara N, Matoba S, Tamagaki K, Kusaba T. Kidney vascular congestion exacerbates acute kidney injury in mice. Kidney Int 2021; 101:551-562. [PMID: 34843756 DOI: 10.1016/j.kint.2021.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023]
Abstract
Heart failure is frequently accompanied by kidney failure and co-incidence of these organ failures worsens the mortality in patients with heart failure. Recent clinical observations revealed that increased kidney venous pressure, rather than decreased cardiac output, causes the deterioration of kidney function in patients with heart failure. However, the underlying pathophysiology is unknown. Here, we found that decreased blood flow velocity in peritubular capillaries by kidney congestion and upregulation of endothelial nuclear factor-κB (NF-κB) signaling synergistically exacerbate kidney injury. We generated a novel mouse model with unilateral kidney congestion by constriction of the inferior vena cava between kidney veins. Intravital imaging highlighted the notable dilatation of peritubular capillaries and decreased kidney blood flow velocity in the congestive kidney. Damage after ischemia reperfusion injury was exacerbated in the congestive kidney and accumulation of polymorphonuclear leukocytes within peritubular capillaries was noted at the acute phase after injury. Similar results were obtained in vitro, in which polymorphonuclear leukocytes adhesion on activated endothelial cells was decreased in flow velocity-dependent manner but cancelled by inhibition of NF-κB signaling. Pharmacological inhibition of NF-κB for the mice subjected by both kidney congestion and ischemia reperfusion injury ameliorated the accumulation of polymorphonuclear leukocytes and subsequent exacerbation of kidney injury. Thus, our study demonstrates the importance of decreased blood flow velocity accompanying activated NF-κB signaling in aggravation of kidney injury. Hence, inhibition of NF-κB signaling may be a therapeutic candidate for the vicious cycle between heart and kidney failure with increased kidney venous pressure.
Collapse
Affiliation(s)
- Takashi Kitani
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tomohiro Nakata
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Itaru Nakamura
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kunihiro Nakai
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Yagi-Tomita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoharu Ida
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriko Uehara-Watanabe
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kisho Ikeda
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriyuki Yamashita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Tamagaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Kusaba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
73
|
Dong X, Cao R, Li Q, Yin L. The Long Noncoding RNA-H19 Mediates the Progression of Fibrosis from Acute Kidney Injury to Chronic Kidney Disease by Regulating the miR-196a/Wnt/β-Catenin Signaling. Nephron Clin Pract 2021; 146:209-219. [PMID: 34818249 DOI: 10.1159/000518756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) have been reported to be involved in the occurrence and development of various diseases. This study was to investigate the role of lncRNA-H19 in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) and its underlying mechanism. METHODS Bilateral renal pedicle ischemia-reperfusion injury (IRI) was used to establish the IRI-AKI model in C57BL/6 mice. The expression levels of lncRNA-H19, miR-196a-5p, α-SMA, collagen I, Wnt1, and β-catenin in mouse kidney tissues and fibroblasts were determined by quantitative real-time PCR and Western blotting. The degree of renal fibrosis was evaluated by hematoxylin and eosin staining. The interaction between lncRNA-H19 and miR-196a-5p was verified by bioinformatics analysis and luciferase reporter assay. Immunohistochemistry and immunofluorescence were used to evaluate the expression of α-SMA and collagen I in kidney tissues and fibroblasts of mice. RESULTS lncRNA-H19 is upregulated, and miR-196a-5p is downregulated in kidney tissues of IRI mice. Moreover, miR-196a-5p is a direct target of lncRNA-H19. lncRNA-H19 overexpression promotes kidney fibrosis and activates fibroblasts during AKI-CKD development, while miR-196a-5p overexpression reversed these effects in vitro. Furthermore, lncRNA-H19 overexpression significantly upregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice, while miR-196a-5p overexpression downregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice. CONCLUSION lncRNA-H19 induces kidney fibrosis during AKI-CKD by regulating the miR-196a-5p/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiangnan Dong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| | - Rui Cao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| | - Qiang Li
- Dongguan Hospital of Tradition Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Dongguan, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangdong, China
| |
Collapse
|
74
|
Jin J, Xu F, Zhang Y, Guan J, Liang X, Zhang Y, Yuan A, Liu R, Fu J. Renal ischemia/reperfusion injury in rats is probably due to the activation of the 5-HT degradation system in proximal renal tubular epithelial cells. Life Sci 2021; 285:120002. [PMID: 34599937 DOI: 10.1016/j.lfs.2021.120002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
AIMS To explore the relationship between renal ischemia/reperfusion injury (RIRI) and the activation of the renal 5-HT degradation system, including 5-HT2A receptor (5-HT2AR), 5-HT synthases and monoamine oxidase-A (MAO-A). MAIN METHODS Rat RIRI was induced by removing the right kidney, causing ischemia of the left kidney for 45 min and reperfusion for different times. RIRI model (ischemia for 45 min and reperfusion for 24 h) was pretreated with 5-HT2AR antagonist sarpogrelate hydrochloride (SH) and the 5-HT synthase inhibitor carbidopa. In HK-2 cells, cellular damage was induced by hypoxia (24 h)/reoxygenation (12 h) (H/R) and treated with SH, carbidopa or the MAO-A inhibitor clorgyline. Hematoxylin-eosin, immunohistochemistry, TUNEL and fluorescent probe staining, RT-qPCR, western blotting, ELISA, etc. were used in the tests. KEY FINDINGS The development of RIRI and the emergence of the RIRI peak were consistent with renal 5-HT degradation system activation. The highest expression regions of the 5-HT degradation system overlapped with those of the most severe lesions in the kidney, which were in proximal renal tubules. Rat RIRI and HK-2 cell damage, including oxidative stress, inflammation and apoptosis, could be almost abolished by synergistic inhibition of SH and carbidopa. Clorgyline also abolished the cellular damage induced by H/R. H/R-induced production of mitochondrial ROS in HK-2 cells was due to MAO-A-catalyzed 5-HT degradation, and 5-HT2AR was involved by mediating the expression of 5-HT synthases and MAO-A. SIGNIFICANCE These findings revealed a close association between RIRI and activation of the renal 5-HT degradation system.
Collapse
Affiliation(s)
- Jiaqi Jin
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Fan Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Jing Guan
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Xiurui Liang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Yuxin Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Ansheng Yuan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Runkun Liu
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Jihua Fu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China.
| |
Collapse
|
75
|
Soytas M, Gursoy D, Boz MY, Cakici C, Keskin I, Yigitbasi T, Guven S, Horuz R, Albayrak S. The creation of unilateral intermittent and unintermittent renal ischemia-reperfusion models in rats. Urol Ann 2021; 13:378-383. [PMID: 34759650 PMCID: PMC8525476 DOI: 10.4103/ua.ua_79_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/19/2020] [Indexed: 11/12/2022] Open
Abstract
Background and Aim: This study aims to establish unilateral intermittent and unintermittent partial nephrectomy-like renal ischemia-reperfusion (I-R) model in rats and to compare the results with biochemical findings. Material and Methods: The study was conducted on 24 adult 8-week-old male Wistar-Albino rats, each weighing s200–250 g. The rats were divided into three groups. In the Sham group (n = 8), the kidney was surgically exposed and closed. We designed experimental I-R models in the second group (n = 8, a total of 30-min ischemia model in the manner of 3 intermittent sets 8 minutes clamping and 2 min unclamping) and in the third group (n = 8, one session of 30-min unintermittent ischemia). In postoperative day 1, the rats were sacrificed, and the effects of I-R models on the renal tissue were comparatively assessed by evaluating serum Neutrophil Gelatinase-Associated Lipocalin (NGAL), serum kidney injury molecule-1 (KIM-1), urinary NGAL, urinary KIM-1, and serum creatinine levels. Results: Urinary NGAL and KIM-1 levels were significantly higher in the continuous ischemia group when compared to those in the sham and intermittent ischemia groups (P < 0.05). In the intermittent ischemia group, urinary NGAL and urinary KIM-1 levels were significantly higher than those in the sham group (P < 0.05). Although the results of serum NGAL, serum KIM-1, and serum creatinine levels seemed to be in parallel to the results of urinary markers, no statistically significant difference was found. Conclusion: Renal injury was significantly less in the intermittent I-R model when compared to that in the unintermittent I-R model in our experimental rat study.
Collapse
Affiliation(s)
- Mustafa Soytas
- Department of Urology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Gursoy
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Yucel Boz
- Department of Urology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ilknur Keskin
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Turkan Yigitbasi
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Selcuk Guven
- Department of Urology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Rahim Horuz
- Department of Urology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Selami Albayrak
- Department of Urology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
76
|
Ma H, Guo X, Cui S, Wu Y, Zhang Y, Shen X, Xie C, Li J. Dephosphorylation of AMP-activated kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction. Kidney Int 2021; 101:315-330. [PMID: 34774556 DOI: 10.1016/j.kint.2021.10.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Kidney tubular epithelial cells are high energy-consuming epithelial cells that depend mainly on fatty acid oxidation for an energy supply. AMP-activated protein kinase (AMPK) is a key regulator of energy production in most cells, but the function of AMPK in tubular epithelial cells in acute kidney disease is unclear. Here, we found a rapid decrease in Thr172-AMPKα phosphorylation after ischemia/reperfusion in both in vivo and in vitro models. Mice with kidney tubular epithelial cell-specific AMPKα deletion exhibited exacerbated kidney impairment and apoptosis of tubular epithelial cells after ischemia/reperfusion. AMPKα deficiency was accompanied by the accumulation of lipid droplets in the kidney tubules and the elevation of ceramides and free fatty acid levels following ischemia/reperfusion injury. Mechanistically, ischemia/reperfusion triggered ceramide production and activated protein phosphatase PP2A, which dephosphorylated Thr172-AMPKα. Decreased AMPK activity repressed serine/threonine kinase ULK1-mediated autophagy and impeded clearance of the dysfunctional mitochondria. Targeting the PP2A-AMPK axis by the allosteric AMPK activator C24 restored fatty acid oxidation and reduced tubular cell apoptosis during ischemia/reperfusion-induced injury, by antagonizing PP2A dephosphorylation and promoting the mitophagy process. Thus, our study reveals that AMPKα plays an important role in protecting against tubular epithelial cell injury in ischemia/reperfusion-induced acute kidney injury. Hence, activation of AMPK could be a potential therapeutic strategy for acute kidney injury treatment.
Collapse
Affiliation(s)
- Haijian Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongmei Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangming Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| |
Collapse
|
77
|
Li A, Cunanan J, Khalili H, Plageman T, Ask K, Khan A, Hunjan A, Drysdale T, Bridgewater D. Shroom3, a Gene Associated with CKD, Modulates Epithelial Recovery after AKI. KIDNEY360 2021; 3:51-62. [PMID: 35368578 PMCID: PMC8967620 DOI: 10.34067/kid.0003802021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 01/12/2023]
Abstract
Background Ischemia-induced AKI resulting in tubular damage can often progress to CKD and is a common cause of nephrology consultation. After renal tubular epithelial damage, molecular and cellular mechanisms are activated to repair and regenerate the damaged epithelium. If these mechanisms are impaired, AKI can progress to CKD. Even in patients whose kidney function returns to normal baseline are more likely to develop CKD. Genome-wide association studies have provided robust evidence that genetic variants in Shroom3, which encodes an actin-associated protein, are associated with CKD and poor outcomes in transplanted kidneys. Here, we sought to further understand the associations of Shroom3 in CKD. Methods Kidney ischemia was induced in wild-type (WT) and Shroom3 heterozygous null mice (Shroom3Gt/+ ) and the mechanisms of cellular recovery and repair were examined. Results A 28-minute bilateral ischemia in Shroom3Gt/+ mice resulted in 100% mortality within 24 hours. After 22-minute ischemic injury, Shroom3Gt/+ mice had a 16% increased mortality, worsened kidney function, and significantly worse histopathology, apoptosis, proliferation, inflammation, and fibrosis after injury. The cortical tubular damage in Shroom3Gt/+ was associated with disrupted epithelial redifferentiation, disrupted Rho-kinase/myosin signaling, and disorganized apical F-actin. Analysis of MDCK cells showed the levels of Shroom3 are directly correlated to apical organization of actin and actomyosin regulators. Conclusion These findings establish that Shroom3 is required for epithelial repair and redifferentiation through the organization of actomyosin regulators, and could explain why genetic variants in Shroom3 are associated with CKD and allograft rejection.
Collapse
Affiliation(s)
- Aihua Li
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Joanna Cunanan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Hadiseh Khalili
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | | | - Kjetil Ask
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Ahsan Khan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ashmeet Hunjan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Thomas Drysdale
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
78
|
Pasten C, Lozano M, Rocco J, Carrión F, Alvarado C, Liberona J, Michea L, Irarrázabal CE. Aminoguanidine Prevents the Oxidative Stress, Inhibiting Elements of Inflammation, Endothelial Activation, Mesenchymal Markers, and Confers a Renoprotective Effect in Renal Ischemia and Reperfusion Injury. Antioxidants (Basel) 2021; 10:antiox10111724. [PMID: 34829595 PMCID: PMC8614713 DOI: 10.3390/antiox10111724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress produces macromolecules dysfunction and cellular damage. Renal ischemia-reperfusion injury (IRI) induces oxidative stress, inflammation, epithelium and endothelium damage, and cessation of renal function. The IRI is an inevitable process during kidney transplantation. Preliminary studies suggest that aminoguanidine (AG) is an antioxidant compound. In this study, we investigated the antioxidant effects of AG (50 mg/kg, intraperitoneal) and its association with molecular pathways activated by IRI (30 min/48 h) in the kidney. The antioxidant effect of AG was studied measuring GSSH/GSSG ratio, GST activity, lipoperoxidation, iNOS, and Hsp27 levels. In addition, we examined the effect of AG on elements associated with cell survival, inflammation, endothelium, and mesenchymal transition during IRI. AG prevented lipid peroxidation, increased GSH levels, and recovered the GST activity impaired by IRI. AG was associated with inhibition of iNOS, Hsp27, endothelial activation (VE-cadherin, PECAM), mesenchymal markers (vimentin, fascin, and HSP47), and inflammation (IL-1β, IL-6, Foxp3, and IL-10) upregulation. In addition, AG reduced kidney injury (NGAL, clusterin, Arg-2, and TFG-β1) and improved kidney function (glomerular filtration rate) during IRI. In conclusion, we found new evidence of the antioxidant properties of AG as a renoprotective compound during IRI. Therefore, AG is a promising compound to treat the deleterious effect of renal IRI.
Collapse
Affiliation(s)
- Consuelo Pasten
- Laboratorio de Fisiología Integrativa y Molecular, Programa de Fisiología, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile; (C.P.); (M.L.); (J.R.)
- Facultad de Medicina, Universidad de los Andes, Santiago 7620157, Chile
| | - Mauricio Lozano
- Laboratorio de Fisiología Integrativa y Molecular, Programa de Fisiología, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile; (C.P.); (M.L.); (J.R.)
| | - Jocelyn Rocco
- Laboratorio de Fisiología Integrativa y Molecular, Programa de Fisiología, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile; (C.P.); (M.L.); (J.R.)
| | - Flavio Carrión
- Facultad de Ciencias de la Salud, Universidad del Alba, Santiago 7620157, Chile;
| | - Cristobal Alvarado
- Clinical Research Unit, Hospital Las Higueras, Talcahuano 4260000, Chile;
- Department of Basic Sciences, School of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile
| | - Jéssica Liberona
- Instituto de Ciencias Biomédicas, School of Medicine, Universidad de Chile, Santiago 7620157, Chile; (J.L.); (L.M.)
| | - Luis Michea
- Instituto de Ciencias Biomédicas, School of Medicine, Universidad de Chile, Santiago 7620157, Chile; (J.L.); (L.M.)
- Millennium Institute on Immunology and Immunotheraphy, Santiago 762015, Chile
| | - Carlos E. Irarrázabal
- Laboratorio de Fisiología Integrativa y Molecular, Programa de Fisiología, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile; (C.P.); (M.L.); (J.R.)
- Facultad de Medicina, Universidad de los Andes, Santiago 7620157, Chile
- Correspondence: ; Tel.: +56-2-4129607
| |
Collapse
|
79
|
Xiang X, Zhu J, Zhang G, Ma Z, Livingston MJ, Dong Z. Proximal Tubule p53 in Cold Storage/Transplantation-Associated Kidney Injury and Renal Graft Dysfunction. Front Med (Lausanne) 2021; 8:746346. [PMID: 34746182 PMCID: PMC8569378 DOI: 10.3389/fmed.2021.746346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Kidney injury associated with cold storage/transplantation is a primary factor for delayed graft function and poor outcome of renal transplants. p53 contributes to both ischemic and nephrotoxic kidney injury, but its involvement in kidney cold storage/transplantation is unclear. Here, we report that p53 in kidney proximal tubules plays a critical role in cold storage/transplantation kidney injury and inhibition of p53 can effectively improve the histology and function of transplanted kidneys. In a mouse kidney cold storage/transplantation model, we detected p53 accumulation in proximal tubules in a cold storage time-dependent manner, which correlated with tubular injury and cell death. Pifithrin-α, a pharmacologic p53 inhibitor, could reduce acute tubular injury, apoptosis and inflammation at 24 h after cold storage/transplantation. Similar effects were shown by the ablation of p53 from proximal tubule cells. Notably, pifithrin-α also ameliorated kidney injury and improved the function of transplanted kidneys in 6 days when it became the sole life-supporting kidney in recipient mice. in vitro, cold storage followed by rewarming induced cell death in cultured proximal tubule cells, which was accompanied by p53 activation and suppressed by pifithrin-α and dominant-negative p53. Together, these results support a pathogenic role of p53 in cold storage/transplantation kidney injury and demonstrate the therapeutic potential of p53 inhibitors.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Jiefu Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Zhang
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| |
Collapse
|
80
|
Zhou X, Zhao S, Li W, Ruan Y, Yuan R, Ning J, Jiang K, Xie J, Yao X, Li H, Li C, Rao T, Yu W, Cheng F. Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo. Int J Biol Sci 2021; 17:4021-4033. [PMID: 34671216 PMCID: PMC8495396 DOI: 10.7150/ijbs.62478] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Unilateral ischemia reperfusion injury (UIRI) with longer ischemia time is associated with an increased risk of acute renal injury and chronic kidney disease. Exosomes can transport lipid, protein, mRNA, and miRNA to corresponding target cells and mediate intercellular information exchange. In this study, we aimed to investigate whether exosome-derived miRNA mediates epithelial-mesenchymal cell communication relevant to renal fibrosis after UIRI. The secretion of exosomes increased remarkably in the kidney after UIRI and in rat renal tubular epithelium cells (NRK-52E) after hypoxia treatment. The inhibition of exosome secretion by Rab27a knockout or GW4869 treatment ameliorates renal fibrosis following UIRI in vivo. Purified exosomes from NRK-52E cells after hypoxia treatment could activate rat kidney fibroblasts (NRK-49F). The inhibition of exosome secretion in hypoxic NRK-52E cells through Rab27a knockdown or GW4869 treatment abolished NRK-49F cell activation. Interestingly, exosomal miRNA array analysis revealed that miR-150-5p expression was increased after hypoxia compared with the control group. The inhibition of exosomal miR-150-5p abolished the ability of hypoxic NRK-52E cells to promote NRK-49F cell activation in vitro, injections of miR-150-5p enriched exosomes from hypoxic NRK-52E cells aggravated renal fibrosis following UIRI, and renal fibrosis after UIRI was alleviated by miR-150-5p-deficient exosome in vivo. Furthermore, tubular cell-derived exosomal miR-150-5p could negatively regulate the expression of suppressor of cytokine signaling 1 to activate fibroblast. Thus, our results suggest that the blockade of exosomal miR-150-5p mediated tubular epithelial cell-fibroblast communication may provide a novel therapeutic target to prevents UIRI progression to renal fibrosis.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinna Xie
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaobin Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
81
|
Wu Y, Zwaini ZD, Brunskill NJ, Zhang X, Wang H, Chana R, Stover CM, Yang B. Properdin Deficiency Impairs Phagocytosis and Enhances Injury at Kidney Repair Phase Post Ischemia-Reperfusion. Front Immunol 2021; 12:697760. [PMID: 34552582 PMCID: PMC8450566 DOI: 10.3389/fimmu.2021.697760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Properdin, a positive regulator of complement alternative pathway, participates in renal ischemia–reperfusion (IR) injury and also acts as a pattern-recognition molecule affecting apoptotic T-cell clearance. However, the role of properdin in tubular epithelial cells (TECs) at the repair phase post IR injury is not well defined. This study revealed that properdin knockout (PKO) mice exhibited greater injury in renal function and histology than wild-type (WT) mice post 72-h IR, with more apoptotic cells and macrophages in tubular lumina, increased active caspase-3 and HMGB1, but better histological structure at 24 h. Raised erythropoietin receptor by IR was furthered by PKO and positively correlated with injury and repair markers. Properdin in WT kidneys was also upregulated by IR, while H2O2-increased properdin in TECs was reduced by its small-interfering RNA (siRNA), with raised HMGB1 and apoptosis. Moreover, the phagocytic ability of WT TECs, analyzed by pHrodo Escherichia coli bioparticles, was promoted by H2O2 but inhibited by PKO. These results were confirmed by counting phagocytosed H2O2-induced apoptotic TECs by in situ end labeling fragmented DNAs but not affected by additional serum with/without properdin. Taken together, PKO results in impaired phagocytosis at the repair phase post renal IR injury. Properdin locally produced by TECs plays crucial roles in optimizing damaged cells and regulating phagocytic ability of TECs to effectively clear apoptotic cells and reduce inflammation.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Basic Medical Research Centre, Medical School of Nantong University, Nantong, China
| | - Zinah D Zwaini
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Nigel J Brunskill
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyue Zhang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Hui Wang
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ravinder Chana
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Cordula M Stover
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
82
|
Li Z, Liu Z, Lu H, Dai W, Chen J, He L. RvD1 Attenuated Susceptibility to Ischemic AKI in Diabetes by Downregulating Nuclear Factor-κ B Signal and Inhibiting Apoptosis. Front Physiol 2021; 12:651645. [PMID: 34326777 PMCID: PMC8315138 DOI: 10.3389/fphys.2021.651645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Background Acute kidney injury (AKI), when occurring in diabetic kidney disease (DKD), is known to be more severe and difficult to recover from. Inflammation and apoptosis may contribute to the heightened sensitivity of, and non-recovery from, AKI in patients with DKD. Resolvin D1 (RvD1) is a potent lipid mediator which can inhibit the inflammatory response and apoptosis in many diseases. However, it has been reported that the RvD1 levels were decreased in diabetes, which may explain why DKD is more susceptible to AKI. Methods For animal experiments, diabetic nephropathy (DN) mice were induced by streptozotocin (STZ) injection intraperitoneally. Renal ischemia–reperfusion was used to induce AKI. Blood urea nitrogen (BUN) and serum creatinine were determined using commercial kits to indicate renal function. Renal apoptosis was examined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Real-time polymerase chain reaction (PCR) was used to detect the marker of inflammatory response. Western blot was used to detect the expression of nuclear factor-κB (NF-κB)-related proteins. For clinical study, 12 cases diagnosed with DKD were enrolled in this study, and an equal number of non-diabetic renal disease patients (NDKD) were recruited as a control group. The serum RvD1 in DKD or NDKD patients were detected through an ELISA kit. Results In clinical study, we found that the serum RvD1 levels were decreased in DKD patients compared to those in NDKD patients. Decreased serum RvD1 levels were responsible for the susceptibility to ischemic AKI in DKD patients. In animal experiments, both the serum RvD1 and renal ALX levels were downregulated. RvD1 treatment could ameliorate renal function and histological damage after ischemic injury in DN mice. RvD1 treatment also could inhibit the inflammatory response. Di-tert-butyl dicarbonate (BOC-2) treatment could deteriorate renal function and histological damage after ischemic injury in non-diabetic mice. RvD1 could inhibit the NF-κB activation and suppress inflammatory response mainly by inhibiting NF-κB signaling. Conclusion RvD1 attenuated susceptibility to ischemic AKI in diabetes by downregulating NF-κB signaling and inhibiting apoptosis. Downregulated serum RvD1 levels could be the crucial factor for susceptibility to ischemic AKI in diabetes.
Collapse
Affiliation(s)
- Zheng Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hengcheng Lu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junxiang Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
83
|
Time course of renal ischemia/reperfusion and distance organ; lung dysfunction in male and female rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
84
|
伍 邦, 贺 英, 尹 宗, 张 志, 邓 黎. [Preparation and Characterization of Clopidogrel Bisulfate Liposomes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:630-636. [PMID: 34323042 PMCID: PMC10409390 DOI: 10.12182/20210760102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To prepare encapsulated clopidogrel bisulfate (CLP) liposomes so as to deal with the poor water solubility of CLP, and to provide the experimental basis for the development of CLP formulations for intravascular injection. METHODS CLP-loaded liposomes were prepared using thin film hydration/sonication method and pH gradient active drug loading technology. Then, the morphology, particle size, encapsulation efficiency, drug loading capacity, Zeta potentials and in vitro release behavior were characterized. Bilateral renal arteries of Sprague-Dawley (SD) rats were clamped with micro-artery clamps to establish the model of renal ischemia-reperfusion injury (IRI) in male SD rats. The study aimed to preliminarily investigate the therapeutic effect of CLP-loaded liposome pretreatment on renal IRI in rats. RESULTS It was found that the optimal formulation and preparation technology of CLP liposomes were as follows: the CLP-to-phospholipid weight ratio of 1∶10, phospholipid-to-cholesterol ratio of 6∶1, octadecylamine-to-CLP ratio of 1.2∶1, PEG 400-to-CLP ratio of 1∶1, and incubation at 50 ℃ for 40 min. Then, following ultrasonication of 100 W efficiency at 5-second intervals for 20 times, CLP loading was conducted using 5 mL of 0.1 mol/L citric acid buffer at pH 3.0. Liposome samples were prepared with the film dispersion method, and the pH value was adjusted to 7.5 through pH gradient active drug loading technology. The CLP-loaded liposomes obtained in this way had a rounded shape, good dispersity, an average particle size of (134.13±2.60) nm, polydispersity index (PDI) of 0.25±0.02, and a Zeta potential of (2.12±0.23) mV. The encapsulation efficiency was found to be (98.66±0.14)%, and the drug loading capacity was (7.47±0.01)%. The in vitro release results showed that 66.24% of CLP was released cumulatively within 72 h. Preliminary efficacy experiments showed that animals pretreated with CLP-loaded liposomes had lower serum levels of blood urea nitrogen and creatinine compared to the levels of IRI model rats without any pretreatment. CONCLUSION CLP-loaded liposomes were successfully prepared, which might provide the experimental foundation for the future development of CLP formulations for injection.
Collapse
Affiliation(s)
- 邦青 伍
- 四川大学华西药学院 靶向药物与释药系统教育部重点实验室 (成都 610041)Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - 英菊 贺
- 四川大学华西药学院 靶向药物与释药系统教育部重点实验室 (成都 610041)Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - 宗宁 尹
- 四川大学华西药学院 靶向药物与释药系统教育部重点实验室 (成都 610041)Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - 志荣 张
- 四川大学华西药学院 靶向药物与释药系统教育部重点实验室 (成都 610041)Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - 黎 邓
- 四川大学华西药学院 靶向药物与释药系统教育部重点实验室 (成都 610041)Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
85
|
Shaw IW, O'Sullivan ED, Pisco AO, Borthwick G, Gallagher KM, Péault B, Hughes J, Ferenbach DA. Aging modulates the effects of ischemic injury upon mesenchymal cells within the renal interstitium and microvasculature. Stem Cells Transl Med 2021; 10:1232-1248. [PMID: 33951342 PMCID: PMC8284778 DOI: 10.1002/sctm.20-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The renal mesenchyme contains heterogeneous cells, including interstitial fibroblasts and pericytes, with key roles in wound healing. Although healing is impaired in aged kidneys, the effect of age and injury on the mesenchyme remains poorly understood. We characterized renal mesenchymal cell heterogeneity in young vs old animals and after ischemia‐reperfusion‐injury (IRI) using multiplex immunolabeling and single cell transcriptomics. Expression patterns of perivascular cell markers (α‐SMA, CD146, NG2, PDGFR‐α, and PDGFR‐β) correlated with their interstitial location. PDGFR‐α and PDGFR‐β co‐expression labeled renal myofibroblasts more efficiently than the current standard marker α‐SMA, and CD146 was a superior murine renal pericyte marker. Three renal mesenchymal subtypes; pericytes, fibroblasts, and myofibroblasts, were recapitulated with data from two independently performed single cell transcriptomic analyzes of murine kidneys, the first dataset an aging cohort and the second dataset injured kidneys following IRI. Mesenchymal cells segregated into subtypes with distinct patterns of expression with aging and following injury. Baseline uninjured old kidneys resembled post‐ischemic young kidneys, with this phenotype further exaggerated following IRI. These studies demonstrate that age modulates renal perivascular/interstitial cell marker expression and transcriptome at baseline and in response to injury and provide tools for the histological and transcriptomic analysis of renal mesenchymal cells, paving the way for more accurate classification of renal mesenchymal cell heterogeneity and identification of age‐specific pathways and targets.
Collapse
Affiliation(s)
- Isaac W Shaw
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eoin D O'Sullivan
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Gary Borthwick
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kevin M Gallagher
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.,Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeremy Hughes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David A Ferenbach
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
86
|
Lin Y, Zhao M, Bai L, Li H, Xu Y, Li X, Xie J, Zhang Y, Zheng D. Renal-targeting peptide-microRNA nanocomplex for near IR imaging and therapy of renal ischemia/reperfusion injury. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
87
|
Diet Significantly Influences the Immunopathology and Severity of Kidney Injury in Male C57Bl/6J Mice in a Model Dependent Manner. Nutrients 2021; 13:nu13051521. [PMID: 33946347 PMCID: PMC8145177 DOI: 10.3390/nu13051521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Diet is a leading causative risk factor for morbidity and mortality worldwide, yet it is rarely considered in the design of preclinical animal studies. Several of the nutritional inadequacies reported in Americans have been shown to be detrimental to kidney health; however, the mechanisms responsible are unclear and have been largely attributed to the development of diabetes or hypertension. Here, we set out to determine whether diet influences the susceptibility to kidney injury in male C57Bl/6 mice. Mice were fed a standard chow diet, a commercially available “Western” diet (WD), or a novel Americanized diet (AD) for 12 weeks prior to the induction of kidney injury using the folic acid nephropathy (FAN) or unilateral renal ischemia reperfusion injury (uIRI) models. In FAN, the mice that were fed the WD and AD had worse histological evidence of tissue injury and greater renal expression of genes associated with nephrotoxicity as compared to mice fed chow. Mice fed the AD developed more severe renal hypertrophy following FAN, and gene expression data suggest the mechanism for FAN differed among the diets. Meanwhile, mice fed the WD had the greatest circulating interleukin-6 concentrations. In uIRI, no difference was observed in renal tissue injury between the diets; however, mice fed the WD and AD displayed evidence of suppressed inflammatory response. Taken together, our data support the hypothesis that diet directly impacts the severity and pathophysiology of kidney disease and is a critical experimental variable that needs to be considered in mechanistic preclinical animal studies.
Collapse
|
88
|
Renal Tubular Epithelial TRPA1 Acts as An Oxidative Stress Sensor to Mediate Ischemia-Reperfusion-Induced Kidney Injury through MAPKs/NF-κB Signaling. Int J Mol Sci 2021; 22:ijms22052309. [PMID: 33669091 PMCID: PMC7956664 DOI: 10.3390/ijms22052309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and inflammation play important roles in the pathophysiology of acute kidney injury (AKI). Transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable ion channel that is sensitive to reactive oxygen species (ROS). The role of TRPA1 in AKI remains unclear. In this study, we used human and animal studies to assess the role of renal TRPA1 in AKI and to explore the regulatory mechanism of renal TRPA1 in inflammation via in vitro experiments. TRPA1 expression increased in the renal tubular epithelia of patients with AKI. The severity of tubular injury correlated well with tubular TRPA1 or 8-hydroxy-2'-deoxyguanosine expression. In an animal model, renal ischemia-reperfusion injury (IR) increased tubular TRPA1 expression in wild-type (WT) mice. Trpa1-/- mice displayed less IR-induced tubular injury, oxidative stress, inflammation, and dysfunction in kidneys compared with WT mice. In the in vitro model, TRPA1 expression increased in renal tubular cells under hypoxia-reoxygenation injury (H/R) conditions. We demonstrated that H/R evoked a ROS-dependent TRPA1 activation, which elevated intracellular Ca2+ level, increased NADPH oxidase activity, activated MAPK/NF-κB signaling, and increased IL-8. Renal tubular TRPA1 may serve as an oxidative stress sensor and a crucial regulator in the activation of signaling pathways and promote the subsequent transcriptional regulation of IL-8. These actions might be evident in mice with IR or patients with AKI.
Collapse
|
89
|
Liu D, Liu Y, Zheng X, Liu N. c-MYC-induced long noncoding RNA MEG3 aggravates kidney ischemia-reperfusion injury through activating mitophagy by upregulation of RTKN to trigger the Wnt/β-catenin pathway. Cell Death Dis 2021; 12:191. [PMID: 33602903 PMCID: PMC7892540 DOI: 10.1038/s41419-021-03466-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
Ischemia-reperfusion injury (IRI)-induced acute kidney injury (AKI) is a life-threatening disease. The activation of mitophagy was previously identified to play an important role in IRI. Maternally expressed 3 (MEG3) can promote cerebral IRI and hepatic IRI. The present study was designed to study the role of MEG3 in renal IRI. Renal IRI mice models were established, and HK-2 cells were used to construct the in vitro models of IRI. Hematoxylin-eosin staining assay was applied to reveal IRI-triggered tubular injury. MitoTracker Green FM staining and an ALP kit were employed for detection of mitophagy. TdT-mediated dUTP-biotin nick-end labeling assay was used to reveal cell apoptosis. The results showed that renal cortex of IRI mice contained higher expression of MEG3 than that of sham mice. MEG3 expression was also elevated in HK-2 cells following IRI, suggesting that MEG3 might participate in the development of IRI. Moreover, downregulation of MEG3 inhibited the apoptosis of HK-2 cells after IRI. Mitophagy was activated by IRI, and the inhibition of MEG3 can restore mitophagy activity in IRI-treated HK-2 cells. Mechanistically, we found that MEG3 can bind with miR-145-5p in IRI-treated cells. In addition, rhotekin (RTKN) was verified to serve as a target of miR-145-5p. MEG3 upregulated RTKN expression by binding with miR-145-5p. Further, MEG3 activated the Wnt/β-catenin pathway by upregulation of RTKN. The downstream effector of Wnt/β-catenin pathway, c-MYC, served as the transcription factor to activate MEG3. In conclusion, the positive feedback loop of MEG3/miR-145-5p/RTKN/Wnt/β-catenin/c-MYC promotes renal IRI by activating mitophagy and inducing apoptosis, which might offer a new insight into the therapeutic methods for renal IRI in the future.
Collapse
Affiliation(s)
- Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning, China.
| | - Ying Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning, China
| | - Xiaotong Zheng
- Department of Nephrology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning, China
| | - Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning, China
| |
Collapse
|
90
|
Enoxaparin prevents CXCL16/ADAM10-mediated cisplatin renal toxicity: Role of the coagulation system and the transcriptional factor NF-κB. Life Sci 2021; 270:119120. [PMID: 33545204 DOI: 10.1016/j.lfs.2021.119120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS C-X-C ligand 16 (CXCL16) is an exceptional chemokine that is expressed as transmembrane and soluble forms. Our aim is to shed lights on the role of CXCL16/ADAM10 (a disintegrin and metalloproteinase) in cisplatin (CP)-induced renal toxicity as well as possible protective effect of enoxaparin. MAIN METHODS Male albino mice were injected with CP (30 mg/kg, i.p.) in the presence or absence of enoxaparin (ENOX) (5 mg/kg, i.p.). Renal toxicity markers, serum level of cystatin-c, complete blood count (CBC), prothrombin time (Pt) and tissue expression of CXCL16, ADAM10, cluster of differentiation 3 (CD3), fibrinogen, tissue factor (TF), nuclear factor-κB (NF-κB) and tumour necrosis factor α (TNF-α) were measured. Besides, serum CXCL16 and histopathology were also analyzed. KEY FINDINGS CP increased renal toxicity markers, renal expression of CXCL16/ADAM10, fibrinogen, TF and CD3 tissue expression in a time-dependent manner, and elevated serum cystatin-c, CXCL16 and tissue TNF-α, NF-κB. Alternatively, ENOX restored the deteriorated parameters and reduced tissue level of NF-κB. SIGNIFICANCE This report, for the first time, showed that soluble CXCL16 resulting from ADAM10 cleavage may recruit T-cells to the renal glomeruli and tubules in CP toxicity. Furthermore, TF and fibrin, have similar expression and location pattern like CXCL16 and ADAM10 suggesting their possible interrelation. ENOX successfully restored the deteriorated parameters suggesting it may be an effective nephroprotective adjuvant therapy.
Collapse
|
91
|
Renal Protective Effect of Beluga Lentil Pretreatment for Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6890679. [PMID: 33604384 PMCID: PMC7868138 DOI: 10.1155/2021/6890679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/24/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022]
Abstract
Materials and Methods Mice were divided into four groups: normal, untreated, low- (2 mg), and high-dose (8 mg) beluga lentil treatment groups. Beluga lentil was orally administered for 2 weeks, followed by bilateral renal ischemia for 20 min and reperfusion for 30 min. Blood samples and kidney tissues were collected and analyzed to investigate renal function, histopathology, epithelial and endothelial cell damage, apoptosis, oxidative stress, and inflammatory responses. Results The pretreated groups maintained renal function, with significantly lower blood urea nitrogen (BUN) and creatinine levels, compared with the other groups. The histopathological analysis showed reduced proximal tubule injury and decreased injury-related molecule (kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)) secretion in the pretreated groups compared with the other groups. Terminal deoxynucleotidyl transferase dUTP nick-end labeling- (TUNEL-) positive cells and the secretion of apoptosis-related molecules (Fas and caspase 3) were significantly reduced in the pretreated groups compared with the other groups. The pretreated groups showed positive microvessel-associated gene (cluster of differentiation (CD31)) expression and negative adhesion molecule (intracellular adhesion molecule 1 (ICAM-1)) expression. An antioxidant effect was observed in the pretreatment groups, with reduced malonaldehyde (MDA) expression and increased antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx)) secretion. In the pretreated groups, F4/80+ macrophages and CD4+ T cell infiltration were inhibited and proinflammatory cytokine (interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α) levels decreased; however, the levels of anti-inflammatory cytokines (transforming growth factor- (TGF-) β, IL-10, and IL-22) increased. Conclusions Beluga lentil pretreatment demonstrated protective effects against I/R-induced renal damage, via antiapoptotic, anti-inflammatory, and antioxidant activities.
Collapse
|
92
|
Han Z, Liu S, Pei Y, Ding Z, Li Y, Wang X, Zhan D, Xia S, Driedonks T, Witwer KW, Weiss RG, van Zijl PCM, Bulte JWM, Cheng L, Liu G. Highly efficient magnetic labelling allows MRI tracking of the homing of stem cell-derived extracellular vesicles following systemic delivery. J Extracell Vesicles 2021; 10:e12054. [PMID: 33489014 PMCID: PMC7809601 DOI: 10.1002/jev2.12054] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Human stem‐cell‐derived extracellular vesicles (EVs) are currently being investigated for cell‐free therapy in regenerative medicine applications, but the lack of noninvasive imaging methods to track EV homing and uptake in injured tissues has limited the refinement and optimization of the approach. Here, we developed a new labelling strategy to prepare magnetic EVs (magneto‐EVs) allowing sensitive yet specific MRI tracking of systemically injected therapeutic EVs. This new labelling strategy relies on the use of ‘sticky’ magnetic particles, namely superparamagnetic iron oxide (SPIO) nanoparticles coated with polyhistidine tags, to efficiently separate magneto‐EVs from unencapsulated SPIO particles. Using this method, we prepared pluripotent stem cell (iPSC)‐derived magneto‐EVs and subsequently used MRI to track their homing in different animal models of kidney injury and myocardial ischemia. Our results showed that iPSC‐derived EVs preferentially accumulated in the injury sites and conferred substantial protection. Our study paves a new pathway for preparing highly purified magnetic EVs and tracking them using MRI towards optimized, systemically administered EV‐based cell‐free therapies.
Collapse
Affiliation(s)
- Zheng Han
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Senquan Liu
- Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA.,Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Yigang Pei
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Department of Radiology Xiangya Hospital Central South University Changsha Hunan China
| | - Zheng Ding
- Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Yuguo Li
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Xinge Wang
- Department of Bioengineering University of Illinois at Chicago Chicago Illinois USA
| | - Daqian Zhan
- Department of Neurology Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA
| | - Shuli Xia
- Department of Neurology Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA
| | - Tom Driedonks
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Robert G Weiss
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA.,Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Linzhao Cheng
- Department of Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA.,Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,F.M. Kirby Research Center Kennedy Krieger Institute Baltimore Maryland USA
| |
Collapse
|
93
|
Hu C, Zuo Y, Ren Q, Sun X, Zhou S, Liao J, Hong X, Miao J, Zhou L, Liu Y. Matrix metalloproteinase-10 protects against acute kidney injury by augmenting epidermal growth factor receptor signaling. Cell Death Dis 2021; 12:70. [PMID: 33436543 PMCID: PMC7803968 DOI: 10.1038/s41419-020-03301-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase involved in regulating a wide range of biologic processes, such as apoptosis, cell proliferation, and tissue remodeling. However, the role of MMP-10 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we show that MMP-10 was upregulated in the kidneys and predominantly localized in the tubular epithelium in various models of AKI induced by ischemia/reperfusion (IR) or cisplatin. Overexpression of exogenous MMP-10 ameliorated AKI, manifested by decreased serum creatinine, blood urea nitrogen, tubular injury and apoptosis, and increased tubular regeneration. Conversely, knockdown of endogenous MMP-10 expression aggravated kidney injury. Interestingly, alleviation of AKI by MMP-10 in vivo was associated with the activation of epidermal growth factor receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase-1 and 2 (ERK1/2) signaling. Blockade of EGFR signaling by erlotinib abolished the MMP-10-mediated renal protection after AKI. In vitro, MMP-10 potentiated EGFR activation and protected kidney tubular cells against apoptosis induced by hypoxia/reoxygenation or cisplatin. MMP-10 was colocalized with heparin-binding EGF-like growth factor (HB-EGF) in vivo and activated it by a process of proteolytical cleavage in vitro. These studies identify HB-EGF as a previously unrecognized substrate of MMP-10. Our findings also underscore that MMP-10 can protect against AKI by augmenting EGFR signaling, leading to promotion of tubular cell survival and proliferation after injury.
Collapse
Affiliation(s)
- Chengxiao Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangyang Zuo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Ren
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
94
|
Hosszu A, Kaucsar T, Seeliger E, Fekete A. Animal Models of Renal Pathophysiology and Disease. Methods Mol Biol 2021; 2216:27-44. [PMID: 33475992 DOI: 10.1007/978-1-0716-0978-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
Affiliation(s)
- Adam Hosszu
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Kaucsar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
95
|
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanism of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide an overview of the preparation and monitoring of small animals before, during, and after surgical interventions or MR imaging. Standardization of experimental settings such as body temperature or hydration of animals and minimizing pain and distress are essential for diminishing nonexperimental variables as well as for conducting ethical research.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
|
96
|
LINC00052 ameliorates acute kidney injury by sponging miR-532-3p and activating the Wnt signaling pathway. Aging (Albany NY) 2020; 13:340-350. [PMID: 33231561 PMCID: PMC7835036 DOI: 10.18632/aging.104152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI) is a complex renal disease. Long non-coding RNAs (lncRNAs) have frequently been associated with AKI. In the present study, we aimed to investigate the molecular mechanism(s) of LINC00052 in AKI. We found that LINC00052 expression was significantly decreased in AKI patient serum. In addition, in a hypoxic AKI cell model, LINC00052 expression was strongly elevated. In an I/R-triggered AKI rat model, the expression of TNF-α, IL-6 and IL-1β mRNA was strongly elevated. Moreover, we predicted miR-532-3p to be targeted by LINC00052 in AKI. Overexpression of LINC00052 increased hypoxia-induced inhibition of NRK-52E cell proliferation and reversed hypoxia-triggered apoptosis. Furthermore, we found that induction of TNF-α, IL-6 and IL-1β was repressed by overexpression of LINC00052. LINC00052 decreased hypoxia-induced ROS and MDA accumulation in vitro and increased SOD activity. Decreased levels of c-myc and cyclin D1 were observed in renal tissues of AKI rats. Lastly, Wnt/β-catenin signaling was inactivated in NRK-52E cells experiencing hypoxia, and LINC00052 upregulation reactivated Wnt/β-catenin signaling by sponging miR-532-3p. Taken together, these results suggest that LINC00052 ameliorates AKI by sponging miR-532-3p and activating Wnt signaling.
Collapse
|
97
|
Jiang GP, Liao YJ, Huang LL, Zeng XJ, Liao XH. Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury. Mol Med Rep 2020; 23:63. [PMID: 33215224 PMCID: PMC7716408 DOI: 10.3892/mmr.2020.11704] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical disease. Ferropotosis, a new type of regulatory cell death, serves an important regulatory role in AKI. Pachymic acid (PA), a lanostane‑type triterpenoid from Poria cocos, has been reported to be protective against AKI. However, the protective mechanism of PA in AKI is not yet fully understood. The present study aimed to investigate the effect and molecular mechanism of PA on ferroptosis in renal ischemia reperfusion injury in vivo. A total of 30 mice were intraperitoneally injected with 5, 10 and 20 mg/kg PA for 3 days. A bilateral renal pedicle clip was used for 40 min to induce renal ischemia‑reperfusion injury and establish the model. The results demonstrated that treatment with PA decreased serum creatinine and blood urea nitrogen, and ameliorated renal pathological damage. Transmission electron microscopy revealed no characteristic changes in ferroptosis in the mitochondria of the renal tissue in the high‑dose PA group, and only mild edema. Furthermore, treatment with PA increased glutathione expression, and decreased the expression levels of malondialdehyde and cyclooxygenase 2. Treatment with PA enhanced the protein and mRNA expression levels of the ferroptosis related proteins, glutathione peroxidase 4 (GPX4), solute carrier family 7 (cationic amino acid transporter, y+ system) member 11 (SLC7A11) and heme oxygenase 1 (HO‑1) in the kidney, and increased the expression levels of nuclear factor erythroid derived 2 like 2 (NRF2) signaling pathway members. Taken together, the results of the present study suggest that PA has a protective effect on ischemia‑reperfusion induced acute kidney injury in mice, which may be associated with the inhibition of ferroptosis in the kidneys through direct or indirect activation of NRF2, and upregulation of the expression of the downstream ferroptosis related proteins, GPX4, SLC7A11 and HO‑1.
Collapse
Affiliation(s)
- Gui-Ping Jiang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Yue-Juan Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Li-Li Huang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Xu-Jia Zeng
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Xiao-Hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, P.R. China
| |
Collapse
|
98
|
A Preclinical Systematic Review of Curcumin for Protecting the Kidney with Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4546851. [PMID: 33274000 PMCID: PMC7676970 DOI: 10.1155/2020/4546851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 12/17/2022]
Abstract
Renal ischemia-reperfusion injury (RIRI) refers to a phenomenon associated with dysfunction of the kidney and tissue damage. Unfortunately, no specific drugs have been found that effectively prevent and treat RIRI. Curcumin (Cur), a polyphenol extracted from turmeric, possesses a variety of biological activities involving antioxidation, inhibition of apoptosis, inhibition of inflammation, and reduction of lipid peroxidation. Eight frequently used databases were searched using prespecified search strategies. The CAMARADES 10-item quality checklist was used to evaluate the risk of bias of included studies, and the RevMan 5.3 software was used to analyze the data. The risk of bias score of included studies ranged from 3 to 6 with an average score of 5.22. Compared with the control group, Cur significantly alleviated renal pathology, reduced blood urea nitrogen and serum creatinine levels, and improved inflammatory indexes, oxidant, and apoptosis in RIRI animal models. Despite the heterogeneity of the response to Cur in terms of serum creatinine, BUN, TNF-alpha, and SOD, its effectiveness for improving the injury of RIRI was remarkable. In the mouse model subgroup of serum creatinine, the effect size of the method of unilateral renal artery ligation with contralateral nephrectomy and shorter ischemic time showed a greater effect than that of the control group. No difference was seen in the methods of model establishment, mode administration, or medication times. The preclinical systematic review provided preliminary evidence that Cur partially improved RIRI in animal models, probably via anti-inflammatory, antioxidant, antiapoptosis, and antifibrosis activities and via improving microperfusion. ARRIVE guidelines are recommended; blinding and sample size calculation should be focused on in future studies. These data suggest that Cur is a potential renoprotective candidate for further clinical trials of RIRI.
Collapse
|
99
|
Vilskersts R, Vilks K, Videja M, Cirule H, Zharkova‐Malkova O, Sevostjanovs E, Dambrova M, Liepinsh E. Rats with congenital hydronephrosis show increased susceptibility to renal ischemia-reperfusion injury. Physiol Rep 2020; 8:e14638. [PMID: 33207081 PMCID: PMC7673629 DOI: 10.14814/phy2.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022] Open
Abstract
Many drug candidates have shown significant renoprotective effects in preclinical models; however, there is no clinically used effective pharmacotherapy for acute kidney injury. The failure to translate from bench to bedside could be due to misleading results from experimental animals with undetected congenital kidney defects. This study was performed to assess the effects of congenital hydronephrosis on the functional capacity of tubular renal transporters as well as kidney sensitivity to ischemia-reperfusion (I-R)-induced injury in male Wistar rats. Ultrasonography was used to distinguish healthy control rats from rats with hydronephrosis. L-carnitine or furosemide was administered, and serial blood samples were collected and analyzed to assess the effects of hydronephrosis on the pharmacokinetic parameters. Renal injury was induced by clamping the renal pedicles of both kidneys for 30 min with subsequent 24 hr reperfusion. The prevalence of hydronephrosis reached ~30%. The plasma concentrations after administration of L-carnitine or furosemide were similar in both groups. I-R induced more pronounced renal injury in the hydronephrotic rats than the control rats, which was evident by a significantly higher kidney injury molecule-1 concentration and lower creatinine concentration in the urine of the hydronephrotic rats than the control rats. After I-R, the gene expression levels of renal injury markers were significantly higher in the hydronephrotic kidneys than in the kidneys of control group animals. In conclusion, our results demonstrate that hydronephrotic kidneys are more susceptible to I-R-induced damage than healthy kidneys. Unilateral hydronephrosis does not affect the pharmacokinetics of substances secreted or absorbed in the renal tubules.
Collapse
Affiliation(s)
- Reinis Vilskersts
- Latvian Institute of Organic SynthesisRigaLatvia
- Rigas Stradins UniversityRigaLatvia
| | - Karlis Vilks
- Latvian Institute of Organic SynthesisRigaLatvia
- University of LatviaRigaLatvia
| | - Melita Videja
- Latvian Institute of Organic SynthesisRigaLatvia
- Rigas Stradins UniversityRigaLatvia
| | | | | | | | - Maija Dambrova
- Latvian Institute of Organic SynthesisRigaLatvia
- Rigas Stradins UniversityRigaLatvia
| | | |
Collapse
|
100
|
Lissner MM, Cumnock K, Davis NM, Vilches-Moure JG, Basak P, Navarrete DJ, Allen JA, Schneider D. Metabolic profiling during malaria reveals the role of the aryl hydrocarbon receptor in regulating kidney injury. eLife 2020; 9:60165. [PMID: 33021470 PMCID: PMC7538157 DOI: 10.7554/elife.60165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic metabolic reprogramming induced by infection exerts profound, pathogen-specific effects on infection outcome. Here, we detail the host immune and metabolic response during sickness and recovery in a mouse model of malaria. We describe extensive alterations in metabolism during acute infection, and identify increases in host-derived metabolites that signal through the aryl hydrocarbon receptor (AHR), a transcription factor with immunomodulatory functions. We find that Ahr-/- mice are more susceptible to malaria and develop high plasma heme and acute kidney injury. This phenotype is dependent on AHR in Tek-expressing radioresistant cells. Our findings identify a role for AHR in limiting tissue damage during malaria. Furthermore, this work demonstrates the critical role of host metabolism in surviving infection.
Collapse
Affiliation(s)
- Michelle M Lissner
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Katherine Cumnock
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Nicole M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, United States
| | - Priyanka Basak
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Daniel J Navarrete
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Jessica A Allen
- Division of Health, Mathematics and Science, Columbia College, Columbia, United States
| | - David Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| |
Collapse
|