51
|
Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MTX, Riquier-Brison AD, Seth DM, Fuchs S, Eladari D, Picard N, Bachmann S, Delpire E, Peti-Peterdi J, Navar LG, Bernstein KE, McDonough AA. The absence of intrarenal ACE protects against hypertension. J Clin Invest 2013; 123:2011-23. [PMID: 23619363 PMCID: PMC3638907 DOI: 10.1172/jci65460] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/21/2013] [Indexed: 12/24/2022] Open
Abstract
Activation of the intrarenal renin-angiotensin system (RAS) can elicit hypertension independently from the systemic RAS. However, the precise mechanisms by which intrarenal Ang II increases blood pressure have never been identified. To this end, we studied the responses of mice specifically lacking kidney angiotensin-converting enzyme (ACE) to experimental hypertension. Here, we show that the absence of kidney ACE substantially blunts the hypertension induced by Ang II infusion (a model of high serum Ang II) or by nitric oxide synthesis inhibition (a model of low serum Ang II). Moreover, the renal responses to high serum Ang II observed in wild-type mice, including intrarenal Ang II accumulation, sodium and water retention, and activation of ion transporters in the loop of Henle (NKCC2) and distal nephron (NCC, ENaC, and pendrin) as well as the transporter activating kinases SPAK and OSR1, were effectively prevented in mice that lack kidney ACE. These findings demonstrate that ACE metabolism plays a fundamental role in the responses of the kidney to hypertensive stimuli. In particular, renal ACE activity is required to increase local Ang II, to stimulate sodium transport in loop of Henle and the distal nephron, and to induce hypertension.
Collapse
|
52
|
Ramkumar N, Kohan DE. Role of collecting duct renin in blood pressure regulation. Am J Physiol Regul Integr Comp Physiol 2013; 305:R92-4. [PMID: 23637136 DOI: 10.1152/ajpregu.00191.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous studies indicate that renin is synthesized and secreted by the collecting duct (CD). CD-derived renin may act directly on intercalated and/or principal cells through direct interaction with prorenin receptors and/or through cleavage of proximal tubule-derived angiotensinogen to ultimately produce angiotensin II and activate AT1 receptors. Preliminary studies suggest that the net effect of CD renin would be to increase distal nephron salt reabsorption and increase blood pressure. CD renin production is markedly increased in diabetes and angiotensin II-induced hypertension, suggesting that this system may exert pathophysiological effects. In this brief review, we summarize the current literature on synthesis and regulation of CD renin and consider potential mechanisms by which it regulates blood pressure.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
53
|
Wall SM, Weinstein AM. Cortical distal nephron Cl(-) transport in volume homeostasis and blood pressure regulation. Am J Physiol Renal Physiol 2013; 305:F427-38. [PMID: 23637202 DOI: 10.1152/ajprenal.00022.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Renal intercalated cells mediate the secretion or absorption of Cl(-) and OH(-)/H(+) equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl(-) absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl(-) transporter(s) are targeted by these diuretics is debated. While epithelial Na(+) channel (ENaC) does not transport Cl(-), it modulates Cl(-) transport probably by generating a lumen-negative voltage, which drives Cl(-) flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl(-) secretion via a type A intercalated cells. During ENaC blockade, Cl(-) is taken up across the basolateral membrane through the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl(-) channel or an electrogenic exchanger). The mechanism of this apical Cl(-) secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl(-) absorption mediated by a Na(+)-dependent Cl(-)/HCO3(-) exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl(-) absorption varies between studies and probably depends on the treatment model employed. Cl(-) absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na(+)-independent Cl(-)/HCO3(-) exchanger pendrin. In the absence of pendrin [Slc26a4((-/-)) or pendrin null mice], aldosterone-stimulated Cl(-) absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO3(-). This review summarizes mechanisms of Cl(-) transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Renal Division, WMB Rm. 338, 1639 Pierce Dr., NE, Atlanta, GA 30322.
| | | |
Collapse
|
54
|
Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A 2013; 110:7928-33. [PMID: 23610411 DOI: 10.1073/pnas.1221496110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Na(+) concentration of the intracellular milieu is very low compared with the extracellular medium. Transport of Na(+) along this gradient is used to fuel secondary transport of many solutes, and thus plays a major role for most cell functions including the control of cell volume and resting membrane potential. Because of a continuous leak, Na(+) has to be permanently removed from the intracellular milieu, a process that is thought to be exclusively mediated by the Na(+)/K(+)-ATPase in animal cells. Here, we show that intercalated cells of the mouse kidney are an exception to this general rule. By an approach combining two-photon imaging of isolated renal tubules, physiological studies, and genetically engineered animals, we demonstrate that inhibition of the H(+) vacuolar-type ATPase (V-ATPase) caused drastic cell swelling and depolarization, and also inhibited the NaCl absorption pathway that we recently discovered in intercalated cells. In contrast, pharmacological blockade of the Na(+)/K(+)-ATPase had no effects. Basolateral NaCl exit from β-intercalated cells was independent of the Na(+)/K(+)-ATPase but critically relied on the presence of the basolateral ion transporter anion exchanger 4. We conclude that not all animal cells critically rely on the sodium pump as the unique bioenergizer, but can be replaced by the H(+) V-ATPase in renal intercalated cells. This concept is likely to apply to other animal cell types characterized by plasma membrane expression of the H(+) V-ATPase.
Collapse
|
55
|
Pech V, Thumova M, Dikalov SI, Hummler E, Rossier BC, Harrison DG, Wall SM. Nitric oxide reduces Cl⁻ absorption in the mouse cortical collecting duct through an ENaC-dependent mechanism. Am J Physiol Renal Physiol 2013; 304:F1390-7. [PMID: 23515718 DOI: 10.1152/ajprenal.00292.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na⁺ and Cl⁻ in the kidney, we asked whether NO regulates net Cl⁻ flux (JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl⁻ absorption. Cl⁻ absorption was measured in CCDs perfused in vitro that were taken from aldosterone-treated mice. Administration of an NO donor (10 μM MAHMA NONOate) reduced JCl and transepithelial voltage (VT) both in the presence or absence of angiotensin II. However, reducing endogenous NO production by inhibiting NO synthase (100 μM N(G)-nitro-L-arginine methyl ester) increased JCl only in the presence of angiotensin II, suggesting that angiotensin II stimulates NO synthase activity. To determine the transport process that mediates NO-sensitive changes in JCl, we examined the effect of NO on JCl following either genetic ablation or chemical inhibition of transporters in the CCD. Since the application of hydrochlorothiazide (100 μM) or bafilomycin (5 nM) to the perfusate or ablation of the gene encoding pendrin did not alter NO-sensitive JCl, NO modulates JCl independent of the Na⁺-dependent Cl⁻/HCO₃⁻ exchanger (NDCBE, Slc4a8), the A cell apical plasma membrane H⁺-ATPase and pendrin. In contrast, both total and NO-sensitive JCl and VT were abolished with application of an epithelial Na(+) channel (ENaC) inhibitor (3 μM benzamil) to the perfusate. We conclude that NO reduces Cl⁻ absorption in the CCD through a mechanism that is ENaC-dependent.
Collapse
Affiliation(s)
- Vladimir Pech
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Morla L, Brideau G, Fila M, Crambert G, Cheval L, Houillier P, Ramakrishnan S, Imbert-Teboul M, Doucet A. Renal proteinase-activated receptor 2, a new actor in the control of blood pressure and plasma potassium level. J Biol Chem 2013; 288:10124-10131. [PMID: 23430254 DOI: 10.1074/jbc.m112.446393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteinase-activated receptor 2 (PAR2) is a G protein-coupled membrane receptor that is activated upon cleavage of its extracellular N-terminal domain by trypsin and related proteases. PAR2 is expressed in kidney collecting ducts, a main site of control of Na(+) and K(+) homeostasis, but its function remains unknown. We evaluated whether and how PAR2 might control electrolyte transport in collecting ducts, and thereby participate in the regulation of blood pressure and plasma K(+) concentration. PAR2 is expressed at the basolateral border of principal and intercalated cells of the collecting duct where it inhibits K(+) secretion and stimulates Na(+) reabsorption, respectively. Invalidation of PAR2 gene impairs the ability of the kidney to control Na(+) and K(+) balance and promotes hypotension and hypokalemia in response to Na(+) and K(+) depletion, respectively. This study not only reveals a new role of proteases in the control of blood pressure and plasma potassium level, but it also identifies a second membrane receptor, after angiotensin 2 receptor, that differentially controls sodium reabsorption and potassium secretion in the late distal tubule. Conversely to angiotensin 2 receptor, PAR2 is involved in the regulation of sodium and potassium balance in the context of either stimulation or nonstimulation of the renin/angiotensin/aldosterone system. Therefore PAR2 appears not only as a new actor of the aldosterone paradox, but also as an aldosterone-independent modulator of blood pressure and plasma potassium.
Collapse
Affiliation(s)
- Luciana Morla
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06
| | - Gaëlle Brideau
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06
| | - Marc Fila
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06; Faculté de Médecine, Université Paris-Descartes, 75006 Paris; Département de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, 75004 Paris, France
| | - Sureshkrishna Ramakrishnan
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06
| | - Martine Imbert-Teboul
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06
| | - Alain Doucet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris-Descartes, INSERM (UMRS872) and Centre National de la Recherche Scientifique (ERL7226), 75270 Paris cedex 06.
| |
Collapse
|
57
|
Mohebbi N, Perna A, van der Wijst J, Becker HM, Capasso G, Wagner CA. Regulation of two renal chloride transporters, AE1 and pendrin, by electrolytes and aldosterone. PLoS One 2013; 8:e55286. [PMID: 23383138 PMCID: PMC3561381 DOI: 10.1371/journal.pone.0055286] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/21/2012] [Indexed: 01/14/2023] Open
Abstract
The renal handling of salt and protons and bicarbonate are intricately linked through shared transport mechanisms for sodium, chloride, protons, and bicarbonate. In the collecting duct, the regulated fine-tuning of salt and acid-base homeostasis is achieved by a series of transport proteins located in different cell types, intercalated and principal cells. Intercalated cells are considered to be of less importance for salt handling but recent evidence has suggested that the anion exchanger pendrin may participate in salt reabsorption and blood pressure regulation. Here, we examined the regulated expression of two functionally related but differentially expressed anion exchangers, AE1 and pendrin, by dietary electrolyte intake and aldosterone. Cortical expression of pendrin was regulated on mRNA and protein level. The combination of NaHCO3 and DOCA enhanced pendrin mRNA and protein levels, whereas DOCA or NaHCO3 alone had no effect. NaCl or KHCO3 increased pendrin mRNA, KCl decreased its mRNA abundance. On protein level, NH4Cl, NaCl, and KCl reduced pendrin expression, the other treatments were without effect. In contrast, AE1 mRNA or protein expression in kidney cortex was regulated by none of these treatments. In kidney medulla, NaHCO3/DOCA or NaHCO3 alone enhanced AE1 mRNA levels. AE1 protein abundance was increased by NH4Cl, NaHCO3/DOCA, and NaCl. Immunolocalization showed that during NH4Cl treatment the relative number of AE1 positive cells was increased and pendrin expressing cells reduced. Thus, pendrin and AE1 are differentially regulated with distinct mechanisms that separately affect mRNA and protein levels. Pendrin is regulated by acidosis and chloride intake, whereas AE1 is enhanced by acidosis, NaCl, and the combination of DOCA and NaHCO3.
Collapse
Affiliation(s)
- Nilufar Mohebbi
- Institute of Physiology and Zurich Center for Integrative Human Physiology-ZIHP, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
58
|
Prieto MC, Gonzalez AA, Navar LG. Evolving concepts on regulation and function of renin in distal nephron. Pflugers Arch 2012; 465:121-32. [PMID: 22990760 DOI: 10.1007/s00424-012-1151-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 01/13/2023]
Abstract
Sustained stimulation of the intrarenal/intratubular renin-angiotensin system in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis, and eventual renal injury. Activation of luminal AT(1) receptors in proximal and distal nephron segments by local Ang II formation stimulates various transport systems. Augmented angiotensinogen (AGT) production by proximal tubule cells increases AGT secretion contributing to increased proximal Ang II levels and leading to spillover of AGT into the distal nephron segments, as reflected by increased urinary AGT excretion. The increased distal delivery of AGT provides substrate for renin, which is expressed in principal cells of the collecting tubule and collecting ducts, and is also stimulated by AT(1) receptor activation. Renin and prorenin are secreted into the tubular lumen and act on the AGT delivered from the proximal tubule to form more Ang I. The catalytic actions of renin and or prorenin may be enhanced by binding to prorenin receptors on the intercalated cells or soluble prorenin receptor secreted into the tubular fluid. There is also increased luminal angiotensin converting enzyme in collecting ducts facilitating Ang II formation leading to stimulation of sodium reabsorption via sodium channel and sodium/chloride co-transporter. Thus, increased collecting duct renin contributes to Ang II-dependent hypertension by augmenting distal nephron intratubular Ang II formation leading to sustained stimulation of sodium reabsorption and progression of hypertension.
Collapse
Affiliation(s)
- Minolfa C Prieto
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
59
|
Azroyan A, Morla L, Crambert G, Laghmani K, Ramakrishnan S, Edwards A, Doucet A. Regulation of pendrin by cAMP: possible involvement in β-adrenergic-dependent NaCl retention. Am J Physiol Renal Physiol 2012; 302:F1180-F1187. [PMID: 22262479 DOI: 10.1152/ajprenal.00403.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The sodium-independent anion exchanger pendrin is expressed in several tissues including the kidney cortical collecting duct (CCD), where it acts as a chloride/bicarbonate exchanger and has been shown to participate in the regulation of acid-base homeostasis and blood pressure. The renal sympathetic nervous system is known to play a key role in the development of salt-induced hypertension. This study aimed to determine whether pendrin may partly mediate the effects of β adrenergic receptors (β-AR) on renal salt handling. We investigated the regulation of pendrin activity by the cAMP/protein kinase A (PKA) signaling pathway, both in vitro in opossum kidney proximal (OKP) cells stably transfected with pendrin cDNA and ex vivo in isolated microperfused CCDs stimulated by isoproterenol, a β-AR agonist. We found that stimulation of the cAMP/PKA pathway in OKP cells increased the amount of pendrin at the cell surface as well as its transport activity. These effects stemmed from increased exocytosis of pendrin and were associated with its phosphorylation. Furthermore, cAMP effects on the membrane expression and activity of pendrin were abolished by mutating the serine 49 located in the intracellular N-terminal domain of pendrin. Finally, we showed that isoproterenol increases pendrin trafficking to the apical membrane as well as the reabsorption of both Cl(-) and Na(+) in microperfused CCDs. All together, our results strongly suggest that pendrin activation by the cAMP/PKA pathway underlies isoproterenol-induced stimulation of NaCl reabsorption in the kidney collecting duct, a mechanism likely involved in the sodium-retaining effect of β-adrenergic agonists.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Anion Transport Proteins/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- Chloride-Bicarbonate Antiporters/metabolism
- Cyclic AMP/pharmacology
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- Isoproterenol/pharmacology
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Mice
- Mice, Inbred Strains
- Models, Animal
- Opossums
- Phosphorylation/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sodium Chloride/metabolism
- Sulfate Transporters
Collapse
Affiliation(s)
- Anie Azroyan
- UPMC Université Paris 06, Université Paris 05, INSERM, UMRS872, and CNRS ERL7226, Laboratoire de Génomique, Physiologie et Physiopathologie Rénales, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | |
Collapse
|
60
|
Pech V, Thumova M, Kim YH, Agazatian D, Hummler E, Rossier BC, Weinstein AM, Nanami M, Wall SM. ENaC inhibition stimulates Cl- secretion in the mouse cortical collecting duct through an NKCC1-dependent mechanism. Am J Physiol Renal Physiol 2012; 303:F45-55. [PMID: 22496413 DOI: 10.1152/ajprenal.00030.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In cortical collecting ducts (CCDs) perfused in vitro, inhibiting the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption. Since ENaC does not transport Cl(-), the purpose of this study was to determine how ENaC modulates Cl(-) absorption. Thus, Cl(-) absorption was measured in CCDs perfused in vitro that were taken from mice given aldosterone for 7 days. In wild-type mice, we observed no effect of luminal hydrochlorothiazide on either Cl(-) absorption or transepithelial voltage (V(T)). However, application of an ENaC inhibitor [benzamil (3 μM)] to the luminal fluid or application of a Na(+)-K(+)-ATPase inhibitor to the bath reduced Cl(-) absorption by ∼66-75% and nearly obliterated lumen-negative V(T). In contrast, ENaC inhibition had no effect in CCDs from collecting duct-specific ENaC-null mice (Hoxb7:CRE, Scnn1a(loxlox)). Whereas benzamil-sensitive Cl(-) absorption did not depend on CFTR, application of a Na(+)-K(+)-2Cl(-) cotransport inhibitor (bumetanide) to the bath or ablation of the gene encoding Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) blunted benzamil-sensitive Cl(-) absorption, although the benzamil-sensitive component of V(T) was unaffected. In conclusion, first, in CCDs from aldosterone-treated mice, most Cl(-) absorption is benzamil sensitive, whereas thiazide-sensitive Cl(-) absorption is undetectable. Second, benzamil-sensitive Cl(-) absorption occurs by inhibition of ENaC, possibly due to elimination of lumen-negative V(T). Finally, benzamil-sensitive Cl(-) flux occurs, at least in part, through transcellular transport through a pathway that depends on NKCC1.
Collapse
Affiliation(s)
- Vladimir Pech
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
62
|
Sun P, Yue P, Wang WH. Angiotensin II stimulates epithelial sodium channels in the cortical collecting duct of the rat kidney. Am J Physiol Renal Physiol 2012; 302:F679-87. [PMID: 22169010 PMCID: PMC3311319 DOI: 10.1152/ajprenal.00368.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/06/2011] [Indexed: 02/07/2023] Open
Abstract
We examined the effect of angiotensin II (ANG II) on epithelial Na(+) channel (ENaC) in the rat cortical collecting duct (CCD) with single-channel and the perforated whole cell patch-clamp recording. Application of 50 nM ANG II increased ENaC activity, defined by NP(o) (a product of channel numbers and open probability), and the amiloride-sensitive whole cell Na currents by twofold. The stimulatory effect of ANG II on ENaC was absent in the presence of losartan, suggesting that the effect of ANG II on ENaC was mediated by ANG II type 1 receptor. Moreover, depletion of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM failed to abolish the stimulatory effect of ANG II on ENaC but inhibiting protein kinase C (PKC) abolished the effect of ANG II, suggesting that the effect of ANG II was the result of stimulating Ca(2+)-independent PKC. This notion was also suggested by the experiments in which stimulation of PKC with phorbol ester derivative mimicked the effect of ANG II and increased amiloride-sensitive Na currents in the principal cell, an effect that was not abolished by treatment of the CCD with BAPTA-AM. Also, inhibition of NADPH oxidase (NOX) with diphenyleneiodonium chloride abolished the stimulatory effect of ANG II on ENaC and application of superoxide donors, pyrogallol or xanthine and xanthine oxidase, significantly increased ENaC activity. Moreover, addition of ANG II or H(2)O(2) diminished the arachidonic acid (AA)-induced inhibition of ENaC in the CCD. We conclude that ANG II stimulates ENaC in the CCD through a Ca(2+)-independent PKC pathway that activates NOX thereby increasing superoxide generation. The stimulatory effect of ANG II on ENaC may be partially the result of blocking AA-induced inhibition of ENaC.
Collapse
Affiliation(s)
- Peng Sun
- Dept. of Pharmacology, New York Medical College, 15 Dana Rd., Valhalla, NY 10595, USA
| | | | | |
Collapse
|
63
|
Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E, Carrithers SL, Alper SL, Zelikovic I. The pendrin anion exchanger gene is transcriptionally regulated by uroguanylin: a novel enterorenal link. Am J Physiol Renal Physiol 2011; 302:F614-24. [PMID: 22129966 DOI: 10.1152/ajprenal.00189.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pendrin/SLC26A4 Cl(-)/HCO(3)(-) exchanger, encoded by the PDS gene, is expressed in cortical collecting duct (CCD) non-A intercalated cells. Pendrin is essential for CCD bicarbonate secretion and is also involved in NaCl balance and blood pressure regulation. The intestinal peptide uroguanylin (UGN) is produced in response to oral salt load and can function as an "intestinal natriuretic hormone." We aimed to investigate whether UGN modulates pendrin activity and to explore the molecular mechanisms responsible for this modulation. Injection of UGN into mice resulted in decreased pendrin mRNA and protein expression in the kidney. UGN decreased endogenous pendrin mRNA levels in HEK293 cells. A 4.2-kb human PDS (hPDS) promoter sequence and consecutive 5' deletion products were cloned into luciferase reporter vectors and transiently transfected into HEK293 cells. Exposure of transfected cells to UGN decreased hPDS promoter activity. This UGN-induced effect on the hPDS promoter occurred within a 52-bp region encompassing a single heat shock element (HSE). The effect of UGN on the promoter was abolished when the HSE located between nt -1119 and -1115 was absent or was mutated. Furthermore, treatment of HEK293 cells with heat shock factor 1 (HSF1) small interfering RNA (siRNA) reversed the UGN-induced decrease in endogenous PDS mRNA level. In conclusion, pendrin-mediated Cl(-)/HCO(3)(-) exchange in the renal tubule may be regulated transcriptionally by the peptide hormone UGN. UGN exerts its inhibitory activity on the hPDS promoter likely via HSF1 action at a defined HSE site. These data define a novel signaling pathway involved in the enterorenal axis controlling electrolyte and water homeostasis.
Collapse
Affiliation(s)
- Julia Rozenfeld
- Laboratory of Developmental Nephrology, Department of Physiology and Biophysics, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Weinstein AM. Potassium excretion during antinatriuresis: perspective from a distal nephron model. Am J Physiol Renal Physiol 2011; 302:F658-73. [PMID: 22114205 DOI: 10.1152/ajprenal.00528.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Renal excretion of Na(+) and K(+) must be regulated independently within the distal nephron, but is complicated by the fact that changing excretion of one solute requires adjustments in the transport of both. It is long known that hypovolemia increases Na(+) reabsorption while impairing K(+) excretion, even when distal Na(+) delivery is little changed. Renewed interest in this micropuncture observation came with identification of the molecular defects underlying familial hyperkalemic hypertension (FHH), which also increases distal Na(+) reabsorption and impairs K(+) excretion. In this work, a mathematical model of the distal nephron (Weinstein AM. Am J Physiol Renal Physiol 295: F1353-F1364, 2008), including the distal convoluted tubule (DCT), connecting segment (CNT), and collecting duct (CD), is used to examine renal K(+) excretion during antinatriuresis. Within the model, Na(+) avidity is represented as the modulation of DCT NaCl reabsorption, and the K(+) secretion signal is an aldosterone-like effect on principal cells of the CNT and CD. The first model prediction is that changes in DCT NaCl reabsorption are not mediated by NaCl cotransporter density alone, but require additional adjustments of both peritubular Na-K-ATPase and KCl cotransport. A second observation is that the CNT response to increased DCT Na(+) reabsorption should not only stabilize CD K(+) delivery but also compensate for the compromise of K(+) excretion downstream, as low Na(+) delivery increases CD K(+) reabsorption. Such anticipatory regulation is seen with the aldosterone response of hypovolemia, while the FHH phenotype manifests enhanced DCT NaCl transport but a blunted aldosterone effect. The model emphasizes the need for two distinct signals to the distal nephron, regulating Na(+) excretion and K(+) excretion, in contrast to a single switch apportioning NaCl reabsorption and Na(+)-for-K(+) exchange.
Collapse
Affiliation(s)
- Alan M Weinstein
- Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10021, USA.
| |
Collapse
|
65
|
Dossena S, Nofziger C, Tamma G, Bernardinelli E, Vanoni S, Nowak C, Grabmayer E, Kössler S, Stephan S, Patsch W, Paulmichl M. Molecular and functional characterization of human pendrin and its allelic variants. Cell Physiol Biochem 2011; 28:451-66. [PMID: 22116358 DOI: 10.1159/000335107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2011] [Indexed: 12/13/2022] Open
Abstract
Pendrin (SLC26A4, PDS) is an electroneutral anion exchanger transporting I(-), Cl(-), HCO(3)(-), OH(-), SCN(-) and formate. In the thyroid, pendrin is expressed at the apical membrane of the follicular epithelium and may be involved in mediating apical iodide efflux into the follicle; in the inner ear, it plays a crucial role in the conditioning of the pH and ion composition of the endolymph; in the kidney, it may exert a role in pH homeostasis and regulation of blood pressure. Mutations of the pendrin gene can lead to syndromic and non-syndromic hearing loss with EVA (enlarged vestibular aqueduct). Functional tests of mutated pendrin allelic variants found in patients with Pendred syndrome or non-syndromic EVA (ns-EVA) revealed that the pathological phenotype is due to the reduction or loss of function of the ion transport activity. The diagnosis of Pendred syndrome and ns-EVA can be difficult because of the presence of phenocopies of Pendred syndrome and benign polymorphisms occurring in the general population. As a consequence, defining whether or not an allelic variant is pathogenic is crucial. Recently, we found that the two parameters used so far to assess the pathogenic potential of a mutation, i.e. low incidence in the control population, and substitution of evolutionary conserved amino acids, are not always reliable for predicting the functionality of pendrin allelic variants; actually, we identified mutations occurring with the same frequency in the cohort of hearing impaired patients and in the control group of normal hearing individuals. Moreover, we identified functional polymorphisms affecting highly conserved amino acids. As a general rule however, we observed a complete loss of function for all truncations and amino acid substitutions involving a proline. In this view, clinical and radiological studies should be combined with genetic and molecular studies for a definitive diagnosis. In performing genetic studies, the possibility that the mutation could affect regions other than the pendrin coding region, such as its promoter region and/or the coding regions of functionally related genes (FOXI1, KCNJ10), should be taken into account. The presence of benign polymorphisms in the population suggests that genetic studies should be corroborated by functional studies; in this context, the existence of hypo-functional variants and possible differences between the I(-)/Cl(-) and Cl(-)/HCO(3)(-) exchange activities should be carefully evaluated.
Collapse
Affiliation(s)
- Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Wagner CA, Mohebbi N, Capasso G, Geibel JP. The anion exchanger pendrin (SLC26A4) and renal acid-base homeostasis. Cell Physiol Biochem 2011; 28:497-504. [PMID: 22116363 DOI: 10.1159/000335111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 01/29/2023] Open
Abstract
The anion exchanger pendrin (Pds, SLC26A4) transports various anions including bicarbonate, chloride and iodide. In the kidney, pendrin is exclusively expressed on the luminal pole of bicarbonate-secretory type B intercalated cells. Genetic ablation of pendrin in mice abolishes luminal chloride-bicarbonate exchanger activity from type B intercalated cells suggesting that pendrin is the apical bicarbonate extruding pathway. The renal expression of pendrin is developmentally adapted and pendrin positive cells originate from both the uretric bud and mesenchyme. In adult kidney, pendrin expression and activity is regulated by systemic acid-base status, dietary electrolyte intake (mostly chloride), and hormones such as angiotensin II and aldosterone which can affect subcellular localization, the relative number of pendrin expressing cells, and the overall abundance consistent with a role of pendrin in maintaining normal acid-base homeostasis. This review summarizes recent findings on the role and regulation of pendrin in the context of the kidneys role in acid-base homeostasis in health and disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
67
|
Dossena S, Bizhanova A, Nofziger C, Bernardinelli E, Ramsauer J, Kopp P, Paulmichl M. Identification of allelic variants of pendrin (SLC26A4) with loss and gain of function. Cell Physiol Biochem 2011; 28:467-76. [PMID: 22116359 DOI: 10.1159/000335108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pendrin is a multifunctional anion transporter that exchanges chloride and iodide in the thyroid, as well as chloride and bicarbonate in the inner ear, kidney and airways. Loss or reduction in the function of pendrin results in both syndromic (Pendred syndrome) and non-syndromic (non-syndromic enlarged vestibular aqueduct (ns-EVA)) hearing loss. Factors inducing an up-regulation of pendrin in the kidney and the lung may have an impact on the pathogenesis of hypertension, chronic obstructive pulmonary disease (COPD) and asthma. Here we characterize the ion transport activity of wild-type (WT) pendrin and seven of its allelic variants selected among those reported in the single nucleotide polymorphisms data base (dbSNPs), some of which were previously identified in a cohort of individuals with normal hearing or deaf patients belonging to the Spanish population. METHODS WT and mutated pendrin allelic variants were functionally characterized in a heterologous over-expression system by means of fluorometric methods evaluating the I(-)/Cl(-) and Cl(-)/OH(-) exchange and an assay evaluating the efflux of radiolabeled iodide. RESULTS The transport activity of pendrin P70L, P301L and F667C is completely abolished; pendrin V609G and D687Y allelic variants are functionally impaired but retain significant transport. Pendrin F354S activity is indistinguishable from WT, while pendrin V88I and G740S exhibit a gain of function. CONCLUSION Amino acid substitutions involving a proline always result in a severe loss of function of pendrin. Two hyperfunctional allelic variants (V88I, G740S) have been identified, and they may have a contributing role in the pathogenesis of hypertension, COPD and asthma.
Collapse
Affiliation(s)
- Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
68
|
Wagner CA, Mohebbi N, Uhlig U, Giebisch GH, Breton S, Brown D, Geibel JP. Angiotensin II stimulates H⁺-ATPase activity in intercalated cells from isolated mouse connecting tubules and cortical collecting ducts. Cell Physiol Biochem 2011; 28:513-20. [PMID: 22116365 DOI: 10.1159/000335112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Intercalated cells in the collecting duct system express V-type H(+)-ATPases which participate in acid extrusion, bicarbonate secretion, and chloride absorption depending on the specific subtype. The activity of H(+)-ATPases is regulated by acid-base status and several hormones, including angiotensin II and aldosterone. Angiotensin II stimulates chloride absorption mediated by pendrin in type B intercalated cells and this process is energized by the activity of H(+)-ATPases. Moreover, angiotensin II stimulates bicarbonate secretion by the connecting tubule (CNT) and early cortical collecting duct (CCD). In the present study we examined the effect of angiotensin II (10 nM) on H(+)-ATPase activity and localization in isolated mouse connecting tubules and cortical collecting ducts. Angiotensin II stimulated Na(+)-independent intracellular pH recovery about 2-3 fold, and this was abolished by the specific H(+)-ATPase inhibitor concanamycin. The effect of angiotensin II was mediated through type 1 angiotensin II receptors (AT(1)-receptors) because it could be blocked by saralasin. Stimulation of H(+)-ATPase activity required an intact microtubular network--it was completely inhibited by colchicine. Immunocytochemistry of isolated CNT/CCDs incubated in vitro with angiotensin II suggests enhanced membrane associated staining of H(+)-ATPases in pendrin expressing intercalated cells. In summary, angiotensin II stimulates H(+)-ATPases in CNT/CCD intercalated cells, and may contribute to the regulation of chloride absorption and bicarbonate secretion in this nephron segment.
Collapse
Affiliation(s)
- Carsten A Wagner
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Rozenfeld J, Efrati E, Adler L, Tal O, Carrithers SL, Alper SL, Zelikovic I. Transcriptional regulation of the pendrin gene. Cell Physiol Biochem 2011; 28:385-96. [PMID: 22116353 DOI: 10.1159/000335100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2011] [Indexed: 12/20/2022] Open
Abstract
Pendrin (SLC26A4), a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid and inner ear epithelia and is essential for bicarbonate secretion/chloride reabsorption, iodide accumulation and endolymph ion balance, respectively. The molecular mechanisms controlling pendrin activity in renal, thyroid and inner ear epithelia have been the subject of recent studies. The effects of ambient pH, the hormone aldosterone and the peptide uroguanylin (UGN; the "intestinal natriuretic hormone"), known modulators of electrolyte balance, on transcription of the pendrin gene, have been investigated. Luciferase reporter plasmids containing different length fragments of the human PDS (hPDS) promoter were transfected into renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cells. Acidic pH decreased and alkaline pH increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Injection of UGN into mice resulted in decreased pendrin mRNA and protein expression in the kidney. Exposure of transfected HEK293 to UGN decreased hPDS promoter activity. The findings provided evidence for the presence of a UGN response element within the 96-bp region overlapping with the pH response element on the hPDS promoter. Pendrin is also expressed in airway epithelium. The cytokins interleukin 4 (IL-4) and interleukin-13 (IL-13), known regulators of airway surface function, have been shown to increase hPDS promoter activity by a STAT6-dependent mechanism. In conclusion, systemic pH, the hormone aldosterone, and the peptide UGN influence renal tubular pendrin gene expression and, perhaps, pendrin-mediated Cl(-)/HCO(3)(-) exchange at the transcriptional level. Pendrin-driven anion transport in the endolymph and at the airway surface may be regulated transcriptionally by systemic pH and IL-3/IL-4, respectively. The distinct response elements and the corresponding transcription factors mediating the effect of these modulators on the PDS promoter remain to be identified and characterized.
Collapse
Affiliation(s)
- Julia Rozenfeld
- Laboratory of Developmental Nephrology, Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
70
|
Verlander JW, Hong S, Pech V, Bailey JL, Agazatian D, Matthews SW, Coffman TM, Le T, Inagami T, Whitehill FM, Weiner ID, Farley DB, Kim YH, Wall SM. Angiotensin II acts through the angiotensin 1a receptor to upregulate pendrin. Am J Physiol Renal Physiol 2011; 301:F1314-25. [PMID: 21921024 DOI: 10.1152/ajprenal.00114.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pendrin is an anion exchanger expressed in the apical regions of B and non-A, non-B intercalated cells. Since angiotensin II increases pendrin-mediated Cl(-) absorption in vitro, we asked whether angiotensin II increases pendrin expression in vivo and whether angiotensin-induced hypertension is pendrin dependent. While blood pressure was similar in pendrin null and wild-type mice under basal conditions, following 2 wk of angiotensin II administration blood pressure was 31 mmHg lower in pendrin null than in wild-type mice. Thus pendrin null mice have a blunted pressor response to angiotensin II. Further experiments explored the effect of angiotensin on pendrin expression. Angiotensin II administration shifted pendrin label from the subapical space to the apical plasma membrane, independent of aldosterone. To explore the role of the angiotensin receptors in this response, pendrin abundance and subcellular distribution were examined in wild-type, angiotensin type 1a (Agtr1a) and type 2 receptor (Agtr2) null mice given 7 days of a NaCl-restricted diet (< 0.02% NaCl). Some mice received an Agtr1 inhibitor (candesartan) or vehicle. Both Agtr1a gene ablation and Agtr1 inhibitors shifted pendrin label from the apical plasma membrane to the subapical space, independent of the Agtr2 or nitric oxide (NO). However, Agtr1 ablation reduced pendrin protein abundance through the Agtr2 and NO. Thus angiotensin II-induced hypertension is pendrin dependent. Angiotensin II acts through the Agtr1a to shift pendrin from the subapical space to the apical plasma membrane. This Agtr1 action may be blunted by the Agtr2, which acts through NO to reduce pendrin protein abundance.
Collapse
Affiliation(s)
- Jill W Verlander
- Renal Division, Emory University School of Medicine, 1639 Pierce Dr. NE, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Pech V, Pham TD, Hong S, Weinstein AM, Spencer KB, Duke BJ, Walp E, Kim YH, Sutliff RL, Bao HF, Eaton DC, Wall SM. Pendrin modulates ENaC function by changing luminal HCO3-. J Am Soc Nephrol 2010; 21:1928-41. [PMID: 20966128 DOI: 10.1681/asn.2009121257] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The epithelial Na(+) channel, ENaC, and the Cl(-)/HCO(3)(-) exchanger, pendrin, mediate NaCl absorption within the cortical collecting duct and the connecting tubule. Although pendrin and ENaC localize to different cell types, ENaC subunit abundance and activity are lower in aldosterone-treated pendrin-null mice relative to wild-type mice. Because pendrin mediates HCO(3)(-) secretion, we asked if increasing distal delivery of HCO(3)(-) through a pendrin-independent mechanism "rescues" ENaC function in pendrin-null mice. We gave aldosterone and NaHCO(3) to increase pendrin-dependent HCO(3)(-) secretion within the connecting tubule and cortical collecting duct, or gave aldosterone and NaHCO(3) plus acetazolamide to increase luminal HCO(3)(-) concentration, [HCO(3)(-)], independent of pendrin. Following treatment with aldosterone and NaHCO(3), pendrin-null mice had lower urinary pH and [HCO(3)(-)] as well as lower renal ENaC abundance and function than wild-type mice. With the addition of acetazolamide, however, acid-base balance as well as ENaC subunit abundance and function was similar in pendrin-null and wild-type mice. We explored whether [HCO(3)(-)] directly alters ENaC abundance and function in cultured mouse principal cells (mpkCCD). Amiloride-sensitive current and ENaC abundance rose with increased [HCO(3)(-)] on the apical or the basolateral side, independent of the substituting anion. However, ENaC was more sensitive to changes in [HCO(3)(-)] on the basolateral side of the monolayer. Moreover, increasing [HCO(3)(-)] on the apical and basolateral side of Xenopus kidney cells increased both ENaC channel density and channel activity. We conclude that pendrin modulates ENaC abundance and function, at least in part by increasing luminal [HCO(3)(-)] and/or pH.
Collapse
Affiliation(s)
- Vladimir Pech
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels. Kidney Int 2010; 79:423-31. [PMID: 20927043 DOI: 10.1038/ki.2010.380] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ROMK1 channels are located in the apical membrane of the connecting tubule and cortical collecting duct and mediate the potassium secretion during normal dietary intake. We used a perforated whole-cell patch clamp to explore the effect of angiotensin II on these channels in HEK293 cells transfected with green fluorescent protein (GFP)-ROMK1. Angiotensin II inhibited ROMK1 channels in a dose-dependent manner, an effect abolished by losartan or by inhibition of protein kinase C. Furthermore, angiotensin II stimulated a protein kinase C-sensitive phosphorylation of tyrosine 416 within c-Src. Inhibition of protein tyrosine kinase attenuated the effect of angiotensin II. Western blot studies suggested that angiotensin II inhibited ROMK1 channels by enhancing its tyrosine phosphorylation, a notion supported by angiotensin II's failure to inhibit potassium channels in cells transfected with the ROMK1 tyrosine mutant (R1Y337A). However, angiotensin II restored the with-no-lysine kinase-4 (WNK4)-induced inhibition of R1Y337A in the presence of serum-glucocorticoids-induced kinase 1 (SGK1), which reversed the inhibitory effect of WNK4 on ROMK1. Moreover, protein tyrosine kinase inhibition abolished the angiotensin II-induced restoration of WNK4-mediated inhibition of ROMK1. Angiotensin II inhibited ROMK channels in the cortical collecting duct of rats on a low sodium diet, an effect blocked by protein tyrosine kinase inhibition. Thus, angiotensin II inhibits ROMK channels by two mechanisms: increasing tyrosine phosphorylation of the channel and synergizing the WNK4-induced inhibition. Hence, angiotensin II may have an important role in suppressing potassium secretion during volume depletion.
Collapse
|
73
|
Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 2010; 285:24676-85. [PMID: 20525692 DOI: 10.1074/jbc.m110.106278] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V(1) sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO(3)(-)-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H(+) secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO(3)(-)-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Renal-Electrolyte Division, Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Leviel F, Hübner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hassan H, Hatim H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 2010; 120:1627-35. [PMID: 20389022 DOI: 10.1172/jci40145] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 02/03/2010] [Indexed: 12/11/2022] Open
Abstract
Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.
Collapse
Affiliation(s)
- Françoise Leviel
- Centre de recherche des Cordeliers, Université Pierre et Marie Curie, ERL CNRS 7226, INSERM UMRS 872 Equipe 3, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Holtzclaw JD, Grimm PR, Sansom SC. Intercalated cell BK-alpha/beta4 channels modulate sodium and potassium handling during potassium adaptation. J Am Soc Nephrol 2010; 21:634-45. [PMID: 20299355 DOI: 10.1681/asn.2009080817] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The large-conductance, calcium-activated potassium (BK) channels help eliminate potassium in mammals consuming potassium-rich diets. In the distal nephron, principal cells contain BK-alpha/beta1 channels and intercalated cells contain BK-alpha/beta4 channels. We studied whether BK-beta4-deficient mice (Kcnmb4(-/-)) have altered renal sodium and potassium clearances compared with wild-type mice when fed a regular or potassium-rich diet for ten days. We did not detect differences in urinary flow or fractional excretions of potassium (FE(K)) or sodium (FE(Na)) between Kcnmb4-deficient and wild-type mice fed a regular diet. However, a potassium-rich diet led to >4-fold increases in urinary flows for both groups of mice, although Kcnmb4-deficient mice exhibited less urinary flow, higher plasma potassium concentration, more fluid retention, and significantly lower FE(K) and FE(Na) than wild-type mice despite similar plasma aldosterone levels. Immunohistochemical analysis revealed increased basolateral Na-K-ATPase in principal cells of all potassium-adapted mice, but expression of Na-K-ATPase in intercalated cells was >10-fold lower. The size of intercalated cells reduced and luminal volume increased among potassium-adapted wild-type but not Kcnmb4-deficient mice. Paradoxically, this led to increased urinary fluid velocity in potassium-adapted Kcnmb4-deficient mice compared with wild-type mice. Taken together, these data suggest that BK-alpha/beta4 channels in intercalated cells reduce cell size, increasing luminal volume to accommodate higher distal flow rates during potassium adaptation. These changes streamline flow across the principal cells, producing gradients more favorable for potassium secretion and less favorable for sodium reabsorption.
Collapse
Affiliation(s)
- J David Holtzclaw
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | |
Collapse
|
76
|
Baum M. Effect of catecholamines on rat medullary thick ascending limb chloride transport: interaction with angiotensin II. Am J Physiol Regul Integr Comp Physiol 2010; 298:R954-8. [PMID: 20147605 DOI: 10.1152/ajpregu.00758.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that in proximal and distal tubule nephron segments, peritubular ANG II stimulates sodium chloride transport. However, ANG II inhibits chloride transport in the medullary thick ascending limb (mTAL). Because ANG II and catecholamines are both stimulated by a decrease in extracellular fluid volume, the purpose of this study was to examine whether there was an interaction between ANG II and catecholamines to mitigate the inhibition in chloride transport by ANG II. In isolated perfused rat mTAL, 10(-8) M bath ANG II inhibited transport (from a basal transport rate of 165.6 +/- 58.8 to 58.8 +/- 29.4 pmol.mm(-1).min(-1); P < 0.01). Bath norepinephrine stimulated chloride transport (from a basal transport rate of 298.1 +/- 31.7 to 425.2 +/- 45.8 pmol.mm(-1).min(-1); P < 0.05) and completely prevented the inhibition in chloride transport by ANG II. The stimulation of chloride transport by norepinephrine was mediated entirely by its beta-adrenergic effect; however, both the beta- and alpha-adrenergic agonists isoproterenol and phenylephrine prevent the ANG II-mediated inhibition in chloride transport. In the presence of 10(-5) M propranolol, the effect of norepinephrine to prevent the inhibition of chloride transport by ANG II was still present. These data are consistent with an interaction of both alpha- and beta-catecholamines and ANG II on net chloride transport in the mTAL.
Collapse
Affiliation(s)
- Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA.
| |
Collapse
|
77
|
Gong F, Alzamora R, Smolak C, Li H, Naveed S, Neumann D, Hallows KR, Pastor-Soler NM. Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 2010; 298:F1162-9. [PMID: 20147366 DOI: 10.1152/ajprenal.00645.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) in type A kidney intercalated cells is a major contributor to acid excretion in the collecting duct. The mechanisms of V-ATPase-trafficking regulation in kidney intercalated cells have not been well-characterized. In developmentally related epididymal clear cells, we showed previously that PKA, acting downstream of soluble adenylyl cyclase (sAC), induces V-ATPase apical membrane accumulation. These PKA-mediated effects were inhibited by activators of the metabolic sensor AMP-activated kinase (AMPK) in clear cells. Here, we examined the regulation of V-ATPase subcellular localization in intercalated cells by PKA and AMPK in rat kidney tissue slices ex vivo. Immunofluorescence labeling of kidney slices revealed that the PKA activator N(6)-monobutyryl cAMP (6-MB-cAMP) induced V-ATPase apical membrane accumulation in collecting duct intercalated cells, whereas the V-ATPase had a more cytosolic distribution when incubated in Ringer buffer alone for 30 min. V-ATPase accumulated at the apical membrane in intercalated cells in kidney slices incubated in Ringer buffer for 75 min, an effect that was prevented by treatment with PKA inhibitor (mPKI). The V-ATPase distribution was cytosolic in intercalated cells treated with the carbonic anhydrase inhibitor acetazolamide or the sAC inhibitor KH7, effects that were overridden by 6-MB-cAMP. Preincubation of kidney slices with an AMPK activator blocked V-ATPase apical membrane accumulation induced by 6-MB-cAMP, suggesting that AMPK antagonizes cAMP/PKA effects on V-ATPase distribution. Taken together, our results suggest that in intercalated cells V-ATPase subcellular localization and therefore its activity may be coupled to acid-base status via PKA, and metabolic status via AMPK.
Collapse
Affiliation(s)
- Fan Gong
- Department of Medicine, Renal Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15263, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Baum M. Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Renal Physiol 2009; 298:F235-47. [PMID: 19794108 DOI: 10.1152/ajprenal.00288.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epidemiologic studies from several different populations have demonstrated that prenatal insults, which adversely affect fetal growth, result in an increased incidence of hypertension when the offspring reaches adulthood. It is now becoming evident that low-birth-weight infants are also at increased risk for chronic kidney disease. To determine how prenatal insults result in hypertension and chronic kidney disease, investigators have used animal models that mimic the adverse events that occur in pregnant women, such as dietary protein or total caloric deprivation, uteroplacental insufficiency, and prenatal administration of glucocorticoids. This review examines the role of the kidney in generating and maintaining an increase in blood pressure in these animal models. This review also discusses how early postnatal adverse events may have repercussions in later life. Causes for the increase in blood pressure by perinatal insults are likely multifactorial and involve a reduction in nephron number, dysregulation of the systemic and intrarenal renin-angiotensin system, increased renal sympathetic nerve activity, and increased tubular sodium transport. Understanding the mechanism for the increase in blood pressure and renal injury resulting from prenatal insults may lead to therapies that prevent hypertension and the development of chronic kidney and cardiovascular disease.
Collapse
Affiliation(s)
- Michel Baum
- Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9063, USA.
| |
Collapse
|
79
|
Kim YH, Pham TD, Zheng W, Hong S, Baylis C, Pech V, Beierwaltes WH, Farley DB, Braverman LE, Verlander JW, Wall SM. Role of pendrin in iodide balance: going with the flow. Am J Physiol Renal Physiol 2009; 297:F1069-79. [PMID: 19605545 DOI: 10.1152/ajprenal.90581.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pendrin is expressed in the apical regions of type B and non-A, non-B intercalated cells, where it mediates Cl(-) absorption and HCO3(-) secretion through apical Cl(-)/HCO3(-) exchange. Since pendrin is a robust I(-) transporter, we asked whether pendrin is upregulated with dietary I(-) restriction and whether it modulates I(-) balance. Thus I(-) balance was determined in pendrin null and in wild-type mice. Pendrin abundance was evaluated with immunoblots, immunohistochemistry, and immunogold cytochemistry with morphometric analysis. While pendrin abundance was unchanged when dietary I(-) intake was varied over the physiological range, I(-) balance differed in pendrin null and in wild-type mice. Serum I(-) was lower, while I(-) excretion was higher in pendrin null relative to wild-type mice, consistent with a role of pendrin in renal I(-) absorption. Increased H2O intake enhanced differences between wild-type and pendrin null mice in I(-) balance, suggesting that H2O intake modulates pendrin abundance. Raising water intake from approximately 4 to approximately 11 ml/day increased the ratio of B cell apical plasma membrane to cytoplasm pendrin label by 75%, although circulating renin, aldosterone, and serum osmolality were unchanged. Further studies asked whether H2O intake modulates pendrin through the action of AVP. We observed that H2O intake modulated pendrin abundance even when circulating vasopressin levels were clamped. We conclude that H2O intake modulates pendrin abundance, although not likely through a direct, type 2 vasopressin receptor-dependent mechanism. As water intake rises, pendrin becomes increasingly critical in the maintenance of Cl(-) and I(-) balance.
Collapse
Affiliation(s)
- Young Hee Kim
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
|
81
|
Grimm PR, Irsik DL, Liu L, Holtzclaw JD, Sansom SC. Role of BKbeta1 in Na+ reabsorption by cortical collecting ducts of Na+-deprived mice. Am J Physiol Renal Physiol 2009; 297:F420-8. [PMID: 19458125 DOI: 10.1152/ajprenal.00191.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
On a low-Na(+) diet (LNa(+)), urinary Na(+) loss is prevented by aldosterone-induced Na(+) reabsorption through epithelial Na(+) channels (ENaC) in the connecting tubules (CNT) and cortical collecting ducts (CCD). However, the mechanism whereby K(+) loss is minimized and Na(+) reabsorption is maximized in the face of a reduced lumen-to-bath Na(+) gradient is not fully understood. The large-conductance calcium-activated potassium channel (BK)beta1 subunit (gene: Kcnmb1), which has a role in K(+) secretion in the CNT, is absent in the CCD in mice on a control diet. We hypothesized that BKalpha/beta1 helps to maximize Na(+) reabsorption during Na(+) deficiency. With LNa(+), the Na(+) clearance of Kcnmb1-mutant mice (Kcnmb1(-/-)) was 45% greater and the plasma Na(+) concentration and osmolality were significantly reduced compared with wild-type mouse (WT) controls. On LNa(+), Kcnmb1(-/-) exhibited exacerbated volume depletion (higher Hct and weight loss) compared with WT. LNa(+), which did not affect the mean arterial blood pressure (MAP) of WT, significantly reduced MAP of Kcnmb1(-/-). The plasma aldosterone concentration of Kcnmb1(-/-) on LNa(+) was significantly elevated compared with Kcnmb1(-/-) on a control diet but was not different from WT on LNa(+). Immunohistochemical staining revealed that BKalpha and BKbeta1, which were absent in the principal cells (PCs) of the CCD, were localized on the basolateral membrane (BSM) of PCs of WT on LNa(+). Moreover, BKalpha was absent from the BSM of PCs of Na(+)-deficient Kcnmb1(-/-). We conclude that part of the mechanism to maximize Na(+) reabsorption during Na(+) deficiency is the placement of BKalpha/beta1 channels in the BSM of CCD PCs.
Collapse
Affiliation(s)
- P Richard Grimm
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5850, USA
| | | | | | | | | |
Collapse
|
82
|
Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid–base transport in the collecting duct. Pflugers Arch 2009; 458:137-56. [DOI: 10.1007/s00424-009-0657-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
|
83
|
Jin Y, Wang Y, Wang ZJ, Lin DH, Wang WH. Inhibition of angiotensin type 1 receptor impairs renal ability of K conservation in response to K restriction. Am J Physiol Renal Physiol 2009; 296:F1179-84. [PMID: 19211683 DOI: 10.1152/ajprenal.90725.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have previously demonstrated that ANG II inhibits ROMK-like small-conductance K channels (SK) in the cortical collecting duct from rats on a K-deficient diet (KD) (35). In the present study, we examined the role of angiotensin type 1 receptor (AT(1)R) in mediating the effect of K restriction on K secretion. We confirmed the previous finding that K restriction increased the superoxide anion level, c-Src expression, and the phosphorylation of both p38 and extracellular signal-regulated kinase mitogen-activated protein kinase (MAPK) in renal cortex and outer medulla. However, the effect of K restriction on superoxide anion generation, c-Src expression, and MAPK phosphorylation was significantly attenuated in rats receiving losartan, an inhibitor of AT(1)R. In contrast, losartan treatment had no effect on superoxide anion level, c-Src expression, and MAPK phosphorylation in animals on a normal K diet (NK). K restriction decreased SK channel activity and increased the tyrosine phosphorylation of ROMK. However, inhibiting AT(1)R abolished the effect of K restriction on SK channels and tyrosine phosphorylation of ROMK channels. The notion that AT(1)R is involved in regulating renal K excretion was also supported by the experiments with metabolic cages showing that losartan treatment significantly enhanced urinary K loss in rats on a KD diet while it had no effect in animals on a NK diet. Consequently, losartan-treated animals had severe hypokalemia in response to K restriction compared with rats without losartan intake. We conclude that AT(1)R is involved in mediating the effect of K restriction on superoxide generation, c-Src, and MAPK and that inhibiting AT(1)R impairs renal ability of K conservation in response to K depletion.
Collapse
Affiliation(s)
- Yan Jin
- Department of Medical Genetics, Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
84
|
Xu F, Mao C, Liu Y, Wu L, Xu Z, Zhang L. Losartan chemistry and its effects via AT1 mechanisms in the kidney. Curr Med Chem 2009; 16:3701-15. [PMID: 19747145 PMCID: PMC2819278 DOI: 10.2174/092986709789105000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 07/27/2009] [Indexed: 12/12/2022]
Abstract
Besides the importance of the renin-angiotensin system (RAS) in the circulation and other organs, the local RAS in the kidney has attracted a great attention in research in last decades. The renal RAS plays an important role in the body fluid homeostasis and long-term cardiovascular regulation. All major components and key enzymes for the establishment of a local RAS as well as two important angiotensin II (Ang II) receptor subtypes, AT1 and AT2 receptors, have been confirmed in the kidney. In additional to renal contribution to the systemic RAS, the intrarenal RAS plays a critical role in the regulation of renal function as well as in the development of kidney disease. Notably, kidney AT1 receptors locating at different cells and compartments inside the kidney are important for normal renal physiological functions and abnormal pathophysiological processes. This mini-review focuses on: 1) the local renal RAS and its receptors, particularly the AT1 receptor and its mechanisms in physiological and pathophysiological processes; and 2) the chemistry of the selective AT1 receptor blocker, losartan, and the potential mechanisms for its actions in the renal RAS-mediated disease.
Collapse
Affiliation(s)
- Feichao Xu
- Perinatal Biology Center, Soochow University School of Medicine, Suzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
85
|
Hafner P, Grimaldi R, Capuano P, Capasso G, Wagner CA. Pendrin in the mouse kidney is primarily regulated by Cl− excretion but also by systemic metabolic acidosis. Am J Physiol Cell Physiol 2008; 295:C1658-67. [DOI: 10.1152/ajpcell.00419.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Cl−/anion exchanger pendrin (SLC26A4) is expressed on the apical side of renal non-type A intercalated cells. The abundance of pendrin is reduced during metabolic acidosis induced by oral NH4Cl loading. More recently, it has been shown that pendrin expression is increased during conditions associated with decreased urinary Cl− excretion and decreased upon Cl− loading. Hence, it is unclear if pendrin regulation during NH4Cl-induced acidosis is primarily due the Cl− load or acidosis. Therefore, we treated mice to increase urinary acidification, induce metabolic acidosis, or provide an oral Cl− load and examined the systemic acid-base status, urinary acidification, urinary Cl− excretion, and pendrin abundance in the kidney. NaCl or NH4Cl increased urinary Cl− excretion, whereas (NH4)2SO4, Na2SO4, and acetazolamide treatments decreased urinary Cl− excretion. NH4Cl, (NH4)2SO4, and acetazolamide caused metabolic acidosis and stimulated urinary net acid excretion. Pendrin expression was reduced under NaCl, NH4Cl, and (NH4)2SO4 loading and increased with the other treatments. (NH4)2SO4 and acetazolamide treatments reduced the relative number of pendrin-expressing cells in the collecting duct. In a second series, animals were kept for 1 and 2 wk on a low-protein (20%) diet or a high-protein (50%) diet. The high-protein diet slightly increased urinary Cl− excretion and strongly stimulated net acid excretion but did not alter pendrin expression. Thus, pendrin expression is primarily correlated with urinary Cl− excretion but not blood Cl−. However, metabolic acidosis caused by acetazolamide or (NH4)2SO4 loading prevented the increase or even reduced pendrin expression despite low urinary Cl− excretion, suggesting an independent regulation by acid-base status.
Collapse
|
86
|
Weinstein AM. A mathematical model of distal nephron acidification: diuretic effects. Am J Physiol Renal Physiol 2008; 295:F1353-64. [PMID: 18715938 DOI: 10.1152/ajprenal.90356.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Through their action on the distal nephron (DN), diuretics may produce systemic acid-base disturbances: metabolic alkalosis with thiazides or loop diuretics and metabolic acidosis with amiloride. Enhanced acid excretion may be due to a local effect on the diuretic target cell (a shift of Na+ reabsorption from NaCl transport to Na+/H+ exchange), or an effect at a distance: namely, increases in luminal fluid flow or luminal Na+ concentration may enhance more distal proton secretion. Both local and distance effects are supported by micropuncture data. In the present work, mathematical models of the distal convoluted tubule (DCT)/connecting tubule (CNT) (Weinstein AM, Am J Physiol Renal Physiol 289: F721-F741, 2005), and cortical and medullary collecting ducts (CD) (Weinstein AM, Am J Physiol Renal Physiol 283: F1237-F1251, 2002) have been concatenated to yield a model of rat DN. Among the segments of this DN, the DCT-CNT is responsible for the major portion of distal acidification. Predictions from the model calculations include the following. 1) With increasing distal Na+ delivery, there is little change in net acid excretion, but a shift in acidification locus from shared DCT and CNT contributions, to DCT prominence. 2) Urinary acidification by thiazides is primarily local (in the DCT) via the shift in Na+ reabsorption from NaCl cotransport to entry via NHE2. Increased NaCl delivery to the CNT increases beta-cell HCO3(-) secretion, and thus blunts urine acidification. 3) In contrast to conclusions drawn from the isolated CD model, inclusion of the CNT now reproduces the observed distal acidification defect found with ENaC block, so that this action of amiloride appears to be sufficient to produce "voltage-dependent" distal renal tubular acidosis. 4) The effect of furosemide to enhance distal urinary acidification is not reproduced by the model without major upregulation of CNT alpha-cell transport, perhaps as a result of increased luminal flow.
Collapse
Affiliation(s)
- Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10021, USA.
| |
Collapse
|
87
|
Pech V, Zheng W, Pham TD, Verlander JW, Wall SM. Angiotensin II activates H+-ATPase in type A intercalated cells. J Am Soc Nephrol 2008; 19:84-91. [PMID: 18178800 DOI: 10.1681/asn.2007030277] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We reported previously that angiotensin II (AngII) increases net Cl(-) absorption in mouse cortical collecting duct (CCD) by transcellular transport across type B intercalated cells (IC) via an H(+)-ATPase-and pendrin-dependent mechanism. Because intracellular trafficking regulates both pendrin and H(+)-ATPase, we hypothesized that AngII induces the subcellular redistribution of one or both of these exchangers. To answer this question, CCD from furosemide-treated mice were perfused in vitro, and the subcellular distributions of pendrin and the H(+)-ATPase were quantified using immunogold cytochemistry and morphometric analysis. Addition of AngII in vitro did not change the distribution of pendrin or H(+)-ATPase within type B IC but within type A IC increased the ratio of apical plasma membrane to cytoplasmic H(+)-ATPase three-fold. Moreover, CCDs secreted bicarbonate under basal conditions but absorbed bicarbonate in response to AngII. In summary, angiotensin II stimulates H(+) secretion into the lumen, which drives Cl(-) absorption mediated by apical Cl(-)/HCO(3)(-) exchange as well as generates more favorable electrochemical gradient for ENaC-mediated Na(+) absorption.
Collapse
Affiliation(s)
- Vladimír Pech
- Emory University School of Medicine, Renal Division, 1639 Pierce Drive, NE, WMB Room 338, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
88
|
The interaction of pendrin an d the epithelial sodium channel in blood pressure regulation. Curr Opin Nephrol Hypertens 2008; 17:18-24. [DOI: 10.1097/mnh.0b013e3282f29086] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
89
|
Abstract
PURPOSE OF REVIEW Large, BK (calcium-activated potassium) channels are now regarded as relevant players in many aspects of renal physiology, including potassium secretion. This review will highlight recent discoveries regarding the function and localization of BK in the kidney. RECENT FINDINGS Patch clamp electrophysiology has revealed BK in cultured podocytes, glomerular mesangial cells, and in several tubule segments including principal cells (connecting tubules/principal cells), and intercalated cells of connecting tubules and cortical collecting ducts. Flow-induced potassium secretion is mediated by BK in the distal nephron and may be partly the result of shear stress-induced increases in cell calcium concentrations. ROMK-/- and wild-type mice on a high potassium diet exhibit BK-mediated potassium secretion, and studies of BK-alpha-/- and BK-beta1-/- mice suggest that flow-induced potassium secretion is mediated by BK-alpha/beta1, which is specifically localized in the apical membrane of the connecting tubule of the mouse and connecting tubule plus initial cortical collecting duct of the rabbit. SUMMARY BK channels, located in glomerular cells and in many nephron segments, especially mediate potassium secretion in the combined condition of potassium adaptation and high flow. Understanding the molecular makeup of BK in specific renal cells and the dietary and physiological conditions for their expression can yield improved potassium-sparing compounds.
Collapse
Affiliation(s)
- P Richard Grimm
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, Nebraska 68198-5850, USA
| | | |
Collapse
|
90
|
Kim YH, Pech V, Spencer KB, Beierwaltes WH, Everett LA, Green ED, Shin W, Verlander JW, Sutliff RL, Wall SM. Reduced ENaC protein abundance contributes to the lower blood pressure observed in pendrin-null mice. Am J Physiol Renal Physiol 2007; 293:F1314-24. [PMID: 17686956 DOI: 10.1152/ajprenal.00155.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pendrin (encoded by Pds, Slc26a4) is a Cl(-)/HCO(3)(-) exchanger expressed in the apical regions of type B and non-A, non-B intercalated cells of kidney and mediates renal Cl(-) absorption, particularly when upregulated. Aldosterone increases blood pressure by increasing absorption of both Na(+) and Cl(-) through increased protein abundance and function of Na(+) transporters, such as the epithelial Na(+) channel (ENaC) and the Na(+)-Cl(-) cotransporter (NCC), as well as Cl(-) transporters, such as pendrin. Because aldosterone analogs do not increase blood pressure in Slc26a4(-/-) mice, we asked whether Na(+) excretion and Na(+) transporter protein abundance are altered in kidneys from these mutant mice. Thus wild-type and Slc26a4-null mice were given a NaCl-replete, a NaCl-restricted, or NaCl-replete diet and aldosterone or aldosterone analogs. Abundance of the major renal Na(+) transporters was examined with immunoblots and immunohistochemistry. Slc26a4-null mice showed an impaired ability to conserve Na(+) during dietary NaCl restriction. Under treatment conditions in which circulating aldosterone is increased, alpha-, beta-, and 85-kDa gamma-ENaC subunit protein abundances were reduced 15-35%, whereas abundance of the 70-kDa fragment of gamma-ENaC was reduced approximately 70% in Slc26a4-null relative to wild-type mice. Moreover, ENaC-dependent changes in transepithelial voltage were much lower in cortical collecting ducts from Slc26a4-null than from wild-type mice. Thus, in kidney, ENaC protein abundance and function are modulated by pendrin or through a pendrin-dependent downstream event. The reduced ENaC protein abundance and function observed in Slc26a4-null mice contribute to their lower blood pressure and reduced ability to conserve Na(+) during NaCl restriction.
Collapse
Affiliation(s)
- Young Hee Kim
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Verlander JW. The thiazide-sensitive NaCl cotransporter: a new target for acute regulation of salt and water transport by angiotensin II. Am J Physiol Renal Physiol 2007; 293:F660-1. [PMID: 17596524 DOI: 10.1152/ajprenal.00260.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
92
|
Na KY, Kim GH, Joo KW, Lee JW, Jang HR, Oh YK, Jeon US, Chae SW, Knepper MA, Han JS. Chronic furosemide or hydrochlorothiazide administration increases H+-ATPase B1 subunit abundance in rat kidney. Am J Physiol Renal Physiol 2007; 292:F1701-9. [PMID: 17311909 DOI: 10.1152/ajprenal.00270.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Furosemide administration stimulates distal acidification. This has been attributed to the increased lumen-negative voltage in the distal nephron, but the aspect of regulatory mechanisms of H+-ATPase has not been clear. The purpose of this study is to investigate whether chronic administration of diuretics alters the expression of H+-ATPase and whether electrogenic Na+ reabsorption is involved in this process. A 7-day infusion of furosemide or hydrochlorothiazide (HCTZ) lowered urine pH significantly. However, this effect of furosemide-induced distal acidification was not changed with amiloride-blocking electrogenic Na+ reabsorption. On immunoblotting, a polyclonal antibody against the H+-ATPase B1 subunit recognized a specific ∼56-kDa band in membrane fractions from the kidney. The protein abundance of H+-ATPase was significantly increased by furosemide and HCTZ infusion in both the cortex and outer medulla. Furosemide plus amiloride administration also increased the H+-ATPase protein abundance significantly. However, no definite subcellular redistribution of H+-ATPase was observed by furosemide ± amiloride infusion with immunohistochemistry. Chronic furosemide ± amiloride administration induced a translocation of pendrin to the apical membrane, while total protein abundance was not increased. The mRNA expression of H+-ATPase was not altered by furosemide ± amiloride infusion. We conclude that chronic administration of diuretics enhances distal acidification by increasing the abundance of H+-ATPase irrespective of electrogenic Na+ reabsorption. This upregulation of H+-ATPase in the intercalated cells may be the result of tubular hypertrophy by diuretics.
Collapse
Affiliation(s)
- Ki Young Na
- Department of Internal Medicine, Seoul National University College of Medicine, Clinical Research Institute of Seoul National University Hospital, Chongno-gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
|