51
|
Yang H, Meijer HGE, Doll RJ, Buitenweg JR, van Gils SA. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study. Front Comput Neurosci 2016; 10:49. [PMID: 27252644 PMCID: PMC4879143 DOI: 10.3389/fncom.2016.00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/06/2016] [Indexed: 01/10/2023] Open
Abstract
Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month.
Collapse
Affiliation(s)
- Huan Yang
- Applied Analysis, MIRA Institute for Technical Medicine and Biomedical Technology, University of TwenteEnschede, Netherlands
| | - Hil G. E. Meijer
- Applied Analysis, MIRA Institute for Technical Medicine and Biomedical Technology, University of TwenteEnschede, Netherlands
| | - Robert J. Doll
- Biomedical Signals and Systems, MIRA Institute for Technical Medicine and Biomedical Technology, University of TwenteEnschede, Netherlands
| | - Jan R. Buitenweg
- Biomedical Signals and Systems, MIRA Institute for Technical Medicine and Biomedical Technology, University of TwenteEnschede, Netherlands
| | - Stephan A. van Gils
- Applied Analysis, MIRA Institute for Technical Medicine and Biomedical Technology, University of TwenteEnschede, Netherlands
| |
Collapse
|
52
|
Ciszek BP, O'Buckley SC, Nackley. AG. Persistent Catechol-O-methyltransferase-dependent Pain Is Initiated by Peripheral β-Adrenergic Receptors. Anesthesiology 2016; 124:1122-35. [PMID: 26950706 PMCID: PMC5015695 DOI: 10.1097/aln.0000000000001070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with chronic pain disorders exhibit increased levels of catecholamines alongside diminished activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. The authors found that acute pharmacologic inhibition of COMT in rodents produces hypersensitivity to mechanical and thermal stimuli via β-adrenergic receptor (βAR) activation. The contribution of distinct βAR populations to the development of persistent pain linked to abnormalities in catecholamine signaling requires further investigation. METHODS Here, the authors sought to determine the contribution of peripheral, spinal, and supraspinal βARs to persistent COMT-dependent pain. They implanted osmotic pumps to deliver the COMT inhibitor OR486 (Tocris, USA) for 2 weeks. Behavioral responses to mechanical and thermal stimuli were evaluated before and every other day after pump implantation. The site of action was evaluated in adrenalectomized rats receiving sustained OR486 or in intact rats receiving sustained βAR antagonists peripherally, spinally, or supraspinally alongside OR486. RESULTS The authors found that male (N = 6) and female (N = 6) rats receiving sustained OR486 exhibited decreased paw withdrawal thresholds (control 5.74 ± 0.24 vs. OR486 1.54 ± 0.08, mean ± SEM) and increased paw withdrawal frequency to mechanical stimuli (control 4.80 ± 0.22 vs. OR486 8.10 ± 0.13) and decreased paw withdrawal latency to thermal heat (control 9.69 ± 0.23 vs. OR486 5.91 ± 0.11). In contrast, adrenalectomized rats (N = 12) failed to develop OR486-induced hypersensitivity. Furthermore, peripheral (N = 9), but not spinal (N = 4) or supraspinal (N = 4), administration of the nonselective βAR antagonist propranolol, the β2AR antagonist ICI-118,511, or the β3AR antagonist SR59230A blocked the development of OR486-induced hypersensitivity. CONCLUSIONS Peripheral adrenergic input is necessary for the development of persistent COMT-dependent pain, and peripherally-acting βAR antagonists may benefit chronic pain patients.
Collapse
Affiliation(s)
- Brittney P. Ciszek
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| | - Sandra C. O'Buckley
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| | - Andrea G. Nackley.
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| |
Collapse
|
53
|
Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of montelukast in the animal models of pain. Eur J Pharmacol 2016; 779:38-45. [DOI: 10.1016/j.ejphar.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
54
|
Gracely RH, Schweinhardt P. Programmed symptoms: disparate effects united by purpose. Curr Rheumatol Rev 2016; 11:116-30. [PMID: 26088212 PMCID: PMC4997946 DOI: 10.2174/1573397111666150619095125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 01/23/2023]
Abstract
Central sensitivity syndromes (CSS) share features of similar multiple symptoms, virtually unknown mechanisms and lack of effective treatments. The CSS nomenclature was chosen over alternatives because it focused on a putative physiological mechanism of central sensitization common to disorders such as fibromyalgia, irritable bowel syndrome, vulvodynia and temporomandibular disorder. Increasing evidence from multiple biological systems suggests a further development. In this new model central sensitization is part of a ensemble that includes also the symptoms of widespread pain, fatigue, unrefreshing sleep and dyscognition. The main feature is an intrinsic program that produces this ensemble to guide behavior to restore normal function in conditions that threaten survival. The well known “illness response” is a classic example that is triggered in response to the specific threat of viral infection. The major leap for this model in the context of CSS is that the symptom complex is not a reactive result of pathology, but a purposeful feeling state enlisted to combat pathology. Once triggered, this state is produced by potential mechanisms that likely include contributions of the peripheral and central immune systems, as well as stress response systems such as the autonomic system and the hypothalamic–pituitary–adrenal (HPA) axis. These act in concert to alter behavior in a beneficial direction. This concept explains similar symptoms for many triggering conditions, the poorly understood pathology, and the resistance to treatment.
Collapse
Affiliation(s)
- Richard H Gracely
- Center for Pain Research and Innovation, Koury Oral Health Sciences, CB #7455, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
55
|
Reed DE, Zhang Y, Beyak MJ, Lourenssen S, Blennerhassett MG, Paterson WG, Vanner SJ. Stress increases descending inhibition in mouse and human colon. Neurogastroenterol Motil 2016; 28:569-80. [PMID: 26744175 DOI: 10.1111/nmo.12755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND A relationship between stress and the symptoms of irritable bowel syndrome (IBS) has been well established but the cellular mechanisms are poorly understood. Therefore, we investigated effects of stress and stress hormones on colonic descending inhibition and transit in mouse models and human tissues. METHODS Stress was applied using water avoidance stress (WAS) in the animal model or mimicked using stress hormones, adrenaline (5 nM), and corticosterone (1 μM). Intracellular recordings were obtained from colonic circular smooth muscle cells in isolated smooth muscle/myenteric plexus preparations and the inhibitory junction potential (IJP) was elicited by nerve stimulation or balloon distension oral to the site of recording. KEY RESULTS Water avoidance stress increased the number of fecal pellets compared to control (p < 0.05). WAS also caused a significant increase in IJP amplitude following balloon distension. Stress hormones also increased the IJP amplitude following nerve stimulation and balloon distension (p < 0.05) in control mice but had no effect in colons from stressed mice. No differences were observed with application of ATP between stress and control tissues, suggesting the actions of stress hormones were presynaptic. Stress hormones had a large effect in the nerve stimulated IJP in human colon (increased >50%). Immunohistochemical studies identified alpha and beta adrenergic receptor immunoreactivity on myenteric neurons in human colon. CONCLUSIONS & INFERENCES These studies suggest that WAS and stress hormones can signal via myenteric neurons to increase inhibitory neuromuscular transmission. This could lead to greater descending relaxation, decreased transit time, and subsequent diarrhea.
Collapse
Affiliation(s)
- D E Reed
- GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | - Y Zhang
- GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | - M J Beyak
- GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | - S Lourenssen
- GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | | | - W G Paterson
- GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | - S J Vanner
- GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| |
Collapse
|
56
|
Ferrari LF, Araldi D, Bogen O, Levine JD. Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation. Neuroscience 2016; 324:390-8. [PMID: 26996509 DOI: 10.1016/j.neuroscience.2016.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
Abstract
We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A (PKA) and Src, but not protein kinase C (PKC), significantly attenuated the hyperalgesia induced by both A6 and LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation.
Collapse
Affiliation(s)
- L F Ferrari
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - D Araldi
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - O Bogen
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - J D Levine
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
57
|
Cruz MP, Andrade CMF, Silva KO, de Souza EP, Yatsuda R, Marques LM, David JP, David JM, Napimoga MH, Clemente-Napimoga JT. Antinoceptive and Anti-inflammatory Activities of the Ethanolic Extract, Fractions and Flavones Isolated from Mimosa tenuiflora (Willd.) Poir (Leguminosae). PLoS One 2016; 11:e0150839. [PMID: 26954375 PMCID: PMC4783012 DOI: 10.1371/journal.pone.0150839] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/19/2016] [Indexed: 12/31/2022] Open
Abstract
The bark of Mimosa tenuiflora (Willd.) Poiret (Leguminosae family), popularly known as “jurema preta” in Brazil, is used by the population of Contendas of Sincorá (Bahia State, Brazil) for the treatment of coughs and wound healing. Thus, the aim of this study was to evaluate the antinociceptive and anti-inflammatory activities of the bark ethanol extract (EEMT) and solvent soluble fractions (hexane—H, DCM—D, EtOAc—E and BuOH—B) of the extract in vivo. Additionally, we synthesized 5,7-dihidroxy-4’-methoxyflavanone (isosakuranetin) and isolated the compound sakuranetin, and both compounds were also tested. The anti-inflammatory and antinociceptive assays performed were: writhing test; nociception induced by intraplantar formalin injection; leukocyte recruitment to the peritoneal cavity; evaluation of vascular permeability (Evans blue test); and evaluation of mechanical hypernociception (von Frey test). Production of TNF-α, IL-10, myeloperoxidase and the expression of ICAM-1 were also evaluated. Statistical analysis was performed by one-way ANOVA followed by the Bonferroni post-test (n = 8), with P < 0.05. The EEMT showed antinociceptive activities in writhing test (100–200 mg/kg), in the second phase of the formalin test (50–200 mg/kg), and in mechanical hypernociception (100 mg/kg). EEMT showed an anti-inflammatory effect by reducing neutrophil migration to the peritoneal cavity and in the plantar tissue detected by the reduction of myeloperoxidase activity (100 mg/kg), reduction of IL-10 levels and expression of ICAM-1 in the peritoneal exudate and the mesentery (100 mg/kg), respectively. The four soluble EEMT fractions showed good results in tests for antinociceptive (H, D, E, B) and anti-inflammation (H, D, E). Only sakuranetin showed reduction of the writhing and neutrophil migration (200 mg/kg). Thus, the EEMT and soluble fractions of M. tenuiflora bark demonstrated great antinociceptive and anti-inflammatory activities, as also sakuranetin. More studies should be conducted to elucidate the mechanism of action of this compound. To the best of our knowledge, this is the first report on the antinociceptive activity of the M. tenuiflora fractions and the bioactive isolated compound sakuranetin in vivo.
Collapse
Affiliation(s)
- Mariluze P. Cruz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
- Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Cassya M. F. Andrade
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Kelle O. Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Erika P. de Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Regiane Yatsuda
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Lucas M. Marques
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Juceni P. David
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Jorge M. David
- Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
- * E-mail:
| | - Marcelo H. Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | | |
Collapse
|
58
|
Cremeans-Smith JK, Greene K, Delahanty DL. Physiological Indices of Stress Prior to and Following Total Knee Arthroplasty Predict the Occurrence of Severe Post-Operative Pain. PAIN MEDICINE 2016; 17:970-9. [PMID: 26814277 DOI: 10.1093/pm/pnv043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/27/2015] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The severe pain and disability associated with osteoarthritis often motivate individuals to undergo arthroplastic surgery. However, a significant number of surgical patients continue to experience pain following surgery. Prior research has implicated both the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) in the sensitization of pain receptors and chronic pain conditions. This study uses a prospective, observational, cohort design to examine whether physiological stress responses before and after surgery could predict post-operative pain severity. SUBJECTS Participants included 110 patients undergoing total knee arthroplasty. METHODS Physiological indices of stress included the measurement of catecholamine and cortisol levels in 15-hour urine samples collected prior to and 1 month following surgery, as well as in-hospital heart rate and blood pressure (before and after surgery), which were abstracted from medical records. Patients completed the pain subscale of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) [Bellamy et al., J Orthop Rheumatol 1: , 95 (1988)] 2.5 weeks prior to surgery and at a 3-month follow-up. RESULTS Contrary to expectations, lower stress hormone levels at baseline were related to more severe post-operative pain. Data at later time points, however, supported our hypothesis: cardiovascular tone shortly before surgery and urinary levels of epinephrine 1 month following surgery were positively related to pain severity 3 months later. CONCLUSION Results suggest that the occurrence of post-operative pain can be predicted on the basis of stress physiology prior to and following arthroplastic surgery.
Collapse
Affiliation(s)
- Julie K Cremeans-Smith
- *Department of Psychological Sciences, Kent State University at Stark, North Canton, Ohio;
| | - Kenneth Greene
- Department of Orthopedics, Cleveland Clinic, Cleveland, Ohio
| | - Douglas L Delahanty
- Department of Psychological Sciences, Kent State University, Kent, Ohio; Department of Psychology in Psychiatry, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
| |
Collapse
|
59
|
Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling. Sci Rep 2015; 5:18198. [PMID: 26657998 PMCID: PMC4676002 DOI: 10.1038/srep18198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022] Open
Abstract
The primary molecular target for clinically used opioids is the μ-opioid receptor (MOR). Besides the major seven-transmembrane (7TM) receptors, the MOR gene codes for alternatively spliced six-transmembrane (6TM) isoforms, the biological and clinical significance of which remains unclear. Here, we show that the otherwise exclusively intracellular localized 6TM-MOR translocates to the plasma membrane upon coexpression with β2-adrenergic receptors (β2-ARs) through an interaction with the fifth and sixth helices of β2-AR. Coexpression of the two receptors in BE(2)-C neuroblastoma cells potentiates calcium responses to a 6TM-MOR ligand, and this calcium response is completely blocked by a selective β2-antagonist in BE(2)-C cells, and in trigeminal and dorsal root ganglia. Co-administration of 6TM-MOR and β2-AR ligands leads to substantial analgesic synergy and completely reverses opioid-induced hyperalgesia in rodent behavioral models. Together, our results provide evidence that the heterodimerization of 6TM-MOR with β2-AR underlies a molecular mechanism for 6TM cellular signaling, presenting a unique functional responses to opioids. This signaling pathway may contribute to the hyperalgesic effects of opioids that can be efficiently blocked by β2-AR antagonists, providing a new avenue for opioid therapy.
Collapse
|
60
|
Sun WH, Chen CC. Roles of Proton-Sensing Receptors in the Transition from Acute to Chronic Pain. J Dent Res 2015; 95:135-42. [PMID: 26597969 DOI: 10.1177/0022034515618382] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic pain, when not effectively treated, is a leading health and socioeconomic problem and has a harmful effect on all aspects of health-related quality of life. Therefore, understanding the molecular mechanism of how pain transitions from the acute to chronic phase is essential for developing effective novel analgesics. Accumulated evidence has shown that the transition from acute to chronic pain is determined by a cellular signaling switch called hyperalgesic priming, which occurs in primary nociceptive afferents. The hyperalgesic priming is triggered by inflammatory mediators and is involved in a signal switch from protein kinase A (PKA) to protein kinase Cε (PKCε) located in both isolectin B4 (IB4)-positive (nonpeptidergic) and IB4-negative (peptidergic) nociceptors. Acidosis may be the decisive factor regulating the PKA-to-PKCε signal switch in a proton-sensing G-protein-coupled receptor-dependent manner. Protons can also induce the hyperalgesic priming in IB4-negative muscle nociceptors in a PKCε-independent manner. Acid-sensing ion channel 3 (ASIC3) and transient receptor potential/vanilloid receptor subtype 1 (TRPV1) are 2 major acid sensors involved in the proton-induced hyperalgesic priming. The proton-induced hyperalgesic priming in muscle afferents can be prevented by a substance P-mediated signaling pathway. In this review, we summarize the factors that modulate hyperalgesic priming in both IB4-positive and IB4-negative nociceptors and discuss the role of acid signaling in inflammatory and noninflammatory pain as well as orofacial muscle pain.
Collapse
Affiliation(s)
- W H Sun
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - C C Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Taiwan Mouse Clinic-National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
61
|
Abstract
Inflammatory hyperalgesia is a complex process that depends on the sensitization of primary nociceptive neurons triggered by proinflammatory mediators, such as interleukin 1β (IL-1β). Recently, the peripheral activation of caspase-1 (previously known as IL-1β-converting enzyme) was implicated in the induction of acute inflammatory pain by promoting the processing of IL-1β from its precursor form, pro-IL-1β. Caspase-1 activation in several systems requires the assembly of an intracellular molecular platform called an inflammasome. Inflammasomes consist of 1 nucleotide-binding oligomerization domain-like receptor (NLR), the adapter molecule apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), and caspase-1. NLRP3 and NLRC4 inflammasomes are well described. However, the identity of the inflammasome that is involved in the peripheral activation of caspase-1 that accounts for acute inflammatory hyperalgesia has not been described. The present findings demonstrated that mice deficient in NLRC4 or ASC, but not in NLRP3, present reduced mechanical and thermal acute inflammatory hyperalgesia induced by carrageenan. The reduced hyperalgesia was accompanied by significant impairments in the levels of mature forms of IL-1β (p17) and caspase-1 (p20) compared to wild-type mice at the inflammatory site. Therefore, these results identified the inflammasome components NLRC4 and ASC as the molecular platform involved in the peripheral activation of caspase-1 and IL-1β maturation, which are responsible for the induction of acute inflammatory pain. In conclusion, our study provides new therapeutic targets for the control of acute inflammatory pain.
Collapse
|
62
|
Martin LJ, Piltonen MH, Gauthier J, Convertino M, Acland EL, Dokholyan NV, Mogil JS, Diatchenko L, Maixner W. Differences in the Antinociceptive Effects and Binding Properties of Propranolol and Bupranolol Enantiomers. THE JOURNAL OF PAIN 2015; 16:1321-1333. [PMID: 26456674 DOI: 10.1016/j.jpain.2015.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/07/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Recent efforts have suggested that the β-adrenergic receptor (β-AR) system may be a novel and viable therapeutic target for pain reduction; however, most of the work to date has focused on the β(2)-adrenergic receptor (AR). Here, we compared the antinociceptive effects of enantiomeric configurations of propranolol and bupranolol, two structurally similar nonselective β-blocking drugs, against mouse models of inflammatory and chronic pain. In addition, we calculated in silico docking and measured the binding properties of propranolol and bupranolol for all 3 β-ARs. Of the agents examined, S-bupranolol is superior in terms of its antinociceptive effect and exhibited fewer side effects than propranolol or its associated enantiomers. In contrast to propranolol, S-bupranolol exhibited negligible β-AR intrinsic agonist activity and displayed a full competitive antagonist profile at β(1)/β(2)/β(3)-ARs, producing a unique blockade of β(3)-ARs. We have shown that S-bupranolol is an effective antinociceptive agent in mice without negative side effects. The distinctive profile of S-bupranolol is most likely mediated by its negligible β-AR intrinsic agonist activity and unique blockade of β(3)-AR. These findings suggest that S-bupranolol instead of propranolol may represent a new and effective treatment for a variety of painful conditions. PERSPECTIVE The S enantiomer of bupranolol, a β-receptor antagonist, shows greater antinociceptive efficacy and a superior preclinical safety profile and it should be considered as a unique β-adrenergic receptor compound to advance future clinical pain studies.
Collapse
Affiliation(s)
- Loren J Martin
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Marjo H Piltonen
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Anesthesiology, McGill University, Montreal, Quebec, Canada
| | - Josee Gauthier
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, North Carolina
| | - Marino Convertino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Erinn L Acland
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Anesthesiology, McGill University, Montreal, Quebec, Canada; Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, North Carolina
| | - William Maixner
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
63
|
Baumbauer KM, DeBerry JJ, Adelman PC, Miller RH, Hachisuka J, Lee KH, Ross SE, Koerber HR, Davis BM, Albers KM. Keratinocytes can modulate and directly initiate nociceptive responses. eLife 2015; 4. [PMID: 26329459 PMCID: PMC4576133 DOI: 10.7554/elife.09674] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/28/2015] [Indexed: 01/24/2023] Open
Abstract
How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing. DOI:http://dx.doi.org/10.7554/eLife.09674.001 When a person touches a hot saucepan, nerve cells in the skin send a message to the brain that causes the person to pull away quickly. Similar messages alert the brain when the skin comes in contact with an object that is cold or causes pain. These nerve cells also help to transmit information about other sensations like holding a ball. Scientists believe that skin cells may release messages that influence how the nerves in the skin respond to sensations. But it is difficult to distinguish the respective roles of skin cells and nerve cells in experiments because these cells often appear to react at the same time. Researchers have discovered that a technique called optogenetics, which originally developed to study the brain, can help. Optogenetics uses genetic engineering to create skin cells that respond to light instead of touch. Baumbauer, DeBerry, Adelman et al. genetically engineered mice to express a light-sensitive protein in their skin cells. When these skin cells were exposed to light, the mice pulled away just like they would if they were responding to painful contact. This behavior coincided with electrical signals in the nerve cells even though the nerve cells themselves were not light sensitive. In further experiments, mice were genetically engineered to express another protein in their skin cells that prevents the neurons from being able to generate electrical signals. When these skin cells were exposed to light, the surrounding nerve cells produced fewer electrical signals. Together, the experiments show that skin cells are able to directly trigger electrical signals in nerve cells. Baumbauer, DeBerry, Adelman et al.'s findings may help researchers to understand why some patients with particular inflammatory conditions are in pain due to overactive nerve cells. DOI:http://dx.doi.org/10.7554/eLife.09674.002
Collapse
Affiliation(s)
- Kyle M Baumbauer
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Jennifer J DeBerry
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Peter C Adelman
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Richard H Miller
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Junichi Hachisuka
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Kuan Hsien Lee
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Sarah E Ross
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - H Richard Koerber
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Brian M Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Kathryn M Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
64
|
Results of a pilot multicenter genotype-based randomized placebo-controlled trial of propranolol to reduce pain after major thermal burn injury. Clin J Pain 2015; 31:21-9. [PMID: 25084070 DOI: 10.1097/ajp.0000000000000086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Results of previous studies suggest that β-adrenoreceptor activation may augment pain, and that β-adrenoreceptor antagonists may be effective in reducing pain, particularly in individuals not homozygous for the catechol-O-methyltransferase (COMT) high-activity haplotype. MATERIALS AND METHODS Consenting patients admitted for thermal burn injury at participating burn centers were genotyped; those who were not high-activity COMT homozygotes were randomized to propranolol 240 mg/d or placebo. Primary outcomes were study feasibility (consent rate, protocol completion rate) and pain scores on study days 5 to 19. Secondary outcomes assessed pain and posttraumatic stress disorder symptoms 6 weeks postinjury. RESULTS Seventy-seven percent (61/79) of eligible patients were consented and genotyped, and 77% (47/61) were genotype eligible and randomized. Ninety-one percent (43/47) tolerated study drug and completed primary outcome assessments. In intention-to-treat and per-protocol analyses, patients randomized to propranolol had worse pain scores on study days 5 to 19. CONCLUSIONS Genotype-specific pain medication interventions are feasible in hospitalized burn patients. Propranolol is unlikely to be a useful analgesic during the first few weeks after burn injury.
Collapse
|
65
|
Orand A, Gupta A, Shih W, Presson AP, Hammer C, Niesler B, Heendeniya N, Mayer EA, Chang L. Catecholaminergic Gene Polymorphisms Are Associated with GI Symptoms and Morphological Brain Changes in Irritable Bowel Syndrome. PLoS One 2015; 10:e0135910. [PMID: 26288143 PMCID: PMC4546052 DOI: 10.1371/journal.pone.0135910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/28/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Genetic and environmental factors contribute to the pathophysiology of irritable bowel syndrome (IBS). In particular, early adverse life events (EALs) and the catecholaminergic system have been implicated. AIMS To investigate whether catecholaminergic SNPs with or without interacting with EALs are associated with: 1) a diagnosis of IBS, 2) IBS symptoms and 3) morphological alterations in brain regions associated with somatosensory, viscerosensory, and interoceptive processes. METHODS In 277 IBS and 382 healthy control subjects (HCs), 11 SNPs in genes of the catecholaminergic signaling pathway were genotyped. A subset (121 IBS, 209 HCs) underwent structural brain imaging (magnetic resonance imaging [MRI]). Logistic and linear regressions evaluated each SNP separately and their interactions with EALs in predicting IBS and GI symptom severity, respectively. General linear models determined grey matter (GM) alterations from the SNPs and EALs that were predictive of IBS. RESULTS 1) DIAGNOSIS: There were no statistically significant associations between the SNPs and IBS status with or without the interaction with EAL after adjusting for multiple comparisons. 2) SYMPTOMS: GI symptom severity was associated with ADRA1D rs1556832 (P = 0.010). 3) Brain morphometry: In IBS, the homozygous genotype of the major ADRA1D allele was associated with GM increases in somatosensory regions (FDR q = 0.022), left precentral gyrus (q = 0.045), and right hippocampus (q = 0.009). In individuals with increasing sexual abuse scores, the ADRAβ2 SNP was associated with GM changes in the left posterior insula (q = 0.004) and left putamen volume (q = 0.029). CONCLUSION In IBS, catecholaminergic SNPs are associated with symptom severity and morphological changes in brain regions concerned with sensory processing and modulation and affect regulation. Thus, certain adrenergic receptor genes may facilitate or worsen IBS symptoms.
Collapse
Affiliation(s)
- Alexa Orand
- Oppenheimer Center for the Neurobiology of Stress, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arpana Gupta
- Oppenheimer Center for the Neurobiology of Stress, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wendy Shih
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Angela P. Presson
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Christian Hammer
- Institute of Human Genetics, Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Nuwanthi Heendeniya
- Oppenheimer Center for the Neurobiology of Stress, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Emeran A. Mayer
- Oppenheimer Center for the Neurobiology of Stress, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lin Chang
- Oppenheimer Center for the Neurobiology of Stress, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
66
|
Loh-Doyle JC, Low RK, Monga M, Nguyen MM. Patient experiences and preferences with ureteral stent removal. J Endourol 2015; 29:35-40. [PMID: 25019375 DOI: 10.1089/end.2014.0402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Ureteral stent removal is a source of patient morbidity. We surveyed 599 patients to evaluate their experiences and identify the preferred method of stent removal. MATERIALS AND METHODS Visitors to a kidney stone website were invited to participate. Respondents were asked how their ureteral stent was removed? Pain during and after the procedure, patient experiences, and preferences regarding stent removal were queried. Chi-square and ANOVA tests were used to identify significant differences among removal methods. RESULTS Five hundred seventy-one respondents were included in the study. The majority of stents (44%) were removed by office cystoscopy while 39% had their stents removed by string. Mean pain during stent removal was 4.8 out of 10 with 57% reporting moderate-to-severe pain levels of 4 or more. Removal by office cystoscopy resulted in the highest experienced pain (5.3). Thirty-two percent reported delayed severe pain after stent removal, including 9% who returned for emergency care. Removal by string resulted in more emergency room visits when compared to cystoscopy. Willingness to undergo the same removal technique was lowest for those who underwent office cystoscopy and highest for operating room cystoscopy. Being informed of why a stent was placed and the removal process was of high priority for respondents. CONCLUSIONS The majority of patients report moderate-to-severe pain with stent removal and a third report delayed significant pain after stent removal. Variations exist in the patient experience with stent removal based on the method used. More research is needed to identify effective ways to prevent or manage stent-removal-related adverse events.
Collapse
Affiliation(s)
- Jeffrey C Loh-Doyle
- 1 USC Institute of Urology, Keck School of Medicine of USC , Los Angeles, California
| | | | | | | |
Collapse
|
67
|
Castor MGM, Santos RAS, Duarte IDG, Romero TRL. Angiotensin-(1-7) through Mas receptor activation induces peripheral antinociception by interaction with adrenoreceptors. Peptides 2015; 69:80-5. [PMID: 25895850 DOI: 10.1016/j.peptides.2015.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] develops its functions interacting with Mas receptor. Mas receptor was recently identified in the DRG and its activation by Ang-(1-7) resulted in peripheral antinociception against PGE2 hyperalgesia in an opioid-independent pathway. Nevertheless, the mechanism by which Ang-(1-7) induce peripheral antinociception was not yet elucidated. Considering that endogenous noradrenaline could induce antinociceptive effects by activation of the adrenoceptors the aim of this study was verify if the Ang-(1-7) is able to induce peripheral antinociception by interacting with the endogenous noradrenergic system. Hyperalgesia was induced by intraplantar injection of prostaglandin E2 (2μg). Ang-(1-7) was administered locally into the right hindpaw alone and after either agents, α2-adrenoceptor antagonist, yohimbine (5, 10 and 20 μg/paw), α2C-adrenoceptor antagonist rauwolscine (10, 15 and 20 μg/paw), α1-adrenoceptor antagonist prazosin (0.5, 1 and 2 μg/paw), β-adrenoceptor antagonist propranolol (150, 300 and 600 ng/paw). Noradrenaline (NA) reuptake inhibitor reboxetine (30 μg/paw) was administered prior to Ang-(1-7) low dose (20 ng) and guanetidine 3 days prior to experiment (30 mg/kg/animal, once a day), depleting NA storage. Intraplantar Ang-(1-7) induced peripheral antinociception against hyperalgesia induced by PGE2. This effect was reversed, in dose dependent manner, by intraplantar injection of yohimbine, rauwolscine, prazosin and propranolol. Reboxetine intensified the antinociceptive effects of low-dose of Ang-(1-7) and guanethidine, which depletes peripheral sympathomimetic amines, reversed almost 70% the Ang-(1-7)-induced peripheral antinociception. Then, this study provides evidence that Ang-(1-7) induce peripheral antinociception stimulating an endogenous noradrenaline release that activates peripheral adrenoceptors inducing antinociception.
Collapse
Affiliation(s)
- Marina G M Castor
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Igor D G Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil.
| |
Collapse
|
68
|
Huang WY, Dai SP, Chang YC, Sun WH. Acidosis Mediates the Switching of Gs-PKA and Gi-PKCε Dependence in Prolonged Hyperalgesia Induced by Inflammation. PLoS One 2015; 10:e0125022. [PMID: 25933021 PMCID: PMC4416776 DOI: 10.1371/journal.pone.0125022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/19/2015] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Previous studies suggested that in male Sprague Dawley rats, prostaglandin E2 (PGE2)-induced short-term hyperalgesia depends on protein kinase A (PKA) activity, whereas long-lasting hyperalgesia induced by PGE2 with carrageenan pre-injection, requires protein kinase Cε (PKCε). However, the mechanism underlying the kinase switch with short- to long-term hyperalgesia remains unclear. In this study, we used the inflammatory agents carrageenan or complete Freund's adjuvant (CFA) to induce long-term hyperalgesia, and examined PKA and PKCε dependence and switching time. Hyperalgesia induced by both agents depended on PKA/PKCε and Gs/Gi-proteins, and the switching time from PKA to PKCε and from Gs to Gi was about 3 to 4 h after inflammation induction. Among the single inflammatory mediators tested, PGE2 and 5-HT induced transient hyperalgesia, which depended on PKA and PKCε, respectively. Only acidic solution-induced hyperalgesia required Gs-PKA and Gi-PKCε, and the switch time for kinase dependency matched inflammatory hyperalgesia, in approximately 2 to 4 h. Thus, acidosis in inflamed tissues may be a decisive factor to regulate switching of PKA and PKCε dependence via proton-sensing G-protein-coupled receptors.
Collapse
Affiliation(s)
- Wei-Yu Huang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shih-Ping Dai
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Yan-Ching Chang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences, National Central University, Jhongli, Taiwan
- Institute of Systems Biology & Bioinformatics, National Central University, Jhongli, Taiwan
- * E-mail:
| |
Collapse
|
69
|
Szulczyk B. β-Adrenergic receptor agonist increases voltage-gated Na(+) currents in medial prefrontal cortex pyramidal neurons. Neurosci Lett 2015; 595:87-93. [PMID: 25864779 DOI: 10.1016/j.neulet.2015.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/29/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
The prefrontal cortex does not function properly in neuropsychiatric diseases and during chronic stress. The aim of this study was to test the effects of isoproterenol, a β-adrenergic receptor agonist, on the voltage-dependent fast-inactivating Na(+) currents in medial prefrontal cortex (mPFC) pyramidal neurons obtained from young rats. The recordings were performed in the cell-attached configuration. Isoproterenol (2μM) did not change the peak Na(+) current amplitude but shifted the IV curve of the Na(+) currents toward hyperpolarization. Pretreatment of the cells with the β-adrenergic antagonists propranolol and metoprolol abolished the effect of isoproterenol on the Na(+) currents, suggesting the involvement of β1-adrenergic receptors. The effect of β-adrenergic receptor stimulation on the sodium currents was dependent on kinase A and kinase C; the effect was diminished in the presence of the kinase A antagonist H-89 and the kinase C antagonist chelerythrine and abolished when the antagonists were coapplied. Moreover, isoproterenol depolarized the membrane potential recorded using the perforated-patch method, and this depolarization was abolished by cesium ions. Thus, in mPFC pyramidal neurons, stimulation of β-adrenergic receptors up-regulates the fast-inactivating voltage-gated Na(+) currents evoked by suprathreshold depolarizations.
Collapse
Affiliation(s)
- Bartlomiej Szulczyk
- Department of Drug Technology and Pharmaceutical Biotechnology, The Medical University of Warsaw, Poland; Department of Physiology and Pathophysiology, CEPT, The Medical University of Warsaw, Poland.
| |
Collapse
|
70
|
Silva LCR, Miranda e Castor MG, Souza TC, Duarte IDG, Romero TRL. NSAIDs induce peripheral antinociception by interaction with the adrenergic system. Life Sci 2015; 130:7-11. [PMID: 25818186 DOI: 10.1016/j.lfs.2015.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 11/24/2022]
Abstract
AIMS We evaluated the role of adrenergic systems on the peripheral antinociception induced by dipyrone and diclofenac. Mainmethods: The rat pawpressure test, inwhich sensitivity is increased by intraplantar injection of prostaglandin E2, was used to examine the peripheral effects of locally administered drugs. KEY FINDINGS Dipyrone (10, 20 and 40 μg) and diclofenac (5, 10 and 20 μg) administered locally into the right paw elicited a dose-dependent antinociceptive effect, which was demonstrated to be local; the injection of drugs into the ipsilateral and contralateral hindpaws demonstrated an effect only in the ipsilateral paw because only the treated paw produced an antinociceptive effect. To test the adrenergic system, we used guanethidine (30 mg/kg) to deplete noradrenalin from noradrenergic vesicles. Guanethidine antagonized the peripheral antinociception induced by diclofenac and dipyrone. Yohimbine (2.5, 5, 10, or 20 μg/paw) a nonselective α2-adrenergic receptor antagonist antagonized the peripheral antinociception induced by diclofenac (20 μg/paw) and dipyrone (40 μg/paw). Rauwolscine (Rau; 10, 15, 20 μg), a selective α2C-adrenoreceptor, was able to block the peripheral antinociception induced by NSAIDs. The other specific α2A,B and D-adrenoreceptor antagonists (BRL 44480, imiloxan and RX 821002, respectively) did not modify the peripheral antinociception. However, prazosin (0.5, 1, and 2 μg/paw), an α1 receptor antagonist, and propranolol (0.3, 0.6 or 1.2 μg/paw), a β-adrenoreceptor antagonist, antagonized the antinociception induced by diclofenac (20 μg/paw) and dipyrone (40 μg/paw). SIGNIFICANCE Dipyrone and diclofenac produce peripheral antinociception, which involves the release of NA and interaction with α1, α2C and β-adrenoreceptors.
Collapse
Affiliation(s)
- Lívia Caroline Resende Silva
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil
| | - Marina Gomes Miranda e Castor
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil
| | - Tâmara Cristina Souza
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil.
| |
Collapse
|
71
|
Liu H, Wu QF, Li JY, Liu XJ, Li KC, Zhong YQ, Wu D, Wang Q, Lu YJ, Bao L, Zhang X. Fibroblast growth factor 7 is a nociceptive modulator secreted via large dense-core vesicles. J Mol Cell Biol 2015; 7:466-75. [PMID: 25782913 DOI: 10.1093/jmcb/mjv019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/02/2015] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor (FGF) 7, a member of FGF family, is initially found to be secreted from mesenchymal cells to repair epithelial tissues. However, its functions in the nervous system are largely unknown. The present study showed that FGF7 was a neuromodulator localized in the large dense-core vesicles (LDCVs) in nociceptive neurons. FGF7 was mainly expressed in small-diameter neurons of the dorsal root ganglion and could be transported to the dorsal spinal cord. Interestingly, FGF7 was mostly stored in LDCVs that did not contain neuropeptide substance P. Electrophysiological recordings in the spinal cord slice showed that buffer-applied FGF7 increased the amplitude of excitatory post-synaptic current evoked by stimulating the sensory afferent fibers. Behavior tests showed that intrathecally applied FGF7 potentiated the formalin-induced acute nociceptive response. Moreover, both acute and inflammatory nociceptive responses were significantly reduced in Fgf7-deficient mice. These results suggest that FGF7 exerts an excitatory modulation of nociceptive afferent transmission.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-Feng Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Yin Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing-Jun Liu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai-Cheng Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Qing Zhong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiong Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yin-Jing Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
72
|
Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat. Neuroscience 2015; 290:561-9. [PMID: 25659347 DOI: 10.1016/j.neuroscience.2015.01.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
Abstract
Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10-45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of βARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites.
Collapse
|
73
|
Abstract
Fibromyalgia (FM) syndrome is characterized by widespread pain that is exacerbated by cold and stress but relieved by warmth. We review the points along thermal and pain pathways where temperature may influence pain. We also present evidence addressing the possibility that brown adipose tissue activity is linked to the pain of FM given that cold initiates thermogenesis in brown adipose tissue through adrenergic activity, whereas warmth suspends thermogenesis. Although females have a higher incidence of FM and more resting thermogenesis, they are less able to recruit brown adipose tissue in response to chronic stress than males. In addition, conditions that are frequently comorbid with FM compromise brown adipose activity making it less responsive to sympathetic stimulation. This results in lower body temperatures, lower metabolic rates, and lower circulating cortisol/corticosterone in response to stress--characteristics of FM. In the periphery, sympathetic nerves to brown adipose also project to surrounding tissues, including tender points characterizing FM. As a result, the musculoskeletal hyperalgesia associated with conditions such as FM may result from referred pain in the adjacent muscle and skin.
Collapse
|
74
|
de Souza Nunes JP, da Silva KAB, da Silva GF, Quintão NLM, Corrêa R, Cechinel-Filho V, de Campos-Buzzi F, Niero R. The antihypersensitive and antiinflammatory activities of a benzofuranone derivative in different experimental models in mice: the importance of the protein kinase C pathway. Anesth Analg 2014; 119:836-846. [PMID: 25010822 DOI: 10.1213/ane.0000000000000351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Benzofuranone (BF1) was synthesized and its effects evaluated on mechanical hypersensitivity and paw edema models induced by different agents and on neuropathic pain induced by partial ligation of the sciatic nerve. An attempt was also made to elucidate the mechanism of action. METHODS Swiss mice were used for the tests. Hypersensitivity was induced by intraplantar injection of carrageenan, bradykinin (BK), prostaglandin E2 (PGE2), epinephrine, lipopolysaccharide, or complete Freund adjuvant or by using a neuropathic pain model (evaluated with von Frey filament 0.6 g). The antiinflammatory effects were investigated in a paw edema model induced by carrageenan, PGE2, and BK (measured with a plethysmometer). The involvement of protein kinase C (PKC) was investigated through a nociception model induced by phorbol myristate acetate. RESULTS BF1 inhibited the hypersensitivity and paw edema induced by intraplantar injection of carrageenan, BK, and PGE2 (P < 0.001), and it was effective in reducing the hypersensitivity evoked by complete Freund adjuvant or epinephrine (P < 0.001) but not by lipopolysaccharide (P = 0.2570). BF1 inhibited the licking behavior induced by phorbol myristate acetate (P < 0.001), suggesting involvement of the PKC pathway. A reduction in hypersensitivity of mice submitted to partial ligation of the sciatic nerve (P < 0.001) was observed, with inhibition of neutrophil migration and interleukin-1β production into the spinal cord. BF1 treatment did not interfere with locomotor activity (P = 0.0783) and thermal withdrawal threshold (P = 0.5953), which are important adverse effects of other analgesics. CONCLUSIONS BF1 has dose-dependent antihypersensitive and antiinflammatory effects in both acute and chronic models of pain and inflammation, possibly mediated through interference with the PKC activation pathway. The easy and fast synthesis of this compound, low-cost, low-concentration-requirement, and once-daily-administration drug suggest it as a candidate for future clinical studies.
Collapse
Affiliation(s)
- Juliana Paula de Souza Nunes
- From the Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí, Rua Uruguai, Itajaí, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Sadhasivam S, Chidambaran V, Olbrecht VA, Esslinger HR, Zhang K, Zhang X, Martin LJ. Genetics of pain perception, COMT and postoperative pain management in children. Pharmacogenomics 2014; 15:277-84. [PMID: 24533707 DOI: 10.2217/pgs.13.248] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Effective perioperative analgesia is lacking for children owing to interindividual variations and underdosing of opioids caused by fear of adverse effects. We investigated the role of COMT SNPs on postoperative pain management in children. METHODS One hundred and forty nine children undergoing adenotonsillectomy were enrolled. The associations of four COMT SNPs (rs6269, rs4633, rs4818 and rs4680) with postoperative pain were analyzed and outcome measures included maximum pain scores, need for postoperative opioid interventions and postoperative morphine requirements. RESULTS We detected an association of postoperative opioid intervention need with all four COMT SNPs. Minor allele carriers of COMT SNPs were approximately three-times more likely to require analgesic interventions than homozygotes of major alleles (p-value range: 0.0031-0.0127; odds ratio range: 2.6-3.1). In addition, significant association was detected between maximum Face, Leg, Activity, Consolability, Cry (FLACC) pain scores and three COMT SNPs (rs6269, rs4633 and rs4680). Haplotype 1 (ATCA: 51.3%) and Haplotype 2 (GCGG: 36.2%) are more frequent. Haplotype 2 was associated with higher odds of intravenous analgesic intervention need in postanesthesia recovery unit with an odds ratio of 2.6 (95% CI: 1.2-5.4; p-value = 0.022). CONCLUSION COMT SNPs may play a significant role in interindividual variation in postoperative pain perception and postoperative morphine requirements in children. Original submitted 16 August 2013; Revision submitted 13 December 2013.
Collapse
Affiliation(s)
- Senthilkumar Sadhasivam
- Clinical Anaesthesia & Paediatrics, Acute & Perioperative Pain Service, Department of Anaesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2001, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Teixeira JM, de Oliveira-Fusaro MCG, Parada CA, Tambeli CH. Peripheral P2X7 receptor-induced mechanical hyperalgesia is mediated by bradykinin. Neuroscience 2014; 277:163-73. [PMID: 24997266 DOI: 10.1016/j.neuroscience.2014.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 12/12/2022]
Abstract
P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.
Collapse
Affiliation(s)
- J M Teixeira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil
| | - M C G de Oliveira-Fusaro
- Faculty of Applied Sciences, State University of Campinas - UNICAMP, Rua Pedro Zaccaria, 1300, Limeira, SP CEP 13484-350, Brazil
| | - C A Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil
| | - C H Tambeli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil.
| |
Collapse
|
77
|
Preventive and Therapeutic Effects of a Beta Adrenoreceptor Agonist, Dobutamine, in Carrageenan-Induced Inflammatory Nociception in Rats. Inflammation 2014; 37:1814-25. [DOI: 10.1007/s10753-014-9912-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
78
|
Zhang C, Rui YY, Zhou YY, Ju Z, Zhang HH, Hu CY, Xiao Y, Xu GY. Adrenergic β2-receptors mediates visceral hypersensitivity induced by heterotypic intermittent stress in rats. PLoS One 2014; 9:e94726. [PMID: 24733123 PMCID: PMC3986230 DOI: 10.1371/journal.pone.0094726] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic visceral pain in patients with irritable bowel syndrome (IBS) has been difficult to treat effectively partially because its pathophysiology is not fully understood. Recent studies show that norepinephrine (NE) plays an important role in the development of visceral hypersensitivity. In this study, we designed to investigate the role of adrenergic signaling in visceral hypersensitivity induced by heterotypical intermittent stress (HIS). Abdominal withdrawal reflex scores (AWRs) used as visceral sensitivity were determined by measuring the visceromoter responses to colorectal distension. Colon-specific dorsal root ganglia neurons (DRGs) were labeled by injection of DiI into the colon wall and were acutely dissociated for whole-cell patch-clamp recordings. Blood plasma level of NE was measured using radioimmunoassay kits. The expression of β2-adrenoceptors was measured by western blotting. We showed that HIS-induced visceral hypersensitivity was attenuated by systemic administration of a β-adrenoceptor antagonist propranolol, in a dose-dependent manner, but not by a α-adrenoceptor antagonist phentolamine. Using specific β-adrenoceptor antagonists, HIS-induced visceral hypersensitivity was alleviated by β2 adrenoceptor antagonist but not by β1- or β3-adrenoceptor antagonist. Administration of a selective β2-adrenoceptor antagonist also normalized hyperexcitability of colon-innervating DRG neurons of HIS rats. Furthermore, administration of β-adrenoceptor antagonist suppressed sustained potassium current density (IK) without any alteration of fast-inactivating potassium current density (IA). Conversely, administration of NE enhanced the neuronal excitability and produced visceral hypersensitivity in healthy control rats, and blocked by β2-adrenoceptor antagonists. In addition, HIS significantly enhanced the NE concentration in the blood plasma but did not change the expression of β2-adrenoceptor in DRGs and the muscularis externa of the colon. The present study might provide a potential molecular target for therapy of visceral hypersensitivity in patents with IBS.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Gastroenterology, the Second Affiliated Hospital, Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Department of Neurobiology, Soochow University, Suzhou, P. R. China
| | - Yun-Yun Rui
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Department of Neurobiology, Soochow University, Suzhou, P. R. China
| | - Yuan-Yuan Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Department of Neurobiology, Soochow University, Suzhou, P. R. China
| | - Zhong Ju
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Department of Neurobiology, Soochow University, Suzhou, P. R. China
| | - Hong-Hong Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Department of Neurobiology, Soochow University, Suzhou, P. R. China
| | - Chuang-Ying Hu
- Department of Gastroenterology, the Second Affiliated Hospital, Soochow University, Suzhou, P. R. China
| | - Ying Xiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Department of Neurobiology, Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- Department of Gastroenterology, the Second Affiliated Hospital, Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Department of Neurobiology, Soochow University, Suzhou, P. R. China
| |
Collapse
|
79
|
β2- and β3-adrenergic receptors drive COMT-dependent pain by increasing production of nitric oxide and cytokines. Pain 2014; 155:1346-1355. [PMID: 24727346 DOI: 10.1016/j.pain.2014.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 11/22/2022]
Abstract
Decreased activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, contributes to pain in humans and animals. Previously, we demonstrated that development of COMT-dependent pain is mediated by both β2- and β3-adrenergic receptors (β2ARs and β3ARs). Here we investigated molecules downstream of β2- and β3ARs driving pain in animals with decreased COMT activity. Based on evidence linking their role in pain and synthesis downstream of β2- and β3AR stimulation, we hypothesized that nitric oxide (NO) and proinflammatory cytokines drive COMT-dependent pain. To test this, we measured plasma NO derivatives and cytokines in rats receiving the COMT inhibitor OR486 in the presence or absence of the β2AR antagonist ICI118,551+β3AR antagonist SR59320A. We also assessed whether the NO synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) and cytokine-neutralizing antibodies block the development of COMT-dependent pain. Results showed that animals receiving OR486 exhibited higher levels of NO derivatives, tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2) in a β2- and β3AR-dependent manner. Additionally, inhibition of NO synthases and neutralization of the innate immunity cytokines TNFα, IL-1β, and IL-6 blocked the development of COMT-dependent pain. Finally, we found that NO influences TNFα, IL-1β, IL-6, and CCL2 levels, whereas TNFα and IL-6 influence NO levels. Altogether, these results demonstrate that β2- and β3ARs contribute to COMT-dependent pain, at least partly, by increasing NO and cytokines. Furthermore, they identify β2- and β3ARs, NO, and proinflammatory cytokines as potential therapeutic targets for pain patients with abnormalities in COMT physiology.
Collapse
|
80
|
Ochoa-Cortes F, Guerrero-Alba R, Valdez-Morales EE, Spreadbury I, Barajas-Lopez C, Castro M, Bertrand J, Cenac N, Vergnolle N, Vanner SJ. Chronic stress mediators act synergistically on colonic nociceptive mouse dorsal root ganglia neurons to increase excitability. Neurogastroenterol Motil 2014; 26:334-45. [PMID: 24286174 DOI: 10.1111/nmo.12268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Stress hormones can signal to colonic dorsal root ganglia (DRG) neurons and may play a role in sustained hyperexcitability of nociceptors. METHODS Mouse DRG neurons were exposed overnight to epinephrine (Epi) 5 nM and/or corticosterone (Cort) 1 μM or prior water-avoidance stress. Patch clamp recordings, visceromotor reflexes (VMRs) and molecular studies were conducted. KEY RESULTS Water-avoidance stress induced neuronal hyperexcitability. Incubation of DRG neurons in both Cort and Epi (but neither alone) induced hyperexcitability (rheobase decreased 51%, p < 0.05; action potential discharge increased 95%, p < 0.01); this was blocked by antagonists of the β2 adrenoreceptor (butoxamine, But) and Cort receptor (mifepristone) in combination or alone. Stress hormones enhanced voltage-gated Nav 1.7 currents (p < 0.05) and suppressed IA (p < 0.0001) and IK+ (p < 0.05) currents. Furthermore, stress hormones increased DRG β2 adrenoreceptor mRNA (59%, p = 0.007) and protein (125%, p < 0.05), also Nav 1.7 transcript (45%, p = 0.004) and protein (114%, p = 0.002). In whole-animal studies, the WAS hyperexcitability of DRG neurons was blocked by antagonists of the β2 and glucocorticoid receptors (GCR) but together they paradoxically increased VMRs to colorectal balloon distension. CONCLUSIONS & INFERENCES Stress mediators Epi and Cort activate β2 and GCR on DRG neurons which synergistically induce hyperexcitability of nociceptive DRG neurons and cause corresponding changes in voltage-gated Na(+) and K(+) currents. Furthermore, they increase the expression of β2 adrenoreceptors and Nav1.7 channels, suggesting transcriptional changes could contribute to sustained signaling following stress. The paradoxical effects of But and mifepristone in electrophysiological compared to VMR testing may reflect different peripheral and central actions on sensory signaling.
Collapse
Affiliation(s)
- F Ochoa-Cortes
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University School of Medicine, Kingston, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Alvarez P, Green PG, Levine JD. Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol Psychiatry 2013; 74:688-95. [PMID: 23706525 PMCID: PMC3760993 DOI: 10.1016/j.biopsych.2013.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Early-life stress and exposure to stressful stimuli play a major role in the development of chronic widespread pain in adults. However, how they interact in chronic pain syndromes remains unclear. METHODS Dams and neonatal litters were submitted to a restriction of nesting material (neonatal limited bedding [NLB]) for 1 week. As adults, these rats were exposed to a painless sound stress protocol. The involvement of sympathoadrenal catecholamines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) in nociception was evaluated through behavioral and enzyme-linked immunosorbent assays, surgical interventions, and intrathecal antisense treatments. RESULTS Adult NLB rats exhibited mild muscle hyperalgesia, which was markedly aggravated by sound stress (peaking 15 days after exposure). Adrenal medullectomy did not modify hyperalgesia in NLB rats but prevented its aggravation by sound stress. Sustained administration of epinephrine to NLB rats mimicked sound stress effect. Intrathecal treatment with antisense directed to IL-6 receptor subunit gp130 (gp130), but not to tumor necrosis factor receptor type 1 (TNFR1), inhibited hyperalgesia in NLB rats. However, antisense against either gp130 or TNFR1 inhibited sound stress-induced enhancement of hyperalgesia. Compared with control rats, NLB rats exhibit increased plasma levels of IL-6 but decreased levels of TNFα, whereas sound stress increases IL-6 plasma levels in control rats but not in NLB rats. CONCLUSIONS Early-life stress induces a persistent elevation of IL-6, hyperalgesia, and susceptibility to chronic muscle pain, which is unveiled by exposure to stress in adults. This probably depends on an interaction between adrenal catecholamines and proinflammatory cytokines acting at muscle nociceptor level.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco,Corresponding author’s contact information: Dr. Jon D. Levine, Departments of Medicine, Oral and Maxillofacial Surgery and Division of Neuroscience, University of California at San Francisco, C-555, Box 0440, 521 Parnassus Avenue, San Francisco, CA 94143-0440. Phone: +1-415-476-5108, Fax: +1-415-476-6305,
| | - Paul G. Green
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco
| | - Jon D. Levine
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Medicine, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco
| |
Collapse
|
82
|
Kang SY, Roh DH, Kim HW, Han HJ, Beitz AJ, Lee JH. Suppression of adrenal gland-derived epinephrine enhances the corticosterone-induced antinociceptive effect in the mouse formalin test. Eur J Pain 2013; 18:617-28. [PMID: 24155262 DOI: 10.1002/j.1532-2149.2013.00410.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND There is both clinical and experimental evidence to support the application of corticosterone in the management of inflammation and pain. Corticosterone has been used to treat painful inflammatory diseases and can produce antinociceptive effects. Epinephrine is synthesized from norepinephrine by the enzyme phenylethanolamine N-methyltransferase (PNMT) and works as an endogenous adrenoceptor ligand secreted peripherally by the adrenal medulla. It is currently unclear whether corticosterone's antinociceptive effect is associated with the modulation of peripheral epinephrine. METHODS We first determined whether exogenous corticosterone treatment actually produced an antinociceptive effect in a formalin-induced pain model, and then examined whether this corticosterone-induced antinociceptive effect was altered by suppression of adrenal-derived epinephrine, using the following three suppression methods: (1) inhibition of the PNMT enzyme; (2) blocking peripheral epinephrine receptors; and (3) adrenalectomy. RESULTS Exogenous treatment with corticosterone at a high dose (50 mg/kg), but not at lower doses (5, 25 mg/kg), significantly reduced pain responses in the late phase. Moreover, injection of 2,3-dichloro-a-methylbenzylamine, a PNMT enzyme inhibitor, (10 mg/kg) before corticosterone treatment caused a leftward shift in the dose-response curve for corticosterone and injection of propranolol (5 mg/kg), but not phentolamine, also shifted the dose-response curve to the left during the late phase. Chemical sympathectomy with 6-hydroxydopamine had no effect on corticosterone-induced antinociceptive effect, but injection of a low dose of corticosterone produced an antinociceptive effect in adrenalectomized animals. CONCLUSIONS These results demonstrate that suppression of epinephrine, derived from adrenal gland, enhances the antinociceptive effect of exogenous corticosterone treatment in an inflammatory pain model.
Collapse
Affiliation(s)
- S Y Kang
- Acupuncture, Moxibustion & Meridian Research Group, Medical Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
83
|
Perin-Martins A, Teixeira JM, Tambeli CH, Parada CA, Fischer L. Mechanisms underlying transient receptor potential ankyrin 1 (TRPA1)-mediated hyperalgesia and edema. J Peripher Nerv Syst 2013; 18:62-74. [PMID: 23521647 DOI: 10.1111/jns5.12010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the mechanisms that contribute to hyperalgesia and edema induced by TRPA1 activation. The injection of allyl isothiocyanate (AITC, 50, 100, or 300 µg/paw) into the rat's hind paw induced dose and time-dependent hyperalgesia and edema, which were blocked by the selective TRPA1 antagonist, HC 030031 (1,200 µg/paw), or by treatment with antisense oligodeoxynucleotide (four daily intrathecal injections of 5 nmol). These results demonstrate that the hyperalgesia and edema induced by AITC depend on TRPA1 activation. AITC-induced hyperalgesia and edema were significantly reduced by treatment with neurokinin 1 (L-703,606, 38 µg/paw) or calcitonin gene-related peptide (CGRP8-37 , 5 µg/paw) receptor antagonists, with a mast cell degranulator (compound 48/80, four daily injections of 1, 3, 10, and 10 µg/paw) or with H1 (pyrilamine, 400 µg/paw), 5-HT1A (wAy-100,135, 450 µg/paw) or 5-HT3 (tropisetron, 450 µg/paw) receptor antagonists. Pre-treatment with a selectin inhibitor (fucoidan, 20 mg/kg) significantly reduced AITC-induced hyperalgesia, edema, and neutrophil migration. Finally, a cyclooxygenase inhibitor (indomethacin, 100 µg/paw), a β1 (atenolol, 6 µg/paw) or a β2 (ICI 118, 551, 1.5 µg/paw) adrenoceptor antagonist also significantly reduced AITC-induced hyperalgesia and edema. Together, these results demonstrate that TRPA1 mediates some of the key inflammatory mechanisms, suggesting a key role of this receptor in pain and inflammation.
Collapse
Affiliation(s)
- Andressa Perin-Martins
- Department of Physiology, Laboratory of Pain Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | | | | | | | | |
Collapse
|
84
|
Blockade of Adrenal Medulla-Derived Epinephrine Potentiates Bee Venom-Induced Antinociception in the Mouse Formalin Test: Involvement of Peripheral β -Adrenoceptors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:809062. [PMID: 24089621 PMCID: PMC3781998 DOI: 10.1155/2013/809062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022]
Abstract
The injection of diluted bee venom (DBV) into an acupoint has been used traditionally in eastern medicine to treat a variety of inflammatory chronic pain conditions. We have previously shown that DBV had a potent antinociceptive efficacy in several rodent pain models. However, the peripheral mechanisms underlying DBV-induced antinociception remain unclear. The present study was designed to investigate the role of peripheral epinephrine on the DBV-induced antinociceptive effect in the mouse formalin assay. Adrenalectomy significantly enhanced the antinociceptive effect of DBV during the late phase of the formalin test, while chemical sympathectomy had no effect. Intraperitoneal injection of epinephrine blocked this adrenalectomy-induced enhancement of the DBV-induced antinociceptive effect. Moreover, injection of a phenylethanolamine N-methyltransferase (PNMT) inhibitor enhanced the DBV-induced antinociceptive effect. Administration of nonselective β-adrenergic antagonists also significantly potentiated this DBV-induced antinociception, in a manner similar to adrenalectomy. These results demonstrate that the antinociceptive effect of DBV treatment can be significantly enhanced by modulation of adrenal medulla-derived epinephrine and this effect is mediated by peripheral β-adrenoceptors. Thus, DBV acupoint stimulation in combination with inhibition of peripheral β-adrenoceptors could be a potentially novel strategy for the management of inflammatory pain.
Collapse
|
85
|
Laycock H, Valente J, Bantel C, Nagy I. Peripheral mechanisms of burn injury-associated pain. Eur J Pharmacol 2013; 716:169-78. [DOI: 10.1016/j.ejphar.2013.01.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 12/12/2022]
|
86
|
Bunevicius A, Hinderliter A, Klatzkin R, Patel A, Arizmendi C, Girdler SS. Beta-adrenergic receptor mechanisms and pain sensitivity in women with menstrually related mood disorders. THE JOURNAL OF PAIN 2013; 14:1349-60. [PMID: 23958279 DOI: 10.1016/j.jpain.2013.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED Somatic symptoms experienced by women with a menstrually related mood disorder (MRMD) during their premenstrual luteal phase contribute to functional impairment. Yet, investigations on pathophysiological mechanisms contributing to heightened pain sensitivity in MRMD are sparse. During the luteal phase, 61 women with an MRMD and 61 non-MRMD controls were evaluated for β-adrenergic receptor (β-AR) responsivity using the isoproterenol sensitivity test. A subset (43 MRMD and 50 non-MRMD) then entered a double-blind, placebo-controlled, crossover protocol to examine the effect of β-AR blockade with intravenous propranolol on sensitivity to experimental (cold pressor and ischemic) and clinical (McGill Pain Questionnaire score) pain. Women with an MRMD exhibited greater β1- and β2-AR responsivity, ischemic pain intensity, and affective clinical pain ratings than controls. Propranolol increased cold pressor pain tolerance in both groups, but it decreased cold pain intensity and ischemic pain unpleasantness ratings only in non-MRMD women. In contrast, propranolol decreased affective ratings of clinical pain in women with MRMD. Exploratory analyses indicated that only in MRMD women did greater β-AR responsivity predict greater sensitivity to cold pressor and ischemic pain. This study provides the first evidence for a role of β-AR mechanisms in the hyperalgesia and clinical pain experienced by women with MRMDs. PERSPECTIVE This article describes the effects of β-adrenergic receptor stimulation and blockade on experimental and clinical pain sensitivity in women with an MRMD. The results of this study may have implications for the management of the substantial somatic premenstrual symptomatology experienced by women with an MRMD.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
87
|
Ng KY, Yeung BHS, Wong YH, Wise H. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells. Br J Pharmacol 2013; 168:746-60. [PMID: 22924655 DOI: 10.1111/j.1476-5381.2012.02177.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 07/06/2012] [Accepted: 08/15/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Hyper-nociceptive PGE(2) EP(4) receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other G(s) -protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone-glial cell interactions in regulating adenylyl cyclase (AC) activity. EXPERIMENTAL APPROACH Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. KEY RESULTS Pharmacological analysis showed the presence of G(s) -coupled β(2) -adrenoceptors and CGRP receptors, but not β(1) -adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell-cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. CONCLUSIONS AND IMPLICATIONS G(s) -coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP(4) and IP receptors, but not β(2) -adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses.
Collapse
Affiliation(s)
- K Y Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
88
|
Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics 2013; 22:673-91. [PMID: 22722321 DOI: 10.1097/fpc.0b013e3283560c46] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In human studies, low COMT (catechol-O-methyltransferase) activity has been associated with increased sensitivity to acute clinical preoperative or postoperative pain. We explored the association between the COMT genotype and three chronic pain conditions: migrainous headache, fibromyalgia, or chronic widespread pain and chronic musculoskeletal pain. Furthermore, we evaluated whether COMT genotype affects the efficacy of opioids in chronic pain. After a systematic literature review, we carried out meta-analyses on the three chronic pain conditions. The efficacy of opioids was evaluated using a systematic review only. The meta-analyses showed that fibromyalgia or chronic widespread pain is the only type of chronic pain that could be associated with the COMT single nucleotide polymorphism rs4680 (Val158Met). Met158, which results in the low-activity variant of COMT, is the risk allele. In chronic clinical pain, the effect of the COMT polymorphism depends on the pain condition. Low COMT activity is not associated with migrainous headache or chronic musculoskeletal pain conditions, but it may increase the risk for fibromyalgia or chronic widespread pain. Low COMT activity increases opioid receptors and enhances opioid analgesia and adverse effects in some cancer pains. Findings from animal studies that have utilized COMT inhibitors elucidate the mechanism behind these findings. In rodent pain models, COMT inhibitors are pronociceptive, except for neuropathic pain models, where nitecapone was found to be antiallodynic. The complex interplay between enhanced adrenergic and dopaminergic activity in different parts of the nociceptive system probably explains the complicated actions of low COMT activity.
Collapse
|
89
|
Bonet IJ, Fischer L, Parada CA, Tambeli CH. The role of transient receptor potential A 1 (TRPA1) in the development and maintenance of carrageenan-induced hyperalgesia. Neuropharmacology 2013; 65:206-12. [DOI: 10.1016/j.neuropharm.2012.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 01/01/2023]
|
90
|
Romero TRL, Resende LC, Guzzo LS, Duarte IDG. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. Anesth Analg 2013; 116:463-72. [PMID: 23302980 DOI: 10.1213/ane.0b013e3182707859] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cannabinoid agonists induce norepinephrine release in central, spinal, and peripheral sites. Previous studies suggest an interaction between the cannabinoid and adrenergic systems on antinociception. In this study, we sought to verify whether the CB1 and CB2 cannabinoid receptor agonists anandamide and N-palmitoyl-ethanolamine (PEA), respectively, are able to induce peripheral antinociception via an adrenergic mechanism. METHODS All drugs were administered locally into the right hindpaw of male Wistar rats. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E2 (2 μg). RESULTS Anandamide, 12.5 ng/paw, 25 ng/paw, and 50 ng/paw elicited a local peripheral antinociceptive effect that was antagonized by CB1 cannabinoid receptor antagonist AM251, 20 µg/paw, 40 µg/paw, and 80 µg/paw, but not by CB2 cannabinoid receptor antagonist AM630, 100 µg/paw. PEA, 5 µg/paw, 10 µg/paw, and 20 µg/paw, elicited a local peripheral antinociceptive effect that was antagonized by AM630, 25 µg/paw, 50 µg/paw, and 100 µg/paw, but not by AM251, 80 µg/paw. Antinociception induced by anandamide or PEA was antagonized by the nonselective α2 adrenoceptor antagonist yohimbine, 05 µg/paw, 10 µg/paw, and 20 µg/paw, and by the selective α2C adrenoceptor antagonist rauwolscine, 10 µg/paw, 15 µg/paw, and 20 µg/paw, but not by the selective antagonists for α2A, α2B, and α2D adrenoceptor subtypes, 20 μg/paw. The antinociceptive effect of the cannabinoids was also antagonized by the nonselective α1 adrenoceptor antagonist prazosin, 0.5 µg/paw, 1 µg/paw, and 2 µg/paw, and by the nonselective β adrenoceptor antagonist propranolol, 150 ng/paw, 300 ng/paw, and 600 ng/paw. Guanethidine, which depletes peripheral sympathomimetic amines (30 mg/kg/animal, once a day for 3 days), restored approximately 70% the anandamide-induced and PEA-induced peripheral antinociception. Furthermore, acute injection of the norepinephrine reuptake inhibitor reboxetine, 30 µg/paw, intensified the antinociceptive effects of low-dose anandamide, 12.5 ng/paw, and PEA, 5 µg/paw. CONCLUSIONS This study provides evidence that anandamide and PEA induce peripheral antinociception activating CB1 and CB2 cannabinoid receptors, respectively, stimulating an endogenous norepinephrine release that activates peripheral adrenoceptors inducing antinociception.
Collapse
Affiliation(s)
- Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antonio Carlos, 6627, Pampulha, CEP 31.270-100, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
91
|
Villarreal CF, Funez MI, Cunha FDQ, Parada CA, Ferreira SH. The long-lasting sensitization of primary afferent nociceptors induced by inflammation involves prostanoid and dopaminergic systems in mice. Pharmacol Biochem Behav 2013. [DOI: 10.1016/j.pbb.2012.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
92
|
Joseph EK, Levine JD. Role of endothelial cells in antihyperalgesia induced by a triptan and β-blocker. Neuroscience 2012; 232:83-9. [PMID: 23262231 DOI: 10.1016/j.neuroscience.2012.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/27/2012] [Accepted: 12/11/2012] [Indexed: 01/08/2023]
Abstract
While blood vessels have long been implicated in diverse pain syndromes (e.g., migraine headache, angina pectoris, vasculitis, and Raynaud's syndrome), underlying mechanisms remain to be elucidated. Recent evidence supports a contribution of the vascular endothelium in endothelin-1-induced hyperalgesia, and its enhancement by repeated mechanical stimulation; a phenomenon referred to as stimulus-induced enhancement of (endothelin) hyperalgesia (SIEH). SIEH is thought to be mediated by release of ATP from endothelial cells, to act on P2X3 receptors on nociceptors. In the present study we evaluated the ability of another vasoactive hyperalgesic agent, epinephrine, to induce endothelial cell-dependent hyperalgesia and SIEH. We found that epinephrine also produces hyperalgesia and SIEH. Both P2X3 receptor antagonists, A317491 and octoxynol-9, which attenuate endothelial cell function, eliminated SIEH without affecting epinephrine hyperalgesia. We further evaluated the hypothesis that members of two important classes of drugs used to treat migraine headache, whose receptors are present in endothelial cells - the triptans and β blockers - have a vascular component to their anti-hyperalgesic action. For this, we tested the effect of ICI-118,551, a β₂-adrenergic receptor antagonist and sumatriptan, an agonist at 5-HT1B and 5-HT₁D receptors, on nociceptive effects of endothelin and epinephrine. ICI-118,551 inhibited endothelin SIEH, and attenuated epinephrine hyperalgesia and SIEH. Sumatriptan inhibited epinephrine SIEH and inhibited endothelin hyperalgesia and SIEH, while having no effect on epinephrine hyperalgesia or the hyperalgesia induced by a prototypical direct-acting inflammatory mediator, prostaglandin E₂. These results support the suggestion that triptans and β-blockers interact with the endothelial cell component of the blood vessel to produce anti-hyperalgesia.
Collapse
Affiliation(s)
- E K Joseph
- Department of Medicine, Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, USA; Department of Oral Surgery, Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, USA
| | - J D Levine
- Department of Medicine, Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, USA; Department of Oral Surgery, Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, USA.
| |
Collapse
|
93
|
Catechol-O-methyltransferase genotype predicts pain severity in hospitalized burn patients. J Burn Care Res 2012; 33:518-23. [PMID: 22210062 DOI: 10.1097/bcr.0b013e31823746ed] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increasing evidence suggests that stress system activation after burn injury may contribute to burn-related pain. If this is the case, then genetic variations influencing the function of important stress system components, such as the enzyme catechol-O-methyltransferase (COMT), may predict pain severity after thermal burn injury. The authors evaluated the association between COMT genotype and pain intensity in 57 individuals hospitalized after thermal burn injury. Consenting participants at four burn centers were genotyped and completed daily 0 to 10 numeric rating scale pain assessments on 2 consecutive days including evaluation of waking, least, and worst pain. The association between COMT genotype and individual pain outcomes was calculated using a linear mixed model adjusting for sociodemographic and burn injury characteristics. Overall pain (combination of least, worst, and waking pain scores) was significantly higher in patients with a COMT pain vulnerable genotype (6.3 [0.4] vs 5.4 [0.4], P = .037). Individuals with a COMT pain vulnerable genotype also had significantly higher "least pain" scores (3.8 [0.5] vs 2.6 [0.4], P = .017) and significantly higher pain on awakening (6.8 [0.5] vs 5.3 [0.4], P = .004). Differences in worst pain according to genotype group were not significant. COMT pain vulnerable genotype was a stronger predictor of overall pain severity than burn size, burn depth, or time from admission to pain interview assessment. These findings suggest that genetic factors influencing stress system function may have an important influence on pain severity after burn injury. Further studies of genetic predictors of pain after burn injury are needed.
Collapse
|
94
|
Segall SK, Maixner W, Belfer I, Wiltshire T, Seltzer Z, Diatchenko L. Janus molecule I: dichotomous effects of COMT in neuropathic vs nociceptive pain modalities. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2012; 11:222-35. [PMID: 22483297 DOI: 10.2174/187152712800672490] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/27/2011] [Accepted: 10/28/2012] [Indexed: 01/02/2023]
Abstract
The enzyme catechol-O-methyltransferase (COMT) has been shown to play a critical role in pain perception by regulating levels of epinephrine (Epi) and norepinephrine (NE). Although the key contribution of catecholamines to the perception of pain has been recognized for a long time, there is a clear dichotomy of observations. More than a century of research has demonstrated that increasing adrenergic transmission in the spinal cord decreases pain sensitivity in animals. Equally abundant evidence demonstrates the opposite effect of adrenergic signaling in the peripheral nervous system, where adrenergic signaling increases pain sensitivity. Viewing pain processing within spinal and peripheral compartments and determining the directionality of adrenergic signaling helps clarify the seemingly contradictory findings of the pain modulatory properties of adrenergic receptor agonists and antagonists presented in other reviews. Available evidence suggests that adrenergic signaling contributes to pain phenotypes through α(1/2) and β(2/3) receptors. While stimulation of α(2) adrenergic receptors seems to uniformly produce analgesia, stimulation of α(1) or β receptors produces either analgesic or hyperalgesic effects. Establishing the directionality of adrenergic receptor modulation of pain processing, and related COMT activity in different pain models are needed to bring meaning to recent human molecular genetic findings. This will enable the translation of current findings into meaningful clinical applications such as diagnostic markers and novel therapeutic targets for complex human pain conditions.
Collapse
Affiliation(s)
- S K Segall
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, USA.
| | | | | | | | | | | |
Collapse
|
95
|
Hypernociception and wound healing after application of cyanoacrylate ester as a tissue adhesive in rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:S79-85. [PMID: 23083961 DOI: 10.1016/j.tripleo.2011.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/05/2011] [Accepted: 08/12/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The present study assessed and compared postoperative hypernociception and skin healing after cyanoacrylate and classic suture as well as analyzed morphologic features of the tissue repair. STUDY DESIGN The intensity of hypernociception was measured with an electronic pressure-meter test. Rats were given an incised wound in the middle of the palms of the right and left paws. The left side was treated with a silk suture, and the right with cyanoacrylate. Control groups were treated locally with dipyrone or received a systemic pretreatment with valdecoxib. RESULTS Cyanoacrylate was associated with less inflammation (first week), and the healing wound site was rich in collagenous extracellular matrix and neovascularization. Dipyrone in combination with cyanoacrylate greatly increased the antinociceptive effect. These results were not repeated after systemic treatment with valdecoxib, suggesting that the antinociceptive effect seen in the tissue adhesive was due to formation of a physical barrier.
Collapse
|
96
|
Schweinhardt P, Abulhasan Y, Koeva V, Balderi T, Kim D, Alhujairi M, Carli F. Effects of intravenous propranolol on heat pain sensitivity in healthy men. Eur J Pain 2012; 17:704-13. [DOI: 10.1002/j.1532-2149.2012.00231.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 11/06/2022]
Affiliation(s)
- P. Schweinhardt
- Alan Edwards Centre for Research on Pain; Faculty of Dentistry; McGill University; Montreal; Quebec; Canada
| | | | - V. Koeva
- Department of Anesthesia; Montreal General Hospital; McGill University; Montreal; Quebec; Canada
| | - T. Balderi
- Department of Anesthesia; Montreal General Hospital; McGill University; Montreal; Quebec; Canada
| | - D.J. Kim
- Department of Anesthesia; Montreal General Hospital; McGill University; Montreal; Quebec; Canada
| | - M. Alhujairi
- Department of Anesthesia; Montreal General Hospital; McGill University; Montreal; Quebec; Canada
| | - F. Carli
- Department of Anesthesia; Montreal General Hospital; McGill University; Montreal; Quebec; Canada
| |
Collapse
|
97
|
das Chagas Vieira Júnior F, Sales AB, Barros FCN, Chaves LDS, Freitas ALP, Vale ML, Ribeiro RDA, Souza MHLP, Medeiros JVR, Barbosa ALDR. Involvement of the NO/cGMP/PKG/KATP pathway and endogenous opioids in the antinociceptive effect of a sulphated-polysaccharide fraction extracted from the red algae, Gracilaria caudata. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2012.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
98
|
Hucho T, Suckow V, Joseph EK, Kuhn J, Schmoranzer J, Dina OA, Chen X, Karst M, Bernateck M, Levine JD, Ropers HH. Ca++/CaMKII switches nociceptor-sensitizing stimuli into desensitizing stimuli. J Neurochem 2012; 123:589-601. [PMID: 22891703 DOI: 10.1111/j.1471-4159.2012.07920.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/17/2012] [Accepted: 07/22/2012] [Indexed: 01/19/2023]
Abstract
Many extracellular factors sensitize nociceptors. Often they act simultaneously and/or sequentially on nociceptive neurons. We investigated if stimulation of the protein kinase C epsilon (PKCε) signaling pathway influences the signaling of a subsequent sensitizing stimulus. Central in activation of PKCs is their transient translocation to cellular membranes. We found in cultured nociceptive neurons that only a first stimulation of the PKCε signaling pathway resulted in PKCε translocation. We identified a novel inhibitory cascade to branch off upstream of PKCε, but downstream of Epac via IP3-induced calcium release. This signaling branch actively inhibited subsequent translocation and even attenuated ongoing translocation. A second 'sensitizing' stimulus was rerouted from the sensitizing to the inhibitory branch of the signaling cascade. Central for the rerouting was cytoplasmic calcium increase and CaMKII activation. Accordingly, in behavioral experiments, activation of calcium stores switched sensitizing substances into desensitizing substances in a CaMKII-dependent manner. This mechanism was also observed by in vivo C-fiber electrophysiology corroborating the peripheral location of the switch. Thus, we conclude that the net effect of signaling in nociceptors is defined by the context of the individual cell's signaling history.
Collapse
Affiliation(s)
- Tim Hucho
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yamato K, Kataoka T, Nishiyama Y, Taguchi T, Yamaoka K. Preventive and curative effects of radon inhalation on chronic constriction injury-induced neuropathic pain in mice. Eur J Pain 2012; 17:480-92. [PMID: 22949231 DOI: 10.1002/j.1532-2149.2012.00210.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Radon therapy is clinically useful for the treatment of pain-related diseases. However, there have been no studies regarding the effects of radon inhalation on neuropathic pain. In this study, we aimed to determine whether radon inhalation actually induced a remission of neuropathic pain and improved the quality of life. METHODS First, we investigated the antinociceptive effects of radon inhalation in the chronic constriction injury (CCI) model of neuropathic pain. We evaluated pain behaviour in mice before and after CCI surgery, using von Frey test. Pretreated mice received CCI surgery immediately after 24-h inhalation of radon at background (BG) concentration (c. 19 Bq/m(3) ), or at a concentration of 1000 or 2000 Bq/m(3) , and post-treated mice inhaled similar levels of radon 2 days after CCI surgery. RESULTS CCI surgery induced mechanical allodynia and hyperalgesia on a plantar surface of mice, as assessed using von Frey test, and 2000 Bq/m(3) radon inhalation alleviated hyperalgesic conditions 22-37% compared to BG level concentration. Concurrently, CCI surgery increased norepinephrine (NE), tumour necrosis factor-alpha (TNF-α) and nitric oxide (NO) concentrations in plasma, and leukocyte migration in paws. Furthermore, CCI-induced neuropathy reduced superoxide dismutase (SOD) activity. Treatment with radon inhalation, specifically at a concentration of 2000 Bq/m(3) , produced antinociceptive effects, i.e., lowered plasma TNF-α, NE and NO levels and restored SOD activity, as well as pain-related behaviour. CONCLUSIONS This study showed that inhalation of 2000 Bq/m(3) radon prevented and alleviated CCI-induced neuropathic pain in mice.
Collapse
Affiliation(s)
- K Yamato
- Graduate School of Health Sciences, Okayama University, Japan
| | | | | | | | | |
Collapse
|
100
|
Oliveira-Fusaro MCG, Clemente-Napimoga JT, Teixeira JM, Torres-Chávez KE, Parada CA, Tambeli CH. 5-HT induces temporomandibular joint nociception in rats through the local release of inflammatory mediators and activation of local β adrenoceptors. Pharmacol Biochem Behav 2012; 102:458-64. [DOI: 10.1016/j.pbb.2012.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 05/15/2012] [Accepted: 06/02/2012] [Indexed: 11/26/2022]
|