51
|
Pecorelli A, Belmonte G, Meloni I, Cervellati F, Gardi C, Sticozzi C, De Felice C, Signorini C, Cortelazzo A, Leoncini S, Ciccoli L, Renieri A, Jay Forman H, Hayek J, Valacchi G. Alteration of serum lipid profile, SRB1 loss, and impaired Nrf2 activation in CDKL5 disorder. Free Radic Biol Med 2015; 86:156-65. [PMID: 26006105 PMCID: PMC5572621 DOI: 10.1016/j.freeradbiomed.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/03/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022]
Abstract
CDKL5 mutation is associated with an atypical Rett syndrome (RTT) variant. Recently, cholesterol homeostasis perturbation and oxidative-mediated loss of the high-density lipoprotein receptor SRB1 in typical RTT have been suggested. Here, we demonstrate an altered lipid serum profile also in CDKL5 patients with decreased levels of SRB1 and impaired activation of the defensive system Nrf2. In addition, CDKL5 fibroblasts showed an increase in 4-hydroxy-2-nonenal- and nitrotyrosine-SRB1 adducts that lead to its ubiquitination and probable degradation. This study highlights a possible common denominator between two different RTT variants (MECP2 and CDKL5) and a possible common future therapeutic target.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Giuseppe Belmonte
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudia Sticozzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Henry Jay Forman
- Life and Environmental Sciences Unit, University of California at Merced, Merced, CA 95344, USA; Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
52
|
Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:421624. [PMID: 26236424 PMCID: PMC4510261 DOI: 10.1155/2015/421624] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.
Collapse
|
53
|
De Filippis B, Valenti D, de Bari L, De Rasmo D, Musto M, Fabbri A, Ricceri L, Fiorentini C, Laviola G, Vacca RA. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. Free Radic Biol Med 2015; 83:167-77. [PMID: 25708779 DOI: 10.1016/j.freeradbiomed.2015.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/19/2022]
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Daniela Valenti
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Lidia de Bari
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Mattia Musto
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Laura Ricceri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy.
| |
Collapse
|
54
|
Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome. Eur Neuropsychopharmacol 2015; 25:889-901. [PMID: 25890884 DOI: 10.1016/j.euroneuro.2015.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/03/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022]
Abstract
Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.
Collapse
|
55
|
Abstract
RTT (Rett syndrome) is a severe progressive neurodevelopmental disorder with a monogenetic cause, but complex and multifaceted clinical appearance. Compelling evidence suggests that mitochondrial alterations and aberrant redox homoeostasis result in oxidative challenge. Yet, compared with other severe neuropathologies, RTT is not associated with marked neurodegeneration, but rather a chemical imbalance and miscommunication of neuronal elements. Different pharmacotherapies mediate partial improvement of conditions in RTT, and also antioxidants or compounds improving mitochondrial function may be of potential merit. In the present paper, we summarize findings from patients and transgenic mice that point towards the nature of RTT as a mitochondrial disease. Also, open questions are addressed that require clarification to fully understand and successfully target the associated cellular redox imbalance.
Collapse
|
56
|
Inflammatory lung disease in Rett syndrome. Mediators Inflamm 2014; 2014:560120. [PMID: 24757286 PMCID: PMC3976920 DOI: 10.1155/2014/560120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/06/2014] [Accepted: 01/14/2014] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly linked to mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Respiratory dysfunction, historically credited to brainstem immaturity, represents a major challenge in RTT. Our aim was to characterize the relationships between pulmonary gas exchange abnormality (GEA), upper airway obstruction, and redox status in patients with typical RTT (n = 228) and to examine lung histology in a Mecp2-null mouse model of the disease. GEA was detectable in ~80% (184/228) of patients versus ~18% of healthy controls, with “high” (39.8%) and “low” (34.8%) patterns dominating over “mixed” (19.6%) and “simple mismatch” (5.9%) types. Increased plasma levels of non-protein-bound iron (NPBI), F2-isoprostanes (F2-IsoPs), intraerythrocyte NPBI (IE-NPBI), and reduced and oxidized glutathione (i.e., GSH and GSSG) were evidenced in RTT with consequently decreased GSH/GSSG ratios. Apnea frequency/severity was positively correlated with IE-NPBI, F2-IsoPs, and GSSG and negatively with GSH/GSSG ratio. A diffuse inflammatory infiltrate of the terminal bronchioles and alveoli was evidenced in half of the examined Mecp2-mutant mice, well fitting with the radiological findings previously observed in RTT patients. Our findings indicate that GEA is a key feature of RTT and that terminal bronchioles are a likely major target of the disease.
Collapse
|