51
|
Differential effects of whole blood heat treatment on the ex vivo inflammatory profile of untrained and trained men. Cytokine 2021; 142:155514. [PMID: 33812764 DOI: 10.1016/j.cyto.2021.155514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
This study evaluated the effects of heat stress on the ex vivo inflammatory profile in untrained and trained men. Whole blood samples from untrained (UT) and trained (TR) individuals were incubated for 2 h at 37 °C or 40 °C. The whole blood of a subsample of the participants (n = 5 in both TR and UT groups) were stimulated with lipopolysaccharide (LPS, 10 ng/mL) concomitant to heat treatment (37 °C versus 40 °C). Flow cytometry was used to assess the intracellular NF-κB activation in CD4+ T cells and CD14+ monocytes, the expression of Toll-Like Receptor-4 (TLR-4), the frequencies of CD4+CD25-CD39+ and CD4+CD25+CD39+ T cells and monocyte subsets (CD14+CD16-; CD14+CD16+; CD14-CD16+), the mitochondrial membrane potential (MMP) and the reactive oxygen species (ROS) production by lymphocytes and monocytes. The production of interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) by LPS-stimulated whole blood were also evaluated. Heat treatment (40 °C) increased the proportions of CD14+CD16- and CD14+CD16+ monocytes and the lymphocyte MMP in the UT group. The frequencies of CD14-CD16+ monocytes and the activation of NF-κB in CD14+ monocytes decreased in UT and TR groups after heat treatment, while a reduction in CD4+CD25-CD39+ T-cells was observed only in the UT group. Higher TLR-4 and NF-κB activation were found in LPS-stimulated monocytes of UT men concomitant with higher TNF-α production and diminished IL-10 production after heat treatment. TR individuals presented lower NF- κB activation in LPS-stimulated monocytes after heat treatment. Our data suggest that the training status of individuals may impact on the anti-inflammatory response of heat treatment.
Collapse
|
52
|
Local cooling during hot water immersion improves perceptions without inhibiting the acute interleukin-6 response. Eur J Appl Physiol 2021; 121:1581-1591. [PMID: 33646422 PMCID: PMC8144146 DOI: 10.1007/s00421-021-04616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/04/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Passive elevation of body temperature can induce an acute inflammatory response that has been proposed to be beneficial; however, it can be perceived as uncomfortable. Here, we investigate whether local cooling of the upper body during hot water immersion can improve perception without inhibiting the interleukin-6 (IL-6) response. METHODS Nine healthy male participants (age: 22 ± 1 years, body mass: 83.4 ± 9.4 kg) were immersed up to the waist for three 60-min water immersion conditions: 42 °C hot water immersion (HWI), 42 °C HWI with simultaneous upper-body cooling using a fan (FAN), and 36 °C thermoneutral water immersion (CON). Blood samples to determine IL-6 plasma concentration were collected pre- and post-water immersion; basic affect and thermal comfort were assessed throughout the intervention. RESULTS Plasma IL-6 concentration was higher for HWI and FAN when compared with CON (P < 0.01) and did not differ between HWI and FAN (P = 0.22; pre to post, HWI: 1.0 ± 0.6 to 1.5 ± 0.7 pg·ml-1, FAN: 0.7 ± 0.5 to 1.1 ± 0.5 pg·ml-1, CON: 0.5 ± 0.2 to 0.5 ± 0.2 pg·ml-1). At the end of immersion, basic affect was lowest for HWI (HWI: - 1.8 ± 2.0, FAN: 0.2 ± 1.6, CON 1.0 ± 2.1, P < 0.02); thermal comfort for HWI was in the uncomfortable range (3.0 ± 1.0, P < 0.01 when compared with FAN and CON), whereas FAN (0.7 ± 0.7) and CON (-0.2 ± 0.7) were in the comfortable range. CONCLUSION Local cooling of the upper body during hot water immersion improves basic affect and thermal comfort without inhibiting the acute IL-6 response.
Collapse
|
53
|
Francisco MA, Colbert C, Larson EA, Sieck DC, Halliwill JR, Minson CT. Hemodynamics of post-exercise vs. post hot water immersion recovery. J Appl Physiol (1985) 2021; 130:1362-1372. [PMID: 33630675 PMCID: PMC8354820 DOI: 10.1152/japplphysiol.00260.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
This study sought to compare the hemodynamics of the recovery periods following exercise versus hot water immersion. Twelve subjects (6 F, 22.7 ± 0.8 y; BMI: 21.8 ± 2.1 kg·m-2) exercised for 60 minutes at 60% VO2peak or were immersed in 40.5oC water for 60 minutes on separate days, in random order. Measurements were made before, during, and for 60-minutes post-intervention (i.e., recovery) and included heart rate, arterial pressure, core temperature, and subjective measures. Brachial and superficial femoral artery blood flows were assessed using Doppler ultrasonography and cardiac output was measured using the acetylene wash-in method. Internal temperature increased to a similar extent during exercise and hot water immersion. Cardiac outputand mean arterial pressure were greater during exercise than during hot water immersion (both p<0.01). Sustained reductions in mean arterial pressure compared to baseline were observed in both conditions during recovery (p<0.001 vs before each intervention). Cardiac output was similar during recovery between the interventions. Stroke volume was reduced throughout recovery following exercise, but not following hot water immersion (p<0.01). Brachial artery retrograde shear was reduced following hot water immersion, but not following exercise (Interaction; p=0.035). Antegrade shear in the superficial femoral artery was elevated compared to baseline (p=0.027) for 60 minutes following exercise, whereas it returned near baseline values (p=0.564) by 40 minutes following hot water immersion. Many of the changes observed during the post-exercise recovery period that are thought to contribute to long-term beneficial cardiovascular adaptations were also observed during the post-hot water immersion recovery period.
Collapse
Affiliation(s)
| | - Cameron Colbert
- Department of Human Physiology, University of Oregon, United States
| | - Emily A Larson
- Department of Human Physiology, University of Oregon, United States
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, United States
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, United States
| | | |
Collapse
|
54
|
Kardeş S, Karagülle M. PATHOPHYSIOLOGICAL MECHANISMS OF BALNEOTHERAPY WITH POTENTIAL IMPLICATIONS FOR CENTRAL ASIAN SPAS AND SANATORIUMS. CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2021. [DOI: 10.47316/cajmhe.2020.1.2.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spa therapy includes all modalities/ treatments based on evidence that are administered in spas or sanatoriums. Balneotherapy, the immersion in mineral water, is the main balneological modality in spa therapy programs. Clinical trials performed in Europe, Turkey, and Israel have shown clinical benefits of spa therapy/ balneotherapy in several diseases mainly pertaining to rheumatic and musculoskeletal diseases and dermatological diseases as well. However, mechanisms by which balneotherapy may improve the clinical symptoms of patients have been less evaluated/ documented in the literature. Although the literature on mechanisms of action of balneotherapy has still been evolving and accumulating, some evidence from preliminary studies paves the way for generating a hypothesis that balneotherapy has an influence on physiological mechanisms, immune system, inflammation, and oxidative stress. Extrapolation of the evidence-based clinical practice and scientific experience of Europe, Turkey, and Israel to Central Asian spas and sanatoriums is although possible; future studies investigating clinical efficacy, safety profile, and possible mechanisms of action of balneotherapy of regional spas are needed to better understand the role of balneotherapy and whether it has any local differences.
Collapse
|
55
|
Hoekstra SP, Ogawa T, Dos Santos M, Handsley G, Bailey SJ, Goosey-Tolfrey VL, Tajima F, Cheng JL, Leicht CA. The effects of local versus systemic passive heating on the acute inflammatory, vascular and glycaemic response. Appl Physiol Nutr Metab 2021; 46:808-818. [DOI: 10.1139/apnm-2020-0704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to compare the acute cardiometabolic and perceptual responses between local and whole-body passive heating. Using a water-perfused suit, 10 recreationally active males underwent three 90 min conditions: heating of the legs with upper-body cooling (LBH), whole-body heating (WBH) and exposure to a thermoneutral temperature (CON). Blood samples were collected before and up to 3 h post-session to assess inflammatory markers, while a 2 h oral glucose tolerance test was initiated 1 h post-session. Femoral artery blood flow and perceptual responses were recorded at regular intervals. The interleukin (IL)-6 incremental area under the curve (iAUC) was higher for LBH (1096 ± 851 pg/mL × 270 min) and WBH (833 ± 476 pg/mL × 270 min) compared with CON (565 ± 325 pg/mL × 270 min; p < 0.047). Glucose concentrations were higher after WBH compared with LBH and CON (p < 0.046). Femoral artery blood flow was higher at the end of WBH (1713 ± 409 mL/min) compared with LBH (943 ± 349 mL/min; p < 0.001), and higher in LBH than CON (661 ± 222 mL/min; p = 0.002). Affect and thermal comfort were more negative during WBH compared with LBH and CON (p < 0.010). In conclusion, local passive heating elevated blood flow and the IL-6 iAUC. However, while resulting in more positive perceptual responses, the majority of the included cardiometabolic markers were attenuated compared with WBH. Novelty: The increase in the IL-6 iAUC in response to passive heating is not reduced by upper-body cooling. Upper-body cooling attenuates the plasma nitrite, IL-1ra and femoral artery blood flow response to passive heating. Upper-body cooling leads to more positive perceptual responses to passive heating.
Collapse
Affiliation(s)
- Sven P. Hoekstra
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takahiro Ogawa
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Miguel Dos Santos
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Greg Handsley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Victoria L. Goosey-Tolfrey
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Fumihiro Tajima
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jem L. Cheng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Christof A. Leicht
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
56
|
Coombs GB, Tremblay JC, Shkredova DA, Carr JMJR, Wakeham DJ, Patrician A, Ainslie PN. Distinct contributions of skin and core temperatures to flow-mediated dilation of the brachial artery following passive heating. J Appl Physiol (1985) 2021; 130:149-159. [DOI: 10.1152/japplphysiol.00502.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The primary determinant of vascular adaptations to lifestyle interventions, such as exercise and heat therapy, is repeated elevations in vascular shear stress. Whether skin or core temperatures also modulate the vascular adaptation to acute heat exposure is unknown, likely due to difficulty in dissociating the thermal and hemodynamic responses to heat. We found that skin and core temperatures modify the acute vascular responses to passive heating irrespective of the magnitude of increase in shear stress.
Collapse
Affiliation(s)
- Geoff B. Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Joshua C. Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Daria A. Shkredova
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jay M. J. R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Denis J. Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
57
|
Sebők J, Édel Z, Váncsa S, Farkas N, Kiss S, Erőss B, Török Z, Balogh G, Balogi Z, Nagy R, Hooper PL, Geiger PC, Wittmann I, Vigh L, Dembrovszky F, Hegyi P. Heat therapy shows benefit in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Int J Hyperthermia 2021; 38:1650-1659. [PMID: 34808071 DOI: 10.1080/02656736.2021.2003445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Type-2 diabetes mellitus (T2DM) is a common health condition which prevalence increases with age. Besides lifestyle modifications, passive heating could be a promising intervention to improve glycemic control. This study aimed to assess the efficacy of passive heat therapy on glycemic and cardiovascular parameters, and body weight among patients with T2DM. METHODS A systematic review and meta-analysis were reported according to PRISMA Statement. We conducted a systematic search in three databases (MEDLINE, Embase, CENTRAL) from inception to 19 August 2021. We included interventional studies reporting on T2DM patients treated with heat therapy. The main outcomes were the changes in pre-and post-treatment cardiometabolic parameters (fasting plasma glucose, glycated plasma hemoglobin, and triglyceride). For these continuous variables, weighted mean differences (WMD) with 95% confidence intervals (CIs) were calculated. Study protocol number: CRD42020221500. RESULTS Five studies were included in the qualitative and quantitative synthesis, respectively. The results showed a not significant difference in the hemoglobin A1c [WMD -0.549%, 95% CI (-1.262, 0.164), p = 0.131], fasting glucose [WMD -0.290 mmol/l, 95% CI (-0.903, 0.324), p = 0.355]. Triglyceride [WMD 0.035 mmol/l, 95% CI (-0.130, 0.200), p = 0.677] levels were comparable regarding the pre-, and post intervention values. CONCLUSION Passive heating can be beneficial for patients with T2DM since the slight improvement in certain cardiometabolic parameters support that. However, further randomized controlled trials with longer intervention and follow-up periods are needed to confirm the beneficial effect of passive heat therapy.
Collapse
Affiliation(s)
- Judit Sebők
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - Zsófia Édel
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs Kiss
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Török
- LipidArt Ltd., Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Gábor Balogh
- LipidArt Ltd., Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zsolt Balogi
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Rita Nagy
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Philip L Hooper
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paige C Geiger
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - István Wittmann
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - László Vigh
- LipidArt Ltd., Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
58
|
Cullen T, Clarke ND, Hill M, Menzies C, Pugh CJA, Steward CJ, Thake CD. The health benefits of passive heating and aerobic exercise: To what extent do the mechanisms overlap? J Appl Physiol (1985) 2020; 129:1304-1309. [DOI: 10.1152/japplphysiol.00608.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Exercise can induce numerous health benefits that can reduce the risk of chronic diseases and all-cause mortality, yet a significant percentage of the population do not meet minimal physical activity guidelines. Several recent studies have shown that passive heating can induce numerous health benefits, many of which are comparable with exercise, such as improvements to cardiorespiratory fitness, vascular health, glycemic control, and chronic low-grade inflammation. As such, passive heating is emerging as a promising therapy for populations who cannot perform sustained exercise or display poor exercise adherence. There appears to be some overlap between the cellular signaling responses that are regulated by temperature and the mechanisms that underpin beneficial adaptations to exercise, but detailed comparisons have not yet been made. Therefore, the purpose of this mini review is to assess the similarities and distinctions between adaptations to passive heating and exercise. Understanding the potential shared mechanisms of action between passive heating and exercise may help to direct future studies to implement passive heating more effectively and identify differences between passive heating and exercise-induced adaptations.
Collapse
Affiliation(s)
- Tom Cullen
- Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Neil D. Clarke
- Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Mathew Hill
- Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Campbell Menzies
- Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Christopher J. A. Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Charles J. Steward
- Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - C. Douglas Thake
- Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
59
|
Muscle temperature kinetics and thermoregulatory responses to 42 °C hot-water immersion in healthy males and females. Eur J Appl Physiol 2020; 120:2611-2624. [DOI: 10.1007/s00421-020-04482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
|
60
|
Leicht CA, James LJ, Briscoe JHB, Hoekstra SP. Hot water immersion acutely increases postprandial glucose concentrations. Physiol Rep 2020; 7:e14223. [PMID: 31642205 PMCID: PMC6805849 DOI: 10.14814/phy2.14223] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hot water immersion (HWI) confers health benefits, including a reduction in fasting blood glucose concentration. Here we investigate acute glycemic control immediately after HWI. Ten participants (age: 25 ± 6 years, body mass: 84 ± 14 kg, height 1.85 ± 0.09 m) were immersed in water (39°C) to the neck (HWI) or sat at room temperature (CON) for 60 min. One hour afterward they underwent an oral glucose tolerance test (OGTT), with blood collected before and after HWI/CON and during the 2 h OGTT. Glucose incremental area under the curve (iAUC) during the OGTT was higher for HWI (HWI 233 ± 88, CON 156 ± 79 mmol·L-1 ·2 h, P = 0.02). Insulin iAUC did not differ between conditions (HWI 4309 ± 3660, CON 3893 ± 3031 mU·L-1 ·2 h, P = 0.32). Core temperature increased to 38.6 ± 0.2°C during HWI, but was similar between trials during the OGTT (HWI 37.0 ± 0.2, CON 36.9 ± 0.4°C, P = 0.34). Directly following HWI, plasma average adrenaline and growth hormone concentrations increased 2.7 and 10.7-fold, respectively (P < 0.001). Plasma glucagon-like peptide-1, peptide YY, and acylated ghrelin concentrations were not different between trials during the OGTT (P > 0.11). In conclusion, HWI increased postprandial glucose concentration to an OGTT, which was accompanied by acute elevations of stress hormones following HWI. The altered glycemic control appears to be unrelated to changes in gut hormones during the OGTT.
Collapse
Affiliation(s)
- Christof A Leicht
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.,The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
| | - Lewis J James
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Jane H B Briscoe
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Sven P Hoekstra
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.,The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
61
|
Effects of passive heating intervention on muscle hypertrophy and neuromuscular function: A preliminary systematic review with meta-analysis. J Therm Biol 2020; 93:102684. [PMID: 33077110 DOI: 10.1016/j.jtherbio.2020.102684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Passive heating has been therapeutically used to treat a range of health conditions. Further, this intervention presents as a potential exercise mimetic strategy showing acute and chronic effects on skeletal muscle adaptation and neuromuscular systems. This systematic review and meta-analysis aimed to synthesise the existing evidence on the effects of passive heating on muscle hypertrophy and neuromuscular function. Seven databases were searched (i.e., PubMed, Web of Science, Scopus, CINAHL, EMBASE, Cochrane, and SPORTDiscus) from 1937 to October 2019. Eligible studies included original papers using healthy animals or human samples (≥18 years; both sexes) that have used a control group or condition. Ten original articles were included in this review and four in the meta-analysis. The meta-analysis detected an increase in muscle mass in animal samples seven days after passive heating (I2 = 65%, P < 0.01). The systematic review showed preliminary evidence that repeated passive heating exposures may promote muscle hypertrophy in animals and humans. Moreover, augmented muscle strength (involuntary and voluntary) may be observed after long-term passive heating (animals and humans) and increases in corticospinal excitability in humans after a single passive heating session. Passive heating has shown some potential benefits for skeletal muscle mass gain and muscle force improvement. Therefore, it is plausible to suggest that passive heating might be a worthwhile alternative to be recommended as an exercise mimetic for those people who lack or are unable to complete sufficient exercise.
Collapse
|
62
|
Comparison of hot water immersion at self-adjusted maximum tolerable temperature, with or without the addition of salt, for rapid weight loss in mixed martial arts athletes. Biol Sport 2020; 38:89-96. [PMID: 33795918 PMCID: PMC7996375 DOI: 10.5114/biolsport.2020.96947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022] Open
Abstract
Hot water immersion is used by athletes in weight category sports to produce rapid weight loss (RWL) by means of passive fluid loss, and often is performed with the addition of Epsom salts (magnesium sulphate). This study investigated the magnitude of body mass losses during hot water immersion with or without the addition of salt, with the temperature commencing at 37.8°C and being self-adjusted by participants to their maximum tolerable temperature. In a crossover design, eight male MMA athletes (29.4 ± 5.3 y; 1.83 ± 0.05 m; 85.0 ± 4.9 kg) performed a 20 min whole-body immersion followed by a 40 min wrap in a warm room, twice in sequence per visit. During one visit, only fresh water was used (FWB), and in the other visit, magnesium sulphate (1.6% wt/vol) was added to the bath (SWB). Prior to each visit, 24 h of carbohydrate, fibre and fluid restriction was undertaken. Water temperatures at the end of the first and second baths were ~39.0°C and ~39.5°C, respectively. Body mass losses induced by the hot bath protocols were 1.71 ± 0.70 kg and 1.66 ± 0.78 kg for FWB and SWB, respectively (P = 0.867 between trials, d = 0.07), and equivalent to ~2.0% body mass. Body mass lost during the entire RWL protocol was 4.5 ± 0.7%. Under the conditions employed, the magnitude of body mass lost in SWB was similar to FWB. Augmenting passive fluid loss during hot water immersion with the addition of salt may require a higher salt concentration than that presently utilised.
Collapse
|
63
|
Pallubinsky H, Phielix E, Dautzenberg B, Schaart G, Connell NJ, Wit‐Verheggen V, Havekes B, Baak MA, Schrauwen P, Marken Lichtenbelt WD. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiol (Oxf) 2020; 229:e13488. [PMID: 32359193 PMCID: PMC7379279 DOI: 10.1111/apha.13488] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
AIM Heat exposure has been indicated to positively affect glucose metabolism. An involvement of heat shock protein 72 (HSP72) in the enhancement of insulin sensitivity upon heat exposure has been previously suggested. Here, we performed an intervention study exploring the effect of passive heat acclimation (PHA) on glucose metabolism and intracellular (a) HSP72 concentrations in overweight humans. METHODS Eleven non-diabetic overweight (BMI 27-35 kg/m2 ) participants underwent 10 consecutive days of PHA (4-6 h/day, 34.4 ± 0.2°C, 22.8 ± 2.7%RH). Before and after PHA, whole-body insulin sensitivity was assessed using a one-step hyperinsulinaemic-euglycaemic clamp, skeletal muscle biopsies were taken to measure intracellular iHSP72, energy expenditure and substrate oxidation were measured using indirect calorimetry and blood samples were drawn to assess markers of metabolic health. Thermophysiological adaptations were measured during a temperature ramp protocol before and after PHA. RESULTS Despite a lack of change in iHSP72, 10 days of PHA reduced basal (9.7 ± 1.4 pre- vs 8.4 ± 2.1 μmol · kg-1 · min-1 post-PHA, P = .038) and insulin-stimulated (2.1 ± 0.9 pre- vs 1.5 ± 0.8 μmol · kg-1 · min-1 post-PHA, P = .005) endogenous glucose production (EGP) and increased insulin suppression of EGP (78.5 ± 9.7% pre- vs 83.0 ± 7.9% post-PHA, P = .028). Consistently, fasting plasma glucose (6.0 ± 0.5 pre- vs 5.8 ± 0.4 mmol/L post-PHA, P = .013) and insulin concentrations (97 ± 55 pre- vs 84 ± 49 pmol/L post-PHA, P = .026) decreased significantly. Moreover, fat oxidation increased, and free fatty acids as well as cholesterol concentrations and mean arterial pressure decreased after PHA. CONCLUSION Our results show that PHA for 10 days improves glucose metabolism and enhances fat metabolism, without changes in iHSP72. Further exploration of the therapeutic role of heat in cardio-metabolic disorders should be considered.
Collapse
Affiliation(s)
- Hannah Pallubinsky
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Bas Dautzenberg
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Niels J. Connell
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Vera Wit‐Verheggen
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Bas Havekes
- Department of Internal Medicine Division of Endocrinology Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Marleen A. Baak
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Wouter D. Marken Lichtenbelt
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| |
Collapse
|
64
|
Impact of Finnish sauna bathing on circulating markers of inflammation in healthy middle-aged and older adults: A crossover study. Complement Ther Med 2020; 52:102486. [PMID: 32951736 DOI: 10.1016/j.ctim.2020.102486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Finnish sauna bathing is associated with a reduced risk of adverse health outcomes. The acute physiological responses elicited by Finnish sauna bathing that could explain this association remain understudied. This study characterized the acute effect of Finnish sauna bathing on circulating markers of inflammation in healthy middle-aged and older adults. DESIGN With the use of a crossover study design, 20 healthy middle-aged and older adults (9 men/11 women, 66 ± 6 years old) performed 3 interventions in random order: 1) 1 x 10 min of Finnish sauna bathing (80 °C, 20 % humidity); 2) 2 x 10 min of Finnish sauna bathing; 3) a time-control period during which participants sat outside of the sauna for 10 min. MAIN OUTCOMES Venous blood samples were obtained before (≤15 min) and after (∼65 min) each intervention to determine circulating concentrations of interleukin 6 (IL-6), interleukin 1 receptor antagonist (IL-1RA), and C-reactive protein (CRP). RESULTS IL-6 increased in response to 2 x 10 min of sauna bathing (+0.92 pg/mL [+0.16, +1.68], P = 0.02), but not following the 1 x 10 min session (+0.17 pg/mL [-0.13, +0.47], P = 0.26). IL1-RA increased during the 1 x 10 min (+51.27 pg/mL [+20.89, +81.65], P < 0.01) and 2 x 10 min (+30.78 pg/mL [+3.44, +58.12], P = 0.03) sessions. CRP did not change in response to either sauna session (P = 0.34). CONCLUSION These results demonstrate that typical Finnish sauna bathing sessions acutely increase IL-6 and IL1-RA in healthy middle-aged and older adults.
Collapse
|
65
|
Lissarassa YPS, Vincensi CF, Costa-Beber LC, Dos Santos AB, Goettems-Fiorin PB, Dos Santos JB, Donato YH, Wildner G, Homem de Bittencourt Júnior PI, Frizzo MN, Heck TG, Ludwig MS. Chronic heat treatment positively impacts metabolic profile of ovariectomized rats: association with heat shock response pathways. Cell Stress Chaperones 2020; 25:467-479. [PMID: 32215846 PMCID: PMC7192980 DOI: 10.1007/s12192-020-01087-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 01/11/2023] Open
Abstract
Low estrogen levels may predispose women to increased bodyweight and dyslipidemia. Previous studies from our laboratory suggest an involvement of depressed heat shock response (HSR) in this scenario because estrogen potently stimulates HSR. As heat treatment induces the expression of the anti-inflammatory heat shock proteins of the 70-kDa family (HSP70) and its accompanying HSR, we aimed to investigate whether chronic heat treatment promotes beneficial effects on biometric, lipid profile, oxidative stress, and HSR in ovariectomized rats. Wistar adult female rats (n = 32) were divided into four groups: control (C, n = 7), ovariectomized (OVX, n = 9), heat-treated (HT, n = 9), and heat-treated ovariectomized rats (OVX+HT, n = 7). HT and OVX+HT rats were anesthetized and submitted to heat treatment (once a week for 12 weeks) in a water bath (41 °C) to increase rats' rectal temperature up to 41 °C for 15 min, while C and OVX animals were submitted to a 36 °C water bath. HT attenuated the weight gain induced by OVX and increased HDL cholesterol and triglyceride serum levels. Also, OVX rats showed increased total cholesterol and LDL cholesterol levels that were not influenced by HT. Interestingly, it was found that an overall trend for HT to decrease tissue catalase and superoxide dismutase antioxidant activities was paralleled by a decrease in malondialdehyde levels (indicative of lower lipoperoxidation), especially in the skeletal muscle. Surprisingly, OVX was not able to depress intracellular HSP70 expression in the skeletal muscle, as expected, and this remained unchanged with HT. However, chronic HT did enhance intracellular HSP70 contents in white adipose tissue of OVX animals. As both glucose and insulin tolerance tests were not affected by OVX, which was not modified by HT, we suppose that estrogen absence alone is not sufficient to determine a state of insulin resistance associated with low intramuscular HSP70 content.
Collapse
Affiliation(s)
- Yana Picinin Sandri Lissarassa
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Carolain Felipin Vincensi
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Analú Bender Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Yohanna Hannnah Donato
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Guilherme Wildner
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, ICBS, Porto Alegre, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
| |
Collapse
|
66
|
Kim K, Monroe JC, Gavin TP, Roseguini BT. Skeletal muscle adaptations to heat therapy. J Appl Physiol (1985) 2020; 128:1635-1642. [PMID: 32352340 DOI: 10.1152/japplphysiol.00061.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The therapeutic effects of heat have been harnessed for centuries to treat skeletal muscle disorders and other pathologies. However, the fundamental mechanisms underlying the well-documented clinical benefits associated with heat therapy (HT) remain poorly defined. Foundational studies in cultured skeletal muscle and endothelial cells, as well as in rodents, revealed that episodic exposure to heat stress activates a number of intracellular signaling networks and promotes skeletal muscle remodeling. Renewed interest in the physiology of HT in recent years has provided greater understanding of the signals and molecular players involved in the skeletal muscle adaptations to episodic exposures to HT. It is increasingly clear that heat stress promotes signaling mechanisms involved in angiogenesis, muscle hypertrophy, mitochondrial biogenesis, and glucose metabolism through not only elevations in tissue temperature but also other perturbations, including increased intramyocellular calcium and enhanced energy turnover. The few available translational studies seem to indicate that the earlier observations in rodents also apply to human skeletal muscle. Indeed, recent findings revealed that both local and whole-body HT may promote capillary growth, enhance mitochondrial content and function, improve insulin sensitivity and attenuate disuse-induced muscle wasting. This accumulating body of work implies that HT may be a practical treatment to combat skeletal abnormalities in individuals with chronic disease who are unwilling or cannot participate in traditional exercise-training regimens.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Jacob C Monroe
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
67
|
Moore J, Kressler J, Buono MJ. Hand heating lowers postprandial blood glucose concentrations: A double-blind randomized controlled crossover trial. Complement Ther Med 2020; 49:102280. [PMID: 32147036 DOI: 10.1016/j.ctim.2019.102280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES Examine effect of single hand heating with and without negative pressure on fasting blood glucose (FBG) and postprandial blood glucose (PBG). DESIGN Double-blind randomized controlled trial with crossover design. SUBJECTS FBG experiment: 17 healthy subjects (4 males). PBG experiment: 13 healthy subjects (1 males). INTERVENTIONS Devices included one providing heat only, one heat and negative pressure, and one acting as a sham. For the FBG experiment the devices were used for 30 min. For the PBG experiment the devices were used for one hour during an oral glucose tolerance test (OGTT). OUTCOME MEASURES Blood glucose measurements were used to determine change in FBG, peak PBG, area under the curve (AUC), and incremental AUC (iAUC). RESULTS Temperature: Change in tympanic temperature was ≤ 0.15 °C for all trials. FBG: There was no effect on FBG. PBG: Compared to the sham device the heat plus vacuum and heat only device lowered peak blood glucose by 16(31)mg/dL, p = 0.092 and 18(28)mg/dL, p = 0.039, respectively. AUC and iAUC: Compared to the sham device, the heat plus vacuum device and heat only device lowered the AUC by 5.1(15.0)%, p = 0.234 and 7.9(11.1)%, p = 0.024 respectively and iAUC by 17.2(43.4)%, p = 0.178 and 20.5(34.5)%, p = 0.054, respectively. CONCLUSIONS Heating a single hand lowers postprandial blood glucose in healthy subjects.
Collapse
Affiliation(s)
- Jeff Moore
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182-7251, United States.
| | - Jochen Kressler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182-7251, United States.
| | - Michael J Buono
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182-7251, United States; Department of Biology, San Diego State University, San Diego, CA, 92182-7251, United States.
| |
Collapse
|
68
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
69
|
Ely BR, Francisco MA, Halliwill JR, Bryan SD, Comrada LN, Larson EA, Brunt VE, Minson CT. Heat therapy reduces sympathetic activity and improves cardiovascular risk profile in women who are obese with polycystic ovary syndrome. Am J Physiol Regul Integr Comp Physiol 2019; 317:R630-R640. [PMID: 31483156 DOI: 10.1152/ajpregu.00078.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) affects up to 15% of women and is associated with increased risk of obesity and cardiovascular disease. Repeated passive heat exposure [termed "heat therapy" (HT)] is a lifestyle intervention with the potential to reduce cardiovascular risk in obesity and PCOS. Women with obesity (n = 18) with PCOS [age 27 ± 4 yr, body mass index (BMI) 41.3 ± 4.7 kg/m2] were matched for age and BMI, then assigned to HT (n = 9) or time control (CON; n = 9). HT subjects underwent 30 one-hour hot tub sessions over 8-10 wk, whereas CON subjects did not undergo HT. Muscle sympathetic nerve activity (MSNA), blood pressure, cholesterol, C-reactive protein, and markers of vascular function were assessed at the start (Pre) and end (Post) of 8-10 wk. These measures included carotid and femoral artery wall thickness and flow-mediated dilation (FMD), measured both before and after 20 min of ischemia-20 min of reperfusion (I/R) stress. HT subjects exhibited reduced MSNA burst frequency (Pre: 20 ± 8 bursts/min, Post: 13 ± 5 bursts/min, P = 0.012), systolic (Pre: 124 ± 5 mmHg, Post: 114 ± 6 mmHg; P < 0.001) and diastolic blood pressure (Pre: 77 ± 6 mmHg, Post: 68 ± 3 mmHg; P < 0.001), C-reactive protein (Pre: 19.4 ± 13.7 nmol/L, Post: 15.2 ± 12.3 nmol/L; P = 0.018), total cholesterol (Pre: 5.4 ± 1.1 mmol/L, Post: 5.0 ± 0.8 mmol/L; P = 0.028), carotid wall thickness (Pre: 0.054 ± 0.005 cm, Post: 0.044 ± 0.005 cm; P = 0.010), and femoral wall thickness (Pre: 0.056 ± 0.009 cm, Post: 0.042 ± 0.005 cm; P = 0.003). FMD significantly improved in HT subjects over time following I/R (Pre: 5.6 ± 2.5%, Post: 9.5 ± 1.7%; P < 0.001). No parameters changed over time in CON, and BMI did not change in either group. These findings indicate that HT reduces sympathetic nerve activity, provides protection from I/R stress, and substantially improves cardiovascular risk profiles in women who are obese with PCOS.
Collapse
Affiliation(s)
- Brett R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon.,Department of Sport and Movement Science, Salem State University, Salem, Massachusetts
| | | | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Samantha D Bryan
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Lindan N Comrada
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon.,Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | | |
Collapse
|
70
|
Cerebrovascular function is preserved during mild hyperthermia in cervical spinal cord injury. Spinal Cord 2019; 57:979-984. [DOI: 10.1038/s41393-019-0321-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
|
71
|
Ely BR, Clayton ZS, McCurdy CE, Pfeiffer J, Needham KW, Comrada LN, Minson CT. Heat therapy improves glucose tolerance and adipose tissue insulin signaling in polycystic ovary syndrome. Am J Physiol Endocrinol Metab 2019; 317:E172-E182. [PMID: 31136202 PMCID: PMC7199222 DOI: 10.1152/ajpendo.00549.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with high rates of obesity and metabolic dysfunction. Repeated passive heat exposure (termed heat therapy) is a novel lifestyle intervention for improving health in obese women with PCOS. The purpose of this study was to examine changes in metabolic function in obese women with PCOS following heat therapy. Eighteen age- and BMI-matched obese women with PCOS (age: 27 ± 1 yr, BMI: 41.3 ± 1.1 kg/m-2) were assigned to heat therapy (HT) or time control (CON). HT participants underwent 30 one-hour hot tub sessions over 8-10 wk, while CON participants completed all testing but did not undergo heat therapy. Before (Pre), at the mid-point (Mid), and following (Post) 8-10 wk of heat therapy, metabolic health was assessed using a 2-h oral glucose tolerance test, a subcutaneous abdominal fat biopsy (Pre-Post only), and other blood markers relating to metabolic function. HT participants exhibited improved fasting glucose (Pre: 105 ± 3, Post: 89 ± 5mg/dl; P = 0.001), glucose area under the curve (AUC) (Pre: 18,698 ± 1,045, Post: 16,987 ± 1,017 mg·dl-1·min-1; P = 0.028) and insulin AUC (Pre: 126,924 ± 11,730, Post: 91,233 ± 14,429 IU l-1·min-1; P = 0.012). Adipocyte insulin signaling (p-AKT at Ser-473 with 1.2 nM insulin) increased in HT (Pre: 0.29 ± 0.14, Post: 0.93 ± 0.29 AU; P = 0.021). Additionally, serum testosterone declined in HT participants (Pre: 51 ± 7, Post: 34 ± 4 ng/dl; P = 0.033). No parameters changed over time in CON, and no change in BMI was observed in either group. HT substantially improved metabolic risk profile in obese women with PCOS. HT also reduced androgen excess and may improve PCOS symptomology.
Collapse
Affiliation(s)
- Brett R Ely
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Zachary S Clayton
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Joshua Pfeiffer
- PeaceHealth Medical Group, Oregon Bariatric Center , Springfield, Oregon
| | | | - Lindan N Comrada
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | | |
Collapse
|
72
|
Hoekstra SP, Wright AKA, Bishop NC, Leicht CA. The effect of temperature and heat shock protein 72 on the ex vivo acute inflammatory response in monocytes. Cell Stress Chaperones 2019; 24:461-467. [PMID: 30756293 PMCID: PMC6439050 DOI: 10.1007/s12192-019-00972-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
The acute inflammatory response to active or passive activities that increase body temperature may aid to reduce chronic low-grade inflammation. This study investigates the impact of temperature and extracellular heat shock protein 72 (eHsp72) on the acute intracellular Hsp72 (iHsp72) and interleukin-6 (iIL-6) response in monocytes. Whole blood was incubated for 2 h at 37.0 °C, 38.5 °C and 40.0 °C, in the absence or presence of 0.5 μg/ml eHsp72. Flow cytometry was used to assess iHsp72 and iIL-6 expression in total monocytes and the three monocyte subsets. Incubation at 40.0 °C (p < 0.001) but not 38.5 °C (p = 0.085) increased iHsp72 expression when compared with 37.0 °C, while there was no effect of temperature on iIL-6 expression (p = 0.635). Following incubation with eHsp72, the expression of iHsp72 in classical monocytes was reduced at all temperatures (p < 0.001), while there was no effect of eHsp72 on iIL-6 expression (p = 0.071). Large temperature elevations are needed to induce an acute iHsp72 response in monocytes. In addition, contrary to its suggested role as a danger signal for the innate immune system, eHsp72 reduced iHsp72 and iIL-6 expression in monocytes.
Collapse
Affiliation(s)
- Sven P Hoekstra
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Adam K A Wright
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Nicolette C Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Christof A Leicht
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK.
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
73
|
Hoekstra SP, Westerman MN, Beke F, Bishop NC, Leicht CA. Modality-specific training adaptations - do they lead to a dampened acute inflammatory response to exercise? Appl Physiol Nutr Metab 2019; 44:965-972. [PMID: 30664359 DOI: 10.1139/apnm-2018-0693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While adaptations to a short-term training program can dampen the acute inflammatory response to exercise, less is known about the influence of chronic modality-specific adaptations to training. This study compares the acute inflammatory response to upper- and lower-body interval exercise in individuals chronically trained in these respective modalities. Ninety minutes of interval exercise matched for relative power output on an arm-crank (ARM) and cycle ergometer (LEG) was performed by 8 trained paddlers and 8 trained cyclists. Blood samples were taken before and after exercise. Interleukin-6 (IL-6) concentrations were analysed in plasma, while the expression of intracellular heat shock protein 72 (iHsp72) was assessed in monocytes. IL-6 was increased following both modalities (fold change - ARM: 7.23 ± 3.56, p < 0.001; LEG: 9.03 ± 4.82, p < 0.001), in both groups (cyclists, p < 0.001; paddlers, p < 0.001), but the increase was smaller in ARM compared with LEG (time × modality, p < 0.001). ARM induced a smaller iHsp72 response compared with LEG (fold change - ARM: 1.07 ± 0.14, p = 0.102; LEG: 1.18 ± 0.14, p < 0.001; time × modality, p = 0.039). Following ARM, iHsp72 expression was increased in the cyclists only (fold change cyclists: 1.12 ± 0.11, p = 0.018; paddlers: 1.03 ± 0.17, p = 0.647), while iHsp72 expression following LEG was increased in both groups (fold change cyclists: 1.14 ± 0.15, p = 0.027; paddlers: 1.22 ± 0.13, p < 0.001). Taken together, the acute inflammatory response to lower-body interval exercise was larger compared with work-matched upper-body interval exercise. Moreover, adaptations to upper-body exercise training dampened the iHsp72 response to this modality. Therefore, exercise may be less effective in reducing chronic low-grade inflammation in individuals relying on their upper body, such as wheelchair users.
Collapse
Affiliation(s)
- Sven P Hoekstra
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Matthew N Westerman
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Flavio Beke
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Nicolette C Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Christof A Leicht
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|