51
|
van Lunteren E, Moyer M. Oxidoreductase, morphogenesis, extracellular matrix, and calcium ion-binding gene expression in streptozotocin-induced diabetic rat heart. Am J Physiol Endocrinol Metab 2007; 293:E759-68. [PMID: 17566115 DOI: 10.1152/ajpendo.00191.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes has far-ranging effects on cardiac structure and function. Previous gene expression studies of the heart in animal models of type 1 diabetes concur that there is altered expression of genes involved in lipid and protein metabolism, but they diverge with regard to expression changes involving many other functional groups of genes of mechanistic importance in diabetes-induced cardiac dysfunction. To obtain additional information about these controversial areas, genome-wide expression was assessed using microarrays in left ventricle from streptozotocin-diabetic and normal rats. There were 261 genes with statistically significant altered expression of at least +/-1.5-fold, of which 124 were increased and 137 reduced by diabetes. Gene ontology assignment testing identified several statistical significantly overrepresented groups among genes with altered expression, which differed for increased compared with reduced expression. Relevant gene groups with increased expression by diabetes included lipid metabolism (P < 0.001, n = 13 genes, fold change 1.5 to 14.6) and oxidoreductase activity (P < 0.001, n = 17, fold change 1.5 to 4.6). Groups with reduced expression by diabetes included morphogenesis (P < 0.00001, n = 28, fold change -1.5 to -5.1), extracellular matrix (P < 0.02, n = 9, fold change -1.5 to -3.9), cell adhesion (P < 0.05, n = 10, fold change -1.5 to -2.7), and calcium ion binding (P < 0.01, n = 13, fold change -1.5 to -3.0). Array findings were verified by quantitative PCR for 36 genes. These data combined with previous findings strengthen the evidence for diabetes-induced cardiac gene expression changes involved in cell growth and development, oxidoreductase activity, and the extracellular matrix and also point out other gene groups not previously identified as being affected, such as those involved in calcium ion homeostasis.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | | |
Collapse
|
52
|
Rodríguez C, Alcudia JF, Martínez-González J, Raposo B, Navarro MA, Badimon L. Lysyl oxidase (LOX) down-regulation by TNFalpha: a new mechanism underlying TNFalpha-induced endothelial dysfunction. Atherosclerosis 2007; 196:558-64. [PMID: 17673218 DOI: 10.1016/j.atherosclerosis.2007.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/06/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE TNFalpha is a pro-inflammatory cytokine that induces endothelial dysfunction and promotes atherosclerosis progression. Down-regulation of lysyl oxidase (LOX), a key enzyme in extracellular matrix maturation, by pro-atherogenic risk factors such as LDL and homocysteine, is associated with an impairment of endothelial barrier function. Our hypothesis is that the inflammatory cytokine TNFalpha could also modulate LOX expression/function in endothelial cells. METHODS The study was carried out in human umbilical vein endothelial cells (HUVEC), porcine aortic endothelial cells (PAEC) and bovine aortic endothelial cells (BAEC). LOX mRNA levels were analysed by real-time PCR and LOX activity was assessed by a high sensitive fluorescent assay. Promoter activity was determined by transient transfection using a luciferase reporter system. RESULTS TNFalpha decreases LOX mRNA levels in endothelial cells in a dose- and time-dependent manner. The effect of TNFalpha was observed at low concentrations (0.1-1 ng/mL) and was maximal at 2.5 ng/mL (after 21 h). In transfection assays, TNFalpha reduced LOX transcriptional activity to a similar extent than LOX mRNA. Furthermore, TNFalpha decreases endothelial LOX enzymatic activity. By using both TNF receptor (TNFR) agonist and blocking antibodies we determined the involvement of TNFR2 on LOX down-regulation. Moreover, while TNFR-associated factor-2 (TRAF-2) did not mediate signalling events leading to LOX inhibition, PKC inhibitors counteracted the TNFalpha-induced decrease of LOX mRNA levels. Finally, TNFalpha administration significantly reduced vascular LOX expression in rat aorta. CONCLUSIONS Endothelial dysfunction induced by TNFalpha is associated with a decrease of LOX expression/activity. Thus, LOX seems to be involved in the impairment of endothelial function triggered by different pathological conditions.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Apoptosis/drug effects
- Cattle
- Cells, Cultured
- Down-Regulation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiopathology
- Humans
- Male
- Protein Kinase C/physiology
- Protein-Lysine 6-Oxidase/biosynthesis
- Rats
- Receptors, Tumor Necrosis Factor, Type I/agonists
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/agonists
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Sus scrofa
- Tumor Necrosis Factor-alpha/physiology
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- C Rodríguez
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
53
|
Tong Y, Tar M, Monrose V, DiSanto M, Melman A, Davies KP. hSMR3A as a marker for patients with erectile dysfunction. J Urol 2007; 178:338-43. [PMID: 17512016 PMCID: PMC2094360 DOI: 10.1016/j.juro.2007.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Indexed: 11/23/2022]
Abstract
PURPOSE We recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in 3 distinct models of erectile dysfunction. Since gene transfer of plasmids expressing Vcsa1 or intracorporeal injection of its mature peptide product sialorphin into the corpora of aging rats was shown to restore erectile function, we proposed that the Vcsa1 gene has a direct role in erectile function. To determine if similar changes in gene expression occur in the corpora of human subjects with erectile dysfunction we identified a human homologue of Vcsa1 (hSMR3A) and determined the level of expression of hSMR3A in patients. MATERIALS AND METHODS hSMR3A was identified as a homologue of Vcsa1 by searching protein databases for proteins with similarity. hSMR3A cDNA was generated and subcloned into the plasmid pVAX to generate pVAX-hSMR3A. pVAX-hSMR3A (25 or 100 microg) was intracorporeally injected into aging rats. The effect on erectile physiology was compared histologically and by measuring intracorporeal pressure/blood pressure with controls treated with the empty plasmid pVAX. Total RNA was extracted from human corporeal tissue obtained from patients undergoing previously scheduled penile surgery. Patients were grouped according to normal erectile function (3), erectile dysfunction and diabetes (5) and patients without diabetes but with erectile dysfunction (5). Quantitative reverse-transcriptase polymerase chain reaction was used to determine the hSMR3A expression level. RESULTS Intracorporeal injection of 25 microg pVAX-hSMR3A was able to significantly increase the intracorporeal pressure-to-blood pressure ratio in aging rats compared to age matched controls. Higher amounts (100 microg) of gene transfer of the plasmid caused less of an improvement in the intracorporeal pressure-to-blood pressure ratio compared to controls, although there was histological and visual evidence that the animals were post-priapitic. These physiological effects were similar to previously reported effects of intracorporeal injection of pVAX-Vcsa1 into the corpora of aging rats, establishing hSMR3A as a functional homologue of Vcsa1. More than 10-fold down-regulation in hSMR3A transcript expression was observed in the corpora of patients with vs without erectile dysfunction. In patients with diabetes associated and nondiabetes associated erectile dysfunction hSMR3A expression was found to be down-regulated. CONCLUSIONS These results suggest that hSMR3A can act as a marker for erectile dysfunction associated with diabetic and nondiabetic etiologies. Given that our previous studies demonstrated that gene transfer of the Vcsa1 gene and intracorporeal injection of its protein product in rats can restore erectile function, these results suggest that therapies that increase the hSMR3A gene and product expression could potentially have a positive impact on erectile function.
Collapse
Affiliation(s)
| | | | | | | | | | - Kelvin P. Davies
- * Correspondence: Department of Urology, Albert Einstein College of Medicine, Bronx, New York 10461 (telephone: 01 718 430 3201; e-mail: )
| |
Collapse
|
54
|
Hipp JD, Davies KP, Tar M, Valcic M, Knoll A, Melman A, Christ GJ. Using gene chips to identify organ-specific, smooth muscle responses to experimental diabetes: potential applications to urological diseases. BJU Int 2007; 99:418-430. [PMID: 17313427 PMCID: PMC2013735 DOI: 10.1111/j.1464-410x.2007.06676.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To identify early diabetes-related alterations in gene expression in bladder and erectile tissue that would provide novel diagnostic and therapeutic treatment targets to prevent, delay or ameliorate the ensuing bladder and erectile dysfunction. MATERIALS AND METHODS The RG-U34A rat GeneChip (Affymetrix Inc., Sunnyvale, CA, USA) oligonucleotide microarray (containing approximately 8799 genes) was used to evaluate gene expression in corporal and male bladder tissue excised from rats 1 week after confirmation of a diabetic state, but before demonstrable changes in organ function in vivo. A conservative analytical approach was used to detect alterations in gene expression, and gene ontology (GO) classifications were used to identify biological themes/pathways involved in the aetiology of the organ dysfunction. RESULTS In all, 320 and 313 genes were differentially expressed in bladder and corporal tissue, respectively. GO analysis in bladder tissue showed prominent increases in biological pathways involved in cell proliferation, metabolism, actin cytoskeleton and myosin, as well as decreases in cell motility, and regulation of muscle contraction. GO analysis in corpora showed increases in pathways related to ion channel transport and ion channel activity, while there were decreases in collagen I and actin genes. CONCLUSIONS The changes in gene expression in these initial experiments are consistent with the pathophysiological characteristics of the bladder and erectile dysfunction seen later in the diabetic disease process. Thus, the observed changes in gene expression might be harbingers or biomarkers of impending organ dysfunction, and could provide useful diagnostic and therapeutic targets for a variety of progressive urological diseases/conditions (i.e. lower urinary tract symptoms related to benign prostatic hyperplasia, erectile dysfunction, etc.).
Collapse
Affiliation(s)
- Jason D. Hipp
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kelvin P. Davies
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Moses Tar
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mira Valcic
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abraham Knoll
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arnold Melman
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - George J. Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Urology and Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
55
|
Lewin A, Grieve IC. Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data. BMC Bioinformatics 2006; 7:426. [PMID: 17018143 PMCID: PMC1622761 DOI: 10.1186/1471-2105-7-426] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 10/03/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene Ontology (GO) terms are often used to assess the results of microarray experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms which are over-represented amongst the genes declared to be differentially expressed in the analysis of the microarray experiment. However, due to the high degree of dependence between GO terms, statistical testing is conservative, and interpretation is difficult. RESULTS We propose testing groups of GO terms rather than individual terms, to increase statistical power, reduce dependence between tests and improve the interpretation of results. We use the publicly available package POSOC to group the terms. Our method finds groups of GO terms significantly over-represented amongst differentially expressed genes which are not found by Fisher's tests on individual GO terms. CONCLUSION Grouping Gene Ontology terms improves the interpretation of gene set enrichment for microarray data.
Collapse
Affiliation(s)
- Alex Lewin
- Department of Epidemiology and Public Health, Imperial College, Norfolk Place, London W2 1PG, UK
| | - Ian C Grieve
- MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London W12 ONN, UK
| |
Collapse
|
56
|
Tong Y, Tar M, Davelman F, Christ G, Melman A, Davies KP. Variable coding sequence protein A1 as a marker for erectile dysfunction. BJU Int 2006; 98:396-401. [PMID: 16879685 PMCID: PMC2034203 DOI: 10.1111/j.1464-410x.2006.06247.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate whether variable coding sequence protein A1 (Vcsa1) is down-regulated in rat models of diabetes and ageing, and to investigate the role of Vcsa1 in erectile function, as Vcsa1 is the most down-regulated gene in the corpora of a rat model of neurogenic erectile dysfunction (ED). MATERIALS AND METHODS Quantitative reverse-transcriptase polymerase-chain reaction was used to determine Vcsa1 expression in the corpora of rats in three models of ED, i.e. streptozotocin-induced diabetes, retired breeder (old), and neurogenic (bilaterally ligated cavernosal nerves), and in control rats. To confirm a physiological role of Vcsa1 in erectile function, we carried out gene transfer studies using a plasmid in which Vcsa1 was expressed from a cytomegalovirus promoter (pVAX-Vcsa1). This plasmid was injected intracorporally into old rats, and the effect on physiology of corporal tissue was analysed by intracorporal/blood pressure (ICP/BP) measurement and histological analysis, and compared with the effects of a positive control plasmid (pVAX-hSlo, which we previously reported to restore erectile function in diabetic and ageing rats) and a negative control plasmid (pVAX). RESULTS In each rat model of ED there was a significant down-regulation of the Vcsa1 transcript of at least 10-fold in corporal tissue. Remarkably, intracorporal injection with 80 microg pVAX-Vcsa1 caused priapism, as indicated by visible prolonged erection, histological appearance, and elevated resting ICP/BP. Lower doses of pVAX-Vcsa1 (5 and 25 microg) increased ICP/BP over that in untreated controls. CONCLUSION These results show that Vcsa1 has a role in erectile function and might be a molecular marker for organic ED. The role of Vcsa1 in erectile function suggests that it could represent a novel therapeutic target for treating ED.
Collapse
Affiliation(s)
- Yuehong Tong
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
57
|
Christ GJ, Hsieh Y, Zhao W, Schenk G, Venkateswarlu K, Wang HZ, Tar MT, Melman A. Effects of streptozotocin-induced diabetes on bladder and erectile (dys)function in the same rat in vivo. BJU Int 2006; 97:1076-82. [PMID: 16643495 DOI: 10.1111/j.1464-410x.2006.06058.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To establish the methods, feasibility and utility of evaluating the impact of diabetes on bladder and erectile function in the same rat, as more than half of diabetic patients have bladder dysfunction, and half of diabetic men have erectile dysfunction, but the severity of coincident disease has not been rigorously assessed. MATERIALS AND METHODS In all, 16 F-344 rats had diabetes induced by streptozotocin (STZ), and were divided into insulin-treated (five) and untreated (11), and compared with age-matched controls (10), all assessed in parallel. All STZ rats were diabetic for 8-11 weeks. Cystometric studies were conducted on all rats, with cavernosometric studies conducted on a subset of rats. RESULTS There were insulin-reversible increases in the following cystometric variables; bladder weight, bladder capacity, micturition volume, residual volume, micturition pressure and spontaneous activity (P < 0.05, in all, one-way analysis of variance, anova). Cavernosometry showed a diabetes-related, insulin-reversible decline in the cavernosal nerve-stimulated intracavernosal pressure (ICP) response at all levels of current stimulation (P < 0.05, in all one-way anova). Plotting erectile capacity (i.e. ICP) against bladder capacity showed no correlation between the extent of the decline in erectile capacity and the magnitude of the increase in bladder capacity. CONCLUSIONS These studies extend previous work to indicate that the extent of diabetes-related bladder and erectile dysfunction can vary in the same rat. As such, these findings highlight the importance of evaluating the impact of diabetes on multiple organ systems in the lower urinary tract. Future studies using this model system should lead to a better understanding of the initiation, development, progression and coincidence of these common diabetic complications.
Collapse
Affiliation(s)
- George J Christ
- Department of Regenerative Medicine, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Wessells H, Teal TH, Luttrell IP, Sullivan CJ. Effect of endothelial cell-based iNOS gene transfer on cavernosal eNOS expression and mouse erectile responses. Int J Impot Res 2006; 18:438-45. [PMID: 16554854 DOI: 10.1038/sj.ijir.3901464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inducible nitric oxide synthase (iNOS) gene transfer is reported to augment erectile responses in rats, although it is also shown to impair vasorelaxation in cerebral arteries. We investigated the effect of endothelial cell-based iNOS gene transfer on endothelial NOS (eNOS) expression and mouse erectile responses. Human coronary artery endothelial cells (EC) transduced with empty vector (control) or iNOS were grown in culture and transplanted into the corpus cavernosum of severe combined immunodeficient mice. Endothelial NOS expression was compared in control and iNOS-transduced cells grown in the presence or absence of a selective iNOS inhibitor, L-N6- (1-iminoethyl) lysine hydrochloride (L-NIL). At 3-5 days after cell transplantation, we recorded intracorporal pressure (ICP) responses to cavernosal nerve stimulation and measured cavernosal total NO and eNOS protein expression. In this study, EC transduced with iNOS produced significantly more NO than controls but exhibited a twofold downregulation of eNOS protein and mRNA. This effect was reversed by L-NIL. In vivo, the cell-based gene transfer of iNOS led to significantly increased ICP responses, compared to mice transplanted with control ECs. Consistent with the in vitro data, cavernosal lysates had significantly reduced eNOS expression. In conclusion, EC gene transfer of iNOS downregulates EC expression of eNOS by an NOS-dependent mechanism. In the cavernosum of mice transplanted with Inos-transduced EC, nerve-stimulated erectile responses were augmented by the short-term gene transfer. However, our findings suggest that iNOS gene transfer may have deleterious effects on endothelial function if used as a treatment for erectile dysfunction.
Collapse
Affiliation(s)
- H Wessells
- Department of Urology, University of Washington School of Medicine and Harborview Medical Center, Seattle, WA, USA.
| | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|