51
|
Williams AJ, Zhou C, Sun QQ. Enhanced Burst-Suppression and Disruption of Local Field Potential Synchrony in a Mouse Model of Focal Cortical Dysplasia Exhibiting Spike-Wave Seizures. Front Neural Circuits 2016; 10:93. [PMID: 27891080 PMCID: PMC5102891 DOI: 10.3389/fncir.2016.00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022] Open
Abstract
Focal cortical dysplasias (FCDs) are a common cause of brain seizures and are often associated with intractable epilepsy. Here we evaluated aberrant brain neurophysiology in an in vivo mouse model of FCD induced by neonatal freeze lesions (FLs) to the right cortical hemisphere (near S1). Linear multi-electrode arrays were used to record extracellular potentials from cortical and subcortical brain regions near the FL in anesthetized mice (5–13 months old) followed by 24 h cortical electroencephalogram (EEG) recordings. Results indicated that FL animals exhibit a high prevalence of spontaneous spike-wave discharges (SWDs), predominately during sleep (EEG), and an increase in the incidence of hyper-excitable burst/suppression activity under general anesthesia (extracellular recordings, 0.5%–3.0% isoflurane). Brief periods of burst activity in the local field potential (LFP) typically presented as an arrhythmic pattern of increased theta-alpha spectral peaks (4–12 Hz) on a background of low-amplitude delta activity (1–4 Hz), were associated with an increase in spontaneous spiking of cortical neurons, and were highly synchronized in control animals across recording sites in both cortical and subcortical layers (average cross-correlation values ranging from +0.73 to +1.0) with minimal phase shift between electrodes. However, in FL animals, cortical vs. subcortical burst activity was strongly out of phase with significantly lower cross-correlation values compared to controls (average values of −0.1 to +0.5, P < 0.05 between groups). In particular, a marked reduction in the level of synchronous burst activity was observed, the closer the recording electrodes were to the malformation (Pearson’s Correlation = 0.525, P < 0.05). In a subset of FL animals (3/9), burst activity also included a spike or spike-wave pattern similar to the SWDs observed in unanesthetized animals. In summary, neonatal FLs increased the hyperexcitable pattern of burst activity induced by anesthesia and disrupted field potential synchrony between cortical and subcortical brain regions near the site of the cortical malformation. Monitoring the altered electrophysiology of burst activity under general anesthesia with multi-dimensional micro-electrode arrays may serve to define distinct neurophysiological biomarkers of epileptogenesis in human brain and improve techniques for surgical resection of epileptogenic malformed brain tissue.
Collapse
Affiliation(s)
- Anthony J Williams
- Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| |
Collapse
|
52
|
Kunori N, Takashima I. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways. Eur J Neurosci 2016; 44:2925-2934. [PMID: 27717064 DOI: 10.1111/ejn.13427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates.
Collapse
Affiliation(s)
- Nobuo Kunori
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,RIKEN Brain Science Institute, Wako, Japan
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
53
|
Smith JB, Liang Z, Watson GDR, Alloway KD, Zhang N. Interhemispheric resting-state functional connectivity of the claustrum in the awake and anesthetized states. Brain Struct Funct 2016; 222:2041-2058. [PMID: 27714529 DOI: 10.1007/s00429-016-1323-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
The claustrum is a brain region whose function remains unknown, though many investigators suggest it plays a role in conscious attention. Resting-state functional magnetic resonance imaging (RS-fMRI) has revealed how anesthesia alters many functional connections in the brain, but the functional role of the claustrum with respect to the awake versus anesthetized states remains unknown. Therefore, we employed a combination of seed-based RS-fMRI and neuroanatomical tracing to reveal how the anatomical connections of the claustrum are related to its functional connectivity during quiet wakefulness and the isoflurane-induced anesthetic state. In awake rats, RS-fMRI indicates that the claustrum has interhemispheric functional connections with the mediodorsal thalamus (MD) and medial prefrontal cortex (mPFC), as well as other known connections with cortical areas that correspond to the connections revealed by neuroanatomical tracing. During deep isoflurane anesthesia, the functional connections of the claustrum with mPFC and MD were significantly attenuated, while those with the rest of cortex were not significantly altered. These changes in claustral functional connectivity were also observed when seeds were placed in mPFC or MD during RS-fMRI comparisons of the awake and deeply anesthetized states. Collectively, these data indicate that the claustrum has functional connections with mPFC and MD-thalamus that are significantly lessened by anesthesia.
Collapse
Affiliation(s)
- Jared B Smith
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA.,Center for Neural Engineering, Penn State University, W-316 Millennium Science Complex, University Park, PA, 16802, USA.,Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, 17033, USA.,Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Zhifeng Liang
- Center for Neural Engineering, Penn State University, W-316 Millennium Science Complex, University Park, PA, 16802, USA.,Department of Biomedical Engineering, Penn State University, W-341 Millennium Science Complex, University Park, PA, 16802, USA.,The Huck Institutes of Life Sciences, Penn State University, University Park, PA, 16802, USA.,Laboratory of Comparative Neuroimaging, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Glenn D R Watson
- Center for Neural Engineering, Penn State University, W-316 Millennium Science Complex, University Park, PA, 16802, USA.,The Huck Institutes of Life Sciences, Penn State University, University Park, PA, 16802, USA.,Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, 17033, USA
| | - Kevin D Alloway
- Center for Neural Engineering, Penn State University, W-316 Millennium Science Complex, University Park, PA, 16802, USA. .,The Huck Institutes of Life Sciences, Penn State University, University Park, PA, 16802, USA. .,Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, 17033, USA.
| | - Nanyin Zhang
- Center for Neural Engineering, Penn State University, W-316 Millennium Science Complex, University Park, PA, 16802, USA. .,Department of Biomedical Engineering, Penn State University, W-341 Millennium Science Complex, University Park, PA, 16802, USA. .,The Huck Institutes of Life Sciences, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
54
|
Li L, Ebner FF. Cortex dynamically modulates responses of thalamic relay neurons through prolonged circuit-level disinhibition in rat thalamus in vivo. J Neurophysiol 2016; 116:2368-2382. [PMID: 27582292 DOI: 10.1152/jn.00424.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022] Open
Abstract
Cortex actively modulates the responses of thalamic relay neurons through corticothalamic (CT) projections. Here we investigated the temporal precision of CT modulation on sensory responses of relay neurons in rat ventral posterior medial thalamus (VPM) to direction-specific whisker stimuli. CT feedback levels were either augmented by cortical electrical microstimulation or depressed by cortical application of muscimol, a potent agonist of γ-aminobutyric acid A-type (GABAA) receptors. To evaluate the temporal specificity of CT influence, we compared the early (3-10 ms after stimulus onset) and late (10-100 ms) response components of VPM single units to whisker deflections in preferred or nonpreferred directions before and after altering CT feedback levels under urethane anesthesia. The data showed that cortical feedback most strongly affected the late responses of single VPM units to whisker stimulation. That is, cortical stimulation consistently increased the late responses of VPM units in the corresponding (homologous) barreloids to the stimulus direction preferred by neurons in the cortical locus stimulated. However, cortical stimulation could either increase or decrease the early response, depending on whether or not cortical and thalamic loci were tuned to the same direction. Such bidirectional regulation of the early and late VPM responses is consistent with a mechanism of circuit-level disinhibition in vivo. The results support the theory that CT feedback on thalamic sensory responses is mediated by a time-dependent shift of the excitation-inhibition balance in the thalamo-cortico-thalamic loop, such as would occur during sensory feature integration, plasticity, and learning in the awake state.
Collapse
Affiliation(s)
- Lu Li
- Allen Institute for Brain Science, Seattle, Washington; and
| | - Ford F Ebner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
55
|
Jubran M, Mohar B, Lampl I. The Transformation of Adaptation Specificity to Whisker Identity from Brainstem to Thalamus. Front Syst Neurosci 2016; 10:56. [PMID: 27445716 PMCID: PMC4917531 DOI: 10.3389/fnsys.2016.00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/09/2016] [Indexed: 01/15/2023] Open
Abstract
Stimulus specific adaptation has been studied extensively in different modalities. High specificity implies that deviant stimulus induces a stronger response compared to a common stimulus. The thalamus gates sensory information to the cortex, therefore, the specificity of adaptation in the thalamus must have a great impact on cortical processing of sensory inputs. We studied the specificity of adaptation to whisker identity in the ventral posteromedial nucleus of the thalamus (VPM) in rats using extracellular and intracellular recordings. We found that subsequent to repetitive stimulation that induced strong adaptation, the response to stimulation of the same, or any other responsive whisker was equally adapted, indicating that thalamic adaptation is non-specific. In contrast, adaptation of single units in the upstream brainstem principal trigeminal nucleus (PrV) was significantly more specific. Depolarization of intracellularly recorded VPM cells demonstrated that adaptation is not due to buildup of inhibition. In addition, adaptation increased the probability of observing complete synaptic failures to tactile stimulation. In accordance with short-term synaptic depression models, the evoked synaptic potentials in response to whisker stimulation, subsequent to a response failure, were facilitated. In summary, we show that local short-term synaptic plasticity is involved in the transformation of adaptation in the trigemino-thalamic synapse and that the low specificity of adaptation in the VPM emerges locally rather than cascades from earlier stages. Taken together we suggest that during sustained stimulation, local thalamic mechanisms equally suppress inputs arriving from different whiskers before being gated to the cortex.
Collapse
Affiliation(s)
- Muna Jubran
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | - Boaz Mohar
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | - Ilan Lampl
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
56
|
Lissek T, Obenhaus HA, Ditzel DAW, Nagai T, Miyawaki A, Sprengel R, Hasan MT. General Anesthetic Conditions Induce Network Synchrony and Disrupt Sensory Processing in the Cortex. Front Cell Neurosci 2016; 10:64. [PMID: 27147963 PMCID: PMC4830828 DOI: 10.3389/fncel.2016.00064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/29/2016] [Indexed: 12/19/2022] Open
Abstract
General anesthetics are commonly used in animal models to study how sensory signals are represented in the brain. Here, we used two-photon (2P) calcium activity imaging with cellular resolution to investigate how neuronal activity in layer 2/3 of the mouse barrel cortex is modified under the influence of different concentrations of chemically distinct general anesthetics. Our results show that a high isoflurane dose induces synchrony in local neuronal networks and these cortical activity patterns closely resemble those observed in EEG recordings under deep anesthesia. Moreover, ketamine and urethane also induced similar activity patterns. While investigating the effects of deep isoflurane anesthesia on whisker and auditory evoked responses in the barrel cortex, we found that dedicated spatial regions for sensory signal processing become disrupted. We propose that our isoflurane-2P imaging paradigm can serve as an attractive model system to dissect cellular and molecular mechanisms that induce the anesthetic state, and it might also provide important insight into sleep-like brain states and consciousness.
Collapse
Affiliation(s)
- Thomas Lissek
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of HeidelbergHeidelberg, Germany
| | - Horst A Obenhaus
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Désirée A W Ditzel
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| | - Takeharu Nagai
- Laboratory for Nanosystems Physiology, Hokkaido University Hokkaido, Japan
| | - Atsushi Miyawaki
- RIKEN-Brain Science Institute, Laboratory for Cell Function Dynamics Saitama, Japan
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Molecular Neurobiology, Neurocure Cluster of Excellence, Charite-UniversitätsmedizinBerlin, Germany
| |
Collapse
|
57
|
Slack R, Boorman L, Patel P, Harris S, Bruyns-Haylett M, Kennerley A, Jones M, Berwick J. A novel method for classifying cortical state to identify the accompanying changes in cerebral hemodynamics. J Neurosci Methods 2016; 267:21-34. [PMID: 27063501 PMCID: PMC4896992 DOI: 10.1016/j.jneumeth.2016.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 11/27/2022]
Abstract
We classified brain state using a vector-based categorisation of neural frequencies. Changes in cerebral blood volume (CBV) were observed when brain state altered. During these state alterations, changes in blood oxygenation were also found. State dependent haemodynamic changes could affect blood based brain imaging.
Background Many brain imaging techniques interpret the haemodynamic response as an indirect indicator of underlying neural activity. However, a challenge when interpreting this blood based signal is how changes in brain state may affect both baseline and stimulus evoked haemodynamics. New method We developed an Automatic Brain State Classifier (ABSC), validated on data from anaesthetised rodents. It uses vectorised information obtained from the windowed spectral frequency power of the Local Field Potential. Current state is then classified by comparing this vectorised information against that calculated from state specific training datasets. Results The ABSC identified two user defined brain states (synchronised and desynchronised), with high accuracy (∼90%). Baseline haemodynamics were found to be significantly different in the two identified states. During state defined periods of elevated baseline haemodynamics we found significant decreases in evoked haemodynamic responses to somatosensory stimuli. Comparison to existing methods State classification – The ABSC (∼90%) demonstrated greater accuracy than clustering (∼66%) or ‘power threshold’ (∼64%) methods of comparison. Haemodynamic averaging – Our novel approach of selectively averaging stimulus evoked haemodynamic trials by brain state yields higher quality data than creating a single average from all trials. Conclusions The ABSC can account for some of the commonly observed trial-to-trial variability in haemodynamic responses which arises from changes in cortical state. This variability might otherwise be incorrectly attributed to alternative interpretations. A greater understanding of the effects of cortical state on haemodynamic changes could be used to inform techniques such as general linear modelling (GLM), commonly used in fMRI.
Collapse
Affiliation(s)
- R Slack
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - L Boorman
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - P Patel
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - S Harris
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - M Bruyns-Haylett
- Department of Systems Engineering, University of Reading, Whiteknights, Reading RG6 6AY, United Kingdom.
| | - A Kennerley
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - M Jones
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - J Berwick
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
58
|
Reyes-Puerta V, Yang JW, Siwek ME, Kilb W, Sun JJ, Luhmann HJ. Propagation of spontaneous slow-wave activity across columns and layers of the adult rat barrel cortex in vivo. Brain Struct Funct 2016; 221:4429-4449. [PMID: 26754838 DOI: 10.1007/s00429-015-1173-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
During slow-wave sleep, neocortical networks exhibit self-organized activity switching between periods of concurrent spiking (up-states) and periods of network silence (down-states), a phenomenon also occurring under the effects of different anesthetics and in in vitro brain slice preparations. Although this type of ongoing activity has been implicated into important functions such as memory consolidation and learning, the manner in which it propagates across different cortical modules (i.e., columns and layers) has not been fully characterized. In the present study, we investigated this issue by measuring spontaneous activity at large scale in the adult rat barrel cortex under urethane anesthesia by means of voltage-sensitive dye imaging and 128-channel probe recordings. Up to 74 neurons located in all layers of up to four functionally identified barrel-related columns were recorded simultaneously. The spontaneous activity propagated isotropically across the cortical surface with a median speed of ~35 µm/ms. A concomitant radial spread of activation was present from deep to superficial cortical layers. Thus, spontaneous activity occurred rather globally in the barrel cortex, with ≥50 % of the up-states presenting spikes in ≥3 columns and layers. Temporally precise spike sequences, which occurred repeatedly (although sporadically) within the up-states, were typically led by putative excitatory neurons in the infragranular cortical layers. In summary, our data provide for the first time an overall view of the spontaneous slow-wave activity within the barrel cortex circuit, characterizing its propagation across columns and layers at high spatio-temporal resolution.
Collapse
Affiliation(s)
- Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Magdalena E Siwek
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Jyh-Jang Sun
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001, Louvain, Belgium.
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
59
|
Zhang JY, Lin YT, Gao YY, Chao-Xi, Zhang XB, Zhang XW, Zeng SJ. Distinction in the immunoreactivities of two calcium-binding proteins and neuronal birthdates in the first and higher-order somatosensory thalamic nuclei of mice: Evolutionary implications. J Comp Neurol 2015; 523:2738-51. [PMID: 26183901 DOI: 10.1002/cne.23813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 11/10/2022]
Abstract
Comparative embryonic studies are the most effective way to discern phylogenetic changes. To gain insight into the constitution and evolution of mammalian somatosensory thalamic nuclei, we first studied how calbindin (CB) and parvalbumin (PV) immunoreactivities appear during embryonic development in the first-order relaying somatosensory nuclei, i.e., the ventral posteromedial (VPM) and posterolateral (VPL) nuclei, and their neighboring higher-order modulatory regions, including the ventromedial or ventrolateral nucleus, posterior, and the reticular nucleus. The results indicated that cell bodies that were immunoreactive for CB were found earlier (embryonic day 12 [E12]) in the dorsal thalamus than were cells positive for PV (E14), and the adult somatosensory thalamus was characterized by complementary CB and PV distributions with PV dominance in the first-order relaying nuclei and CB dominance in the higher-order regions. We then labeled proliferating cells with [(3) H]-thymidine from E11 to 19 and found that the onset of neurogenesis began later (E12) in the first-order relaying nuclei than in the higher-order regions (E11). Using double-labeling with [(3) H]-thymidine autoradiography and CB or PV immunohistochemistry, we found that CB neurons were born earlier (E11-12) than PV neurons (E12-13) in the studied areas. Thus, similar to auditory nuclei, the first and the higher-order somatosensory nuclei exhibited significant distinctions in CB/PV immunohistochemistry and birthdates during embryonic development. These data, combined with the results of a cladistic analysis of the thalamic somatosensory nuclei, are discussed from an evolutionary perspective of sensory nuclei.
Collapse
Affiliation(s)
- Jiang-Yan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, PR China
| | - Yu-Tao Lin
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, PR China
| | - Yuan-Yuan Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, PR China
| | - Chao-Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, PR China
| | - Xue-Bo Zhang
- College of Life Sciences, Hainan Normal University, Haikou, PR China
| | - Xin-Wen Zhang
- College of Life Sciences, Hainan Normal University, Haikou, PR China
| | - Shao-Ju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, PR China
| |
Collapse
|
60
|
Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. J Cereb Blood Flow Metab 2015; 35:1819-26. [PMID: 26104288 PMCID: PMC4635237 DOI: 10.1038/jcbfm.2015.130] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/30/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
Most functional magnetic resonance imaging (fMRI) animal studies rely on anesthesia, which can induce a variety of drug-dependent physiological changes, including depression of neuronal activity and cerebral metabolism as well as direct effects on the vasculature. The goal of this study was to characterize the effects of anesthesia on the BOLD signal and neuronal activity. Simultaneous fMRI and electrophysiology were used to measure changes in single units (SU), multi-unit activity (MUA), local field potentials (LFP), and the blood oxygenation level-dependent (BOLD) response in the somatosensory cortex during whisker stimulation of rabbits before, during and after anesthesia with fentanyl or isoflurane. Our results indicate that anesthesia modulates the BOLD signal as well as both baseline and stimulus-evoked neuronal activity, and, most significantly, that the relationship between the BOLD and electrophysiological signals depends on the type of anesthetic. Specifically, the behavior of LFP observed under isoflurane did not parallel the behavior of BOLD, SU, or MUA. These findings suggest that the relationship between these signals may not be straightforward. BOLD may scale more closely with the best measure of the excitatory subcomponents of the underlying neuronal activity, which may vary according to experimental conditions that alter the excitatory/inhibitory balance in the cortex.
Collapse
|
61
|
Rigas P, Adamos DA, Sigalas C, Tsakanikas P, Laskaris NA, Skaliora I. Spontaneous Up states in vitro: a single-metric index of the functional maturation and regional differentiation of the cerebral cortex. Front Neural Circuits 2015; 9:59. [PMID: 26528142 PMCID: PMC4603250 DOI: 10.3389/fncir.2015.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the development and differentiation of the neocortex remains a central focus of neuroscience. While previous studies have examined isolated aspects of cellular and synaptic organization, an integrated functional index of the cortical microcircuit is still lacking. Here we aimed to provide such an index, in the form of spontaneously recurring periods of persistent network activity -or Up states- recorded in mouse cortical slices. These coordinated network dynamics emerge through the orchestrated regulation of multiple cellular and synaptic elements and represent the default activity of the cortical microcircuit. To explore whether spontaneous Up states can capture developmental changes in intracortical networks we obtained local field potential recordings throughout the mouse lifespan. Two independent and complementary methodologies revealed that Up state activity is systematically modified by age, with the largest changes occurring during early development and adolescence. To explore possible regional heterogeneities we also compared the development of Up states in two distinct cortical areas and show that primary somatosensory cortex develops at a faster pace than primary motor cortex. Our findings suggest that in vitro Up states can serve as a functional index of cortical development and differentiation and can provide a baseline for comparing experimental and/or genetic mouse models.
Collapse
Affiliation(s)
- Pavlos Rigas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Dimitrios A. Adamos
- Neuroinformatics Group, Aristotle University of ThessalonikiThessaloniki, Greece
- School of Music Studies, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Charalambos Sigalas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Panagiotis Tsakanikas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Nikolaos A. Laskaris
- Neuroinformatics Group, Aristotle University of ThessalonikiThessaloniki, Greece
- AIIA Lab, Department of Informatics, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| |
Collapse
|
62
|
Lustig B, Wang Y, Pastalkova E. Oscillatory patterns in hippocampus under light and deep isoflurane anesthesia closely mirror prominent brain states in awake animals. Hippocampus 2015; 26:102-9. [DOI: 10.1002/hipo.22494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Brian Lustig
- Department of Neurobiology, Neuroscience Graduate Program; University of Chicago; Illinois
- Janelia Research Campus; Ashburn Virginia
| | | | | |
Collapse
|
63
|
Foffani G, Shumsky J, Knudsen EB, Ganzer PD, Moxon KA. Interactive Effects Between Exercise and Serotonergic Pharmacotherapy on Cortical Reorganization After Spinal Cord Injury. Neurorehabil Neural Repair 2015; 30:479-89. [PMID: 26338432 DOI: 10.1177/1545968315600523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-term cortical reorganization: (1) active exercise above the level of the lesion; (2) passive exercise below the level of the lesion; and (3) serotonergic pharmacotherapy. Whether and how these potential therapeutic strategies-and their underlying mechanisms of action-interact remains unknown. Methods In spinally transected adult rats, we compared the effects of active exercise above the level of the lesion (treadmill), passive exercise below the level of the lesion (bike), serotonergic pharmacotherapy (quipazine), and combinations of the above therapies (bike+quipazine, treadmill+quipazine, bike+treadmill+quipazine) on long-term cortical reorganization (9 weeks after the spinal transection). Cortical reorganization was measured as the percentage of cells recorded in the deafferented hindlimb cortex that responded to tactile stimulation of the contralateral forelimb. Results Bike and quipazine are "competing" therapies for cortical reorganization, in the sense that quipazine limits the cortical reorganization induced by bike, whereas treadmill and quipazine are "collaborative" therapies, in the sense that the reorganization induced by quipazine combined with treadmill is greater than the reorganization induced by either quipazine or treadmill. CONCLUSIONS These results uncover the interactive effects between active/passive exercise and serotonergic pharmacotherapy on cortical reorganization after spinal cord injury, emphasizing the importance of understanding the effects of therapeutic strategies in spinal cord injury (and in other forms of deafferentation) from an integrated system-level approach.
Collapse
Affiliation(s)
- Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain Hospitales de Madrid, Móstoles, Spain CEU-San Pablo University, Madrid, Spain
| | - Jed Shumsky
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | - Karen A Moxon
- Drexel University College of Medicine, Philadelphia, PA, USA Drexel University, Philadelphia, PA, USA
| |
Collapse
|
64
|
Altered sensory processing and dendritic remodeling in hyperexcitable visual cortical networks. Brain Struct Funct 2015; 221:2919-36. [PMID: 26163822 DOI: 10.1007/s00429-015-1080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/01/2015] [Indexed: 01/20/2023]
Abstract
Epilepsy is characterized by impaired circuit function and a propensity for spontaneous seizures, but how plastic rearrangements within the epileptic focus trigger cortical dysfunction and hyperexcitability is only partly understood. Here we have examined alterations in sensory processing and the underlying biochemical and neuroanatomical changes in tetanus neurotoxin (TeNT)-induced focal epilepsy in mouse visual cortex. We documented persistent epileptiform electrographic discharges and upregulation of GABAergic markers at the completion of TeNT effects. We also found a significant remodeling of the dendritic arbors of pyramidal neurons, with increased dendritic length and branching, and overall reduction in spine density but significant preservation of mushroom, mature spines. Functionally, spontaneous neuronal discharge was increased, visual responses were less reliable, and electrophysiological and behavioural visual acuity was consistently impaired in TeNT-injected mice. These data demonstrate robust, long-term remodeling of both inhibitory and excitatory circuitry associated with specific disturbances of network function in neocortical epilepsy.
Collapse
|
65
|
Effectively Axonal-supercharged Interpositional Jump-Graft with an Artificial Nerve Conduit for Rat Facial Nerve Paralysis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e416. [PMID: 26180717 PMCID: PMC4494486 DOI: 10.1097/gox.0000000000000397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/23/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Interpositional jump graft (IPJG) is a nerve graft axonally supercharged from the hypoglossal nerve. However, for using the technique, an autologous nerve, which should contain the great auricular and sural nerves, must be obtained. Depending on the donor site, unavoidable issues such as nerve disorders and postoperative scarring may appear. To reduce the issues, in this study, the authors developed an end-to-side neurorrhaphy technique with the recipient nerve and an artificial nerve conduit and investigated the efficacy of an IPJG with an artificial nerve conduit in a rat facial nerve paresis model. METHODS A ligature clip was used to crush the facial nerve trunk, thereby creating a partial facial nerve paresis model. An artificial nerve conduit was then prepared with a 10-mm-long silicone tube containing 10 μL type I collagen and used to create an IPJG between the facial nerve trunk and the hypoglossal nerve (the silicone tube group). Thirteen weeks after the surgery, the outcome was histologically and physiologically compared with conventional IPJG with autograft using the great auricular nerve. RESULTS Retrograde tracer test confirmed a double innervation by the facial and hypoglossal nerve nuclei. In the autograft and silicone tube groups, the regeneration of myelinated axons was observed. CONCLUSION In this study, the authors successfully developed an end-to-side neurorrhaphy technique with the recipient nerve and an artificial nerve conduit, and revealed that an IPJG in the conduit was effective in the rat facial nerve paresis model.
Collapse
|
66
|
Newman JP, Fong MF, Millard DC, Whitmire CJ, Stanley GB, Potter SM. Optogenetic feedback control of neural activity. eLife 2015; 4:e07192. [PMID: 26140329 PMCID: PMC4490717 DOI: 10.7554/elife.07192] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022] Open
Abstract
Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI:http://dx.doi.org/10.7554/eLife.07192.001 Cells called neurons use electrical signals to rapidly carry information around the body. When a neuron is activated, it generates (or ‘fires’) a short electrical impulse that travels along the cell to relay a message to other neurons, muscles or organs. Optogenetics is a technique that allows scientists to genetically modify neurons to produce proteins that make them light sensitive. One of the most commonly used light-sensitive proteins is called channelrhodopsin-2. It is activated by blue light and increases the electrical activity of neurons. Another protein is called halorhodopsin, which responds to yellow light and inhibits the firing of neurons. By shining light of particular colors onto neurons that produce these and other light-sensitive proteins, it is possible to manipulate the activity of large populations of neurons. Most previous optogenetic experiments have involved altering the activity of neurons and then observing the outcome at a later point in time. However, it would be very useful to be able to alter the amount of optical stimulation to achieve particular levels of neuron activity in real time. To achieve this, the level of neuron activity at any point in time would need to be quickly compared to the desired level, so that optogenetics could be used to increase or decrease the firing of neurons as appropriate. Newman et al. have now developed an optogenetic system called ‘optoclamp’ that can control the activity of neurons in real time. In neurons grown in cell culture, the optoclamp is able to hold the level of neuron activity at particular values for periods of time ranging from 60 seconds to 24 hours. It can be used to restore and maintain the baseline level of neuron activity in the presence of drugs that would otherwise produce large increases or decreases in the firing of neurons. Moreover, in anaesthetized rats, the optoclamp can prevent some neurons from being activated even when the rats' whiskers move, which would normally change their firing level. Newman et al.'s findings open the door to a new type of neuroscience experiment where it is possible to manipulate activity patterns as they are produced by the brain. This will help researchers to understand how particular patterns of brain activity are linked to learning, memory, and behavior. DOI:http://dx.doi.org/10.7554/eLife.07192.002
Collapse
Affiliation(s)
- Jonathan P Newman
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ming-fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Daniel C Millard
- Laboratory for Neuroengineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Clarissa J Whitmire
- Laboratory for Neuroengineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Garrett B Stanley
- Laboratory for Neuroengineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Steve M Potter
- Laboratory for Neuroengineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
| |
Collapse
|
67
|
Watson GDR, Smith JB, Alloway KD. The Zona Incerta Regulates Communication between the Superior Colliculus and the Posteromedial Thalamus: Implications for Thalamic Interactions with the Dorsolateral Striatum. J Neurosci 2015; 35:9463-76. [PMID: 26109669 PMCID: PMC4478257 DOI: 10.1523/jneurosci.1606-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 12/27/2022] Open
Abstract
There is uncertainty concerning the circuit connections by which the superior colliculus interacts with the basal ganglia. To address this issue, anterograde and retrograde tracers were placed, respectively, into the superior colliculus and globus pallidus of Sprague-Dawley rats. In this two-tracer experiment, the projections from the superior colliculus terminated densely in the ventral zona incerta (ZIv), but did not overlap the labeled neurons observed in the subthalamic nucleus. In cases in which anterograde and retrograde tracers were placed, respectively, in sensory-responsive sites in the superior colliculus and posteromedial (POm) thalamus, the labeled projections from superior colliculus innervated the ZIv regions that contained the labeled neurons that project to POm. We also confirmed this colliculo-incertal-POm pathway by depositing a mixture of retrograde and anterograde tracers at focal sites in ZIv to reveal retrogradely labeled neurons in superior colliculus and anterogradely labeled terminals in POm. When combined with retrograde tracer injections in POm, immunohistochemical processing proved that most ZIv projections to POm are GABAergic. Consistent with these findings, direct stimulation of superior colliculus evoked neuronal excitation in ZIv and caused inhibition of spontaneous activity in POm. Collectively, these results indicate that superior colliculus can activate the inhibitory projections from ZIv to the POm. This is significant because it suggests that the superior colliculus could suppress the interactions between POm and the dorsolateral striatum, presumably to halt ongoing behaviors so that more adaptive motor actions are selected in response to unexpected sensory events. SIGNIFICANCE STATEMENT By demonstrating that the zona incerta regulates communication between the superior colliculus and the posteromedial thalamus, we have uncovered a circuit that partly explains the behavioral changes that occur in response to unexpected sensory stimuli. Furthermore, this circuit could explain why deep brain stimulation of the zona incerta is beneficial to patients who suffer from Parkinson's disease.
Collapse
Affiliation(s)
- Glenn D R Watson
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, and Center for Neural Engineering and
| | - Jared B Smith
- Center for Neural Engineering and Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kevin D Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, and Center for Neural Engineering and
| |
Collapse
|
68
|
High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons. PLoS Comput Biol 2015; 11:e1004121. [PMID: 26098109 PMCID: PMC4476555 DOI: 10.1371/journal.pcbi.1004121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/11/2015] [Indexed: 01/28/2023] Open
Abstract
The manner in which populations of inhibitory (INH) and excitatory (EXC) neocortical neurons collectively encode stimulus-related information is a fundamental, yet still unresolved question. Here we address this question by simultaneously recording with large-scale multi-electrode arrays (of up to 128 channels) the activity of cell ensembles (of up to 74 neurons) distributed along all layers of 3–4 neighboring cortical columns in the anesthetized adult rat somatosensory barrel cortex in vivo. Using two different whisker stimulus modalities (location and frequency) we show that individual INH neurons – classified as such according to their distinct extracellular spike waveforms – discriminate better between restricted sets of stimuli (≤6 stimulus classes) than EXC neurons in granular and infra-granular layers. We also demonstrate that ensembles of INH cells jointly provide as much information about such stimuli as comparable ensembles containing the ~20% most informative EXC neurons, however presenting less information redundancy – a result which was consistent when applying both theoretical information measurements and linear discriminant analysis classifiers. These results suggest that a consortium of INH neurons dominates the information conveyed to the neocortical network, thereby efficiently processing incoming sensory activity. This conclusion extends our view on the role of the inhibitory system to orchestrate cortical activity. Perception of the environment relies on neuronal computation in the cerebral cortex. However, the exact algorithms by which cortical neuronal networks process relevant information from the inputs of sensory organs are only poorly understood. To address this problem we stimulated distinct whiskers and recorded the neuronal responses from identified cortical whisker representations of the rat using multi-site electrodes. For rodents the whisker system is one main sensory input channel, offering the unique property that for each whisker an identified cortical area ("barrel-related column") represents its main cortical input station. In the present study we were able to demonstrate that the action potential firing of single inhibitory neurons provides more information about behaviorally relevant qualities of whisker stimulation (identity of the stimulated whisker and frequency of stimulation) than excitatory neurons. In addition, information about stimulation qualities was encoded with less redundancy in inhibitory neurons. In summary, the results of our study suggest that inhibitory neurons carry substantial information about the sensory environment and can thereby adequately orchestrate neuronal activity in sensory cortices.
Collapse
|
69
|
Devonshire IM, Kwok CHT, Suvik A, Haywood AR, Cooper AH, Hathway GJ. A quantification of the relationship between neuronal responses in the rat rostral ventromedial medulla and noxious stimulation-evoked withdrawal reflexes. Eur J Neurosci 2015; 42:1726-37. [DOI: 10.1111/ejn.12942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- I. M. Devonshire
- School of Life Sciences; Nottingham University Medical School; Queen's Medical Centre; Nottingham NG7 2UH UK
| | - C. H. T. Kwok
- School of Life Sciences; Nottingham University Medical School; Queen's Medical Centre; Nottingham NG7 2UH UK
| | - A. Suvik
- School of Life Sciences; Nottingham University Medical School; Queen's Medical Centre; Nottingham NG7 2UH UK
| | - A. R. Haywood
- School of Life Sciences; Nottingham University Medical School; Queen's Medical Centre; Nottingham NG7 2UH UK
| | - A. H. Cooper
- School of Life Sciences; Nottingham University Medical School; Queen's Medical Centre; Nottingham NG7 2UH UK
| | - G. J. Hathway
- School of Life Sciences; Nottingham University Medical School; Queen's Medical Centre; Nottingham NG7 2UH UK
| |
Collapse
|
70
|
Shirey MJ, Smith JB, Kudlik DE, Huo BX, Greene SE, Drew PJ. Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature. J Neurophysiol 2015; 114:309-22. [PMID: 25972579 DOI: 10.1152/jn.00046.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼ 0.1 °C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼ 2 °C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still > 1 °C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures.
Collapse
Affiliation(s)
- Michael J Shirey
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Jared B Smith
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania;
| | - D'Anne E Kudlik
- Center for Neural Engineering, Bioengineering Graduate Program, Pennsylvania State University, University Park, Pennsylvania; and
| | - Bing-Xing Huo
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Stephanie E Greene
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania; Department of Neurosurgery, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
71
|
Reyes-Puerta V, Amitai Y, Sun JJ, Shani I, Luhmann HJ, Shamir M. Long-range intralaminar noise correlations in the barrel cortex. J Neurophysiol 2015; 113:3410-20. [PMID: 25787960 DOI: 10.1152/jn.00981.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Identifying the properties of correlations in the firing of neocortical neurons is central to our understanding of cortical information processing. It has been generally assumed, by virtue of the columnar organization of the neocortex, that the firing of neurons residing in a certain vertical domain is highly correlated. On the other hand, firing correlations between neurons steeply decline with horizontal distance. Technical difficulties in sampling neurons with sufficient spatial information have precluded the critical evaluation of these notions. We used 128-channel "silicon probes" to examine the spike-count noise correlations during spontaneous activity between multiple neurons with identified laminar position and over large horizontal distances in the anesthetized rat barrel cortex. Eigen decomposition of correlation coefficient matrices revealed that the laminar position of a neuron is a significant determinant of these correlations, such that the fluctuations of layer 5B/6 neurons are in opposite direction to those of layers 5A and 4. Moreover, we found that within each experiment, the distribution of horizontal, intralaminar spike-count correlation coefficients, up to a distance of ∼1.5 mm, is practically identical to the distribution of vertical correlations. Taken together, these data reveal that the neuron's laminar position crucially affects its role in cortical processing. Moreover, our analyses reveal that this laminar effect extends over several functional columns. We propose that within the cortex the influence of the horizontal elements exists in a dynamic balance with the influence of the vertical domain and this balance is modulated with brain states to shape the network's behavior.
Collapse
Affiliation(s)
- Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Yael Amitai
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and
| | - Jyh-Jang Sun
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Itamar Shani
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maoz Shamir
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
72
|
Reed WR, Pickar JG, Sozio RS, Long CR. Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons. J Manipulative Physiol Ther 2015; 37:277-86. [PMID: 24928636 DOI: 10.1016/j.jmpt.2014.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES High-velocity low-amplitude spinal manipulation (HVLA-SM), as performed by doctors who use manual therapy (eg, doctors of chiropractic and osteopathy), results in mechanical hypoalgesia in clinical settings. This hypoalgesic effect has previously been attributed to alterations in peripheral and/or central pain processing. The objective of this study was to determine whether thrust magnitude of a simulated HVLA-SM alters mechanical trunk response thresholds in wide dynamic range (WDR) and/or nociceptive specific (NS) lateral thalamic neurons. METHODS Extracellular recordings were carried out in the thalamus of 15 anesthetized Wistar rats. Lateral thalamic neurons having receptive fields, which included the lumbar dorsal-lateral trunk, were characterized as either WDR (n=22) or NS (n=25). Response thresholds to electronic von Frey (rigid tip) mechanical trunk stimuli were determined in 3 directions (dorsal-ventral, 45° caudalward, and 45° cranialward) before and immediately after the dorsal-ventral delivery of a 100-millisecond HVLA-SM at 3 thrust magnitudes (control, 55%, 85% body weight). RESULTS There was a significant difference in mechanical threshold between 85% body weight manipulation and control thrust magnitudes in the dorsal-ventral direction in NS neurons (P=.01). No changes were found in WDR neurons at either HVLA-SM thrust magnitude. CONCLUSIONS This study is the first to investigate the effect of HVLA-SM thrust magnitude on WDR and NS lateral thalamic mechanical response threshold. Our data suggest that, at the single lateral thalamic neuron level, there may be a minimal spinal manipulative thrust magnitude required to elicit an increase in trunk mechanical response thresholds.
Collapse
Affiliation(s)
- William R Reed
- Associate Professor, Palmer Center for Chiropractic Research, Davenport, Iowa.
| | - Joel G Pickar
- Professor Emeritus, Palmer Center for Chiropractic Research, Davenport, Iowa
| | - Randall S Sozio
- Research Associate, Palmer Center for Chiropractic Research, Davenport, Iowa
| | - Cynthia R Long
- Professor, Director, Palmer Center of Chiropractic Research, Davenport, Iowa
| |
Collapse
|
73
|
Lobb CJ, Jaeger D. Bursting activity of substantia nigra pars reticulata neurons in mouse parkinsonism in awake and anesthetized states. Neurobiol Dis 2015; 75:177-85. [PMID: 25576395 DOI: 10.1016/j.nbd.2014.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 01/24/2023] Open
Abstract
Electrophysiological changes in basal ganglia neurons are hypothesized to underlie motor dysfunction in Parkinson's disease (PD). Previous results in head-restrained MPTP-treated non-human primates have suggested that increased bursting within the basal ganglia and related thalamic and cortical areas may be a hallmark of pathophysiological activity. In this study, we investigated whether there is increased bursting in substantia nigra pars reticulata (SNpr) output neurons in anesthetized and awake, head-restrained unilaterally lesioned 6-OHDA mice when compared to control mice. Confirming previous studies, we show that there are significant changes in the firing rate and pattern in SNpr neuron activity under urethane anesthesia. The regular firing pattern of control urethane-anesthetized SNpr neurons was not present in the 6-OHDA-lesioned group, as the latter neurons instead became phase locked with cortical slow wave activity (SWA). Next, we examined whether such robust electrophysiological changes between groups carried over to the awake state. SNpr neurons from both groups fired at much higher frequencies in the awake state than in the anesthetized state and surprisingly showed only modest changes between awake control and 6-OHDA groups. While there were no differences in firing rate between groups in the awake state, an increase in the coefficient of variation (CV) was observed in the 6-OHDA group. Contrary to the bursting hypothesis, this increased CV was not due to changes in bursting but was instead due to a mild increase in pausing. Together, these results suggest that differences in SNpr activity between control and 6-OHDA lesioned mice may be strongly influenced by changes in network activity during different arousal and behavioral states.
Collapse
Affiliation(s)
- C J Lobb
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - D Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
74
|
Jouhanneau JS, Ferrarese L, Estebanez L, Audette N, Brecht M, Barth A, Poulet J. Cortical fosGFP Expression Reveals Broad Receptive Field Excitatory Neurons Targeted by POm. Neuron 2014; 84:1065-78. [DOI: 10.1016/j.neuron.2014.10.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 01/09/2023]
|
75
|
Martin YB, Negredo P, Villacorta-Atienza JA, Avendaño C. Trigeminal intersubnuclear neurons: morphometry and input-dependent structural plasticity in adult rats. J Comp Neurol 2014; 522:1597-617. [PMID: 24178892 DOI: 10.1002/cne.23494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 11/09/2022]
Abstract
Intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus that project to the principal nucleus (Pr5) play an active role in shaping the receptive fields of other neurons, at different levels in the ascending sensory system that processes information originating from the vibrissae. By using retrograde labeling and digital reconstruction, we investigated the morphometry and topology of the dendritic trees of these neurons and the changes induced by long-term experience-dependent plasticity in adult male rats. Primary afferent input was either eliminated by transection of the right infraorbital nerve (IoN), or selectively altered by repeated whisker clipping on the right side. These neurons do not display asymmetries between sides in basic metric and topologic parameters (global number of trees, nodes, spines, or dendritic ends), although neurons on the left tend to have longer terminal segments. Ipsilaterally, both deafferentation (IoN transection) and deprivation (whisker trimming) reduced the density of spines, and the former also caused a global increase in total dendritic length and a relative increase in more complex arbors. Contralaterally, deafferentation reduced more complex dendritic trees, and caused a moderate decline in dendritic length and spatial reach, and a loss of spines in number and density. Deprivation caused a similar, but more profound, effect on spines. Our findings provide original quantitative descriptions of a scarcely known cell population, and show that denervation- or deprivation-derived plasticity is expressed not only by neurons at higher levels of the sensory pathways, but also by neurons in key subcortical circuits for sensory processing.
Collapse
Affiliation(s)
- Yasmina B Martin
- Department of Anatomy, Histology, & Neuroscience, Autonoma University of Madrid, 28029, Madrid, Spain; Department of Anatomy, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | |
Collapse
|
76
|
Unilateral Multiple Facial Nerve Branch Reconstruction Using "End-to-side Loop Graft" Supercharged by Hypoglossal Nerve. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2014; 2:e240. [PMID: 25426357 PMCID: PMC4236385 DOI: 10.1097/gox.0000000000000206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/04/2014] [Indexed: 11/13/2022]
Abstract
Background: Extensive facial nerve defects between the facial nerve trunk and its branches can be clinically reconstructed by incorporating double innervation into an end-to-side loop graft technique. This study developed a new animal model to evaluate the technique’s ability to promote nerve regeneration. Methods: Rats were divided into the intact, nonsupercharge, and supercharge groups. Artificially created facial nerve defects were reconstructed with a nerve graft, which was end-to-end sutured from proximal facial nerve stump to the mandibular branch (nonsupercharge group), or with the graft of which other end was end-to-side sutured to the hypoglossal nerve (supercharge group). And they were evaluated after 30 weeks. Results: Axonal diameter was significantly larger in the supercharge group than in the nonsupercharge group for the buccal (3.78 ± 1.68 vs 3.16 ± 1.22; P < 0.0001) and marginal mandibular branches (3.97 ± 2.31 vs 3.46 ± 1.57; P < 0.0001), but the diameter was significantly larger in the intact group for all branches except the temporal branch. In the supercharge group, compound muscle action potential amplitude was significantly higher than in the nonsupercharge group (4.18 ± 1.49 mV vs 1.87 ± 0.37 mV; P < 0.0001) and similar to that in the intact group (4.11 ± 0.68 mV). Retrograde labeling showed that the mimetic muscles were double-innervated by facial and hypoglossal nerve nuclei in the supercharge group. Conclusions: Multiple facial nerve branch reconstruction with an end-to-side loop graft was able to achieve axonal distribution. Additionally, axonal supercharge from the hypoglossal nerve significantly improved outcomes.
Collapse
|
77
|
Reed WR, Sozio R, Pickar JG, Onifer SM. Effect of spinal manipulation thrust duration on trunk mechanical activation thresholds of nociceptive-specific lateral thalamic neurons. J Manipulative Physiol Ther 2014; 37:552-60. [PMID: 25220757 DOI: 10.1016/j.jmpt.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The objective of this preliminary study was to determine if high-velocity, low-amplitude spinal manipulation (HVLA-SM) thrust duration alters mechanical trunk activation thresholds of nociceptive-specific (NS) lateral thalamic neurons. METHODS Extracellular recordings were obtained from 18 NS neurons located in 2 lateral thalamic nuclei (ventrolateral [n = 12] and posterior [n = 6]) in normal anesthetized Wistar rats. Response thresholds to electronic von Frey anesthesiometer (rigid tip) mechanical trunk stimuli applied in 3 lumbar directions (dorsal-ventral, 45° caudal, and 45° cranial) were determined before and immediately after the delivery of 3 HVLA-SM thrust durations (time control 0, 100, and 400 milliseconds). Mean changes in mechanical trunk activation thresholds were compared using a mixed model analysis of variance. RESULTS High-velocity, low-amplitude spinal manipulation duration did not significantly alter NS lateral thalamic neurons' mechanical trunk responses to any of the 3 directions tested with the anesthesiometer. CONCLUSIONS This study is the first to examine the effect of HVLA-SM thrust duration on NS lateral thalamic mechanical response thresholds. High-velocity, low-amplitude spinal manipulation thrust duration did not affect mechanical trunk thresholds.
Collapse
Affiliation(s)
- William R Reed
- Associate Professor, Palmer Center for Chiropractic Research, Davenport, IA.
| | - Randall Sozio
- Research Associate, Palmer Center for Chiropractic Research, Davenport, IA
| | - Joel G Pickar
- Professor Emeritus, Palmer Center for Chiropractic Research, Davenport, IA
| | - Stephen M Onifer
- Associate Professor, Palmer Center for Chiropractic Research, Davenport, IA
| |
Collapse
|
78
|
Scaglione A, Foffani G, Moxon KA. Spike count, spike timing and temporal information in the cortex of awake, freely moving rats. J Neural Eng 2014; 11:046022. [PMID: 25024291 PMCID: PMC4175710 DOI: 10.1088/1741-2560/11/4/046022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Sensory processing of peripheral information is not stationary but is, in general, a dynamic process related to the behavioral state of the animal. Yet the link between the state of the behavior and the encoding properties of neurons is unclear. This report investigates the impact of the behavioral state on the encoding mechanisms used by cortical neurons for both detection and discrimination of somatosensory stimuli in awake, freely moving, rats. APPROACH Neuronal activity was recorded from the primary somatosensory cortex of five rats under two different behavioral states (quiet versus whisking) while electrical stimulation of increasing stimulus strength was delivered to the mystacial pad. Information theoretical measures were then used to measure the contribution of different encoding mechanisms to the information carried by neurons in response to the whisker stimulation. MAIN RESULTS We found that the behavioral state of the animal modulated the total amount of information conveyed by neurons and that the timing of individual spikes increased the information compared to the total count of spikes alone. However, the temporal information, i.e. information exclusively related to when the spikes occur, was not modulated by behavioral state. SIGNIFICANCE We conclude that information about somatosensory stimuli is modulated by the behavior of the animal and this modulation is mainly expressed in the spike count while the temporal information is more robust to changes in behavioral state.
Collapse
Affiliation(s)
- Alessandro Scaglione
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, PA 19104, Philadelphia, USA. National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | |
Collapse
|
79
|
Ghoshal A, Lustig B, Popescu M, Ebner F, Pouget P. Unilateral whisker trimming in newborn rats alters neuronal coincident discharge among mature barrel cortex neurons. J Neurophysiol 2014; 112:1925-35. [PMID: 25057142 DOI: 10.1152/jn.00562.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is known that sensory deprivation, including postnatal whisker trimming, can lead to severe deficits in the firing rate properties of cortical neurons. Recent results indicate that development of synchronous discharge among cortical neurons is also activity influenced, and that correlated discharge is significantly impaired following loss of bilateral sensory input in rats. Here we investigate whether unilateral whisker trimming (unilateral deprivation or UD) after birth interferes in the same way with the development of synchronous discharge in cortex. We measured the coincidence of spikes among pairs of neurons recorded under urethane anesthesia in one whisker barrel field deprived by trimming all contralateral whiskers for 60 days after birth (UD), and in untrimmed controls (CON). In the septal columns around barrels, UD significantly increased the coincident discharge among cortical neurons compared with CON, most notably in layers II/III. In contrast, synchronous discharge was normal between layer IV UD barrel neurons: i.e., not different from CON. Thus, while bilateral whisker deprivation (BD) produced a global deficit in the development of synchrony in layer IV, UD did not block the development of synchrony between neurons in layer IV barrels and increased synchrony within septal circuits. We conclude that changes in synchronous discharge after UD are unexpectedly different from those recorded after BD, and we speculate that this effect may be due to the driven activity from active commissural inputs arising from the contralateral hemisphere that received normal activity levels during postnatal development.
Collapse
Affiliation(s)
- Ayan Ghoshal
- Department of Psychology, Center for Integrative & Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Brian Lustig
- Department of Psychology, Center for Integrative & Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee
| | | | - Ford Ebner
- Department of Psychology, Center for Integrative & Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee
| | - Pierre Pouget
- CM, INSERM UMRS 975, CNRS 7225, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
80
|
Comparative strength and dendritic organization of thalamocortical and corticocortical synapses onto excitatory layer 4 neurons. J Neurosci 2014; 34:6746-58. [PMID: 24828630 DOI: 10.1523/jneurosci.0305-14.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thalamus is a potent driver of cortical activity even though cortical synapses onto excitatory layer 4 neurons outnumber thalamic synapses 10 to 1. Previous in vitro studies have proposed that thalamocortical (TC) synapses are stronger than corticocortical (CC) synapses. Here, we investigated possible anatomical and physiological differences between these inputs in the rat in vivo. We developed a high-throughput light microscopy method, validated by electron microscopy, to completely map the locations of synapses across an entire dendritic tree. This demonstrated that TC synapses are slightly more proximal to the soma than CC synapses, but detailed compartmental modeling predicted that dendritic filtering does not appreciably favor one synaptic class over another. Measurements of synaptic strength in intact animals confirmed that both TC and CC synapses are weak and approximately equivalent. We conclude that thalamic effectiveness does not rely on enhanced TC strength, but rather on coincident activation of converging inputs.
Collapse
|
81
|
Sawyer EK, Leitch DB, Catania KC. Organization of the spinal trigeminal nucleus in star-nosed moles. J Comp Neurol 2014; 522:3335-50. [PMID: 24715542 DOI: 10.1002/cne.23605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/11/2014] [Accepted: 04/07/2014] [Indexed: 11/06/2022]
Abstract
Somatosensory inputs from the face project to multiple regions of the trigeminal nuclear complex in the brainstem. In mice and rats, three subdivisions contain visible representations of the mystacial vibrissae, the principal sensory nucleus, spinal trigeminal subnucleus interpolaris, and subnucleus caudalis. These regions are considered important for touch with high spatial acuity, active touch, and pain and temperature sensation, respectively. Like mice and rats, the star-nosed mole (Condylura cristata) is a somatosensory specialist. Given the visible star pattern in preparations of the star-nosed mole cortex and the principal sensory nucleus, we hypothesized there were star patterns in the spinal trigeminal nucleus subnuclei interpolaris and caudalis. In sections processed for cytochrome oxidase, we found star-like segmentation consisting of lightly stained septa separating darkly stained patches in subnucleus interpolaris (juvenile tissue) and subnucleus caudalis (juvenile and adult tissue). Subnucleus caudalis represented the face in a three-dimensional map, with the most anterior part of the face represented more rostrally than posterior parts of the face. Multiunit electrophysiological mapping was used to map the ipsilateral face. Ray-specific receptive fields in adults matched the CO segmentation. The mean areas of multiunit receptive fields in subnucleus interpolaris and caudalis were larger than previously mapped receptive fields in the mole's principal sensory nucleus. The proportion of tissue devoted to each ray's representation differed between the subnucleus interpolaris and the principal sensory nucleus. Our finding that different trigeminal brainstem maps can exaggerate different parts of the face could provide new insights for the roles of these different somatosensory stations.
Collapse
Affiliation(s)
- Eva K Sawyer
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37235
| | | | | |
Collapse
|
82
|
Tohmi M, Meguro R, Tsukano H, Hishida R, Shibuki K. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Curr Biol 2014; 24:587-97. [PMID: 24583013 DOI: 10.1016/j.cub.2014.01.061] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/29/2013] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Visual information conveyed through the extrageniculate visual pathway, which runs from the retina via the superior colliculus (SC) and the lateral posterior nucleus (LPN) of the thalamus to the higher visual cortex, plays a critical role in the visual capabilities of many mammalian species. However, its functional role in the higher visual cortex remains unclear. Here, we observed visual cortical area activity in anesthetized mice to evaluate the role of the extrageniculate pathway on their specialized visual properties. RESULTS The preferred stimulus velocities of neurons in the higher visual areas (lateromedial [LM], anterolateral [AL], anteromedial [AM], and rostrolateral [RL] areas) were measured using flavoprotein fluorescence imaging and two-photon calcium imaging and were higher than those in the primary visual cortex (V1). Further, the velocity-tuning properties of the higher visual areas were different from each other. The response activities in these areas decreased after V1 ablation; however, the visual properties' differences were preserved. After SC destruction, these preferences for high velocities disappeared, and their tuning profiles became similar to that of the V1, whereas the tuning profile of the V1 remained relatively normal. Neural tracer experiments revealed that each of these higher visual areas connected with specific subregions of the LPN. CONCLUSIONS The preservation of visual property differences among the higher visual areas following V1 lesions and their loss following SC lesions indicate that pathways from the SC through the thalamus to higher cortical areas are sufficient to support these differences.
Collapse
Affiliation(s)
- Manavu Tohmi
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan.
| | - Reiko Meguro
- Department of Neurobiology and Anatomy, Niigata University School of Medicine, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| |
Collapse
|
83
|
Viaro R, Budri M, Parmiani P, Franchi G. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats. J Physiol 2014; 592:2137-52. [PMID: 24566543 DOI: 10.1113/jphysiol.2013.268821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy Department of Robotics, Brain and Cognitive Sciences, Italian Institute of Technology, Genoa, Italy
| | - Mirco Budri
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Pierantonio Parmiani
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
84
|
Reyes-Puerta V, Sun JJ, Kim S, Kilb W, Luhmann HJ. Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex In Vivo. Cereb Cortex 2014; 25:2001-21. [PMID: 24518757 DOI: 10.1093/cercor/bhu007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the most relevant questions regarding the function of the nervous system is how sensory information is represented in populations of cortical neurons. Despite its importance, the manner in which sensory-evoked activity propagates across neocortical layers and columns has yet not been fully characterized. In this study, we took advantage of the distinct organization of the rodent barrel cortex and recorded with multielectrode arrays simultaneously from up to 74 neurons localized in several functionally identified layers and columns of anesthetized adult Wistar rats in vivo. The flow of activity within neuronal populations was characterized by temporally precise spike sequences, which were repeatedly evoked by single-whisker stimulation. The majority of the spike sequences representing instantaneous responses were led by a subgroup of putative inhibitory neurons in the principal column at thalamo-recipient layers, thus revealing the presence of feedforward inhibition. However, later spike sequences were mainly led by infragranular excitatory neurons in neighboring columns. Although the starting point of the sequences was anatomically confined, their ending point was rather scattered, suggesting that the population responses are structurally dispersed. Our data show for the first time the simultaneous intra- and intercolumnar processing of information at high temporal resolution.
Collapse
Affiliation(s)
- Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Jyh-Jang Sun
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany Present address: Neuro-Electronics Research Flanders, Leuven, Belgium
| | - Suam Kim
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
85
|
Neese SL, Doran M, Clough RW. Evaluation of Degenerating Neurons After Traumatic Brain Injury: Cyromicrotomy and Staining Procedures for Frozen Sections of Rat Brains. J Histotechnol 2013. [DOI: 10.1179/his.2007.30.2.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
86
|
Cortical balance of excitation and inhibition is regulated by the rate of synaptic activity. J Neurosci 2013; 33:14359-68. [PMID: 24005289 DOI: 10.1523/jneurosci.1748-13.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical activity is determined by the balance between excitation and inhibition. To examine how shifts in brain activity affect this balance, we recorded spontaneous excitatory and inhibitory synaptic inputs into layer 4 neurons from rat somatosensory cortex while altering the depth of anesthesia. The rate of excitatory and inhibitory events was reduced by ∼50% when anesthesia was deepened. However, whereas both the amplitude and width of inhibitory synaptic events profoundly increased under deep anesthesia, those of excitatory events were unaffected. These effects were found using three different types of anesthetics, suggesting that they are caused by the network state and not by local specific action of the anesthetics. To test our hypothesis that the size of inhibitory events increased because of the decreased rate of synaptic activity under deep anesthesia, we blocked cortical excitation and replayed the slow and fast patterns of inhibitory inputs using intracortical electrical stimulation. Evoked inhibition was larger under low-frequency stimulation, and, importantly, this change occurred regardless of the depth of anesthesia. Hence, shifts in the balance between excitation and inhibition across distinct states of cortical activity can be explained by the rate of inhibitory inputs combined with their short-term plasticity properties, regardless of the actual global brain activity.
Collapse
|
87
|
Alloway KD, Smith JB, Watson GDR. Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J Neurophysiol 2013; 111:36-50. [PMID: 24108793 DOI: 10.1152/jn.00399.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The dorsolateral striatum (DLS) is critical for executing sensorimotor behaviors that depend on stimulus-response (S-R) associations. In rats, the DLS receives it densest inputs from primary somatosensory (SI) cortex, but it also receives substantial input from the thalamus. Much of rat DLS is devoted to processing whisker-related information, and thalamic projections to these whisker-responsive DLS regions originate from the parafascicular (Pf) and medial posterior (POm) nuclei. To determine which thalamic nucleus is better suited for mediating S-R associations in the DLS, we compared their input-output connections and neuronal responses to repetitive whisker stimulation. Tracing experiments demonstrate that POm projects specifically to the DLS, but the Pf innervates both dorsolateral and dorsomedial parts of the striatum. The Pf nucleus is innervated by whisker-sensitive sites in the superior colliculus, and these sites also send dense projections to the zona incerta, a thalamic region that sends inhibitory projections to the POm. These data suggest that projections from POm to the DLS are suppressed by incertal inputs when the superior colliculus is activated by unexpected sensory stimuli. Simultaneous recordings with two electrodes indicate that POm neurons are more responsive and habituate significantly less than Pf neurons during repetitive whisker stimulation. Response latencies are also shorter in POm than in Pf, which is consistent with the fact that Pf receives its whisker information via synaptic relays in the superior colliculus. These findings indicate that, compared with the Pf nucleus, POm transmits somatosensory information to the DLS with a higher degree of sensory fidelity.
Collapse
Affiliation(s)
- Kevin D Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | | | | |
Collapse
|
88
|
Humanes-Valera D, Aguilar J, Foffani G. Reorganization of the intact somatosensory cortex immediately after spinal cord injury. PLoS One 2013; 8:e69655. [PMID: 23922771 PMCID: PMC3726757 DOI: 10.1371/journal.pone.0069655] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 02/06/2023] Open
Abstract
Sensory deafferentation produces extensive reorganization of the corresponding deafferented cortex. Little is known, however, about the role of the adjacent intact cortex in this reorganization. Here we show that a complete thoracic transection of the spinal cord immediately increases the responses of the intact forepaw cortex to forepaw stimuli (above the level of the lesion) in anesthetized rats. These increased forepaw responses were independent of the global changes in cortical state induced by the spinal cord transection described in our previous work (Aguilar et al., J Neurosci 2010), as the responses increased both when the cortex was in a silent state (down-state) or in an active state (up-state). The increased responses in the intact forepaw cortex correlated with increased responses in the deafferented hindpaw cortex, suggesting that they could represent different points of view of the same immediate state-independent functional reorganization of the primary somatosensory cortex after spinal cord injury. Collectively, the results of the present study and of our previous study suggest that both state-dependent and state-independent mechanisms can jointly contribute to cortical reorganization immediately after spinal cord injury.
Collapse
Affiliation(s)
- Desire Humanes-Valera
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
- * E-mail: (JA); (GF)
| | - Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
- * E-mail: (JA); (GF)
| |
Collapse
|
89
|
Groh A, Bokor H, Mease RA, Plattner VM, Hangya B, Stroh A, Deschenes M, Acsády L. Convergence of cortical and sensory driver inputs on single thalamocortical cells. ACTA ACUST UNITED AC 2013; 24:3167-79. [PMID: 23825316 PMCID: PMC4224239 DOI: 10.1093/cercor/bht173] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ascending and descending information is relayed through the thalamus via strong, “driver” pathways. According to our current knowledge, different driver pathways are organized in parallel streams and do not interact at the thalamic level. Using an electron microscopic approach combined with optogenetics and in vivo physiology, we examined whether driver inputs arising from different sources can interact at single thalamocortical cells in the rodent somatosensory thalamus (nucleus posterior, POm). Both the anatomical and the physiological data demonstrated that ascending driver inputs from the brainstem and descending driver inputs from cortical layer 5 pyramidal neurons converge and interact on single thalamocortical neurons in POm. Both individual pathways displayed driver properties, but they interacted synergistically in a time-dependent manner and when co-activated, supralinearly increased the output of thalamus. As a consequence, thalamocortical neurons reported the relative timing between sensory events and ongoing cortical activity. We conclude that thalamocortical neurons can receive 2 powerful inputs of different origin, rather than only a single one as previously suggested. This allows thalamocortical neurons to integrate raw sensory information with powerful cortical signals and transfer the integrated activity back to cortical networks.
Collapse
Affiliation(s)
- Alexander Groh
- Institute of Neuroscience, Technische Universität München, D-80802 Munich, Germany
| | | | - Rebecca A Mease
- Institute of Neuroscience, Technische Universität München, D-80802 Munich, Germany
| | | | - Balázs Hangya
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary
| | - Albrecht Stroh
- Institute of Neuroscience, Technische Universität München, D-80802 Munich, Germany Focus Program Translational Neurosciences (ftn) & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany
| | - Martin Deschenes
- Centre de Recherche Université Laval Robert-Giffard, Laval University, Québec City, Canada G1J 2G3
| | | |
Collapse
|
90
|
Wu J, Raver C, Piao C, Keller A, Faden AI. Cell cycle activation contributes to increased neuronal activity in the posterior thalamic nucleus and associated chronic hyperesthesia after rat spinal cord contusion. Neurotherapeutics 2013; 10:520-38. [PMID: 23775067 PMCID: PMC3701760 DOI: 10.1007/s13311-013-0198-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) causes not only sensorimotor and cognitive deficits, but frequently also severe chronic pain that is difficult to treat (SCI pain). We previously showed that hyperesthesia, as well as spontaneous pain induced by electrolytic lesions in the rat spinothalamic tract, is associated with increased spontaneous and sensory-evoked activity in the posterior thalamic nucleus (PO). We have also demonstrated that rodent impact SCI increases cell cycle activation (CCA) in the injury region and that post-traumatic treatment with cyclin dependent kinase inhibitors reduces lesion volume and motor dysfunction. Here we examined whether CCA contributes to neuronal hyperexcitability of PO and hyperpathia after rat contusion SCI, as well as to microglial and astroglial activation (gliopathy) that has been implicated in delayed SCI pain. Trauma caused enhanced pain sensitivity, which developed weeks after injury and was correlated with increased PO neuronal activity. Increased CCA was found at the thoracic spinal lesion site, the lumbar dorsal horn, and the PO. Increased microglial activation and cysteine-cysteine chemokine ligand 21 expression was also observed in the PO after SCI. In vitro, neurons co-cultured with activated microglia showed up-regulation of cyclin D1 and cysteine-cysteine chemokine ligand 21 expression. In vivo, post-injury treatment with a selective cyclin dependent kinase inhibitor (CR8) significantly reduced cell cycle protein induction, microglial activation, and neuronal activity in the PO nucleus, as well as limiting chronic SCI-induced hyperpathia. These results suggest a mechanistic role for CCA in the development of SCI pain, through effects mediated in part by the PO nucleus. Moreover, cell cycle modulation may provide an effective therapeutic strategy to improve reduce both hyperpathia and motor dysfunction after SCI.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research, National Study Center for Trauma and EMS, University of Maryland, School of Medicine, Bressler Research Building, 655 W. Baltimore Street, Room #6-009, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
91
|
Sanchez-Jimenez A, Torets C, Panetsos F. Complementary processing of haptic information by slowly and rapidly adapting neurons in the trigeminothalamic pathway. Electrophysiology, mathematical modeling and simulations of vibrissae-related neurons. Front Cell Neurosci 2013; 7:79. [PMID: 23761732 PMCID: PMC3671571 DOI: 10.3389/fncel.2013.00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/08/2013] [Indexed: 11/13/2022] Open
Abstract
TONIC (SLOWLY ADAPTING) AND PHASIC (RAPIDLY ADAPTING) PRIMARY AFFERENTS CONVEY COMPLEMENTARY ASPECTS OF HAPTIC INFORMATION TO THE CENTRAL NERVOUS SYSTEM: object location and texture the former, shape the latter. Tonic and phasic neural responses are also recorded in all relay stations of the somatosensory pathway, yet it is unknown their role in both, information processing and information transmission to the cortex: we don't know if tonic and phasic neurons process complementary aspects of haptic information and/or if these two types constitute two separate channels that convey complementary aspects of tactile information to the cortex. Here we propose to elucidate these two questions in the fast trigeminal pathway of the rat (PrV-VPM: principal trigeminal nucleus-ventroposteromedial thalamic nucleus). We analyze early and global behavior, latencies and stability of the responses of individual cells in PrV and medial lemniscus under 1-40 Hz stimulation of the whiskers in control and decorticated animals and we use stochastic spiking models and extensive simulations. Our results strongly suggest that in the first relay station of the somatosensory system (PrV): (1) tonic and phasic neurons process complementary aspects of whisker-related tactile information (2) tonic and phasic responses are not originated from two different types of neurons (3) the two responses are generated by the differential action of the somatosensory cortex on a unique type of PrV cell (4) tonic and phasic neurons do not belong to two different channels for the transmission of tactile information to the thalamus (5) trigeminothalamic transmission is exclusively performed by tonically firing neurons and (6) all aspects of haptic information are coded into low-pass, band-pass, and high-pass filtering profiles of tonically firing neurons. Our results are important for both, basic research on neural circuits and information processing, and development of sensory neuroprostheses.
Collapse
Affiliation(s)
- Abel Sanchez-Jimenez
- Department of Applied Mathematics (Biomathematics), Faculty of Biology, Complutense University of Madrid Madrid, Spain ; Neurocomputing and Neurorobotics Research Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid Madrid, Spain
| | | | | |
Collapse
|
92
|
Tanaka T, Takano Y, Tanaka S, Hironaka N, Kobayashi K, Hanakawa T, Watanabe K, Honda M. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Front Syst Neurosci 2013; 7:6. [PMID: 23596399 PMCID: PMC3622879 DOI: 10.3389/fnsys.2013.00006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/16/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Transcranial direct-current stimulation (tDCS) is a non-invasive procedure that achieves polarity-dependent modulation of neuronal membrane potentials. It has recently been used as a functional intervention technique for the treatment of psychiatric and neurological diseases; however, its neuronal mechanisms have not been fully investigated in vivo. OBJECTIVE/HYPOTHESIS To investigate whether the application of cathodal or anodal tDCS affects extracellular dopamine and serotonin levels in the rat striatum. METHODS Stimulation and in vivo microdialysis were carried out under urethane anesthesia, and microdialysis probes were slowly inserted into the striatum. After the collection of baseline fractions in the rat striatum, cathodal or anodal tDCS was applied continuously for 10 min with a current intensity of 800 μA from an electrode placed on the skin of the scalp. Dialysis samples were collected every 10 min until at least 400 min after the onset of stimulation. RESULTS Following the application of cathodal, but not anodal, tDCS for 10 min, extracellular dopamine levels increased for more than 400 min in the striatum. There were no significant changes in extracellular serotonin levels. CONCLUSION These findings suggest that tDCS has a direct and/or indirect effect on the dopaminergic system in the rat basal ganglia.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Whitt JL, Masri R, Pulimood NS, Keller A. Pathological activity in mediodorsal thalamus of rats with spinal cord injury pain. J Neurosci 2013; 33:3915-26. [PMID: 23447602 PMCID: PMC3606547 DOI: 10.1523/jneurosci.2639-12.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/09/2013] [Accepted: 01/13/2013] [Indexed: 11/21/2022] Open
Abstract
Spinal cord injury (SCI) results not only in motor deficits, but produces, in many patients, excruciating chronic pain (SCI pain). We have previously shown, in a rodent model, that SCI causes suppression of activity in the GABAergic nucleus, the zona incerta (ZI), and concomitant increased activity in one of its main targets, the posterior nucleus of the thalamus (PO); the increased PO activity is correlated with the maintenance and expression of hyperalgesia after SCI. Here, we test the hypothesis that SCI causes a similar pathological increase in other thalamic nuclei regulated by the ZI, specifically the mediodorsal thalamus (MD), which is involved in the emotional-affective aspects of pain. We recorded single and multiunit activity from MD of either anesthetized or awake rats, and compared data from rats with SCI with data from sham-operated controls (anesthetized experiments) or with data from the same animals prelesion (awake experiments). Consistent with our hypothesis, MD neurons from rats with SCI show significant increases in spontaneous firing rates and in the magnitude and duration of responses to noxious stimuli. In a subset of anesthetized animals, similar changes in activity of MD neurons were produced by pharmacologically inactivating ZI in naive rats, suggesting that the changes in the MD after SCI are related to suppressed inhibition from the ZI. These data support our hypothesis that SCI pain results, at least in part, from a loss of inhibition to thalamic nuclei associated with both the sensory-discriminative and emotional-affective components of pain.
Collapse
Affiliation(s)
- Jessica L. Whitt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
- Department of Endodontics, Prosthodontics, and Operative Dentistry, Baltimore College of Dental Surgery, Baltimore, Maryland 21201
| | - Radi Masri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
- Department of Endodontics, Prosthodontics, and Operative Dentistry, Baltimore College of Dental Surgery, Baltimore, Maryland 21201
| | - Nisha S. Pulimood
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Asaf Keller
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| |
Collapse
|
94
|
Bellistri E, Aguilar J, Brotons-Mas JR, Foffani G, de la Prida LM. Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat. J Physiol 2013; 591:2667-86. [PMID: 23420661 DOI: 10.1113/jphysiol.2013.251892] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hippocampus is a pivotal structure for episodic memory function. This ability relies on the possibility of integrating different features of sensory stimuli with the spatio-temporal context in which they occur. While recent studies now suggest that somatosensory information is already processed by the hippocampus, the basic mechanisms still remain unexplored. Here, we used electrical stimulation of the paws, the whisker pad or the medial lemniscus to probe the somatosensory pathway to the hippocampus in the anaesthetized rat, and multisite electrodes, in combination with tetrode and intracellular recordings, to look at the properties of somatosensory hippocampal responses. We found that peripheral and lemniscal stimulation elicited small local field potential responses in the dorsal hippocampus about 35-40 ms post-stimulus. Current source density analysis established the local nature of these responses, revealing associated synaptic sinks that were consistently confined to the molecular layer (ML) of the dentate gyrus (DG), with less regular activation of the CA1 stratum lacunosum moleculare (SLM). A delayed (40-45 ms), potentially active, current source that outlasted the SLM sink was present in about 50% cases around the CA1 pyramidal cell layer. Somatosensory stimulation resulted in multi-unit firing increases in the majority of DG responses (79%), whereas multi-unit firing suppression was observed in the majority of CA1 responses (62%). Tetrode and intracellular recordings of individual cells confirmed different firing modulation in the DG and the CA1 region, and verified the active nature of both the early ML sink and delayed somatic CA1 source. Hippocampal responses to somatosensory stimuli were dependent on fluctuations in the strength and composition of synaptic inputs due to changes of the ongoing local (hippocampal) and distant (cortical) state. We conclude that somatosensory signals reach the hippocampus mainly from layer II entorhinal cortex to directly discharge DG granule cells, while a different predominantly inhibitory process takes place in CA1, further controlling the hippocampal output. Therefore, our data reveal a distinct organization of somatosensory-related extra-hippocampal inputs converging onto DG and CA1.
Collapse
Affiliation(s)
- Elisa Bellistri
- Instituto Cajal CSIC, Neurobiología-Investigación, Ave Doctor Arce 37, Madrid 28002, Spain
| | | | | | | | | |
Collapse
|
95
|
Smith JB, Alloway KD. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas. Front Neural Circuits 2013; 7:4. [PMID: 23372545 PMCID: PMC3556600 DOI: 10.3389/fncir.2013.00004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/08/2013] [Indexed: 11/13/2022] Open
Abstract
Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper.
Collapse
Affiliation(s)
- Jared B Smith
- Department of Neural and Behavioral Sciences, Penn State University Hershey, PA, USA ; Center for Neural Engineering, Penn State University University Park, PA, USA
| | | |
Collapse
|
96
|
Graziano A, Foffani G, Knudsen EB, Shumsky J, Moxon KA. Passive exercise of the hind limbs after complete thoracic transection of the spinal cord promotes cortical reorganization. PLoS One 2013; 8:e54350. [PMID: 23349859 PMCID: PMC3551921 DOI: 10.1371/journal.pone.0054350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023] Open
Abstract
Physical exercise promotes neural plasticity in the brain of healthy subjects and modulates pathophysiological neural plasticity after sensorimotor loss, but the mechanisms of this action are not fully understood. After spinal cord injury, cortical reorganization can be maximized by exercising the non-affected body or the residual functions of the affected body. However, exercise per se also produces systemic changes – such as increased cardiovascular fitness, improved circulation and neuroendocrine changes – that have a great impact on brain function and plasticity. It is therefore possible that passive exercise therapies typically applied below the level of the lesion in patients with spinal cord injury could put the brain in a more plastic state and promote cortical reorganization. To directly test this hypothesis, we applied passive hindlimb bike exercise after complete thoracic transection of the spinal cord in adult rats. Using western blot analysis, we found that the level of proteins associated with plasticity – specifically ADCY1 and BDNF – increased in the somatosensory cortex of transected animals that received passive bike exercise compared to transected animals that received sham exercise. Using electrophysiological techniques, we then verified that neurons in the deafferented hindlimb cortex increased their responsiveness to tactile stimuli delivered to the forelimb in transected animals that received passive bike exercise compared to transected animals that received sham exercise. Passive exercise below the level of the lesion, therefore, promotes cortical reorganization after spinal cord injury, uncovering a brain-body interaction that does not rely on intact sensorimotor pathways connecting the exercised body parts and the brain.
Collapse
Affiliation(s)
- Alessandro Graziano
- Department of Physiology and Pharmacology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
97
|
Pawlak V, Greenberg DS, Sprekeler H, Gerstner W, Kerr JND. Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo. eLife 2013; 2:e00012. [PMID: 23359858 PMCID: PMC3552422 DOI: 10.7554/elife.00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/29/2012] [Indexed: 11/13/2022] Open
Abstract
Action Potential (APs) patterns of sensory cortex neurons encode a variety of stimulus features, but how can a neuron change the feature to which it responds? Here, we show that in vivo a spike-timing-dependent plasticity (STDP) protocol—consisting of pairing a postsynaptic AP with visually driven presynaptic inputs—modifies a neurons' AP-response in a bidirectional way that depends on the relative AP-timing during pairing. Whereas postsynaptic APs repeatedly following presynaptic activation can convert subthreshold into suprathreshold responses, APs repeatedly preceding presynaptic activation reduce AP responses to visual stimulation. These changes were paralleled by restructuring of the neurons response to surround stimulus locations and membrane-potential time-course. Computational simulations could reproduce the observed subthreshold voltage changes only when presynaptic temporal jitter was included. Together this shows that STDP rules can modify output patterns of sensory neurons and the timing of single-APs plays a crucial role in sensory coding and plasticity. DOI:http://dx.doi.org/10.7554/eLife.00012.001 Nerve cells, called neurons, are one of the core components of the brain and form complex networks by connecting to other neurons via long, thin ‘wire-like’ processes called axons. Axons can extend across the brain, enabling neurons to form connections—or synapses—with thousands of others. It is through these complex networks that incoming information from sensory organs, such as the eye, is propagated through the brain and encoded. The basic unit of communication between neurons is the action potential, often called a ‘spike’, which propagates along the network of axons and, through a chemical process at synapses, communicates with the postsynaptic neurons that the axon is connected to. These action potentials excite the neuron that they arrive at, and this excitatory process can generate a new action potential that then propagates along the axon to excite additional target neurons. In the visual areas of the cortex, neurons respond with action potentials when they ‘recognize’ a particular feature in a scene—a process called tuning. How a neuron becomes tuned to certain features in the world and not to others is unclear, as are the rules that enable a neuron to change what it is tuned to. What is clear, however, is that to understand this process is to understand the basis of sensory perception. Memory storage and formation is thought to occur at synapses. The efficiency of signal transmission between neurons can increase or decrease over time, and this process is often referred to as synaptic plasticity. But for these synaptic changes to be transmitted to target neurons, the changes must alter the number of action potentials. Although it has been shown in vitro that the efficiency of synaptic transmission—that is the strength of the synapse—can be altered by changing the order in which the pre- and postsynaptic cells are activated (referred to as ‘Spike-timing-dependent plasticity’), this has never been shown to have an effect on the number of action potentials generated in a single neuron in vivo. It is therefore unknown whether this process is functionally relevant. Now Pawlak et al. report that spike-timing-dependent plasticity in the visual cortex of anaesthetized rats can change the spiking of neurons in the visual cortex. They used a visual stimulus (a bar flashed up for half a second) to activate a presynaptic cell, and triggered a single action potential in the postsynaptic cell a very short time later. By repeatedly activating the cells in this way, they increased the strength of the synaptic connection between the two neurons. After a small number of these pairing activations, presenting the visual stimulus alone to the presynaptic cell was enough to trigger an action potential (a suprathreshold response) in the postsynaptic neuron—even though this was not the case prior to the pairing. This study shows that timing rules known to change the strength of synaptic connections—and proposed to underlie learning and memory—have functional relevance in vivo, and that the timing of single action potentials can change the functional status of a cortical neuron. DOI:http://dx.doi.org/10.7554/eLife.00012.002
Collapse
Affiliation(s)
- Verena Pawlak
- Network Imaging Group , Max Planck Institute for Biological Cybernetics , Tübingen , Germany
| | | | | | | | | |
Collapse
|
98
|
Cha M, Ji Y, Masri R. Motor cortex stimulation activates the incertothalamic pathway in an animal model of spinal cord injury. THE JOURNAL OF PAIN 2013; 14:260-9. [PMID: 23332495 DOI: 10.1016/j.jpain.2012.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/19/2012] [Accepted: 11/15/2012] [Indexed: 12/01/2022]
Abstract
UNLABELLED We have shown previously that electrical stimulation of the motor cortex reduces spontaneous painlike behaviors in animals with spinal cord injury (SCI). Because SCI pain behaviors are associated with abnormal inhibition in the inhibitory nucleus zona incerta (ZI) and because inactivation of the ZI blocks motor cortex stimulation (MCS) effects, we hypothesized that the antinociceptive effects of MCS are due to enhanced inhibitory inputs from ZI to the posterior thalamus (Po)-an area heavily implicated in nociceptive processing. To test this hypothesis, we used a rodent model of SCI pain and performed in vivo extracellular electrophysiological recordings in single well-isolated neurons in anesthetized rats. We recorded spontaneous activity in ZI and Po from 48 rats before, during, and after MCS (50 μA, 50 Hz; 300-ms pulses). We found that MCS enhanced spontaneous activity in 35% of ZI neurons and suppressed spontaneous activity in 58% of Po neurons. The majority of MCS-enhanced ZI neurons (81%) were located in the ventrorateral subdivision of ZI-the area containing Po-projecting ZI neurons. In addition, we found that inactivation of ZI using muscimol (GABAA receptor agonist) blocked the effects of MCS in 73% of Po neurons. Although we cannot eliminate the possibility that muscimol spread to areas adjacent to ZI, these findings support our hypothesis and suggest that MCS produces antinociception by activating the incertothalamic pathway. PERSPECTIVE This article describes a novel brain circuit that can be manipulated, in rats, to produce antinociception. These results have the potential to significantly impact the standard of care currently in place for the treatment of patients with intractable pain.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Baltimore, School of Dentistry, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
99
|
Ganzer PD, Moxon KA, Knudsen EB, Shumsky JS. Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury. Exp Neurol 2012; 241:84-94. [PMID: 23262119 DOI: 10.1016/j.expneurol.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023]
Abstract
Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
100
|
Grandy TH, Greenfield SA, Devonshire IM. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. J Neurophysiol 2012; 108:2931-45. [DOI: 10.1152/jn.00512.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the current study, we investigated pharmacological side effects and signal-to-noise ratios (SNRs) of two commonly used voltage-sensitive dyes (VSDs): the blue dye RH-1691 (1 mg/ml) and the red dye di-4-ANEPPS (0.1 mg/ml), applied in vivo to the rat barrel cortex. Blue dyes are often favored over red dyes in in vivo studies due to their apparent superior SNR, partly because their fluorescence spectrum is farther away from the hemoglobin absorption spectrum, making them less prone to heartbeat-associated brain-pulsation artifacts (BPA). We implemented a previously reported template-based BPA removal algorithm and evaluated its applicability to di-4-ANEPPS before comparing characteristics of the two dyes. Somatosensory-evoked potentials (SEPs) were also recorded. Whereas SEPs recorded before and after application of di-4-ANEPPS failed to exhibit demonstrable differences, RH-1691 caused a significant and prolonged increase in SEP amplitude for several hours. In contrast, neither dye influenced the spontaneous cortical activity as assessed by the spectral content of the EEG. Both dyes turned out to be strikingly similar with respect to changes in fractional fluorescence as a function of SEP response amplitude, as well as regarding shot noise characteristics after removal of the BPA. Thus there is strong evidence that the increased SNR for RH-1691 is a consequence of an artificially increased signal. When applying an appropriate BPA removal algorithm, di-4-ANEPPS has proven to be suitable for single-trial in vivo VSD imaging (VSDI) and produces no detectable neurophysiological changes in the system under investigation. Taken together, our data argue for a careful re-evaluation of pharmacological side effects of RH-1691 and support the applicability of di-4-ANEPPS for stable single-trial in vivo VSDI recordings.
Collapse
Affiliation(s)
- T. H. Grandy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - S. A. Greenfield
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| | - I. M. Devonshire
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| |
Collapse
|