51
|
Counteracting Physical Inactivity during the COVID-19 Pandemic: Evidence-Based Recommendations for Home-Based Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113909. [PMID: 32492778 PMCID: PMC7311977 DOI: 10.3390/ijerph17113909] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
To reduce transmission of the coronavirus, from its initial outbreak in 2019 up to now, various safety measures have been enacted worldwide by the authorities that have likely led to reduced physical activity levels in the general population. This short communication aims to briefly outline the deteriorative consequences of physical inactivity on parameters of physical fitness and ultimately to highlight associated increases of cardiovascular disease risk and mortality. Finally, evidence-based practical recommendations for exercise that can be performed at home are introduced, to help avoid physical inactivity and therefore maintain or achieve good physical health.
Collapse
|
52
|
Staying Active in Isolation: Telerehabilitation for Individuals With the Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Am J Phys Med Rehabil 2020; 99:478-479. [PMID: 32282339 PMCID: PMC7253045 DOI: 10.1097/phm.0000000000001441] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Narici M, Vito GD, Franchi M, Paoli A, Moro T, Marcolin G, Grassi B, Baldassarre G, Zuccarelli L, Biolo G, di Girolamo FG, Fiotti N, Dela F, Greenhaff P, Maganaris C. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci 2020; 21:614-635. [PMID: 32394816 DOI: 10.1080/17461391.2020.1761076] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic is an unprecedented health crisis as entire populations have been asked to self-isolate and live in home-confinement for several weeks to months, which in itself represents a physiological challenge with significant health risks. This paper describes the impact of sedentarism on the human body at the level of the muscular, cardiovascular, metabolic, endocrine and nervous systems and is based on evidence from several models of inactivity, including bed rest, unilateral limb suspension, and step-reduction. Data form these studies show that muscle wasting occurs rapidly, being detectable within two days of inactivity. This loss of muscle mass is associated with fibre denervation, neuromuscular junction damage and upregulation of protein breakdown, but is mostly explained by the suppression of muscle protein synthesis. Inactivity also affects glucose homeostasis as just few days of step reduction or bed rest, reduce insulin sensitivity, principally in muscle. Additionally, aerobic capacity is impaired at all levels of the O2 cascade, from the cardiovascular system, including peripheral circulation, to skeletal muscle oxidative function. Positive energy balance during physical inactivity is associated with fat deposition, associated with systemic inflammation and activation of antioxidant defences, exacerbating muscle loss. Importantly, these deleterious effects of inactivity can be diminished by routine exercise practice, but the exercise dose-response relationship is currently unknown. Nevertheless, low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15-25% reduction in daily energy intake. This combined regimen seems ideal for preserving neuromuscular, metabolic and cardiovascular health.
Collapse
Affiliation(s)
- Marco Narici
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Martino Franchi
- Department of Biomedical Sciences, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Gianni Biolo
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | | | - Nicola Fiotti
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Paul Greenhaff
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
54
|
Thirupathi A, Pinho RA, Chang YZ. Physical exercise: An inducer of positive oxidative stress in skeletal muscle aging. Life Sci 2020; 252:117630. [PMID: 32294473 DOI: 10.1016/j.lfs.2020.117630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is the core of most pathological situations, and its attribution toward disease conversion is not yet well established. The adaptive capacity of a cell can overcome ROS-induced pathology. However, when a cell fails to extend its maximum adaptive capacity against oxidative stress, it could lead a cell to misbehave or defunct from its normal functions. Any type of physical activity can increase the cells' maximum adaptive capacity, but aging can limit this. However, whether aging is the initiating point of reducing cells' adaptive capacity against oxidative stress or oxidative stress can induce the aging process is a mystery, and it could be the key to solving several uncured diseases. Paradoxically, minimum ROS is needed for cellular homeostasis. Nevertheless, finding factors that can limit or nullify the production of ROS for cellular homeostasis is a million-dollar question. Regular physical exercise is considered to be one of the factors that can limit the production of ROS and increase the ROS-induced benefits in the cells through inducing minimum oxidative stress and increasing maximum adapting capacity against oxidative stress-induced damages. The type and intensity of exercise that can produce such positive effects in the cells remain unclear. Therefore, this review discusses how physical exercise can help to produce minimal positive oxidative stress in preventing skeletal muscle aging.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province 050024, China.
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province 050024, China
| |
Collapse
|
55
|
Marcucci L, Bondì M, Randazzo G, Reggiani C, Natali AN, Pavan PG. Fibre and extracellular matrix contributions to passive forces in human skeletal muscles: An experimental based constitutive law for numerical modelling of the passive element in the classical Hill-type three element model. PLoS One 2019; 14:e0224232. [PMID: 31689322 PMCID: PMC6830811 DOI: 10.1371/journal.pone.0224232] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/08/2019] [Indexed: 01/30/2023] Open
Abstract
The forces that allow body movement can be divided into active (generated by sarcomeric contractile proteins) and passive (sustained by intra-sarcomeric proteins, fibre cytoskeleton and extracellular matrix (ECM)). These are needed to transmit the active forces to the tendon and the skeleton. However, the relative contribution of the intra- and extra- sarcomeric components in transmitting the passive forces is still under debate. There is limited data in the literature about human muscle and so it is difficult to make predictions using multiscale models, imposing a purely phenomenological description for passive forces. In this paper, we apply a method for the experimental characterization of the passive properties of fibres and ECM to human biopsy and propose their clear separation in a Finite Element Model. Experimental data were collected on human single muscle fibres and bundles, taken from vastus lateralis muscle of elderly subjects. Both were progressively elongated to obtain two stress-strain curves which were fitted to exponential equations. The mechanical properties of the extracellular passive components in a bundle of fibres were deduced by the subtraction of the passive tension observed in single fibres from the passive tension observed in the bundle itself. Our results showed that modulus and tensile load bearing capability of ECM are higher than those of fibres and defined their quantitative characterization that can be used in macroscopic models to study their role in the transmission of forces in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Michela Bondì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giulia Randazzo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Kinesiology Research Center, Garibaldijeva, Koper, Slovenia
| | - Arturo N. Natali
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Piero G. Pavan
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, Padova, Italy
| |
Collapse
|
56
|
Risk factors of frailty and death or only frailty after intensive care in non-frail elderly patients: a prospective non-interventional study. J Intensive Care 2019; 7:48. [PMID: 31687161 PMCID: PMC6820956 DOI: 10.1186/s40560-019-0403-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
Background Frailty status is recognized as an important parameter in critically ill elderly patients, but nothing is known about outcomes in non-frail patients regarding the development of frailty or frailty and death after intensive care. The aim of this study was to determine risk factors for frailty and death or only frailty 6 months after intensive care unit (ICU) admission in non-frail patients ≥ 65 years. Methods A prospective non-interventional study performed in an academic ICU from February 2015 to February 2016 included non-frail ≥ 65-year-old patients hospitalized for > 24 h in the ICU. Frailty was assessed by calculating the frailty index (FI) at admission and 6 months later. Patients who remained non-frail (FI < 0.2) were compared to patients who presented frailty (FI ≥ 0.2) and those who presented frailty and death at 6 months. Results Among 974 admissions, 136 patients were eligible for the study and 88 patients were analysed at 6 months (non-frail n = 34, frail n = 29, death n = 25). Multivariable analysis showed that mechanical ventilation duration was an independent risk factor for frailty/death at 6 months (per day of mechanical ventilation, odds ratio [OR] = 1.11; 95% confidence interval [CI] 1.04–1.19, p = 0.002). When excluding patients who died, mechanical ventilation duration remained the sole risk factor for frailty at 6 months (OR = 1.19; 95% CI 1.07–1.33, p = 0.001). Conclusion Mechanical ventilation duration was the sole predictive factor of frailty and death or only frailty 6 months after ICU hospitalization in initially non-frail patients.
Collapse
|
57
|
Martins GS, Toledo SV, Andrade JMDL, Nakano EY, Valduga R, Paz LPDS, Cipriano Júnior G, Cipriano GFB. Analysis of functional status and muscle strength in adults and older adults in an intensive care unit: a prospective cohort study. CIENCIA & SAUDE COLETIVA 2019; 26:2899-2910. [PMID: 34231702 DOI: 10.1590/1413-81232021267.21422019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 09/05/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to analyze and assess the association between functional status (FS) and muscle strength (MS) in young adults, adults and older adults in an intensive care unit (ICU). We conducted a prospective cohort study with 48 patients. FS was assessed using the Functional Status Score for the Intensive Care Unit (FSS-ICU) and MS was measured using the Medical Research Council Sum-Score (MRC-SS) and by testing handgrip strength (HS). The assessments were performed on awakening and ICU discharge. The data were analyzed using the Kruskall-Wallis, chi-squared, Wilcoxon and Spearman's correlation tests. FS and MRC-SS scores were higher on ICU discharge in all groups. Gains were lowest in the older adult group. HS was greater in both hands on ICU discharge in all groups except the adults. FSS-ICU on both awakening and ICU discharge was highest in the adults; HS-R was lowest in the older adults. There was a strong association between FS and MS in the young adults and adults. FS and MS showed progressive improvement during ICU stay. Gains in FS and MS on awakening and ICU discharge were lowest among the older adults. Important associations were found between these variables in all groups except the older adults. This can be explained by the multifactorial nature of illness and incapacity in this group.
Collapse
Affiliation(s)
- Gabriela Sousa Martins
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília. Centro Metropolitano conjunto A lote 01 1º andar sala A1-04/67. 72220-275 Brasília DF Brasil.
| | | | | | | | - Renato Valduga
- Secretaria de Estado de Saúde, Distrito Federal. Brasília DF Brasil
| | - Leonardo Petrus da Silva Paz
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília. Centro Metropolitano conjunto A lote 01 1º andar sala A1-04/67. 72220-275 Brasília DF Brasil.
| | - Gerson Cipriano Júnior
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília. Centro Metropolitano conjunto A lote 01 1º andar sala A1-04/67. 72220-275 Brasília DF Brasil.
| | | |
Collapse
|
58
|
Paravlic AH, Pisot R, Marusic U. Specific and general adaptations following motor imagery practice focused on muscle strength in total knee arthroplasty rehabilitation: A randomized controlled trial. PLoS One 2019; 14:e0221089. [PMID: 31412056 PMCID: PMC6693761 DOI: 10.1371/journal.pone.0221089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/16/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Motor imagery (MI) has been a widely used strategy in the past two decades to enhance physical capabilities among orthopaedic patients. However, its effectiveness is still questioned, since the demonstrated effects were likely task-dependent, with little evidence of transfer to tasks not specifically trained with MI. OBJECTIVE The aim of this study was to investigate whether an MI practice focused on maximal isometric knee extension strength, causes additional specific and general adaptations upon neuromuscular and functional variables when compared to conventional rehabilitation only, in patients submitted to total knee arthroplasty (TKA). DESIGN Parallel group randomized controlled clinical trial. PARTICIPANTS Thirty-four patients (56% man) submitted to TKA. PROGRAM Patients were randomly assigned to an MI practice group (MIp: 15 minutes per day/5 days per week in addition to routine physical therapy) or control group (CON) that performed routine physical therapy alone for four weeks. OUTCOME MEASURES The maximal isometric knee extension strength of the operated leg was defined as the primary outcome. Secondary outcomes were spatial and temporal gait parameters, 30-second chair sit-to-stand performance, a self-reported physical function assessed by the Lower Extremity Functional Scale (LEFS) questionnaire, and an MI ability score. All measurements were conducted before and one month after TKA. RESULTS Significant differences in treatment effects were observed for the MIp group compared to CON: the MIp showed less strength decrease (ES = 1.15, 95% CI: 0.32, 1.99, p = 0.022); faster self-selected speed under single (ES = 2.12, 95% CI: 1.16, 3.08, p = 0.001) and dual task (ES = 1.59, large, 95% CI: 0.67, 2.50, p = 0.002) conditions; brisk-pace gait speed during single (ES = 1.32, 95% CI: 0.47, 2.17, p = 0.020) and dual task conditions (ES = 1.31, large, 95% CI: 0.38, 2.23, p = 0.013); improved chair sit-to-stand (ES = 1.45, large, 95% CI: 0.58, 2.31, p = 0.004) performance; and a higher score on MI ability questionnaires for kinaesthetic imagery (KI) (ES = 0.55, 95% CI: -0.23, 1.34, p = 0.010) and internal visual imagery (EVI) (ES = 0.99, 95% CI: 0.18, 1.80, p = 0.039) scales, respectively. In addition, only MIp showed unaltered single and double support periods, as well as stride length and cadence during single task self-selected gait condition. Finally, analysis showed that the improved MI ability score achieved at the end of MI training was significantly correlated with the changes in the strength of the operated leg (kinaesthetic imagery: r = 0.741, p = 0.004; and internal visual imagery: r = 0.623, p = 0.023). CONCLUSIONS MI training, when added in a corollary to routine physical therapy, led to improvements in both specific and general adaptations that were related to patients' physical capabilities. While future studies must also evaluate the long-term effects, conducting MI training during acute and post-acute rehabilitation phases is advised, especially when the extent and range of physical exercise is limited or made impossible. TRIAL REGISTRATION ClinicalTrials.gov NCT03684148.
Collapse
Affiliation(s)
- Armin H. Paravlic
- Science and Research Centre, Institute for Kinesiology Research, Garibaldijeva 1, Slovenia
| | - Rado Pisot
- Science and Research Centre, Institute for Kinesiology Research, Garibaldijeva 1, Slovenia
- Faculty of Sport, University of Ljubljana, Slovenia
| | - Uros Marusic
- Science and Research Centre, Institute for Kinesiology Research, Garibaldijeva 1, Slovenia
- Department of Health Sciences, Alma Mater Europaea-ECM, Maribor, Slovenia
| |
Collapse
|
59
|
Herold F, Törpel A, Schega L, Müller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur Rev Aging Phys Act 2019; 16:10. [PMID: 31333805 PMCID: PMC6617693 DOI: 10.1186/s11556-019-0217-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/26/2019] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND During the aging process, physical capabilities (e.g., muscular strength) and cognitive functions (e.g., memory) gradually decrease. Regarding cognitive functions, substantial functional (e.g., compensatory brain activity) and structural changes (e.g., shrinking of the hippocampus) in the brain cause this decline. Notably, growing evidence points towards a relationship between cognition and measures of muscular strength and muscle mass. Based on this emerging evidence, resistance exercises and/or resistance training, which contributes to the preservation and augmentation of muscular strength and muscle mass, may trigger beneficial neurobiological processes and could be crucial for healthy aging that includes preservation of the brain and cognition. Compared with the multitude of studies that have investigated the influence of endurance exercises and/or endurance training on cognitive performance and brain structure, considerably less work has focused on the effects of resistance exercises and/or resistance training. While the available evidence regarding resistance exercise-induced changes in cognitive functions is pooled, the underlying neurobiological processes, such as functional and structural brain changes, have yet to be summarized. Hence, the purpose of this systematic review is to provide an overview of resistance exercise-induced functional and/or structural brain changes that are related to cognitive functions. METHODS AND RESULTS A systematic literature search was conducted by two independent researchers across six electronic databases; 5957 records were returned, of which 18 were considered relevant and were analyzed. SHORT CONCLUSION Based on our analyses, resistance exercises and resistance training evoked substantial functional brain changes, especially in the frontal lobe, which were accompanied by improvements in executive functions. Furthermore, resistance training led to lower white matter atrophy and smaller white matter lesion volumes. However, based on the relatively small number of studies available, the findings should be interpreted cautiously. Hence, future studies are required to investigate the underlying neurobiological mechanisms and to verify whether the positive findings can be confirmed and transferred to other needy cohorts, such as older adults with dementia, sarcopenia and/or dynapenia.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alexander Törpel
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany
| | - Lutz Schega
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Brenneckestraße 6, 39118 Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
60
|
Kehler DS, Theou O, Rockwood K. Bed rest and accelerated aging in relation to the musculoskeletal and cardiovascular systems and frailty biomarkers: A review. Exp Gerontol 2019; 124:110643. [PMID: 31255732 DOI: 10.1016/j.exger.2019.110643] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Prolonged bed rest and lifelong physical inactivity cause deleterious effects to multiple physiological systems that appear to hasten aging processes. Many such changes are similar to those seen with microgravity in space, but at a much faster rate. Head down tilt bed rest models are used to study whole-body changes that occur with spaceflight. We propose that bed rest can be used to quantify accelerated human aging in relation to frailty. In particular, frailty as a measure of the accumulation of deficits estimates the variability in aging across systems, and moves away from the traditional single-system approach. Here, we provide an overview of the impact of bed rest on the musculoskeletal and cardiovascular systems as well as frailty-related biological markers and inflammatory cytokines. We also propose future inquiries to study the accumulation of deficits with head down bed rest and bed rest in the clinical setting, specifically to understand how unrepaired and unremoved subclinical and subcellular damage give rise to clinically observable health problems.
Collapse
Affiliation(s)
- D S Kehler
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - O Theou
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - K Rockwood
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
61
|
Oikawa SY, Holloway TM, Phillips SM. The Impact of Step Reduction on Muscle Health in Aging: Protein and Exercise as Countermeasures. Front Nutr 2019; 6:75. [PMID: 31179284 PMCID: PMC6543894 DOI: 10.3389/fnut.2019.00075] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Declines in strength and muscle function with age—sarcopenia—contribute to a variety of negative outcomes including an increased risk of: falls, fractures, hospitalization, and reduced mobility in older persons. Population-based estimates of the loss of muscle after age 60 show a loss of ~1% per year while strength loss is more rapid at ~3% per year. These rates are not, however, linear as periodic bouts of reduced physical activity and muscle disuse transiently accelerate loss of muscle and declines in muscle strength and power. Episodic complete muscle disuse can be due to sickness-related bed rest or local muscle disuse as a result of limb immobilization/surgery. Alternatively, relative muscle disuse occurs during inactivity due to illness and the associated convalescence resulting in marked reductions in daily steps, often referred to as step reduction (SR). While it is a “milder” form of disuse, it can have a similar adverse impact on skeletal muscle health. The physiological consequences of even short-term inactivity, modeled by SR, show losses in muscle mass and strength, as well as impaired insulin sensitivity and an increase in systemic inflammation. Though seemingly benign in comparison to bed rest, periodic inactivity likely occurs, we posit, more frequently with advancing age due to illness, declining mental health and declining mobility. Given that recovery from inactivity in older adults is slow or possibly incomplete we hypothesize that accumulated periods of inactivity contribute to sarcopenia. Periodic activity, even in small quantities, and protein supplementation may serve as effective strategies to offset the loss of muscle mass with aging, specifically during periods of inactivity. The aim of this review is to examine the recent literature encompassing SR, as a model of inactivity, and to explore the capacity of nutrition and exercise interventions to mitigate adverse physiological changes as a result of SR.
Collapse
Affiliation(s)
- Sara Y Oikawa
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Tanya M Holloway
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
62
|
Buso A, Comelli M, Picco R, Isola M, Magnesa B, Pišot R, Rittweger J, Salvadego D, Šimunič B, Grassi B, Mavelli I. Mitochondrial Adaptations in Elderly and Young Men Skeletal Muscle Following 2 Weeks of Bed Rest and Rehabilitation. Front Physiol 2019; 10:474. [PMID: 31118897 PMCID: PMC6504794 DOI: 10.3389/fphys.2019.00474] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to evaluate the expression levels of proteins related to mitochondrial biogenesis regulation and bioenergetics in vastus lateralis muscle biopsies from 16 elderly and 7 young people subjected to 14 days of bed-rest, causing atrophy, and subsequent 14 days of exercise training. Based on quantitative immunoblot analyses, in both groups a reduction of two key regulators of mitochondrial biogenesis/remodeling and activity, namely PGC-1α and Sirt3, was revealed during bed-rest, with a subsequent up-regulation after rehabilitation, indicating an involvement of PGC-1α-Sirt3 axis in response to the treatments. A difference was observed comparing the young and elderly subjects as, for both proteins, the abundance in the elderly was more affected by immobility and less responsive to exercise. The expression levels of TOM20 and Citrate Synthase, assayed as markers of outer mitochondrial membrane and mitochondrial mass, showed a noticeable sensitivity in the elderly group, where they were affected by bed-rest and rehabilitation recalling the pattern of PGC-1α. TOM20 and CS remained unchanged in young subjects. Single OXPHOS complexes showed peculiar patterns, which were in some cases dissimilar from PGC-1α, and suggest different influences on protein biogenesis and degradation. Overall, exercise was capable to counteract the effect of immobility, when present, except for complex V, which was markedly downregulated by bed-rest, but remained unaffected after rehabilitation, maybe as result of greater extent of degradation processes over biogenesis. Phosphorylation extent of AMPK, and its upstream activator LKB1, did not change after bed-rest and rehabilitation in either young or elderly subjects, suggesting that the activation of energy-sensing LKB1-AMPK signaling pathway was “missed” due to its transient nature, or was not triggered under our conditions. Our study demonstrates that, as far as the expression of various proteins related to mitochondrial biogenesis/remodeling, adaptations to bed-rest and rehabilitation in the two populations were different. The impact of bed-rest was greater in the elderly subjects, where the pattern (decrease after bed rest and recovery following rehabilitation) was accompanied by changes of mitochondrial mass. Modifications of protein abundance were matched with data obtained from gene expression analyses of four public human datasets focusing on related genes.
Collapse
Affiliation(s)
- Alessia Buso
- Department of Medicine, University of Udine, Udine, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Miriam Isola
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Rado Pišot
- Institute for Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Joern Rittweger
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany.,Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Desy Salvadego
- Department of Medicine, University of Udine, Udine, Italy
| | - Boštjan Šimunič
- Institute for Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy.,INBB Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| |
Collapse
|
63
|
Šimunič B, Koren K, Rittweger J, Lazzer S, Reggiani C, Rejc E, Pišot R, Narici M, Degens H. Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. J Appl Physiol (1985) 2019; 126:815-822. [PMID: 30676871 DOI: 10.1152/japplphysiol.00880.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In young and older people, skeletal muscle mass is reduced after as little as 7 days of disuse. The declines in muscle mass after such short periods are of high clinical relevance, particularly in older people who show a higher atrophy rate and a slower or even a complete lack of muscle mass recovery after disuse. Ten men (24.3 yr; SD 2.6) underwent 35 days of 6° head-down tilt bed rest, followed by 30 days of recovery. During bed rest, a neutral energy balance was maintained, with three weekly passive physiotherapy sessions to minimize muscle soreness and joint stiffness. All measurements were performed in a hospital at days 1-10, 16, 28, and 35 of bed rest (BR1-BR10, BR16, BR28, and BR35, respectively) and days 1, 3, and 30 after reambulation (R + 1, R + 3, and R + 30, respectively). Vastus medialis obliquus (VMO), vastus medialis longus (VML), and biceps femoris (BF) thickness (d) and pennation angle (Θ) were assessed by ultrasonography, whereas twitch muscle belly displacement (Dm) and contraction time (Tc) were assessed with tensiomyography (TMG). After bed rest, d and Θ decreased by 13-17% in all muscles ( P < 0.001) and had recovered at R + 30. Dm was increased by 42.3-84.4% ( P < 0.001) at BR35 and preceded the decrease in d by 7, 5, and 3 days in VMO, VML, and BF, respectively. Tc increased only in BF (32.1%; P < 0.001) and was not recovered at R + 30. TMG can detect early bed-rest-induced changes in muscle with higher sensitivity before overt architectural changes, and atrophy can be detected. NEW & NOTEWORTHY Detection of early atrophic processes and irreversible adaptation to disuse are of high clinical relevance. With the use of tensiomyography (TMG), we detected early atrophic processes before overt architectural changes, and atrophy can be detected using imaging technique. Furthermore, TMG detected irreversible changes of biceps femoris contraction time.
Collapse
Affiliation(s)
- Boštjan Šimunič
- University of Primorska , Koper , Slovenia.,Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia
| | - Katja Koren
- Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center , Cologne , Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne , Cologne , Germany
| | - Stefano Lazzer
- Department of Medicine, University of Udine , Udine , Italy.,School of Sport Sciences, University of Udine , Udine , Italy
| | - Carlo Reggiani
- Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia.,Department of Biomedical Sciences, University of Padova , Padova , Italy
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia
| | - Marco Narici
- Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia.,Department of Biomedical Sciences, University of Padova , Padova , Italy
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University , Manchester , United Kingdom.,Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania.,University of Medicine and Pharmacy of Targu Mures , Targu Mures , Romania
| |
Collapse
|
64
|
Marusic U, Kavcic V, Pisot R, Goswami N. The Role of Enhanced Cognition to Counteract Detrimental Effects of Prolonged Bed Rest: Current Evidence and Perspectives. Front Physiol 2019; 9:1864. [PMID: 30728781 PMCID: PMC6351441 DOI: 10.3389/fphys.2018.01864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Prolonged periods of physical inactivity or bed rest can lead to a significant decline of functional and cognitive functions. Different kinds of countermeasures (e.g., centrifugation, nutritional, and aerobic interventions) have been developed to attempt to mitigate negative effects related to bed rest confinement. The aim of this report is to provide an overview of the current evidence related to the effectiveness of computerized cognitive training (CCT) intervention during a period of complete physical inactivity in older adults. CCT, using a virtual maze navigation task, appears to be effective and has long-lasting benefits (up to 1.5 years after the study). Moreover, enhanced cognition (executive control) reduces decline in the ability to perform complex motor-cognitive dual-tasks after prolonged period of bed rest. It has been demonstrated that CCT administration in older adults also prevents bed rest stress-related physiological changes [these groups showed minimal changes in vascular function and an unchanged level of brain-derived neurotrophic factor (BDNF)] while control subjects showed decreased peripheral vascularization and increased plasma level of the neurotrophin BDNF during a 14-day bed rest. In addition, the effects of CCT are evident also from the brain electrocortical findings: CCT group revealed a decreased power in lower delta and theta bands while significant increases in the same EEG spectral bands power were found in control subjects. If we consider an increase of power in delta band as a marker of cortical aging, then the lack of shift of EEG power to lower band indicates a preventive role of CCT on the cortical level during physiological deconditioning induced by 2-week bed rest immobilization. However, replication on a larger sample is required to confirm the observed findings. Applications derived from these findings could be appropriate for implementation of hospital treatment for bed ridden patients as well as for fall prevention programs.
Collapse
Affiliation(s)
- Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - European Center Maribor, Maribor, Slovenia
| | - Voyko Kavcic
- Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Rado Pisot
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Nandu Goswami
- Department of Health Sciences, Alma Mater Europaea - European Center Maribor, Maribor, Slovenia.,Head of Research Unit: "Gravitational Physiology, Aging and Medicine", Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
65
|
Wang QQ, Jing XM, Bi YZ, Cao XF, Wang YZ, Li YX, Qiao BJ, Chen Y, Hao YL, Hu J. Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stromal Cells May Attenuate Sarcopenia in Aged Mice Induced by Hindlimb Suspension. Med Sci Monit 2018; 24:9272-9281. [PMID: 30571669 PMCID: PMC6320659 DOI: 10.12659/msm.913362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Since the use of human umbilical cord Wharton’s Jelly derived mesenchymal stromal cells (hWJ-MSCs) to treat sarcopenia has not been explored, we studied the effects of hWJ-MSCs in aged male C57BL/6J mice with sarcopenia induced by hindlimb suspension, and explored the potential mechanism. Material/Methods Hindlimb suspension was used to induce sarcopenia in 24-month-old C57BL/6J mice and green fluorescent protein-tagged hWJ-MSCs and controls were transplanted into mice via tail vein or local intramuscular injection. After hWJ-MSC transplantation, changes in whole body muscle strength and endurance, gastrocnemius muscle weight and myofiber cross-sectional area (CSA) were studied. Proliferation of skeletal muscle stem cell, apoptosis, and chronic inflammation were also investigated. Results We demonstrated that whole body muscle strength and endurance, gastrocnemius muscle mass, and CSA were significantly increased in hWJ-MSC-transplanted mice than in controls (P<0.05). In hWJ-MSC-transplanted mice, apoptotic myonuclei was reduced, and BrdU and Pax-7 expression indices of gastrocnemius muscles were increased (P<0.05). Tumor necrosis factor (TNF)-α and interleukin (IL)-6 were downregulated, and IL-4 and IL-10 were upregulated (P<0.05). Conclusions hWJ-MSCs may ameliorate sarcopenia in aged male C57BL/6J mice induced by hindlimb suspension, and this may be via activation of resident skeletal muscle satellite cells, reduction of apoptosis, and less chronic inflammation.
Collapse
Affiliation(s)
- Quan-Quan Wang
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Xiao-Ma Jing
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Yan-Zhen Bi
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China (mainland)
| | - Xiao-Fu Cao
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yu-Zhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yan-Xin Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Bao-Jun Qiao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yun Chen
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yan-Lei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
66
|
Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev 2018; 47:80-88. [PMID: 30031068 DOI: 10.1016/j.arr.2018.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/08/2018] [Accepted: 07/09/2018] [Indexed: 01/07/2023]
Abstract
Disuse situations can have serious adverse health consequences in the elderly, including mainly functional impairment with subsequent increase in the risk of falls or morbimortality. The present review provides clinicians and care givers with detailed and practical information on the feasibility and effectiveness of physical strategies that are currently available to prevent or attenuate the functional decline that occurs secondarily to disuse situations in the elderly, notably in the hospital setting. In this context, active approaches such as resistance exercises and maximal voluntary contractions, which can be performed both isometrically and dynamically, are feasible during most immobilization situations including in hospitalized old people and represent powerful tools for the prevention of muscle atrophy. Aerobic exercise should also be prescribed whenever possible to reduce the loss of cardiovascular capacity associated with disuse periods. Other feasible strategies for patients who are unwilling or unable to perform volitional exercise comprise neuromuscular electrical stimulation, vibration, and blood flow restriction. However, they should ideally be applied synchronously with voluntary exercise to obtain synergistic benefits.
Collapse
|
67
|
Effects of Preoperative Exercise on Physical Fitness and Body Composition in Pancreatic Cancer Survivors Receiving Neoadjuvant Therapy: A Case Series. REHABILITATION ONCOLOGY 2018. [DOI: 10.1097/01.reo.0000000000000122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
68
|
Venturelli M, Richardson RS, Reggiani C, Schena F. Age-related changes in skeletal muscle function: the sum of the parts could be greater than the whole. J Appl Physiol (1985) 2018; 121:1234. [PMID: 27881625 DOI: 10.1152/japplphysiol.00770.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Massimo Venturelli
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Italy;
| | - Russell S Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; and
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Italy
| |
Collapse
|
69
|
Grassi B. Bed Rest Studies as Analogs of Conditions Encountered in Space and in Diseases. Med Sci Sports Exerc 2018; 50:1907-1908. [PMID: 30113540 DOI: 10.1249/mss.0000000000001621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bruno Grassi
- Department of Medicine, University of Udine, Udine, ITALY
| |
Collapse
|
70
|
Kouw IWK, Groen BBL, Smeets JSJ, Kramer IF, van Kranenburg JMX, Nilwik R, Geurts JAP, Ten Broeke RHM, Poeze M, van Loon LJC, Verdijk LB. One Week of Hospitalization Following Elective Hip Surgery Induces Substantial Muscle Atrophy in Older Patients. J Am Med Dir Assoc 2018; 20:35-42. [PMID: 30108034 DOI: 10.1016/j.jamda.2018.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Short successive periods of skeletal muscle disuse have been suggested to substantially contribute to the observed loss of skeletal muscle mass over the life span. Hospitalization of older individuals due to acute illness, injury, or major surgery generally results in a mean hospital stay of 5 to 7 days, during which the level of physical activity is strongly reduced. We hypothesized that hospitalization following elective total hip arthroplasty is accompanied by substantial leg muscle atrophy in older men and women. DESIGN AND PARTICIPANTS Twenty-six older patients (75 ± 1 years) undergoing elective total hip arthroplasty participated in this observational study. MEASUREMENTS On hospital admission and on the day of discharge, computed tomographic (CT) scans were performed to assess muscle cross-sectional area (CSA) of both legs. During surgery and on the day of hospital discharge, a skeletal muscle biopsy was taken from the m. vastus lateralis of the operated leg to assess muscle fiber type-specific CSA. RESULTS An average of 5.6 ± 0.3 days of hospitalization resulted in a significant decline in quadriceps (-3.4% ± 1.0%) and thigh muscle CSA (-4.2% ± 1.1%) in the nonoperated leg (P < .05). Edema resulted in a 10.3% ± 1.7% increase in leg CSA in the operated leg (P < .05). At hospital admission, muscle fiber CSA was smaller in the type II vs type I fibers (3326 ± 253 μm2 vs 4075 ± 279 μm2, respectively; P < .05). During hospitalization, type I and II muscle fiber CSA tended to increase, likely due to edema in the operated leg (P = .10). CONCLUSIONS Six days of hospitalization following elective total hip arthroplasty leads to substantial leg muscle atrophy in older patients. Effective intervention strategies are warranted to prevent the loss of muscle mass induced by short periods of muscle disuse during hospitalization.
Collapse
Affiliation(s)
- Imre W K Kouw
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands
| | - Bart B L Groen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands
| | - Irene Fleur Kramer
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands; Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands
| | - Janneau M X van Kranenburg
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands
| | - Rachél Nilwik
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands
| | - Jan A P Geurts
- Department of Orthopedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre+, The Netherlands
| | - René H M Ten Broeke
- Department of Orthopedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre+, The Netherlands
| | - Martijn Poeze
- Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, The Netherlands.
| |
Collapse
|
71
|
Moore DR, Kelly RP, Devries MC, Churchward-Venne TA, Phillips SM, Parise G, Johnston AP. Low-load resistance exercise during inactivity is associated with greater fibre area and satellite cell expression in older skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:747-754. [PMID: 29761654 PMCID: PMC6104111 DOI: 10.1002/jcsm.12306] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Age-related sarcopenia is accelerated by physical inactivity. Low-load resistance exercise (LLRE) counters inactivity-induced muscle atrophy in older adults, but changes in muscle fibre morphology are unstudied. We aimed to determine the impact of LLRE during short-term inactivity (step-reduction) on muscle fibre size and capillarity as well as satellite cell (SC) content in older skeletal muscle. METHODS Fourteen older (~71 years) male adults underwent 14 days of step reduction (<1500 steps/day) while performing six sessions of LLRE (~30% maximal strength) with one leg (SR + EX) while the contralateral leg served as an untrained control (SR). Seven healthy ambulatory age-matched male adults (~69 years) served as a comparator group (COM). Muscle biopsies were taken from the vastus lateralis after 14 days, and immunohistochemical analysis was performed to determine muscle fibre cross-sectional area (CSA), myonuclear content, SC content (PAX7+ cells), and total (C:F) and fibre type-specific (C:Fi) capillary-to-fibre ratios. RESULTS Type I and II fibre CSA was greater in SR + EX compared with SR. Whereas there were no differences across fibre types between SR + EX and CON, type II fibre CSA was significantly lower in SR compared with COM. Type II myonuclear domain was greater in SR + EX compared with COM and SR. Pax7+ cells associated with type I and II fibres were lower in SR compared with SR + EX. Type II PAX7+ cells were also lower in SR compared with COM with a similar trend for type I fibres. There were trends for a lower C:Fi in SR compared with SR + EX for both fibre types with no differences for each compared with COM. CONCLUSIONS Minimal LLRE during a period of decreased physical activity is associated with greater muscle fibre CSA, SC content, and capillarization. These results support the use of LLRE as an effective countermeasure to inactivity-induced alterations in muscle morphology with age.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Ryan P Kelly
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Adam P Johnston
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
72
|
Guedes LPCM, Oliveira MLCD, Carvalho GDA. Deleterious effects of prolonged bed rest on the body systems of the elderly - a review. REVISTA BRASILEIRA DE GERIATRIA E GERONTOLOGIA 2018. [DOI: 10.1590/1981-22562018021.170167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract Objective: to describe the deleterious effects of prolonged bed rest on the body systems of the elderly. Method: an integrative-narrative review was carried out, with the following research question: What are the effects of prolonged bed rest on the body systems of the elderly? The PubMed and Virtual Health Library databases were searched with the following terms: "bed rest” and "elderly" with the Boolean operator “and”. Results: a total of 1,639 articles were found. After application of the established criteria, nine articles remained, and 20 were added to maintain the citation of the primary source, giving a total of 29 articles. Conclusion: the immobility associated with prolonged bed rest is detrimental to the health of the elderly, as it affects several systems, such as the cardiovascular, pulmonary, gastrointestinal, musculoskeletal and urinary systems, which may lead to the onset of diseases in addition to those that led to bed rest.
Collapse
|
73
|
Biolo G, Di Girolamo FG, McDonnell A, Fiotti N, Mearelli F, Situlin R, Gonelli A, Dapas B, Giordano M, Lainscak M, Grassi G, Zauli G, Secchiero P, Mekjavic I. Effects of Hypoxia and Bed Rest on Markers of Cardiometabolic Risk: Compensatory Changes in Circulating TRAIL and Glutathione Redox Capacity. Front Physiol 2018; 9:1000. [PMID: 30104982 PMCID: PMC6077233 DOI: 10.3389/fphys.2018.01000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
In chronic diseases, hypoxia and physical inactivity are associated with atherosclerosis progression. In contrast, a lower mortality from coronary artery disease and stroke is observed in healthy humans residing at high altitude in hypoxic environments. Eleven young, male volunteers completed the following 10-day campaigns in a randomized order: hypoxic ambulatory, hypoxic bed rest and normoxic bed rest. Before intervention, subjects were evaluated in normoxic ambulatory condition. Normobaric hypoxia was achieved in a hypoxic facility simulating 4000 m of altitude. Following hypoxia, either in bed rest or ambulatory condition, markers of cardiometabolic risk shifted toward a more atherogenic pattern consisting of: (a) lower levels of total HDL cholesterol and HDL2 sub-fraction and decreased hepatic lipase; (b) activation of systemic inflammation, as determined by C-reactive protein and serum amyloid A; (c) increased plasma homocysteine; (d) decreased delta-5 desaturase index in cell membrane fatty acids, a marker of insulin sensitivity. Bed rest and hypoxia additively decreased total HDL and delta-5 desaturase index. In parallel to the pro-atherogenic effects, hypoxia activated selected anti-atherogenic pathways, consisting of increased circulating TNF-related apoptosis-inducing ligand (TRAIL), a protective factor against atherosclerosis, membrane omega-3 index and erythrocyte glutathione availability. Hypoxia mediated changes in TRAIL concentrations and redox glutathione capacity (i.e., GSH/GSSG ratio) were greater in ambulatory conditions (+34 ± 6% and +87 ± 31%, respectively) than in bed rest (+17 ± 7% and +2 ± 27% respectively). Hypoxia-induced cardiometabolic risk is blunted by moderate level of physical activity as compared to bed rest. TRAIL and glutathione redox capacity may contribute to the positive interaction between physical activity and hypoxia. Highlights: - Hypoxia and bed rest activate metabolic and inflammatory markers of atherogenesis. - Hypoxia and physical activity activate selected anti-atherogenic pathways. - Hypoxia and physical activity positive interaction involves TRAIL and glutathione.
Collapse
Affiliation(s)
- Gianni Biolo
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Filippo G. Di Girolamo
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Adam McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Nicola Fiotti
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Filippo Mearelli
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Roberta Situlin
- Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Arianna Gonelli
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, University of Ferrara, Ferrara, Italy
| | - Barbara Dapas
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Mauro Giordano
- Ospedale Clinicizzato di Marcianise, Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell’Invecchiamento, Università degli Studi della Campania Luigi Vanvitelli, Marcianise, Italy
| | - Mitja Lainscak
- Department of Internal Medicine, General Hospital Murska Sobota and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gabriele Grassi
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Giorgio Zauli
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, University of Ferrara, Ferrara, Italy
| | - Igor Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
74
|
Orssatto LBDR, Wiest MJ, Diefenthaeler F. Neural and musculotendinous mechanisms underpinning age-related force reductions. Mech Ageing Dev 2018; 175:17-23. [PMID: 29997056 DOI: 10.1016/j.mad.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Ageing leads to substantial force production capacity reductions, which is an indicator of frailty and disability, and a mortality predictor in elders. Understanding the age-dependent neuromuscular mechanisms underlying force reductions can optimize healthcare professionals' exercise protocol choices for patients and allows researchers to investigate new interventions to mitigate these reductions. Our primary goal was to provide an updated review about the main neural and musculotendinous mechanisms underpinning age-related reductions in force capacity. Our secondary goal was to summarize how aerobic and strength training can lessen these age-related reductions. This review suggests that several steps in the force production pathway, from cortical to muscular mechanisms, are negatively affected by ageing. However, combining aerobic and strength training can attenuate these effects. Strength training (i.e. moderate to high- intensity, progressive volume, accentuated eccentric loading and fast concentric contraction velocity) can increase overall force production capacity by producing beneficial neural and musculotendinous adaptations. Additionally, aerobic training (i.e. moderate and high intensities) plays an essential role in preserving the structure and function of the neuromuscular system.
Collapse
Affiliation(s)
- Lucas Bet da Rosa Orssatto
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Matheus Joner Wiest
- Toronto Rehabilitation Institute - UHN. Neural Engineering & Therapeutic Team, Toronto, Ontario, Canada
| | - Fernando Diefenthaeler
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
75
|
Motor Imagery during Action Observation of Locomotor Tasks Improves Rehabilitation Outcome in Older Adults after Total Hip Arthroplasty. Neural Plast 2018; 2018:5651391. [PMID: 29755513 PMCID: PMC5884021 DOI: 10.1155/2018/5651391] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/04/2018] [Indexed: 12/20/2022] Open
Abstract
This study aimed at determining whether the combination of action observation and motor imagery (AO + MI) of locomotor tasks could positively affect rehabilitation outcome after hip replacement surgery. Of initially 405 screened participants, 21 were randomly split into intervention group (N = 10; mean age = 64 y; AO + MI of locomotor tasks: 30 min/day in the hospital, then 3×/week in their homes for two months) and control group (N = 11, mean age = 63 y, active controls). The functional outcomes (Timed Up and Go, TUG; Four Step Square Test, FSST; and single- and dual-task gait and postural control) were measured before (PRE) and 2 months after surgery (POST). Significant interactions indicated better rehabilitation outcome for the intervention group as compared to the control group: at POST, the intervention group revealed faster TUG (p = 0.042), FSST (p = 0.004), and dual-task fast-paced gait speed (p = 0.022), reduced swing-time variability (p = 0.005), and enhanced cognitive performance during dual tasks while walking or balancing (p < 0.05). In contrast, no changes were observed for body sway parameters (p ≥ 0.229). These results demonstrate that AO + MI is efficient to improve motor-cognitive performance after hip surgery. Moreover, only parameters associated with locomotor activities improved whereas balance skills that were not part of the AO + MI intervention were not affected, demonstrating the specificity of training intervention. Overall, utilizing AO + MI during rehabilitation is advised, especially when physical practice is limited.
Collapse
|
76
|
Floreani M, Rejc E, Taboga P, Ganzini A, Pišot R, Šimunič B, Biolo G, Reggiani C, Passaro A, Narici M, Rittweger J, di Prampero PE, Lazzer S. Effects of 14 days of bed rest and following physical training on metabolic cost, mechanical work, and efficiency during walking in older and young healthy males. PLoS One 2018. [PMID: 29529070 PMCID: PMC5847238 DOI: 10.1371/journal.pone.0194291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated: i) the effects of bed rest and a subsequent physical training program on metabolic cost (Cw), mechanical work and efficiency during walking in older and young men; ii) the mechanisms underlying the higher Cw observed in older than young men.Twenty-three healthy male subjects (N = 16 older adults, age 59.6±3.4 years; N = 7 young, age: 23.1±2.9 years) participated in this study. The subjects underwent 14 days of bed rest followed by two weeks of physical training (6 sessions). Cw, mechanical work, efficiency, and co-contraction time of proximal muscles (vastus lateralis and biceps femoris) and distal muscles (gastrocnemius medialis and tibialis anterior) were measured during walking at 0.83, 1.11, 1.39, 1.67 m·s-1 before bed rest (pre-BR), after bed rest (post-BR) and after physical training (post-PT).No effects of bed rest and physical training were observed on the analysed parameters in either group. Older men showed higher Cw and lower efficiency at each speed (average +25.1 and -20.5%, P<0.001, respectively) compared to young. Co-contraction time of proximal and distal muscles were higher in older than in young men across the different walking speeds (average +30.0 and +110.3%, P<0.05, respectively).The lack of bed rest and physical training effects on the parameters analyzed in this study may be explained by the healthy status of both young and older men, which could have mitigated the effects of these interventions on walking motor function. On the other hand, the fact that older adults showed greater Cw, overall higher co-contraction time of antagonist lower limb muscles, and lower efficiency compared to the young cohort throughout a wide range of walking speed may suggest that older adults sacrificed economy of walking to improve stability.
Collapse
Affiliation(s)
- Mirco Floreani
- Department of Medical Area, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Enrico Rejc
- Department of Medical Area, University of Udine, Udine, Italy
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States of America
| | - Paolo Taboga
- Department of Medical Area, University of Udine, Udine, Italy
- Department of Kinesiology and Health Science, California State University, Sacramento, CA, United States of America
| | - Alessandro Ganzini
- Department of Medical Area, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Rado Pišot
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Bostjan Šimunič
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Gianni Biolo
- Department of Medical, Surgical and Health Sciences, Division of Internal Medicine, University of Trieste, Trieste, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Angelina Passaro
- Department of Medical Sciences, Section of Internal and Cardiorespiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Narici
- MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Derby Royal Hospital, Derby, United Kingdom
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Pietro Enrico di Prampero
- Department of Medical Area, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Stefano Lazzer
- Department of Medical Area, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
- * E-mail:
| |
Collapse
|
77
|
Abstract
A substantial loss of muscle mass and strength (sarcopenia), a decreased regenerative capacity, and a compromised physical performance are hallmarks of aging skeletal muscle. These changes are typically accompanied by impaired muscle metabolism, including mitochondrial dysfunction and insulin resistance. A challenge in the field of muscle aging is to dissociate the effects of chronological aging per se on muscle characteristics from the secondary influence of lifestyle and disease processes. Remarkably, physical activity and exercise are well-established countermeasures against muscle aging, and have been shown to attenuate age-related decreases in muscle mass, strength, and regenerative capacity, and slow or prevent impairments in muscle metabolism. We posit that exercise and physical activity can influence many of the changes in muscle during aging, and thus should be emphasized as part of a lifestyle essential to healthy aging.
Collapse
Affiliation(s)
- Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| |
Collapse
|
78
|
Hvid LG, Aagaard P, Ørtenblad N, Kjaer M, Suetta C. Plasticity in central neural drive with short-term disuse and recovery - effects on muscle strength and influence of aging. Exp Gerontol 2018; 106:145-153. [PMID: 29476804 DOI: 10.1016/j.exger.2018.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 11/17/2022]
Abstract
While short-term disuse negatively affects mechanical muscle function (e.g. isometric muscle strength) little is known of the relative contribution of adaptions in central neural drive and peripheral muscle contractility. The present study investigated the relative contribution of adaptations in central neural drive and peripheral muscle contractility on changes in isometric muscle strength following short-term unilateral disuse (4 days, knee brace) and subsequent active recovery (7 days, one session of resistance training) in young (n = 11, 24 yrs) and old healthy men (n = 11, 67 yrs). Maximal isometric knee extensor strength (MVC) (isokinetic dynamometer), voluntary muscle activation (superimposed twitch technique), and electrically evoked muscle twitch force (single and doublet twitch stimulation) were assessed prior to and after disuse, and after recovery. Following disuse, relative decreases in MVC did not differ statistically between old (16.4 ± 3.7%, p < 0.05) and young (-9.7 ± 2.9%, p < 0.05) (mean ± SE), whereas voluntary muscle activation decreased more (p < 0.05) in old (-8.4 ± 3.5%, p < 0.05) compared to young (-1.1 ± 1.0%, ns) as did peak single (-25.8 ± 6.6%, p < 0.05 vs -7.6 ± 3.3%, p < 0.05) and doublet twitch force (-23.2 ± 5.5%, p < 0.05 vs -2.0 ± 2.6%, ns). All parameters were restored in young following 7 days recovery, whereas MVC and peak twitch force remained suppressed in old. Regression analysis revealed that disuse-induced changes in MVC relied more on changes in single twitch force in young (p < 0.05) and more on changes in voluntary muscle activation in old (p < 0.05), whereas recovery-induced changes in MVC mainly were explained by gains in voluntary muscle activation in both young and old. Altogether, the present data demonstrate that plasticity in voluntary muscle activation (~central neural drive) is a dominant mechanism affecting short-term disuse- and recovery-induced changes in muscle strength in older adults.
Collapse
Affiliation(s)
- Lars G Hvid
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark (SDU), Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark (SDU), Denmark; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Sweden
| | - Michael Kjaer
- Bispebjerg Hospital, Institute of Sports Medicine and Center of Healthy Aging, University of Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Glostrup, University of Copenhagen, Denmark
| |
Collapse
|
79
|
Rejc E, Floreani M, Taboga P, Botter A, Toniolo L, Cancellara L, Narici M, Šimunič B, Pišot R, Biolo G, Passaro A, Rittweger J, Reggiani C, Lazzer S. Loss of maximal explosive power of lower limbs after 2 weeks of disuse and incomplete recovery after retraining in older adults. J Physiol 2018; 596:647-665. [PMID: 29266264 DOI: 10.1113/jp274772] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Disuse in older adults can critically decrease lower limb muscle power, leading to compromised mobility and overall quality of life. We studied how muscle power and its determinants (muscle mass, single muscle fibre properties and motor control) adapted to 2 weeks of disuse and subsequent 2 weeks of physical training in young and older people. Disuse decreased lower limb muscle power in both groups; however, different adaptations in single muscle fibre properties and co-contraction of leg muscles were observed between young and older individuals. Six physical training sessions performed after disuse promoted the recovery of muscle mass and power. However, they were not sufficient to restore muscle power to pre-disuse values in older individuals, suggesting that further countermeasures are required to counteract the disuse-induced loss of muscle power in older adults. ABSTRACT Disuse-induced loss of muscle power can be detrimental in older individuals, seriously impairing functional capacity. In this study, we examined the changes in maximal explosive power (MEP) of lower limbs induced by a 14-day disuse (bed-rest, BR) and a subsequent 14-day retraining, to assess whether the impact of disuse was greater in older than in young men, and to analyse the causes of such adaptations. Sixteen older adults (Old: 55-65 years) and seven Young (18-30 years) individuals participated in this study. In a subgroup of eight Old subjects, countermeasures based on cognitive training and protein supplementation were applied. MEP was measured with an explosive ergometer, muscle mass was determined by magnetic resonance, motor control was studied by EMG, and single muscle fibres were analysed in vastus lateralis biopsy samples. MEP was ∼33% lower in Old than in Young individuals, and remained significantly lower (-19%) when normalized by muscle volume. BR significantly affected MEP in Old (-15%) but not in Young. Retraining tended to increase MEP; however, this intervention was not sufficient to restore pre-BR values in Old. Ankle co-contraction increased after BR in Old only, and remained elevated after retraining (+30%). Significant atrophy occurred in slow fibres in Old, and in fast fibres in Young. After retraining, the recovery of muscle fibre thickness was partial. The proposed countermeasures were not sufficient to affect muscle mass and power. The greater impact of disuse and smaller retraining-induced recovery observed in Old highlight the importance of designing suitable rehabilitation protocols for older individuals.
Collapse
Affiliation(s)
- Enrico Rejc
- Department of Medicine, University of Udine, Udine, Italy.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Mirco Floreani
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| | - Paolo Taboga
- Department of Medicine, University of Udine, Udine, Italy.,Department of Kinesiology and Health Science, California State University, Sacramento, CA, USA
| | - Alberto Botter
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lina Cancellara
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Derby Royal Hospital, Derby, UK
| | - Boštjan Šimunič
- Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia
| | - Rado Pišot
- Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia
| | - Gianni Biolo
- Department of Medical Sciences, Surgical and Health Sciences, Clinica Medica AOUTS, University of Trieste, Italy
| | - Angelina Passaro
- Department of Medical Sciences, Section of Internal and Cardiorespiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| |
Collapse
|
80
|
Reliability of the twitch evoked skeletal muscle electromechanical efficiency: A ratio between tensiomyogram and M-wave amplitudes. J Electromyogr Kinesiol 2017; 37:108-116. [DOI: 10.1016/j.jelekin.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
|
81
|
Passaro A, Soavi C, Marusic U, Rejc E, Sanz JM, Morieri ML, Nora ED, Kavcic V, Narici MV, Reggiani C, Biolo G, Zuliani G, Lazzer S, Pišot R. Computerized cognitive training and brain derived neurotrophic factor during bed rest: mechanisms to protect individual during acute stress. Aging (Albany NY) 2017; 9:393-407. [PMID: 28161695 PMCID: PMC5361671 DOI: 10.18632/aging.101166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022]
Abstract
Acute stress, as bed rest, was shown to increase plasma level of the neurotrophin brain-derived neurotrophic factor (BDNF) in older, but not in young adults. This increase might represent a protective mechanism towards acute insults in aging subjects. Since computerized cognitive training (CCT) is known to protect brain, herein we evaluated the effect of CCT during bed rest on BDNF, muscle mass, neuromuscular function and metabolic parameters. The subjects that underwent CCT did not show an increase of BDNF after bed rest, and showed an anti-insular modification pattern in metabolism. Neuromuscular function parameters, already shown to beneficiate from CCT, negatively correlated with BDNF in research participants undergoing CCT, while positively correlated in the control group. In conclusion, BDNF increase can be interpreted as a standardized protective mechanism taking place whenever an insult occurs; it gives low, but consistent preservation of neuromuscular function. CCT, acting as an external protective mechanism, seems to modify this standardized response, avoiding BDNF increase or possibly modifying its time course. Our results suggest the possibility of differential neuroprotective mechanisms among ill and healthy individuals, and the importance of timing in determining the effects of protective mechanisms.
Collapse
Affiliation(s)
- Angelina Passaro
- Medical Science Department, University of Ferrara, Ferrara 44121, Italy.,Co-first authors
| | - Cecilia Soavi
- Medical Science Department, University of Ferrara, Ferrara 44121, Italy.,Co-first authors
| | - Uros Marusic
- Science and Research Centre, University of Primorska, Koper 6000, Slovenia
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Juana M Sanz
- Medical Science Department, University of Ferrara, Ferrara 44121, Italy
| | - Mario L Morieri
- Medical Science Department, University of Ferrara, Ferrara 44121, Italy
| | | | - Voyko Kavcic
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA.,Biomedical Research and Innovative Society, Ljubljana 1000, Slovenia
| | - Marco V Narici
- School of Graduate Entry Medicine and Health, University of Nottingham, Derby DE22 3NE, UK
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua 35131 Italy
| | - Gianni Biolo
- Department of Medical, Surgical and Health Sciences, Division of Internal Medicine, University of Trieste, Trieste 34149, Italy
| | - Giovanni Zuliani
- Medical Science Department, University of Ferrara, Ferrara 44121, Italy
| | - Stefano Lazzer
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy.,School of Sport Sciences, University of Udine, Udine 33100, Italy
| | - Rado Pišot
- Science and Research Centre, University of Primorska, Koper 6000, Slovenia
| |
Collapse
|
82
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Montani JP. Orthostatic Intolerance in Older Persons: Etiology and Countermeasures. Front Physiol 2017; 8:803. [PMID: 29163185 PMCID: PMC5677785 DOI: 10.3389/fphys.2017.00803] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Orthostatic challenge produced by upright posture may lead to syncope if the cardiovascular system is unable to maintain adequate brain perfusion. This review outlines orthostatic intolerance related to the aging process, long-term bedrest confinement, drugs, and disease. Aging-associated illness or injury due to falls often leads to hospitalization. Older patients spend up to 83% of hospital admission lying in bed and thus the consequences of bedrest confinement such as physiological deconditioning, functional decline, and orthostatic intolerance represent a central challenge in the care of the vulnerable older population. This review examines current scientific knowledge regarding orthostatic intolerance and how it comes about and provides a framework for understanding of (patho-) physiological concepts of cardiovascular (in-) stability in ambulatory and bedrest confined senior citizens as well as in individuals with disease conditions [e.g., orthostatic intolerance in patients with diabetes mellitus, multiple sclerosis, Parkinson's, spinal cord injury (SCI)] or those on multiple medications (polypharmacy). Understanding these aspects, along with cardio-postural interactions, is particularly important as blood pressure destabilization leading to orthostatic intolerance affects 3-4% of the general population, and in 4 out of 10 cases the exact cause remains elusive. Reviewed also are countermeasures to orthostatic intolerance such as exercise, water drinking, mental arithmetic, cognitive training, and respiration training in SCI patients. We speculate that optimally applied countermeasures such as mental challenge maintain sympathetic activity, and improve venous return, stroke volume, and consequently, blood pressure during upright standing. Finally, this paper emphasizes the importance of an active life style in old age and why early re-mobilization following bedrest confinement or bedrest is crucial in preventing orthostatic intolerance, falls and falls-related injuries in older persons.
Collapse
Affiliation(s)
- Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andrew P Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Helmut Hinghofer-Szalkay
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
83
|
Urzi F, Šimunič B, Buzan E. Basis for Sarcopenia Screening With the SARC-CalF in Nursing Homes. J Am Med Dir Assoc 2017; 18:991.e5-991.e10. [DOI: 10.1016/j.jamda.2017.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022]
|
84
|
Zubac D, Šimunič B. Skeletal Muscle Contraction Time and Tone Decrease After 8 Weeks of Plyometric Training. J Strength Cond Res 2017; 31:1610-1619. [PMID: 28538312 DOI: 10.1519/jsc.0000000000001626] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the study was to examine whether an improvement in jumping performance after 8 weeks of plyometric training (PT) runs in parallel with changes in lower-limb skeletal muscle contractile properties. Using noninvasive tensiomyography (TMG), we assessed contraction time (Tc) and the maximal amplitude of radial displacement (Dm) in 20 subjects (50% men; age 22.4 ± 4.7 years of age), randomly divided in PT group (N = 10; PLYO) and a control group (N = 10; CTRL). The PLYO performed 8 weeks of PT. Tensiomyography was measured in 5 leg skeletal muscles: vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), gastrocnemius medialis (GM), and gastrocnemius lateralis (GL). Additionally, we evaluated countermovement jump (CMJ) height improvement on a ground force plate. Assessments were repeated before and after PT. After 8 weeks of PT, CMJ height increased by 12.2% in PLYO (p = 0.015), but not in CRTL. Contraction time, which is related to myosin heavy-chain type 1 (MHC-1) proportion, decreased in VL (-8.7%; p < 0.001), BF (-26.7%; p = 0.032), TA (-32.9%; p = 0.004), and GL (-25.8%; p = 0.044), but not in GM (-8.1%; p = 0.158). The estimated VL MHC-1 proportion decreased by -8.2% (p = 0.041). The maximal amplitude of radial displacement, inversely related to muscle tone, decreased in BF (-26.5%; p = 0.032), GM (-14.9%; p = 0.017), GL (-31.5%; p = 0.017), but not in TA (-16.8%; p = 0.113) and VL (-6.0%; p = 0.654). After PT, jumping performance increased, which was paralleled by decreased Tc and decreased muscle tone. Additionally, adaptations to contractile properties were muscle specific, which is important for future studies. It seems that adjustments were dose dependent, being higher in muscles with lower habitual load.
Collapse
Affiliation(s)
- Damir Zubac
- 1Faculty of Kinesiology, University of Split, Split, Croatia; and 2Science and Research Center, Institute for Kinesiology Research, University of Primorska, Koper, Slovenia
| | | |
Collapse
|
85
|
da Silva RP, Martinez D, Lopez P, Cadore EL. Effect of strength training on sleep apnea severity in the elderly: study protocol for a randomized controlled trial. Trials 2017; 18:489. [PMID: 29058628 PMCID: PMC5651603 DOI: 10.1186/s13063-017-2238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/05/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) occurs due to sleep-induced upper airway muscle relaxation resulting in increased pharyngeal collapsibility. Clinical trials have shown a favorable effect of exercise training on OSA severity in middle-aged adults. Aging is characterized by motor-unit loss. Force training may affect the whole body muscle tone. We hypothesize that interventions increasing muscle strength might propagate to motor units at the abductor pharyngeal muscles, reducing collapsibility and, hence, sleep apnea severity in elderly patients with obstructive sleep apnea. METHODS/DESIGN This is a randomized clinical trial including patients between 65 and 80 years of age, with obstructive sleep apnea, and an apnea-hypopnea index (AHI) between 20 and 50 events/hour, diagnosed by out-of-center in-home type III polysomnography. Forty subjects will be included and randomly assigned to two equal sized groups. The participants allocated to the intervention group will attend two sessions per week of one-hour strength training for the legs, arms, chest, back, and abdomen and the controls will receive advice on lifestyle change. The primary outcome measure of the study will be the change in apnea-hypopnea index and the secondary outcomes will be the body composition, evaluated by anthropometric and bioelectrical impedance variables; maximum dynamic force, appraised by one-repetition maximum strength test; muscle quality and thickness by ultrasound; physical function assessed by sit-to-stand test, timed up and go test, handgrip strength test. The study duration will be 12 weeks. Intention-to-treat and per-protocol analyses will be performed. DISCUSSION The high prevalence of obstructive sleep apnea in elderly people is a public health issue. OSA is a recognized cause of cardiovascular disease and reduces quality of life due to sleepiness and fatigue. Exercise is a low-cost intervention that could help to detain the trend towards age-dependent loss of pharyngeal motor units and progressive severity of obstructive sleep apnea. Home-based strength exercises may represent a more practical approach than aerobic exercise for elderly patients. If the results confirm our hypothesis, further research on the clinical application of our findings will be warranted. TRIAL REGISTRATION ClinicalTrials.gov, NCT02742792 . Registered on 1 April 2016.
Collapse
Affiliation(s)
- Roberto Pacheco da Silva
- Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Denis Martinez
- Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS Brazil
- Cardiology Unit, Hospital de Clinicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS Brazil
| | - Pedro Lopez
- Exercise Research Laboratory, UFRGS, Porto Alegre, RS Brazil
| | - Eduardo Lusa Cadore
- Exercise Research Laboratory, UFRGS, Porto Alegre, RS Brazil
- Physical Education School, UFRGS, Porto Alegre, RS Brazil
| |
Collapse
|
86
|
Ried-Larsen M, Aarts HM, Joyner MJ. Effects of strict prolonged bed rest on cardiorespiratory fitness: systematic review and meta-analysis. J Appl Physiol (1985) 2017; 123:790-799. [DOI: 10.1152/japplphysiol.00415.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/29/2022] Open
Abstract
The aim of this systematic review and meta-analysis [International Prospective Register of Systematic Reviews (PROSPERO) CRD42017055619] was to assess the effects of strict prolonged bed rest (without countermeasures) on maximal oxygen uptake (V̇o2max) and to explore sources of variation therein. Since 1949, 80 studies with a total of 949 participants (>90% men) have been published with data on strict bed rest and V̇o2max. The studies were conducted mainly in young participants [median age (interquartile range) 24.5 (22.4–34.0) yr]. The duration of bed rest ranged from 1 to 90 days. V̇o2max declined linearly across bed rest duration. No statistical difference in the decline among studies reporting V̇o2max as l/min (−0.3% per day) compared with studies reporting V̇o2max normalized to body weight (ml·kg−1·min−1; −0.43% per day) was observed. Although both total body weight and lean body mass declined in response to bed rest, we did not see any associations with the decline in V̇o2max. However, 15–26% of the variation in the decline in V̇o2max was explained by the pre-bed-rest V̇o2max levels, independent of the duration of bed rest (i.e., higher pre-bed-rest V̇o2max levels were associated with larger declines in V̇o2max). Furthermore, the systematic review revealed a gap in the knowledge about the cardiovascular response to extreme physical inactivity, particularly in older subjects and women of any age group. In addition to its relevance to spaceflight, this lack of data has significant translational implications because younger women sometimes undergo prolonged periods of bed rest associated with the complications of pregnancy and the incidence of hospitalization including prolonged periods of bed rest increases with age. NEW & NOTEWORTHY Large interindividual responses of maximal oxygen uptake (V̇o2max) to aerobic exercise training exist. However, less is known about the variability in the response of V̇o2max to prolonged bed rest. This systematic review and meta-analysis showed that pre-bed-rest V̇o2max values were inversely associated with the change in V̇o2max independent of the duration of bed rest. Moreover, we identified a large knowledge gap about the causes of decline in V̇o2max, particularly in postmenopausal women, which may have clinical implications.
Collapse
Affiliation(s)
- Mathias Ried-Larsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark; and
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hugo M. Aarts
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
87
|
Dirks ML, Wall BT, van Loon LJC. Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol (1985) 2017; 125:850-861. [PMID: 28970205 DOI: 10.1152/japplphysiol.00985.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous situations, such as the recovery from illness or rehabilitation after injury, necessitate a period of muscle disuse in otherwise healthy individuals. Even a few days of immobilization or bed rest can lead to substantial loss of skeletal muscle tissue and compromise metabolic health. The decline in muscle mass is attributed largely to a decline in postabsorptive and postprandial muscle protein synthesis rates. Reintroduction of some level of muscle contraction by the application of neuromuscular electrical stimulation (NMES) can augment both postabsorptive and postprandial muscle protein synthesis rates and, as such, prevent or attenuate muscle loss during short-term disuse in various clinical populations. Whereas maintenance of habitual dietary protein consumption is a prerequisite for muscle mass maintenance, supplementing dietary protein above habitual intake levels does not prevent muscle loss during disuse in otherwise healthy humans. Combining the anabolic properties of physical activity (or surrogates) with appropriate nutritional support likely further increases the capacity to preserve skeletal muscle mass during a period of disuse. Therefore, effective interventional strategies to prevent or alleviate muscle disuse atrophy should include both exercise (mimetics) and appropriate nutritional support.
Collapse
Affiliation(s)
- Marlou L Dirks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| | - Benjamin T Wall
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| |
Collapse
|
88
|
A Novel Automatic Segmentation Method to Quantify the Effects of Spinal Cord Injury on Human Thigh Muscles and Adipose Tissue. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66185-8_79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
89
|
Reidy PT, Lindsay CC, McKenzie AI, Fry CS, Supiano MA, Marcus RL, LaStayo PC, Drummond MJ. Aging-related effects of bed rest followed by eccentric exercise rehabilitation on skeletal muscle macrophages and insulin sensitivity. Exp Gerontol 2017; 107:37-49. [PMID: 28705613 DOI: 10.1016/j.exger.2017.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/27/2022]
Abstract
The pro- and anti-inflammatory macrophages are associated with insulin sensitivity and skeletal muscle regeneration. Infiltrating macrophages in skeletal muscle during a period of physical inactivity and subsequent reloading/rehabilitation in older adults is unknown, but may provide insight into mechanisms related to the development of metabolic disease and changes in muscle cell size. The purpose of this study was to determine if skeletal muscle macrophage infiltration is modulated differently between young and older adults after bed rest and exercise rehabilitation and if these responses are related to muscle and insulin sensitivity changes. 14 young and 9 older adults underwent 5-days of bed rest followed by 8-weeks of lower limb eccentric exercise rehabilitation (REHAB). Dual-energy X-ray absorptiometry, magnetic resonance imaging and myofiber analysis were used to identify muscle morphology and CLIX-IR and CLIX-β were used to assess insulin sensitivity. Skeletal muscle macrophages, CD68 (pan), CD11b (M1), CD163 (M2), CD206 (M2), were characterized using immunohistochemistry and gene expression. Insulin sensitivity, independent of age, decreased ~38% following bed rest and was restored following REHAB. We found robust age-related differences in muscle atrophy during bed rest, yet older and younger adults equally hypertrophied during REHAB. Interestingly, there were age-related differences in macrophage content (CD68+CD11b+ and CD68+CD11b- cells) but both young and old similarly increased macrophages with REHAB. Satellite cell changes during rehab corresponded to macrophage content changes. Muscle tissue resident macrophages and gene expression, were not associated with changes in insulin sensitivity following bed rest and REHAB. These data suggest that muscle macrophages are modulated as a result of exercise rehabilitation following bed rest and may more associated with muscle regrowth/hypertrophy rather than insulin sensitivity in young or older adults. This trial was registered at clinicaltrials.gov as NCT01669590.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Catherine C Lindsay
- School of Medicine, University of Utah, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Mark A Supiano
- Division of Geriatrics, 30 N 1900 E, Room 4B120, University of Utah, Salt Lake City, UT 84132, USA; VA Salt Lake City Geriatric Research, Education, and Clinical Center, Salt Lake City, UT 84148, USA
| | - Robin L Marcus
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Paul C LaStayo
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; Department of Nutrition and Integrative Physiology, University of Utah, 250 S. 1850 E, RM 214, Salt Lake City, UT 84112, USA.
| |
Collapse
|
90
|
Reidy PT, McKenzie AI, Brunker P, Nelson DS, Barrows KM, Supiano M, LaStayo PC, Drummond MJ. Neuromuscular Electrical Stimulation Combined with Protein Ingestion Preserves Thigh Muscle Mass But Not Muscle Function in Healthy Older Adults During 5 Days of Bed Rest. Rejuvenation Res 2017; 20:449-461. [PMID: 28482746 DOI: 10.1089/rej.2017.1942] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Short-term bed rest in older adults is characterized by significant loss in leg lean mass and strength posing significant health consequences. The purpose of this study was to determine in healthy older adults if the daily combination of neuromuscular electrical stimulation and protein supplementation (NMES+PRO) would protect muscle mass and function after 5 days of bed rest. Twenty healthy older adults (∼70 years) were subjected to 5 days of continuous bed rest and were randomized into one of two groups: NMES+PRO (n = 10) or control (CON) (n = 10). The NMES+PRO group received bilateral NMES to quadriceps (40 minutes/session, 3 × /day; morning, afternoon, and evening) followed by an interventional protein supplement (17 g). The CON group received an isocaloric equivalent beverage. Before and after bed rest, vastus lateralis biopsies occurred before and after acute essential amino acid (EAA) ingestion for purposes of acutely stimulating mechanistic target of rapamycin (mTORC1) signaling, a major regulator of muscle protein synthesis, in response to bed rest and NMES+PRO. Baseline (pre and post bed rest) muscle samples were also used to assess myofiber characteristics and gene expression of muscle atrophy markers. Thigh lean mass and muscle function were measured before and after bed rest. Five days of bed rest reduced thigh lean mass, muscle function, myofiber cross-sectional area, satellite cell content, blunted EAA-induced mTORC1 signaling, and increased myostatin and MAFbx mRNA expression. Interestingly, NMES+PRO during bed rest maintained thigh lean mass, but not muscle function. Thigh muscle preservation during bed rest with NMES+PRO may partly be explained by attenuation of myostatin and MAFbx mRNA expression rather than restoration of nutrient-induced mTORC1 signaling. We conclude that the combination of NMES and protein supplementation thrice a day may be an effective therapeutic tool to use to preserve thigh muscle mass during periods of short-term hospitalization in older adults. However this combined intervention was not effective to prevent the loss in muscle function.
Collapse
Affiliation(s)
- Paul T Reidy
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Alec I McKenzie
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Preston Brunker
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Daniel S Nelson
- 2 Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| | - Katherine M Barrows
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Mark Supiano
- 3 Division of Geriatrics, University of Utah , Salt Lake City, Utah.,4 VA Salt Lake City Geriatric Research , Education, and Clinical Center, University of Utah, Salt Lake City, Utah
| | - Paul C LaStayo
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Micah J Drummond
- 1 Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah.,2 Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
91
|
Takahashi H, Suzuki Y, Mohamed JS, Gotoh T, Pereira SL, Alway SE. Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. Exp Gerontol 2017; 92:56-66. [PMID: 28286171 PMCID: PMC5501279 DOI: 10.1016/j.exger.2017.02.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 01/26/2023]
Abstract
We have previously found that Epigallocatechin-3-gallate (EGCg), an abundant catechin in green tea, reduced apoptotic signaling and improved muscle recovery in response to reloading after hindlimb suspension (HS). In this study, we investigated if EGCg altered autophagy signaling in skeletal muscle of old rats in response to HS or reloading after HS. Fischer 344×Brown Norway inbred rats (age 34months) were given 1ml/day of purified EGCg (50mg/kg body weight), or the same sample volume of the vehicle by gavage. One group of animals received HS for 14days and the second group of rats received 14days of HS, then the HS was removed and they were allowed to recover by ambulating normally around the cage for two weeks. EGCg decreased a small number of autophagy genes in control muscles, but it increased the expression of other autophagy genes (e.g., ATG16L2, SNCA, TM9SF1, Pink1, PIM-2) and HS did not attenuate these increases. HS increased Beclin1, ATG7 and LC3-II/I protein abundance in hindlimb muscles. Relative to vehicle treatment, EGCg treatment had greater ATG12 protein abundance (35.8%, P<0.05), but decreased Beclin1 protein levels (-101.1%, P<0.05) after HS. However, in reloaded muscles, EGCg suppressed Beclin1 and LC3-II/I protein abundance as compared to vehicle treated muscles. EGCg appeared to "prime" autophagy signaling before and enhance autophagy gene expression and protein levels during unloading in muscles of aged rats, perhaps to improve the clearance of damaged organelles. However, EGCg suppressed autophagy signaling after reloading, potentially to increase the recovery of hindlimb muscles mass and function after loading is restored.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Divison of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Kuju Agricultural Research Center, Graduate School of Agriculture Science, Kyushu University, Naoiri-gun Kuju-cho 4045-4, 878-0201, Oita, Japan
| | - Yutaka Suzuki
- Divison of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Research Faculty of Agriculture, Laboratory of Animal Function and Nutrition, Hokkaido University, Kita-9 Nishi-9, Sapporo, Japan
| | - Junaith S Mohamed
- Divison of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Takafumi Gotoh
- Kuju Agricultural Research Center, Graduate School of Agriculture Science, Kyushu University, Naoiri-gun Kuju-cho 4045-4, 878-0201, Oita, Japan
| | - Suzette L Pereira
- Discovery Technology, Abbott Nutrition, Columbus, OH 43219, United States
| | - Stephen E Alway
- Divison of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
92
|
Marusic U, Giordani B, Moffat SD, Petrič M, Dolenc P, Pišot R, Kavcic V. Computerized cognitive training during physical inactivity improves executive functioning in older adults. AGING NEUROPSYCHOLOGY AND COGNITION 2016; 25:49-69. [PMID: 27937138 DOI: 10.1080/13825585.2016.1263724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hippocampus is closely tied to spatial navigation, a central component in cognitive functioning, and critically involved in age-associated cognitive decline and dementia. This study evaluated a novel, cognitive computerized spatial navigation training (CSNT) program targeting the hippocampus, with expectation of mitigating possible cognitive decline with bed rest (BR). During a 14-day BR study with 16 healthy, older men (mean age = 60 ± 3, range = 55-65 years), half received CSNT for 12 days in 50-min sessions and half were controls (watching documentaries). This design uniquely controlled diet, sleep, and other personal and environmental activities. Although there were no cognitive declines in controls post-BR, CSNT participants demonstrated significant increases in executive/attention ability and processing speed, and continued spatial navigation testing showed improvement to 400 days post-BR. This intervention may prove useful to mitigate cognitive declines known to occur in long periods of immobilization and could have broader implications in protecting against age-related cognitive decline.
Collapse
Affiliation(s)
- Uros Marusic
- a Institute for Kinesiology Research, Science and Research Centre , University of Primorska , Koper , Slovenia
| | - Bruno Giordani
- b Departments of Psychiatry, Neurology, and Psychology and School of Nursing , University of Michigan , Ann Arbor , MI , USA
| | - Scott D Moffat
- c School of Psychology , Georgia Institute of Technology , Atlanta , GA , USA
| | - Mojca Petrič
- d Faculty of Education , University of Primorska , Koper , Slovenia
| | - Petra Dolenc
- d Faculty of Education , University of Primorska , Koper , Slovenia
| | - Rado Pišot
- a Institute for Kinesiology Research, Science and Research Centre , University of Primorska , Koper , Slovenia
| | - Voyko Kavcic
- e Institute of Gerontology , Wayne State University , Detroit , MI , USA
| |
Collapse
|
93
|
Bosutti A, Salanova M, Blottner D, Buehlmeier J, Mulder E, Rittweger J, Yap MH, Ganse B, Degens H. Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest. J Appl Physiol (1985) 2016; 121:838-848. [DOI: 10.1152/japplphysiol.00936.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/02/2016] [Indexed: 12/29/2022] Open
Abstract
The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO3) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO3 and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o2 max), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles ( P < 0.05), and the fiber oxidative capacity ( P < 0.001) and V̇o2 max ( P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL ( P < 0.001). WP+KHCO3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles ( P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO3 appears to attenuate disuse-induced reductions in fiber oxidative capacity.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Dieter Blottner
- Center for Space Medicine Berlin (ZWMB), Berlin, Germany
- Charité Universitätsmedizin Berlin, Vegetative Anatomy, Berlin, Germany
| | - Judith Buehlmeier
- University of Bonn, Department of Nutrition and Food Science, Bonn, Germany
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Moi Hoon Yap
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bergita Ganse
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
94
|
Anabolic resistance assessed by oral stable isotope ingestion following bed rest in young and older adult volunteers: Relationships with changes in muscle mass. Clin Nutr 2016; 36:1420-1426. [PMID: 27742138 DOI: 10.1016/j.clnu.2016.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND & AIMS Aging and experimental bed rest are associated with muscle atrophy and resistance to post-prandial stimulation of protein synthesis or anabolic resistance (AR). We have used in young and older adult volunteers, during short-term bed rest, a quick and non-invasive method, based on a single oral bolus of the stable isotope L[ring-2H5]phenylalanine (D5Phe), to determine post-prandial AR, defined as ratio between irreversible hydroxylation and incorporation into body protein of ingested phenylalanine. METHODS We compared in older (O, 59 ± 1 y) and young (Y, 23 ± 1 y) healthy male volunteers the effects of two-week bed rest on post-prandial protein kinetics, assessed during absorption of a standard ready-to-use oral nutritional supplement, through stable-labeled isotope amino acid D5Phe, diluted in water, given as single oral load. The metabolic fate of D5Phe is either utilization for protein synthesis or irreversible hydroxylation to L[ring-2H4]tyrosine (D4Tyr). AR was defined as ratio between the areas under the curves of D4Tyr-to-D5Phe plasma concentrations over 6 h meal absorption. To determine the relationships between AR and muscle changes following bed rest, quadriceps muscle volume (QMV) was determined by magnetic resonance imaging (MRI). RESULTS At baseline, in pooled Y and O subjects, values of AR were inversely correlated with QMV (R = -0.75; p < 0.03). Following 2-weeks of inactivity, there were significant bed rest effects on AR (p < 0.01) and QMV (p < 0.03), as well as significant bed rest × group interaction for AR (p < 0.03; +9.2% in Y; +21.9% in O) and QMV (p < 0.05; -5.7% in Y; -%7.3 in O). In pooled subjects, the percentage delta changes in AR and QMV, induced by bed rest, were inversely correlated (R = -0.57; p < 0.05). CONCLUSION Bed rest-induced AR is much greater in the older than in younger adults. We have developed a new, simple, non-invasive method for the assessment of AR. The results indicate that this metabolic abnormality is a key mechanism for sarcopenia of aging and inactivity.
Collapse
|
95
|
Galvan E, Arentson-Lantz E, Lamon S, Paddon-Jones D. Protecting Skeletal Muscle with Protein and Amino Acid during Periods of Disuse. Nutrients 2016; 8:E404. [PMID: 27376322 PMCID: PMC4963880 DOI: 10.3390/nu8070404] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Habitual sedentary behavior increases risk of chronic disease, hospitalization and poor quality of life. Short-term bed rest or disuse accelerates the loss of muscle mass, function, and glucose tolerance. Optimizing nutritional practices and protein intake may reduce the consequences of disuse by preserving metabolic homeostasis and muscle mass and function. Most modes of physical inactivity have the potential to negatively impact the health of older adults more than their younger counterparts. Mechanistically, mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis are negatively affected by disuse. This contributes to reduced muscle quality and is accompanied by impaired glucose regulation. Simply encouraging increased protein and/or energy consumption is a well-intentioned, but often impractical strategy to protect muscle health. Emerging evidence suggests that leucine supplemented meals may partially and temporarily protect skeletal muscle during disuse by preserving anabolism and mitigating reductions in mass, function and metabolic homeostasis.
Collapse
Affiliation(s)
- Elfego Galvan
- Center for Rehabilitation and Physical Activity and Nutrition (CeRPAN), University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Emily Arentson-Lantz
- Center for Rehabilitation and Physical Activity and Nutrition (CeRPAN), University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong 3125, Australia.
| | - Douglas Paddon-Jones
- Center for Rehabilitation and Physical Activity and Nutrition (CeRPAN), University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
96
|
Soavi C, Marušič U, Sanz JM, Morieri ML, Dalla Nora E, Šimunič B, Pišot R, Zuliani G, Passaro A. Age-related differences in plasma BDNF levels after prolonged bed rest. J Appl Physiol (1985) 2016; 120:1118-23. [DOI: 10.1152/japplphysiol.01111.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/01/2016] [Indexed: 01/22/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the family of neurotrophins and has been implicated in brain resistance to insults. Murine studies have demonstrated increased hippocampal concentration after acute immobilization and decreased concentration after chronic immobilization. In humans, chronic stress and sedentary lifestyle result in decreased plasma BDNF levels, but there no data exist regarding acute immobilization. The aim of our study was to evaluate age-related responses [comparing 7 younger subjects (age 23 ± 3 yr) and 8 older subjects (age 60 ± 4 yr)] of plasma BDNF before (baseline data collection, BDC) and after 14 days (BR14) of horizontal bed rest (BR). At BDC, BDNF levels were not different between the two groups ( P = 0.101), although at BR14, BDNF levels were higher in older subjects (62.02 ± 18.31) than in younger subjects (34.36 ± 15.24 pg/ml) ( P = 0.002). A general linear model for repeated measures showed a significant effect of BR on BDNF ( P = 0.002). The BDC BDNF levels correlated with fat-free mass in both populations (ALL) ( R = 0.628, P = 0.012), (older, R = 0.753, P = 0.031; younger, R = 0.772, P = 0.042), and with total cholesterol in ALL ( R = 0.647, P = 0.009) and older study subjects ( R = 0.805, P = 0.016). At BR14, BDNF correlated with total cholesterol ( R = 0.579, P = 0.024) and age ( R = 0.647, P = 0.009) in ALL. With an increase in age, the brain could become naturally less resistant to acute stressors, including the detrimental effects of prolonged bed rest, and thus the increase in BDNF in the older study group might reflect a protective overshooting of the brain to counteract the negative effects in such conditions.
Collapse
Affiliation(s)
- Cecilia Soavi
- Medical Science Department, University of Ferrara, Ferrara, Italy; and
| | - Uroš Marušič
- Science and Research Centre, University of Primorska, Capodistria, Slovenia
| | - Juana Maria Sanz
- Medical Science Department, University of Ferrara, Ferrara, Italy; and
| | | | | | - Bostjan Šimunič
- Science and Research Centre, University of Primorska, Capodistria, Slovenia
| | - Rado Pišot
- Science and Research Centre, University of Primorska, Capodistria, Slovenia
| | - Giovanni Zuliani
- Medical Science Department, University of Ferrara, Ferrara, Italy; and
| | - Angelina Passaro
- Medical Science Department, University of Ferrara, Ferrara, Italy; and
| |
Collapse
|