51
|
Ghezzi F, Monni L, Nistri A. Functional up-regulation of the M-current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons. J Physiol 2018; 596:2611-2629. [PMID: 29736957 DOI: 10.1113/jp275906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Excessive neuronal excitability characterizes several neuropathological conditions, including neurodegenerative diseases such as amyotrophic lateral sclerosis. Hypoglossal motoneurons (HMs), which control tongue muscles, are extremely vulnerable to this disease and undergo damage and death when exposed to an excessive glutamate extracellular concentration that causes excitotoxicity. Our laboratory devised an in vitro model of excitotoxicity obtained by pharmacological blockade of glutamate transporters. In this paradigm, HMs display hyperexcitability, collective bursting and eventually cell death. The results of the present study show that pharmacological up-regulation of a K+ current (M-current), via application of the anti-convulsant retigabine, prevented all hallmarks of HM excitotoxicity, comprising bursting, generation of reactive oxygen species, expression of toxic markers and cell death. ○Our data may have translational value to develop new treatments against neurological diseases by using positive pharmacological modulators of the M-current. ABSTRACT Neuronal hyperexcitability is a symptom characterizing several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In the ALS bulbar form, hypoglossal motoneurons (HMs) are an early target for neurodegeneration because of their high vulnerability to metabolic insults. In recent years, our laboratory has developed an in vitro model of a brainstem slice comprising the hypoglossal nucleus in which HM neurodegeneration is achieved by blocking glutamate clearance with dl-threo-β-benzyloxyaspartate (TBOA), thus leading to delayed excitotoxicity. During this process, HMs display a set of hallmarks such as hyperexcitability (and network bursting), reactive oxygen species (ROS) generation and, finally, cell death. The present study aimed to investigate whether blocking early hyperexcitability and bursting with the anti-convulsant drug retigabine was sufficient to achieve neuroprotection against excitotoxicity. Retigabine is a selective positive allosteric modulator of the M-current (IM ), an endogenous mechanism that neurons (comprising HMs) express to dampen excitability. Retigabine (10 μm; co-applied with TBOA) contrasted ROS generation, release of endogenous toxic factors into the HM cytoplasm and excitotoxicity-induced HM death. Electrophysiological experiments showed that retigabine readily contrasted and arrested bursting evoked by TBOA administration. Because neuronal IM subunits (Kv7.2, Kv7.3 and Kv7.5) were expressed in the hypoglossal nucleus and in functionally connected medullary nuclei, we suggest that they were responsible for the strong reduction in network excitability, a potent phenomenon for achieving neuroprotection against TBOA-induced excitotoxicity. The results of the present study may have translational value for testing novel positive pharmacological modulators of the IM under pathological conditions (including neurodegenerative disorders) characterized by excessive neuronal excitability.
Collapse
Affiliation(s)
- Filippo Ghezzi
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Laura Monni
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
52
|
SOD1 Mutations Causing Familial Amyotrophic Lateral Sclerosis Induce Toxicity in Astrocytes: Evidence for Bystander Effects in a Continuum of Astrogliosis. Neurochem Res 2018; 43:166-179. [DOI: 10.1007/s11064-017-2385-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
|
53
|
Black BJ, Atmaramani R, Pancrazio JJ. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays. Front Cell Neurosci 2017; 11:304. [PMID: 29033792 PMCID: PMC5626830 DOI: 10.3389/fncel.2017.00304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022] Open
Abstract
Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH) of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs) have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT) by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A). These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.
Collapse
Affiliation(s)
- Bryan J Black
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Rahul Atmaramani
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J Pancrazio
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
54
|
Arumugam S, Garcera A, Soler RM, Tabares L. Smn-Deficiency Increases the Intrinsic Excitability of Motoneurons. Front Cell Neurosci 2017; 11:269. [PMID: 28928636 PMCID: PMC5591959 DOI: 10.3389/fncel.2017.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
During development, motoneurons experience significant changes in their size and in the number and strength of connections that they receive, which requires adaptive changes in their passive and active electrical properties. Even after reaching maturity, motoneurons continue to adjust their intrinsic excitability and synaptic activity for proper functioning of the sensorimotor circuit in accordance with physiological demands. Likewise, if some elements of the circuit become dysfunctional, the system tries to compensate for the alterations to maintain appropriate function. In Spinal Muscular Atrophy (SMA), a severe motor disease, spinal motoneurons receive less excitation from glutamatergic sensory fibers and interneurons and are electrically hyperexcitable. Currently, the origin and relationship among these alterations are not completely established. In this study, we investigated whether Survival of Motor Neuron (SMN), the ubiquitous protein defective in SMA, regulates the excitability of motoneurons before and after the establishment of the synaptic contacts. To this end, we performed patch-clamp recordings in embryonic spinal motoneurons forming complex synaptic networks in primary cultures, and in differentiated NSC-34 motoneuron-like cells in the absence of synaptic contacts. Our results show that in both conditions, Smn-deficient cells displayed lower action potential threshold, greater action potential amplitudes, and larger density of voltage-dependent sodium currents than cells with normal Smn-levels. These results indicate that Smn participates in the regulation of the cell-autonomous excitability of motoneurons at an early stage of development. This finding may contribute to a better understanding of motoneuron excitability in SMA during the development of the disease.
Collapse
Affiliation(s)
- Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain
| | - Ana Garcera
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain
| | - Rosa M Soler
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain
| |
Collapse
|
55
|
Jiang MC, Adimula A, Birch D, Heckman CJ. Hyperexcitability in synaptic and firing activities of spinal motoneurons in an adult mouse model of amyotrophic lateral sclerosis. Neuroscience 2017; 362:33-46. [PMID: 28844763 DOI: 10.1016/j.neuroscience.2017.08.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
Hyperexcitability is hypothesized to contribute to the degeneration of spinal motoneurons (MNs) in amyotrophic lateral sclerosis (ALS). Studies, thus far, have not linked hyperexcitability to the intrinsic properties of MNs in the adult ALS mouse model with the G93A-mutated SOD1 protein (mSOD1G93A). In this study, we obtained two types of measurements: ventral root recordings to assess motor output and intracellular recordings to assess synaptic properties of individual MNs. All studies were carried out in an in vitro preparation of the sacral spinal cords of mSOD1G93A mice and their non-transgenic (NT) littermates, both in the age range of 50-90days. Ventral root recordings revealed that maximum compound action potentials (coAPs) evoked by a short-train stimulation of corresponding dorsal roots were similar between the two types of mice. Although the progressive depression of coAPs was present during the train stimulation in all recordings, the coAP depression in mSOD1G93A mice was to a lesser extent, which suggests an increased firing tendency in mSOD1G93A MNs. Intracellular recordings showed no changes in fast excitatory postsynaptic potentials (EPSPs) in mSOD1G93A MNs. However, recording did show that oscillating EPSPs (oEPSPs) were induced by poly-EPSPs at a higher frequency and by less-intense electrical stimulation in mSOD1G93A MNs. These oEPSPs were dependent upon the activities of spinal network and N-methyl-d-aspartate receptors (NMDARs), and were subjected to riluzole modulation. Taken together, these findings revealed abnormal electrophysiology in mSOD1G93A MNs that could underlie ALS excitotoxicity.
Collapse
Affiliation(s)
- Mingchen C Jiang
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| | - Adesoji Adimula
- Department of Biomedical Engineering, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Derin Birch
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Charles J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
56
|
Changes in the Excitability of Neocortical Neurons in a Mouse Model of Amyotrophic Lateral Sclerosis Are Not Specific to Corticospinal Neurons and Are Modulated by Advancing Disease. J Neurosci 2017; 37:9037-9053. [PMID: 28821643 PMCID: PMC5597984 DOI: 10.1523/jneurosci.0811-17.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/22/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022] Open
Abstract
Cell type-specific changes in neuronal excitability have been proposed to contribute to the selective degeneration of corticospinal neurons in amyotrophic lateral sclerosis (ALS) and to neocortical hyperexcitability, a prominent feature of both inherited and sporadic variants of the disease, but the mechanisms underlying selective loss of specific cell types in ALS are not known. We analyzed the physiological properties of distinct classes of cortical neurons in the motor cortex of hSOD1G93A mice of both sexes and found that they all exhibit increases in intrinsic excitability that depend on disease stage. Targeted recordings and in vivo calcium imaging further revealed that neurons adapt their functional properties to normalize cortical excitability as the disease progresses. Although different neuron classes all exhibited increases in intrinsic excitability, transcriptional profiling indicated that the molecular mechanisms underlying these changes are cell type specific. The increases in excitability in both excitatory and inhibitory cortical neurons show that selective dysfunction of neuronal cell types cannot account for the specific vulnerability of corticospinal motor neurons in ALS. Furthermore, the stage-dependent alterations in neuronal function highlight the ability of cortical circuits to adapt as disease progresses. These findings show that both disease stage and cell type must be considered when developing therapeutic strategies for treating ALS.SIGNIFICANCE STATEMENT It is not known why certain classes of neurons preferentially die in different neurodegenerative diseases. It has been proposed that the enhanced excitability of affected neurons is a major contributor to their selective loss. We show using a mouse model of amyotrophic lateral sclerosis (ALS), a disease in which corticospinal neurons exhibit selective vulnerability, that changes in excitability are not restricted to this neuronal class and that excitability does not increase monotonically with disease progression. Moreover, although all neuronal cell types tested exhibited abnormal functional properties, analysis of their gene expression demonstrated cell type-specific responses to the ALS-causing mutation. These findings suggest that therapies for ALS may need to be tailored for different cell types and stages of disease.
Collapse
|
57
|
Opposite Synaptic Alterations at the Neuromuscular Junction in an ALS Mouse Model: When Motor Units Matter. J Neurosci 2017; 37:8901-8918. [PMID: 28821658 DOI: 10.1523/jneurosci.3090-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Denervation of the neuromuscular junction (NMJ) precedes the loss of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). ALS is characterized by a motor unit (MU)-dependent vulnerability where MNs with fast-fatigable (FF) characteristics are lost first, followed by fast fatigue-resistant (FR) and slow (S) MNs. However, changes in NMJ properties as a function of MU types remain debated. We hypothesized that NMJ synaptic functions would be altered precociously in an MU-specific manner, before structural alterations of the NMJ. Synaptic transmission and morphological changes of NMJs have been explored in two nerve-muscle preparations of male SOD1G37R mice and their wild-type (WT) littermates: the soleus (S and FR MU); and the extensor digitorum longus (FF MU). S, FR, and FF NMJs of WT mice showed distinct synaptic properties from which we build an MU synaptic profile (MUSP) that reports MU-dependent NMJ synaptic properties. At postnatal day 180 (P180), FF and S NMJs of SOD1 already showed, respectively, lower and higher quantal content compared with WT mice, before signs of MN death and before NMJ morphological alterations. Changes persisted in both muscles until preonset (P380), while denervation was frequent in the mutant mouse. MN death was evident at this stage. Additional changes occurred at clinical disease onset (P450) for S and FR MU. As a whole, our results reveal a reversed MUSP in SOD1 mutants and highlight MU-specific synaptic changes occurring in a precise temporal sequence. Importantly, changes in synaptic properties appear to be good predictors of vulnerability to neurodegeneration.SIGNIFICANCE STATEMENT The inadequate excitability of motor neurons and their output, the neuromuscular junctions (NMJs), has been considered a key factor in the detrimental outcome of the motor function in amyotrophic lateral sclerosis. However, a conundrum persists at the NMJ whereby persistent but incoherent opposite neurotransmission changes have been reported to take place. This article untangles this conundrum by systematically analyzing the changes in synaptic properties over the course of the disease progression as a function of the motor unit type. This temporal analysis reveals that early synaptic alterations evolve with disease progression but precede NMJ neurodegeneration. These data provide a novel framework of analysis and comparison of synaptic transmission alterations in neurodegenerative disorders.
Collapse
|
58
|
Quinlan KA, Kajtaz E, Ciolino JD, Imhoff-Manuel RD, Tresch MC, Heckman CJ, Tysseling VM. Chronic electromyograms in treadmill running SOD1 mice reveal early changes in muscle activation. J Physiol 2017; 595:5387-5400. [PMID: 28543166 DOI: 10.1113/jp274170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The present study demonstrates that electromyograms (EMGs) obtained during locomotor activity in mice were effective for identification of early physiological markers of amyotrophic lateral sclerosis (ALS). These measures could be used to evaluate therapeutic intervention strategies in animal models of ALS. Several parameters of locomotor activity were shifted early in the disease time course in SOD1G93A mice, especially when the treadmill was inclined, including intermuscular phase, burst skew and amplitude of the locomotor bursts. The results of the present study indicate that early compensatory changes may be taking place within the neural network controlling locomotor activity, including spinal interneurons. Locomotor EMGs could have potential use as a clinical diagnostic tool. ABSTRACT To improve our understanding of early disease mechanisms and to identify reliable biomarkers of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, we measured electromyogram (EMG) activity in hind limb muscles of SOD1G93A mice. By contrast to clinical diagnostic measures using EMGs, which are performed on quiescent patients, we monitored activity during treadmill running aiming to detect presymptomatic changes in motor patterning. Chronic EMG electrodes were implanted into vastus lateralis, biceps femoris posterior, lateral gastrocnemius and tibialis anterior in mice from postnatal day 55 to 100 and the results obtained were assessed using linear mixed models. We evaluated differences in parameters related to EMG amplitude (peak and area) and timing (phase and skew, a measure of burst shape) when animals ran on level and inclined treadmills. There were significant changes in both the timing of activity and the amplitude of EMG bursts in SOD1G93A mice. Significant differences between wild-type and SOD1G93A mice were mainly observed when animals locomoted on inclined treadmills. All muscles had significant effects of mutation that were independent of age. These novel results indicate (i) locomotor EMG activity might be an early measure of disease onset; (ii) alterations in locomotor patterning may reflect changes in neuronal drive and compensation at the network level including altered activity of spinal interneurons; and (iii) the increased power output necessary on an inclined treadmill was important in revealing altered activity in SOD1G93A mice.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elma Kajtaz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jody D Ciolino
- Department of Preventative Medicine, Northwestern University, Chicago, IL, USA
| | - Rebecca D Imhoff-Manuel
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthew C Tresch
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,McCormick Biomedical Engineering Department, Northwestern University, Evanston, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charles J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vicki M Tysseling
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
59
|
Cunha C, Santos C, Gomes C, Fernandes A, Correia AM, Sebastião AM, Vaz AR, Brites D. Downregulated Glia Interplay and Increased miRNA-155 as Promising Markers to Track ALS at an Early Stage. Mol Neurobiol 2017; 55:4207-4224. [PMID: 28612258 DOI: 10.1007/s12035-017-0631-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause. Absence of specific targets and biomarkers compromise the development of new therapeutic strategies and of innovative tools to stratify patients and assess their responses to treatment. Here, we investigate changes in neuroprotective-neuroinflammatory actions in the spinal cord of SOD1 G93A mice, at presymptomatic and symptomatic stages to identify stage-specific biomarkers and potential targets. Results showed that in the presymptomatic stage, there are alterations in both astrocytes and microglia, which comprise decreased expression of GFAP and S100B and upregulation of GLT-1, as well as reduced expression of CD11b, M2-phenotype markers, and a set of inflammatory mediators. Reduced levels of Connexin-43, Pannexin-1, CCL21, and CX3CL1 further indicate the existence of a compromised intercellular communication. In contrast, in the symptomatic stage, increased markers of inflammation became evident, such as NF-κB/Nlrp3-inflammasome, Iba1, pro-inflammatory cytokines, and M1-polarizion markers, together with a decreased expression of M2-phenotypic markers. We also observed upregulation of the CX3CL1-CX3CR1 axis, Connexin-43, Pannexin-1, and of microRNAs (miR)-124, miR-125b, miR-146a and miR-21. Reduced motor neuron number and presence of reactive astrocytes with decreased GFAP, GLT-1, and GLAST further characterized this inflammatory stage. Interestingly, upregulation of miR-155 and downregulation of MFG-E8 appear as consistent biomarkers of both presymptomatic and symptomatic stages. We hypothesize that downregulated cellular interplay at the early stages may represent neuroprotective mechanisms against inflammation, SOD1 aggregation, and ALS onset. The present study identified a set of inflamma-miRNAs, NLRP3-inflammasome, HMGB1, CX3CL1-CX3CR1, Connexin-43, and Pannexin-1 as emerging candidates and promising pharmacological targets that may represent potential neuroprotective strategies in ALS therapy.
Collapse
Affiliation(s)
- Carolina Cunha
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Santos
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cátia Gomes
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Adelaide Fernandes
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Rita Vaz
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
60
|
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:863-885. [PMID: 28409282 PMCID: PMC5427160 DOI: 10.1007/s00401-017-1708-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022]
Abstract
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
Collapse
|
61
|
Ohgomori T, Yamasaki R, Takeuchi H, Kadomatsu K, Kira JI, Jinno S. Differential involvement of vesicular and glial glutamate transporters around spinal α-motoneurons in the pathogenesis of SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 2017; 356:114-124. [PMID: 28526579 DOI: 10.1016/j.neuroscience.2017.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
From a view point of the glutamate excitotoxicity theory, several studies have suggested that abnormal glutamate homeostasis via dysfunction of glial glutamate transporter-1 (GLT-1) may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). However, the detailed role of GLT-1 in the pathogenies of ALS remains controversial. To assess this issue, here we elucidated structural alterations associated with dysregulation of glutamate homeostasis using SOD1G93A mice, a genetic model of familial ALS. We first examined the viability of α-motoneurons in the lumbar spinal cord of SOD1G93A mice. Measurement of the soma size and density indicated that α-motoneurons might be intact at 9weeks of age (presymptomatic stage), then soma shrinkage began at 15weeks of age (progressive stage), and finally neuronal density declined at 21weeks of age (end stage). Next, we carried out the line profile analysis, and found that the coverage of α-motoneurons by GLT-1-positive (GLT-1+) astrocytic processes was decreased only at 21weeks of age, while the reduction of coverage of α-motoneurons by synaptophysin-positive (SYP+) presynaptic terminals began at 15weeks of age. Interestingly, the coverage of α-motoneurons by VGluT2+ presynaptic terminals was transiently increased at 9weeks of age, and then gradually decreased towards 21weeks of age. On the other hand, there were no time-dependent alterations in the coverage of α-motoneurons by GABAergic presynaptic terminals. These findings suggest that VGluT2 and GLT-1 may be differentially involved in the pathogenesis of ALS via abnormal glutamate homeostasis at the presymptomatic stage and end stage of disease, respectively.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
62
|
Fletcher EV, Simon CM, Pagiazitis JG, Chalif JI, Vukojicic A, Drobac E, Wang X, Mentis GZ. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat Neurosci 2017; 20:905-916. [PMID: 28504671 PMCID: PMC5487291 DOI: 10.1038/nn.4561] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022]
Abstract
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contribution of their synaptic partners to the disease process is largely unknown. Here, we show that in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission we observed a decrease in the motor neuron firing which could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Increasing neuronal activity pharmacologically by chronic exposure in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.
Collapse
Affiliation(s)
- Emily V Fletcher
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Christian M Simon
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - John G Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Joshua I Chalif
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Aleksandra Vukojicic
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Estelle Drobac
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Xiaojian Wang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Department of Neurology, Columbia University, New York, New York, USA
| |
Collapse
|
63
|
Ramírez-Jarquín UN, Tapia R. Chronic GABAergic blockade in the spinal cord in vivo induces motor alterations and neurodegeneration. Neuropharmacology 2017; 117:85-92. [DOI: 10.1016/j.neuropharm.2017.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/13/2022]
|
64
|
Menon P, Geevasinga N, van den Bos M, Yiannikas C, Kiernan MC, Vucic S. Cortical hyperexcitability and disease spread in amyotrophic lateral sclerosis. Eur J Neurol 2017; 24:816-824. [DOI: 10.1111/ene.13295] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
Affiliation(s)
- P. Menon
- Western Clinical School; University of Sydney; Sydney NSW
- Department of Neurology; Westmead Hospital; Westmead NSW
| | - N. Geevasinga
- Western Clinical School; University of Sydney; Sydney NSW
- Department of Neurology; Westmead Hospital; Westmead NSW
| | - M. van den Bos
- Department of Neurology; Westmead Hospital; Westmead NSW
| | - C. Yiannikas
- Royal North Shore Hospital and Northern Clinical School; University of Sydney; Sydney NSW
| | - M. C. Kiernan
- Brain and Mind Centre; University of Sydney and Royal Prince Alfred Hospital; Sydney NSW Australia
| | - S. Vucic
- Western Clinical School; University of Sydney; Sydney NSW
- Department of Neurology; Westmead Hospital; Westmead NSW
| |
Collapse
|
65
|
Clark RM, Blizzard CA, Young KM, King AE, Dickson TC. Calretinin and Neuropeptide Y interneurons are differentially altered in the motor cortex of the SOD1 G93A mouse model of ALS. Sci Rep 2017; 7:44461. [PMID: 28294153 PMCID: PMC5353592 DOI: 10.1038/srep44461] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates an excitatory/inhibitory imbalance may have a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Impaired inhibitory circuitry is consistently reported in the motor cortex of both familial and sporadic patients, closely associated with cortical hyperexcitability and ALS onset. Inhibitory network dysfunction is presumably mediated by intra-cortical inhibitory interneurons, however, the exact cell types responsible are yet to be identified. In this study we demonstrate dynamic changes in the number of calretinin- (CR) and neuropeptide Y-expressing (NPY) interneurons in the motor cortex of the familial hSOD1G93A ALS mouse model, suggesting their potential involvement in motor neuron circuitry defects. We show that the density of NPY-populations is significantly decreased by ~17% at symptom onset (8 weeks), and by end-stage disease (20 weeks) is significantly increased by ~30%. Conversely, the density of CR-populations is progressively reduced during later symptomatic stages (~31%) to end-stage (~36%), while CR-expressing interneurons also show alteration of neurite branching patterns at symptom onset. We conclude that a differential capacity for interneurons exists in the ALS motor cortex, which may not be a static phenomenon, but involves early dynamic changes throughout disease, implicating specific inhibitory circuitry.
Collapse
Affiliation(s)
- Rosemary M Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Anna E King
- Wicking Dementia Research &Education Centre2, University of Tasmania, Hobart, 7000, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| |
Collapse
|
66
|
Mancuso R, Navarro X. Sigma-1 Receptor in Motoneuron Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:235-254. [PMID: 28315275 DOI: 10.1007/978-3-319-50174-1_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS ) is a neurodegenerative disease affecting spinal cord and brain motoneurons , leading to paralysis and early death. Multiple etiopathogenic mechanisms appear to contribute in the development of ALS , including glutamate excitotoxicity, oxidative stress , protein misfolding, mitochondrial defects, impaired axonal transport, inflammation and glial cell alterations. The Sigma-1 receptor is highly expressed in motoneurons of the spinal cord, particularly enriched in the endoplasmic reticulum (ER) at postsynaptic cisternae of cholinergic C-terminals. Several evidences point to participation of Sigma-1R alterations in motoneuron degeneration. Thus, mutations of the transmembrane domain of the Sigma-1R have been described in familial ALS cases. Interestingly, Sigma-1R KO mice display muscle weakness and motoneuron loss. On the other hand, Sigma-1R agonists promote neuroprotection and neurite elongation through activation of protein kinase C on motoneurons in vitro and in vivo after ventral root avulsion. Remarkably, treatment of SOD1 mice, the most usual animal model of ALS , with Sigma-1R agonists resulted in significantly enhanced motoneuron function and preservation, and increased animal survival. Sigma-1R activation also reduced microglial reactivity and increased the glial expression of neurotrophic factors. Two main interconnected mechanisms seem to underlie the effects of Sigma-1R manipulation on motoneurons: modulation of neuronal excitability and regulation of calcium homeostasis. In addition, Sigma-1R also contributes to regulating protein degradation, and reducing oxidative stress. Therefore, the multi-functional nature of the Sigma-1R represents an attractive target for treating aspects of ALS and other motoneuron diseases .
Collapse
Affiliation(s)
- Renzo Mancuso
- Center for Biological Sciences, University of Southampton, Southampton General Hospital, SO16 6YD, Southampton, UK
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
67
|
Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS. Proc Natl Acad Sci U S A 2016; 113:E8316-E8325. [PMID: 27930290 DOI: 10.1073/pnas.1605210113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The molecular and cellular basis of selective motor neuron (MN) vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In genetically distinct mouse models of familial ALS expressing mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective degeneration of alpha MNs (α-MNs) and complete sparing of gamma MNs (γ-MNs), which selectively innervate muscle spindles. Resistant γ-MNs are distinct from vulnerable α-MNs in that they lack synaptic contacts from primary afferent (IA) fibers. Elimination of these synapses protects α-MNs in the SOD1 mutant, implicating this excitatory input in MN degeneration. Moreover, reduced IA activation by targeted reduction of γ-MNs in SOD1G93A mutants delays symptom onset and prolongs lifespan, demonstrating a pathogenic role of surviving γ-MNs in ALS. This study establishes the resistance of γ-MNs as a general feature of ALS mouse models and demonstrates that synaptic excitation of MNs within a complex circuit is an important determinant of relative vulnerability in ALS.
Collapse
|
68
|
Arbour D, Vande Velde C, Robitaille R. New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction. J Physiol 2016; 595:647-661. [PMID: 27633977 DOI: 10.1113/jp270213] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease leading to the death of motor neurons (MNs). It is also recognized as a non-cell autonomous disease where glial cells in the CNS are involved in its pathogenesis and progression. However, although denervation of neuromuscular junctions (NMJs) represents an early and major event in ALS, the importance of glial cells at this synapse receives little attention. An interesting possibility is that altered relationships between glial cells and MNs in the spinal cord in ALS may also take place at the NMJ. Perisynaptic Schwann cells (PSCs), which are glial cells at the NMJ, show great morphological and functional adaptability to ensure NMJ stability, maintenance and repair. More specifically, PSCs change their properties according to the state of innervation. Hence, abnormal changes or lack of changes can have detrimental effects on NMJs in ALS. This review will provide an overview of known and hypothesized interactions between MN nerve terminals and PSCs at NMJs during development, aging and ALS-induced denervation. These neuron-PSC interactions may be crucial to the understanding of how degenerative changes begin and progress at NMJs in ALS, and represent a novel therapeutic target.
Collapse
Affiliation(s)
- Danielle Arbour
- Département de neurosciences, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.,Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
| | - Christine Vande Velde
- Département de neurosciences, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.,Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.,Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9
| | - Richard Robitaille
- Département de neurosciences, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.,Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
| |
Collapse
|
69
|
Liu X, Pfaff DW, Calderon DP, Tabansky I, Wang X, Wang Y, Kow LM. Development of Electrophysiological Properties of Nucleus Gigantocellularis Neurons Correlated with Increased CNS Arousal. Dev Neurosci 2016; 38:295-310. [PMID: 27788521 DOI: 10.1159/000449035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 01/28/2023] Open
Abstract
Many types of data have suggested that neurons in the nucleus gigantocellularis (NGC) in the medullary reticular formation are critically important for CNS arousal and behavioral responsiveness. To extend this topic to a developmental framework, whole-cell patch-recorded characteristics of NGC neurons in brainstem slices and measures of arousal-dependent locomotion of postnatal day 3 (P3) to P6 mouse pups were measured and compared. These neuronal characteristics developed in an orderly, statistically significant monotonic manner over the course of P3-P6: (1) proportion of neurons capable of firing action potential (AP) trains, (2) AP amplitude, (3) AP threshold, (4) amplitude of inward and outward currents, (5) amplitude of negative peak currents, and (6) steady state currents (in I-V plot). These measurements reflect the maturation of sodium and certain potassium channels. Similarly, all measures of locomotion, latency to first movement, total locomotion duration, net locomotion distance, and total quiescence time also developed monotonically over P3-P6. Most importantly, electrophysiological and behavioral measures were significantly correlated. Interestingly, the behavioral measures were not correlated with frequency of excitatory postsynaptic currents or the proportion of neurons showing these currents, responses to a battery of neurotransmitter agents, or rapid activating potassium currents (including IA). Considering the results here in the context of a large body of literature on NGC, we hypothesize that the developmental increase in NGC neuronal excitability participates in causing the increased behavioral responsivity during the postnatal period from P3 to P6.
Collapse
Affiliation(s)
- Xu Liu
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, N.Y., USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Geevasinga N, Menon P, Özdinler PH, Kiernan MC, Vucic S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 2016; 12:651-661. [DOI: 10.1038/nrneurol.2016.140] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
71
|
Wong AYC, Hristova E, Ahlskog N, Tasse LA, Ngsee JK, Chudalayandi P, Bergeron R. Aberrant Subcellular Dynamics of Sigma-1 Receptor Mutants Underlying Neuromuscular Diseases. Mol Pharmacol 2016; 90:238-53. [PMID: 27418673 DOI: 10.1124/mol.116.104018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2023] Open
Abstract
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum resident chaperone protein involved in a plethora of cellular functions, and whose disruption has been implicated in a wide range of diseases. Genetic analysis has revealed two σ-1R mutants involved in neuromuscular disorders. A point mutation (E102Q) in the ligand-binding domain results in the juvenile form of amyotrophic lateral sclerosis (ALS16), and a 20 amino-acid deletion (Δ31-50) in the putative cytosolic domain leads to a form of distal hereditary motor neuropathy. We investigated the localization and functional properties of these mutants in cell lines using confocal imaging and electrophysiology. The σ-1R mutants exhibited a significant increase in mobility, aberrant localization, and enhanced block of the inwardly rectifying K(+) channel Kir2.1, compared with the wild-type σ-1R. Thus, these σ-1R mutants have different functional properties that could contribute to their disease phenotypes.
Collapse
Affiliation(s)
- Adrian Y C Wong
- Neuroscience, Ottawa Hospital Research Institute, Ottawa (A.Y.C.W., E.H., N.A., L.-A.T., J.K.N, P.C., R.B.), and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa (J.K.N., R.B.), Ontario, Canada
| | - Elitza Hristova
- Neuroscience, Ottawa Hospital Research Institute, Ottawa (A.Y.C.W., E.H., N.A., L.-A.T., J.K.N, P.C., R.B.), and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa (J.K.N., R.B.), Ontario, Canada
| | - Nina Ahlskog
- Neuroscience, Ottawa Hospital Research Institute, Ottawa (A.Y.C.W., E.H., N.A., L.-A.T., J.K.N, P.C., R.B.), and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa (J.K.N., R.B.), Ontario, Canada
| | - Louis-Alexandre Tasse
- Neuroscience, Ottawa Hospital Research Institute, Ottawa (A.Y.C.W., E.H., N.A., L.-A.T., J.K.N, P.C., R.B.), and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa (J.K.N., R.B.), Ontario, Canada
| | - Johnny K Ngsee
- Neuroscience, Ottawa Hospital Research Institute, Ottawa (A.Y.C.W., E.H., N.A., L.-A.T., J.K.N, P.C., R.B.), and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa (J.K.N., R.B.), Ontario, Canada
| | - Prakash Chudalayandi
- Neuroscience, Ottawa Hospital Research Institute, Ottawa (A.Y.C.W., E.H., N.A., L.-A.T., J.K.N, P.C., R.B.), and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa (J.K.N., R.B.), Ontario, Canada
| | - Richard Bergeron
- Neuroscience, Ottawa Hospital Research Institute, Ottawa (A.Y.C.W., E.H., N.A., L.-A.T., J.K.N, P.C., R.B.), and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa (J.K.N., R.B.), Ontario, Canada
| |
Collapse
|
72
|
Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 2016; 19:542-53. [PMID: 27021939 DOI: 10.1038/nn.4273] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 02/08/2023]
Abstract
Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.
Collapse
|
73
|
Henstridge CM, Pickett E, Spires-Jones TL. Synaptic pathology: A shared mechanism in neurological disease. Ageing Res Rev 2016; 28:72-84. [PMID: 27108053 DOI: 10.1016/j.arr.2016.04.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Synaptic proteomes have evolved a rich and complex diversity to allow the exquisite control of neuronal communication and information transfer. It is therefore not surprising that many neurological disorders are associated with alterations in synaptic function. As technology has advanced, our ability to study the anatomical and physiological function of synapses in greater detail has revealed a critical role for both central and peripheral synapses in neurodegenerative disease. Synapse loss has a devastating effect on cellular communication, leading to wide ranging effects such as network disruption within central neural systems and muscle wastage in the periphery. These devastating effects link synaptic pathology to a diverse range of neurological disorders, spanning Alzheimer's disease to multiple sclerosis. This review will highlight some of the current literature on synaptic integrity in animal models of disease and human post-mortem studies. Synaptic changes in normal brain ageing will also be discussed and finally the current and prospective treatments for neurodegenerative disorders will be summarised.
Collapse
Affiliation(s)
| | - Eleanor Pickett
- Centre for Cognitive and Neural Systems, 1 George Square, University of Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, 1 George Square, University of Edinburgh, EH8 9JZ, UK; Euan MacDonald Centre for Motor Neurone Disease Research, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, EH16 4SB, UK; Centre for Dementia Prevention, University of Edinburgh Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF, UK.
| |
Collapse
|
74
|
Chang Q, Martin LJ. Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS. Neurobiol Dis 2016; 93:78-95. [PMID: 27151771 DOI: 10.1016/j.nbd.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca(2+) overload have mostly focused on Ca(2+) influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca(2+) channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca(2+) currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca(2+) currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca(2+) current mediated by L-type Ca(2+) channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca(2+) currents may result from upregulation of Ca(2+) channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca(2+) channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca(2+) channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca(2+) currents and PCCa current could contribute to early pathogenesis of ALS.
Collapse
Affiliation(s)
- Qing Chang
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, MD 21205, United States.
| | - Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, MD 21205, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, MD 21205, United States
| |
Collapse
|
75
|
Benedetti L, Ghilardi A, Rottoli E, De Maglie M, Prosperi L, Perego C, Baruscotti M, Bucchi A, Del Giacco L, Francolini M. INaP selective inhibition reverts precocious inter- and motorneurons hyperexcitability in the Sod1-G93R zebrafish ALS model. Sci Rep 2016; 6:24515. [PMID: 27079797 PMCID: PMC4832213 DOI: 10.1038/srep24515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
The pathogenic role of SOD1 mutations in amyotrophic lateral sclerosis (ALS) was investigated using a zebrafish disease model stably expressing the ALS-linked G93R mutation. In addition to the main pathological features of ALS shown by adult fish, we found remarkably precocious alterations in the development of motor nerve circuitry and embryo behavior, and suggest that these alterations are prompted by interneuron and motor neuron hyperexcitability triggered by anomalies in the persistent pacemaker sodium current INaP. The riluzole-induced modulation of INaP reduced spinal neuron excitability, reverted the behavioral phenotypes and improved the deficits in motor nerve circuitry development, thus shedding new light on the use of riluzole in the management of ALS. Our findings provide a valid phenotype-based tool for unbiased in vivo drug screening that can be used to develop new therapies.
Collapse
Affiliation(s)
- Lorena Benedetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Neuroscience Institute, National Research Council (CNR), Via Vanvitelli 32, 20139 Milano, Italy
| | - Anna Ghilardi
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Elsa Rottoli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Neuroscience Institute, National Research Council (CNR), Via Vanvitelli 32, 20139 Milano, Italy
| | - Marcella De Maglie
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, 20133 Milano, Italy
| | - Laura Prosperi
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20133 Milano, Italy
| | - Mirko Baruscotti
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Annalisa Bucchi
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Luca Del Giacco
- Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Neuroscience Institute, National Research Council (CNR), Via Vanvitelli 32, 20139 Milano, Italy
| |
Collapse
|
76
|
Kubat Öktem E, Mruk K, Chang J, Akin A, Kobertz WR, Brown RH. Mutant SOD1 protein increases Nav1.3 channel excitability. J Biol Phys 2016; 42:351-70. [PMID: 27072680 DOI: 10.1007/s10867-016-9411-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/10/2016] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal paralytic disease caused by the degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) are present in ~20% of familial ALS and ~2% of all ALS cases. The most common SOD1 gene mutation in North America is a missense mutation substituting valine for alanine (A4V). In this study, we analyze sodium channel currents in oocytes expressing either wild-type or mutant (A4V) SOD1 protein. We demonstrate that the A4V mutation confers a propensity to hyperexcitability on a voltage-dependent sodium channel (Nav1.3) mediated by heightened total Na(+) conductance and a hyperpolarizing shift in the voltage dependence of Nav1.3 activation. To estimate the impact of these channel effects on excitability in an intact neuron, we simulated these changes in the program NEURON; this shows that the changes induced by mutant SOD1 increase the spontaneous firing frequency of the simulated neuron. These findings are consistent with the view that excessive excitability of neurons is one component in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Elif Kubat Öktem
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey. .,REMER (Regenerative and Restorative Medicine Research Center), Istanbul Medipol University, Istanbul, Turkey.
| | - Karen Mruk
- Departments of Chemical and Systems Biology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Chang
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ata Akin
- Department of Medical Engineering, Acıbadem University, Istanbul, Turkey
| | - William R Kobertz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
77
|
Weiss MD, Macklin EA, Simmons Z, Knox AS, Greenblatt DJ, Atassi N, Graves M, Parziale N, Salameh JS, Quinn C, Brown RH, Distad JB, Trivedi J, Shefner JM, Barohn RJ, Pestronk A, Swenson A, Cudkowicz ME. A randomized trial of mexiletine in ALS: Safety and effects on muscle cramps and progression. Neurology 2016; 86:1474-81. [PMID: 26911633 DOI: 10.1212/wnl.0000000000002507] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the safety and tolerability of mexiletine in a phase II double-blind randomized controlled trial of sporadic amyotrophic lateral sclerosis (SALS). METHODS Sixty participants with SALS from 10 centers were randomized 1:1:1 to placebo, mexiletine 300 mg/d, or mexiletine 900 mg/d and followed for 12 weeks. The primary endpoints were safety and tolerability. Secondary endpoints were pharmacokinetic study from plasma and CSF, ALS Functional Rating Scale-Revised (ALSFRS-R) score, slow vital capacity (SVC), and muscle cramp frequency and severity. RESULTS The only serious adverse event among active arm participants was one episode of imbalance. Thirty-two percent of participants receiving 900 mg of mexiletine discontinued study drug vs 5% on placebo (p = 0.026). Pharmacokinetic study demonstrated a peak plasma concentration 2 hours postdose and strong correlation between plasma and CSF (p < 0.001). Rates of decline of ALSFRS-R and SVC did not differ from placebo. Analysis of all randomized patients demonstrated significant reductions of muscle cramp frequency (300 mg: rate = 31% of placebo, p = 0.047; 900 mg: 16% of placebo, p = 0.002) and cramp intensity (300 mg: mean = 45% of placebo, p = 0.08; 900 mg: 25% of placebo, p = 0.005). CONCLUSIONS Mexiletine was safe at both doses and well-tolerated at 300 mg/d but adverse effects at 900 mg/d led to a high rate of discontinuation. Mexiletine treatment resulted in large dose-dependent reductions in muscle cramp frequency and severity. No effect on rate of progression was detected, but clinically important differences could not be excluded in this small and short-duration study. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that mexiletine is safe when given daily to patients with amyotrophic lateral sclerosis at 300 and 900 mg and well-tolerated at the lower dose.
Collapse
Affiliation(s)
- Michael D Weiss
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City.
| | - Eric A Macklin
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Zachary Simmons
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Angela S Knox
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - David J Greenblatt
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Nazem Atassi
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Michael Graves
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Nicholas Parziale
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Johnny S Salameh
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Colin Quinn
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Robert H Brown
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Jane B Distad
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Jaya Trivedi
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Jeremy M Shefner
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Richard J Barohn
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Alan Pestronk
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Andrea Swenson
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | - Merit E Cudkowicz
- From the Department of Neurology (M.D.W., J.B.D.), University of Washington Medical Center, Seattle; Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (Z.S.), Penn State Hershey Medical Center, Hershey, PA; Department of Neurology (A.S.K., N.A., M.E.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Program in Pharmacology and Experimental Therapeutics (D.J.G.), Tufts University School of Medicine, Boston, MA; Department of Neurology (M.G., N.P.), UCLA Medical Center, Los Angeles, CA; Department of Neurology (J.S.S., C.Q., R.H.B.), University of Massachusetts Memorial Medical Center, Worcester; Department of Neurology (J.T.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Department of Neurology (R.J.B.), University of Kansas Medical Center, Kansas City; Department of Neurology (A.P.), Washington University Medical Center, St. Louis, MO; and Department of Neurology (A.S.), University of Iowa Hospitals and Clinics, Iowa City
| | | |
Collapse
|
78
|
Kam K, Duffy ÁM, Moretto J, LaFrancois JJ, Scharfman HE. Interictal spikes during sleep are an early defect in the Tg2576 mouse model of β-amyloid neuropathology. Sci Rep 2016; 6:20119. [PMID: 26818394 PMCID: PMC4730189 DOI: 10.1038/srep20119] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023] Open
Abstract
It has been suggested that neuronal hyperexcitability contributes to Alzheimer's disease (AD), so we asked how hyperexcitability develops in a common mouse model of β-amyloid neuropathology - Tg2576 mice. Using video-EEG recordings, we found synchronized, large amplitude potentials resembling interictal spikes (IIS) in epilepsy at just 5 weeks of age, long before memory impairments or β-amyloid deposition. Seizures were not detected, but they did occur later in life, suggesting that IIS are possibly the earliest stage of hyperexcitability. Interestingly, IIS primarily occurred during rapid-eye movement (REM) sleep, which is notable because REM is associated with increased cholinergic tone and cholinergic impairments are implicated in AD. Although previous studies suggest that cholinergic antagonists would worsen pathophysiology, the muscarinic antagonist atropine reduced IIS frequency. In addition, we found IIS occurred in APP51 mice which overexpress wild type (WT)-APP, although not as uniformly or as early in life as Tg2576 mice. Taken together with results from prior studies, the data suggest that surprising and multiple mechanisms contribute to hyperexcitability. The data also suggest that IIS may be a biomarker for early detection of AD.
Collapse
Affiliation(s)
- Korey Kam
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA.,Graduate Program in Physiology and Neuroscience New York University Langone Medical Center New York, NY 10016, USA
| | - Áine M Duffy
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA.,Department of Physiology and Neuroscience New York University Langone Medical Center New York, NY 10016, USA
| | - Jillian Moretto
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA
| | - John J LaFrancois
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA.,Department of Physiology and Neuroscience New York University Langone Medical Center New York, NY 10016, USA.,Department of Child and Adolescent Psychiatry and Psychiatry New York University Langone Medical Center New York, NY 10016, USA
| |
Collapse
|
79
|
Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients. Cell Rep 2015; 14:115-128. [PMID: 26725112 DOI: 10.1016/j.celrep.2015.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/17/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022] Open
Abstract
Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.
Collapse
|
80
|
Clark R, Blizzard C, Dickson T. Inhibitory dysfunction in amyotrophic lateral sclerosis: future therapeutic opportunities. Neurodegener Dis Manag 2015; 5:511-25. [DOI: 10.2217/nmt.15.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In amyotrophic lateral sclerosis, motor neuron hyperexcitability and inhibitory dysfunction is emerging as a potential causative link in the dysfunction and degeneration of the motoneuronal circuitry that characterizes the disease. Interneurons, as key regulators of excitability, may mediate much of this imbalance, yet we know little about the way in which inhibitory deficits perturb excitability. In this review, we explore inhibitory control of excitability and the potential contribution of altered inhibition to amyotrophic lateral sclerosis disease processes and vulnerabilities, identifying important windows of therapeutic opportunity and potential interventions, specifically targeting inhibitory control at key disease stages.
Collapse
Affiliation(s)
- Rosemary Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Catherine Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| |
Collapse
|
81
|
Hedegaard A, Lehnhoff J, Moldovan M, Grøndahl L, Petersen NC, Meehan CF. Postactivation depression of the Ia EPSP in motoneurons is reduced in both the G127X SOD1 model of amyotrophic lateral sclerosis and in aged mice. J Neurophysiol 2015; 114:1196-210. [PMID: 26084911 DOI: 10.1152/jn.00745.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
Postactivation depression (PActD) of Ia afferent excitatory postsynaptic potentials (EPSPs) in spinal motoneurons results in a long-lasting depression of the stretch reflex. This phenomenon (PActD) is of clinical interest as it has been shown to be reduced in a number of spastic disorders. Using in vivo intracellular recordings of Ia EPSPs in adult mice, we demonstrate that PActD in adult (100-220 days old) C57BL/6J mice is both qualitatively and quantitatively similar to that which has been observed in larger animals with respect to both the magnitude (with ∼20% depression of EPSPs at 0.5 ms after a train of stimuli) and the time course (returning to almost normal amplitudes by 5 ms after the train). This validates the use of mouse models to study PActD. Changes in such excitatory inputs to spinal motoneurons may have important implications for hyperreflexia and/or glutamate-induced excitotoxicity in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). With the use of the G127X SOD1 mutant mouse, an ALS model with a prolonged asymptomatic phase and fulminant symptom onset, we observed that PActD is significantly reduced at both presymptomatic (16% depression) and symptomatic (17.3% depression) time points compared with aged-matched controls (22.4% depression). The PActD reduction was not markedly altered by symptom onset. Comparing these PActD changes at the EPSP with the known effect of the depression on the monosynaptic reflex, we conclude that this is likely to have a much larger effect on the reflex itself (a 20-40% difference). Nevertheless, it should also be accounted that in aged (580 day old) C57BL/6J mice there was also a reduction in PActD although, aging is not usually associated with spasticity.
Collapse
Affiliation(s)
- A Hedegaard
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - J Lehnhoff
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - M Moldovan
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - L Grøndahl
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| | - N C Petersen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and Department of Nutrition, Exercise and Sports, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - C F Meehan
- Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute, Copenhagen, Denmark; and
| |
Collapse
|
82
|
Quinlan KA, Lamano JB, Samuels J, Heckman CJ. Comparison of dendritic calcium transients in juvenile wild type and SOD1(G93A) mouse lumbar motoneurons. Front Cell Neurosci 2015; 9:139. [PMID: 25914627 PMCID: PMC4392694 DOI: 10.3389/fncel.2015.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022] Open
Abstract
Previous studies of spinal motoneurons in the SOD1 mouse model of amyotrophic lateral sclerosis have shown alterations long before disease onset, including increased dendritic branching, increased persistent Na+ and Ca2+ currents, and impaired axonal transport. In this study dendritic Ca2+ entry was investigated using two photon excitation fluorescence microscopy and whole-cell patch-clamp of juvenile (P4-11) motoneurons. Neurons were filled with both Ca2+ Green-1 and Texas Red dextrans, and line scans performed throughout. Steps were taken to account for different sources of variability, including (1) dye filling and laser penetration, (2) dendritic anatomy, and (3) the time elapsed from the start of recording. First, Ca2+ Green-1 fluorescence was normalized by Texas Red; next, neurons were reconstructed so anatomy could be evaluated; finally, time was recorded. Customized software detected the largest Ca2+ transients (area under the curve) from each line scan and matched it with parameters above. Overall, larger dendritic diameter and shorter path distance from the soma were significant predictors of larger transients, while time was not significant up to 2 h (data thereafter was dropped). However, Ca2+ transients showed additional variability. Controlling for previous factors, significant variation was found between Ca2+ signals from different processes of the same neuron in 3/7 neurons. This could reflect differential expression of Ca2+ channels, local neuromodulation or other variations. Finally, Ca2+ transients in SOD1G93A motoneurons were significantly smaller than in non-transgenic motoneurons. In conclusion, motoneuron processes show highly variable Ca2+ transients, but these transients are smaller overall in SOD1G93A motoneurons.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Jonathan B Lamano
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Julienne Samuels
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
83
|
Early and persistent abnormal decoding by glial cells at the neuromuscular junction in an ALS model. J Neurosci 2015; 35:688-706. [PMID: 25589763 DOI: 10.1523/jneurosci.1379-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neuromuscular disease characterized by progressive loss of motor neurons (MNs) preceded by neuromuscular junction (NMJ) denervation. Despite the importance of NMJ denervation in ALS, the mechanisms involved remain unexplored and ill defined. The contribution of glial cells in the disease has been highlighted, including axonal Schwann cell activation that precedes the decline of motor function and the onset of hindlimb paralysis. Because NMJ denervation occurs early in the process and that perisynaptic Schwann cells (PSCs), glial cells at the NMJ, regulate morphological stability, integrity, and repair of the NMJ, one could predict that PSC functions would be altered even before denervation, contributing to NMJ malfunctions. We tested this possibility using a slowly progressive model of ALS (SOD1(G37R) mice). We observed a normal NMJ organization at a presymptomatic stage of ALS (120 d), but PSC detection of endogenous synaptic activity revealed by intracellular Ca(2+) changes was enhanced compared with their wild-type littermates. This inappropriate PSC decoding ability was associated with an increased level of neurotransmitter release and dependent on intrinsic glial properties related to enhanced muscarinic receptor activation. The alteration of PSC muscarinic receptor functions also persists during the preonset stage of the disease and became dependent on MN vulnerability with age. Together, these results suggest that PSC properties are altered in the disease process in a manner that would be detrimental for NMJ repair. The impairments of PSC functions may contribute to NMJ dysfunction and ALS pathogenesis.
Collapse
|
84
|
Homeostatic dysregulation in membrane properties of masticatory motoneurons compared with oculomotor neurons in a mouse model for amyotrophic lateral sclerosis. J Neurosci 2015; 35:707-20. [PMID: 25589764 DOI: 10.1523/jneurosci.1682-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative motoneuron disease with presently no cure. Motoneuron (MN) hyperexcitability is commonly observed in ALS and is suggested to be a precursor for excitotoxic cell death. However, it is unknown whether hyperexcitability also occurs in MNs that are resistant to degeneration. Second, it is unclear whether all the MNs within homogeneous motor pools would present similar susceptibility to excitability changes since high-threshold MNs innervating fast fatigable muscle fibers selectively degenerate compared with low-threshold MNs innervating fatigue resistant slow muscle fibers. Therefore, we concurrently examined the excitability of ALS-vulnerable trigeminal motoneurons (TMNs) controlling jaw musculature and ALS-resistant oculomotor neurons (OMNs) controlling eye musculature in a well studied SOD1(G93A) ALS mouse model using in vitro patch-clamp electrophysiology at presymptomatic ages P8-P12. Our results show that hyperexcitability is not a global change among all the MNs, although mutant SOD1 is ubiquitously expressed. Instead, complex changes occur in ALS-vulnerable TMNs based on motor unit type and discharge characteristics. Firing threshold decreases among high-threshold TMNs and increases in a subpopulation of low-threshold TMNs. The latter group was identified based on their linear frequency-current responses to triangular ramp current injections. Such complex changes in MN recruitment were absent in ALS-resistant OMNs. We simulated the observed complex changes in TMN excitability using a computer-based jaw closer motor pool model. Model results suggest that hypoexcitability may indeed represent emerging disease symptomology that causes resistance in muscle force initiation. Identifying the cellular and molecular properties of these hypoexcitable cells may guide effective therapeutic strategies in ALS.
Collapse
|
85
|
Saporta MA, Dang V, Volfson D, Zou B, Xie XS, Adebola A, Liem RK, Shy M, Dimos JT. Axonal Charcot-Marie-Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties. Exp Neurol 2015; 263:190-9. [PMID: 25448007 PMCID: PMC4262589 DOI: 10.1016/j.expneurol.2014.10.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/28/2014] [Accepted: 10/10/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Charcot-Marie-Tooth (CMT) disease is a group of inherited peripheral neuropathies associated with mutations or copy number variations in over 70 genes encoding proteins with fundamental roles in the development and function of Schwann cells and peripheral axons. Here, we used iPSC-derived cells to identify common pathophysiological mechanisms in axonal CMT. METHODS iPSC lines from patients with two distinct forms of axonal CMT (CMT2A and CMT2E) were differentiated into spinal cord motor neurons and used to study axonal structure and function and electrophysiological properties in vitro. RESULTS iPSC-derived motor neurons exhibited gene and protein expression, ultrastructural and electrophysiological features of mature primary spinal cord motor neurons. Cytoskeletal abnormalities were found in neurons from a CMT2E (NEFL) patient and corroborated by a mouse model of the same NEFL point mutation. Abnormalities in mitochondrial trafficking were found in neurons derived from this patient, but were only mildly present in neurons from a CMT2A (MFN2) patient. Novel electrophysiological abnormalities, including reduced action potential threshold and abnormal channel current properties were observed in motor neurons derived from both of these patients. INTERPRETATION Human iPSC-derived motor neurons from axonal CMT patients replicated key pathophysiological features observed in other models of MFN2 and NEFL mutations, including abnormal cytoskeletal and mitochondrial dynamics. Electrophysiological abnormalities found in axonal CMT iPSC-derived human motor neurons suggest that these cells are hyperexcitable and have altered sodium and calcium channel kinetics. These findings may provide a new therapeutic target for this group of heterogeneous inherited neuropathies.
Collapse
Affiliation(s)
- Mario A Saporta
- Department of Neurology, University of Iowa, USA; iPierian Inc., USA.
| | | | | | | | | | - Adijat Adebola
- Department of Pathology and Cell Biology, Columbia University Medical Center, USA
| | - Ronald K Liem
- Department of Pathology and Cell Biology, Columbia University Medical Center, USA
| | - Michael Shy
- Department of Neurology, University of Iowa, USA
| | | |
Collapse
|
86
|
Shoenfeld L, Westenbroek RE, Fisher E, Quinlan KA, Tysseling VM, Powers RK, Heckman CJ, Binder MD. Soma size and Cav1.3 channel expression in vulnerable and resistant motoneuron populations of the SOD1G93A mouse model of ALS. Physiol Rep 2014; 2:2/8/e12113. [PMID: 25107988 PMCID: PMC4246589 DOI: 10.14814/phy2.12113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the loss of motoneurons is an undisputed feature of amyotrophic lateral sclerosis (ALS) in man and in its animal models (SOD1 mutant mice), how the disease affects the size and excitability of motoneurons prior to their degeneration is not well understood. This study was designed to test the hypothesis that motoneurons in mutant SOD1G93A mice exhibit an enlargement of soma size (i.e., cross‐sectional area) and an increase in Cav1.3 channel expression at postnatal day 30, well before the manifestation of physiological symptoms that typically occur at p90 (Chiu et al. 1995). We made measurements of spinal and hypoglossal motoneurons vulnerable to degeneration, as well as motoneurons in the oculomotor nucleus that are resistant to degeneration. Overall, we found that the somata of motoneurons in male SOD1G93A mutants were larger than those in wild‐type transgenic males. When females were included in the two groups, significance was lost. Expression levels of the Cav1.3 channels were not differentiated by genotype, sex, or any interaction of the two. These results raise the intriguing possibility of an interaction between male sex steroid hormones and the SOD1 mutation in the etiopathogenesis of ALS. This study was designed to test the hypothesis that motoneurons in mutant SOD1G93A mice exhibit an enlargement of soma size (i.e., cross‐sectional area) and an increase in Cav1.3 channel expression at postnatal day 30, well before the manifestation of physiological symptoms that typically occur at p90 (Chiu et al. 1995). We made measurements of spinal and hypoglossal motoneurons vulnerable to degeneration, as well as motoneurons in the oculomotor nucleus that are resistant to degeneration. Overall, we found that the somata of motoneurons in male SOD1G93A mutants were larger than those in wild‐type transgenic males. When females were included in the two groups, significance was lost. These results raise the intriguing possibility of an interaction between male sex steroid hormones and the SOD1 mutation in the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Liza Shoenfeld
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington, USA
| | - Ruth E Westenbroek
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erika Fisher
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Katharina A Quinlan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vicki M Tysseling
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Randall K Powers
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Charles J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marc D Binder
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington, USA Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
87
|
Milan L, Barrière G, De Deurwaerdère P, Cazalets JR, Bertrand SS. Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice. Front Neural Circuits 2014; 8:77. [PMID: 25071458 PMCID: PMC4081764 DOI: 10.3389/fncir.2014.00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in the gene that encodes Cu/Zn-superoxide dismutase (SOD1) are the cause of approximately 20% of familial forms of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While ALS symptoms appear in adulthood, spinal motoneurons exhibit functional alterations as early as the embryonic and postnatal stages in the murine model of ALS, the SOD1 mice. Monoaminergic - i.e., dopaminergic (DA), serotoninergic (5-HT), and noradrenergic (NA) - pathways powerfully control spinal networks and contribute significantly to their embryonic and postnatal maturation. Alterations in monoaminergic neuromodulation during development could therefore lead to impairments in the motoneuronal physiology. In this study, we sought to determine whether the monoaminergic spinal systems are modified in the early stages of development in SOD1 mice. Using a post-mortem analysis by high performance liquid chromatography (HPLC), monoaminergic neuromodulators and their metabolites were quantified in the lumbar spinal cord of SOD1 and wild-type (WT) mice aged one postnatal day (P1) and P10. This analysis underscores an increased content of DA in the SOD1 lumbar spinal cord compared to that of WT mice but failed to reveal any modification of the other monoaminergic contents. In a next step, we compared the efficiency of the monoaminergic compounds in triggering and modulating fictive locomotion in WT and SOD1 mice. This study was performed in P1-P3 SOD1 mice and age-matched control littermates using extracellular recordings from the lumbar ventral roots in the in vitro isolated spinal cord preparation. This analysis revealed that the spinal networks of SOD1(G93A) mice could generate normal locomotor activity in the presence of NMA-5-HT. Interestingly, we also observed that SOD1 spinal networks have an increased sensitivity to NA compared to WT spinal circuits but exhibited similar DA responses.
Collapse
Affiliation(s)
- Léa Milan
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux Bordeaux, France
| | - Grégory Barrière
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux Bordeaux, France
| | | | - Jean-René Cazalets
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux Bordeaux, France
| | - Sandrine S Bertrand
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux Bordeaux, France
| |
Collapse
|
88
|
Tran LT, Gentil BJ, Sullivan KE, Durham HD. The voltage-gated calcium channel blocker lomerizine is neuroprotective in motor neurons expressing mutant SOD1, but not TDP-43. J Neurochem 2014; 130:455-66. [DOI: 10.1111/jnc.12738] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/11/2014] [Accepted: 04/07/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Luan T. Tran
- Department of Neurology/Neurosurgery; Montreal Neurological Institute; McGill University; Montreal QC Canada
| | - Benoit J. Gentil
- Department of Neurology/Neurosurgery; Montreal Neurological Institute; McGill University; Montreal QC Canada
| | - Kathleen E. Sullivan
- Department of Neurology/Neurosurgery; Montreal Neurological Institute; McGill University; Montreal QC Canada
| | - Heather D. Durham
- Department of Neurology/Neurosurgery; Montreal Neurological Institute; McGill University; Montreal QC Canada
| |
Collapse
|
89
|
Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 2014; 7:1-11. [PMID: 24703839 DOI: 10.1016/j.celrep.2014.03.019] [Citation(s) in RCA: 472] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1), C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1(+/+) stem cell line do not display the hyperexcitability phenotype. SOD1(A4V/+) ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.
Collapse
|
90
|
Tadros MA, Farrell KE, Schofield PR, Brichta AM, Graham BA, Fuglevand AJ, Callister RJ. Intrinsic and synaptic homeostatic plasticity in motoneurons from mice with glycine receptor mutations. J Neurophysiol 2014; 111:1487-98. [PMID: 24401707 PMCID: PMC4839488 DOI: 10.1152/jn.00728.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/04/2014] [Indexed: 12/12/2022] Open
Abstract
Inhibitory synaptic inputs to hypoglossal motoneurons (HMs) are important for modulating excitability in brainstem circuits. Here we ask whether reduced inhibition, as occurs in three murine mutants with distinct naturally occurring mutations in the glycine receptor (GlyR), leads to intrinsic and/or synaptic homeostatic plasticity. Whole cell recordings were obtained from HMs in transverse brainstem slices from wild-type (wt), spasmodic (spd), spastic (spa), and oscillator (ot) mice (C57Bl/6, approximately postnatal day 21). Passive and action potential (AP) properties in spd and ot HMs were similar to wt. In contrast, spa HMs had lower input resistances, more depolarized resting membrane potentials, higher rheobase currents, smaller AP amplitudes, and slower afterhyperpolarization current decay times. The excitability of HMs, assessed by "gain" in injected current/firing-frequency plots, was similar in all strains whereas the incidence of rebound spiking was increased in spd. The difference between recruitment and derecruitment current (i.e., ΔI) for AP discharge during ramp current injection was more negative in spa and ot. GABAA miniature inhibitory postsynaptic current (mIPSC) amplitude was increased in spa and ot but not spd, suggesting diminished glycinergic drive leads to compensatory adjustments in the other major fast inhibitory synaptic transmitter system in these mutants. Overall, our data suggest long-term reduction in glycinergic drive to HMs results in changes in intrinsic and synaptic properties that are consistent with homeostatic plasticity in spa and ot but not in spd. We propose such plasticity is an attempt to stabilize HM output, which succeeds in spa but fails in ot.
Collapse
Affiliation(s)
- M. A. Tadros
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - K. E. Farrell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - P. R. Schofield
- Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Randwick, Australia; and
| | - A. M. Brichta
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - B. A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - A. J. Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - R. J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
91
|
Defects in synapse structure and function precede motor neuron degeneration in Drosophila models of FUS-related ALS. J Neurosci 2014; 33:19590-8. [PMID: 24336723 DOI: 10.1523/jneurosci.3396-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that leads invariably to fatal paralysis associated with motor neuron degeneration and muscular atrophy. One gene associated with ALS encodes the DNA/RNA-binding protein Fused in Sarcoma (FUS). There now exist two Drosophila models of ALS. In one, human FUS with ALS-causing mutations is expressed in fly motor neurons; in the other, the gene cabeza (caz), the fly homolog of FUS, is ablated. These FUS-ALS flies exhibit larval locomotor defects indicative of neuromuscular dysfunction and early death. The locus and site of initiation of this neuromuscular dysfunction remain unclear. We show here that in FUS-ALS flies, motor neuron cell bodies fire action potentials that propagate along the axon and voltage-dependent inward and outward currents in the cell bodies are indistinguishable in wild-type and FUS-ALS motor neurons. In marked contrast, the amplitude of synaptic currents evoked in the postsynaptic muscle cell is decreased by >80% in FUS-ALS larvae. Furthermore, the frequency but not unitary amplitude of spontaneous miniature synaptic currents is decreased dramatically in FUS-ALS flies, consistent with a change in quantal content but not quantal size. Although standard confocal microscopic analysis of the larval neuromuscular junction reveals no gross abnormalities, superresolution stimulated emission depletion (STED) microscopy demonstrates that the presynaptic active zone protein bruchpilot is aberrantly organized in FUS-ALS larvae. The results are consistent with the idea that defects in presynaptic terminal structure and function precede, and may contribute to, the later motor neuron degeneration that is characteristic of ALS.
Collapse
|
92
|
Koschnitzky JE, Quinlan KA, Lukas TJ, Kajtaz E, Kocevar EJ, Mayers WF, Siddique T, Heckman CJ. Effect of fluoxetine on disease progression in a mouse model of ALS. J Neurophysiol 2014; 111:2164-76. [PMID: 24598527 DOI: 10.1152/jn.00425.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) and other antidepressants are often prescribed to amyotrophic lateral sclerosis (ALS) patients; however, the impact of these prescriptions on ALS disease progression has not been systematically tested. To determine whether SSRIs impact disease progression, fluoxetine (Prozac, 5 or 10 mg/kg) was administered to mutant superoxide dismutase 1 (SOD1) mice during one of three age ranges: neonatal [postnatal day (P)5-11], adult presymptomatic (P30 to end stage), and adult symptomatic (P70 to end stage). Long-term adult fluoxetine treatment (started at either P30 or P70 and continuing until end stage) had no significant effect on disease progression. In contrast, neonatal fluoxetine treatment (P5-11) had two effects. First, all animals (mutant SOD1(G93A) and control: nontransgenic and SOD1(WT)) receiving the highest dose (10 mg/kg) had a sustained decrease in weight from P30 onward. Second, the high-dose SOD1(G93A) mice reached end stage ∼8 days (∼6% decrease in life span) sooner than vehicle and low-dose animals because of an increased rate of motor impairment. Fluoxetine increases synaptic serotonin (5-HT) levels, which is known to increase spinal motoneuron excitability. We confirmed that 5-HT increases spinal motoneuron excitability during this neonatal time period and therefore hypothesized that antagonizing 5-HT receptors during the same time period would improve disease outcome. However, cyproheptadine (1 or 5 mg/kg), a 5-HT receptor antagonist, had no effect on disease progression. These results show that a brief period of antidepressant treatment during a critical time window (the transition from neonatal to juvenile states) can be detrimental in ALS mouse models.
Collapse
Affiliation(s)
- J E Koschnitzky
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - K A Quinlan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - T J Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - E Kajtaz
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - E J Kocevar
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - W F Mayers
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - T Siddique
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - C J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
93
|
Thielsen KD, Moser JM, Schmitt-John T, Jensen MS, Jensen K, Holm MM. The Wobbler mouse model of amyotrophic lateral sclerosis (ALS) displays hippocampal hyperexcitability, and reduced number of interneurons, but no presynaptic vesicle release impairments. PLoS One 2013; 8:e82767. [PMID: 24349357 PMCID: PMC3859636 DOI: 10.1371/journal.pone.0082767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. It is a fatal degenerative disease, best recognized for its debilitating neuromuscular effects. ALS however also induces cognitive impairments in as many as 50% of affected individuals. Moreover, many ALS patients demonstrate cortical hyperexcitability, which has been shown to precede the onset of clinical symptoms. The wobbler mouse is a model of ALS, and like ALS patients the wobbler mouse displays cortical hyperexcitability. Here we investigated if the neocortical aberrations of the wobbler mouse also occur in the hippocampus. Consequently, we performed extracellular field excitatory postsynaptic potential recordings in the CA1 region of the hippocampus on acute brain slices from symptomatic (P45-P60) and presymptomatic (P17-P21) wobbler mice. Significant increased excitation of hippocampal synapses was revealed by leftward shifted input/output-curves in both symptomatic and presymptomatic wobbler mice, and substantiated by population spike occurrence analyses, demonstrating that the increased synaptic excitation precedes the onset of visible phenotypic symptoms in the mouse. Synaptic facilitation tested by paired-pulse facilitation and trains in wobbler and control mice showed no differences, suggesting the absence of presynaptic defects. Immunohistochemical staining revealed that symptomatic wobbler mice have a lower number of parvalbumin positive interneurons when compared to controls and presymptomatic mice. This study reveals that the wobbler mouse model of ALS exhibits hippocampal hyperexcitability. We suggest that the hyperexcitability could be caused by increased excitatory synaptic transmission and a concomitant reduced inhibition due to a decreased number of parvalbumin positive interneurons. Thus we substantiate that wobbler brain impairments are not confined to the motor cortex, but extend to the hippocampus. Importantly, we have revealed more details of the early pathophysiology in asymptomatic animals, and studies like the present may facilitate the development of novel treatment strategies for earlier intervention in ALS patients in the future.
Collapse
Affiliation(s)
- Karina D. Thielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob M. Moser
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas Schmitt-John
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Kimmo Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mai Marie Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
94
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
95
|
Rijnierse A, Kraneveld AD, Salemi A, Zwaneveld S, Goumans AP, Rychter JW, Thio M, Redegeld FA, Westerink RH, Kroese AB. Immunoglobulinfree light chains reduce in an antigen-specific manner the rate of rise of action potentials of mouse non-nociceptive dorsal root ganglion neurons. J Neuroimmunol 2013; 264:14-23. [DOI: 10.1016/j.jneuroim.2013.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 08/16/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022]
|
96
|
Spinal inhibitory circuits and their role in motor neuron degeneration. Neuropharmacology 2013; 82:101-7. [PMID: 24157492 DOI: 10.1016/j.neuropharm.2013.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022]
Abstract
In the spinal cord neuronal activity is controlled by the balance between excitatory and inhibitory neurotransmission, mediated mainly by the neurotransmitters glutamate and GABA/glycine, respectively. Alterations of this equilibrium have been associated with spinal motor neuron hyperexcitability and degeneration, which can be induced by excitotoxicity or by decreasing inhibitory neurotransmission. Here we review the ventral horn neuronal network and the possible involvement of inhibitory circuits in the mechanisms of degeneration of motor neurons characteristic of amyotrophic lateral sclerosis (ALS). Whereas glutamate mediated excitotoxicity seems to be an important factor, recent experimental and histopathological evidence argue in favor of a decreased activity of the inhibitory circuits controlling motor neuron excitability, mainly the recurrent inhibition exerted by Renshaw cells. A decreased Renshaw cell activity may be caused by cell loss or by a reduction of its inhibitory action secondary to a decreased excitation from cholinergic interneurons. Ultimately, inhibitory failure by either mechanism might lead to motor neuron degeneration, and this suggests inhibitory circuits and Renshaw cells as pharmacologic targets for ALS treatment.
Collapse
|
97
|
Mavlyutov TA, Epstein ML, Verbny YI, Huerta MS, Zaitoun I, Ziskind-Conhaim L, Ruoho AE. Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience 2013; 240:129-34. [PMID: 23458708 PMCID: PMC3665351 DOI: 10.1016/j.neuroscience.2013.02.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/02/2013] [Accepted: 02/15/2013] [Indexed: 11/16/2022]
Abstract
The function of the sigma-1 receptor (S1R) has been implicated in modulating the activity of various ion channels. In the CNS S1R is enriched in cholinergic postsynaptic densities in spinal cord motoneurons (MNs). Mutations in S1R have been found in familial cases of amyotrophic lateral sclerosis (ALS). In this study we show that a knockout of S1R in the SOD1*G93A mouse model of ALS significantly reduces longevity (end stage). Electrophysiological experiments demonstrate that MN of mice lacking S1R exhibit increased excitability. Taken together the data suggest the S1R acts as a brake on excitability, an effect that might enhance longevity in an ALS mouse model.
Collapse
Affiliation(s)
- T A Mavlyutov
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Bellingham MC. Pre- and postsynaptic mechanisms underlying inhibition of hypoglossal motor neuron excitability by riluzole. J Neurophysiol 2013; 110:1047-61. [PMID: 23741042 DOI: 10.1152/jn.00587.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Riluzole is the sole treatment for amyotrophic lateral sclerosis (ALS), but its therapeutically relevant actions on motor neurons are not well defined. Whole cell patch-clamp recordings were made from hypoglossal motor neurons (HMs, n = 25) in brain stem slices from 10- to 23-day-old rats anesthetized with pentobarbital sodium to investigate the hypothesis that riluzole inhibits HMs by multiple mechanisms. Riluzole (20 μM) hyperpolarized HMs by decreasing an inward current, inhibited voltage-gated persistent Na(+) and Ca(2+) currents activated by slow voltage ramps, and negatively shifted activation of the hyperpolarization-activated cationic current (IH). Repetitive firing of HMs was strongly inhibited by riluzole, which also increased action potential threshold voltage and rheobase and decreased amplitude and maximum rise slope but did not alter the maximal afterhyperpolarization amplitude or decay time constant. HM rheobase was inversely correlated with persistent Na(+) current density. Glutamatergic synaptic transmission was inhibited by riluzole by both pre- and postsynaptic effects. Riluzole decreased activity-dependent glutamate release, as shown by decreased amplitude of evoked and spontaneous excitatory postsynaptic currents (EPSCs), decreased paired-pulse ratio, and decreased spontaneous, but not miniature, EPSC frequency. However, riluzole also decreased miniature EPSC amplitude and the inward current evoked by local application of glutamate onto HMs, suggesting a reduction of postsynaptic glutamate receptor sensitivity. Riluzole thus has a marked inhibitory effect on HM activity by membrane hyperpolarization, decreasing firing and inhibiting glutamatergic excitation by both pre- and postsynaptic mechanisms. These results broaden the range of mechanisms controlling motor neuron inhibition by riluzole and are relevant to researchers and clinicians interested in understanding ALS pathogenesis and treatment.
Collapse
Affiliation(s)
- Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
99
|
Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2013; 54:116-26. [DOI: 10.1016/j.nbd.2013.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/31/2013] [Accepted: 02/22/2013] [Indexed: 12/12/2022] Open
|
100
|
Fuchs A, Kutterer S, Mühling T, Duda J, Schütz B, Liss B, Keller BU, Roeper J. Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol 2013; 591:2723-45. [PMID: 23401612 PMCID: PMC3678052 DOI: 10.1113/jphysiol.2012.247981] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that targets some somatic motoneuron populations, while others, e.g. those of the oculomotor system, are spared. The pathophysiological basis of this pattern of differential vulnerability, which is preserved in a transgenic mouse model of amyotrophic lateral sclerosis (SOD1(G93A)), and the mechanism of neurodegeneration in general are unknown. Hyperexcitability and calcium dysregulation have been proposed by others on the basis of data from juvenile mice that are, however, asymptomatic. No studies have been done with symptomatic mice following disease progression to the disease endstage. Here, we developed a new brainstem slice preparation for whole-cell patch-clamp recordings and single cell fura-2 calcium imaging to study motoneurons in adult wild-type and SOD1(G93A) mice up to disease endstage. We analysed disease-stage-dependent electrophysiological properties and intracellular Ca(2+) handling of vulnerable hypoglossal motoneurons in comparison to resistant oculomotor neurons. Thereby, we identified a transient hyperexcitability in presymptomatic but not in endstage vulnerable motoneurons. Additionally, we revealed a remodelling of intracellular Ca(2+) clearance within vulnerable but not resistant motoneurons at disease endstage characterised by a reduction of uniporter-dependent mitochondrial Ca(2+) uptake and enhanced Ca(2+) extrusion across the plasma membrane. Our study challenged the notion that hyperexcitability is a direct cause of neurodegeneration in SOD1(G93A) mice, but molecularly identified a Ca(2+) clearance deficit in motoneurons and an adaptive Ca(2+) handling strategy that might be targeted by future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fuchs
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|