51
|
Okokon JE, Etuk IC, Thomas PS, Drijfhout FP, Claridge TDW, Li WW. In vivo antihyperglycaemic and antihyperlipidemic activities and chemical constituents of Solanum anomalum. Biomed Pharmacother 2022; 151:113153. [PMID: 35598372 DOI: 10.1016/j.biopha.2022.113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022] Open
Abstract
Solanum anomalum is a plant used ethnomedically for the treatment of diabetes. The study was aimed to validate ethnomedical claims in rat model and identify the likely antidiabetic compounds. Leaf extract (70-210 mg/kg/day) and fractions (140 mg/kg/day) of S. anomalum were evaluated in hyperglycaemic rats induced using alloxan for effects on blood glucose, lipids and pancreas histology. Phytochemical characterisation of isolated compounds and their identification were performed using mass spectrometry and NMR spectroscopy. Bioinformatics tool was used to predict the possible protein targets of the identified bioactive compounds. The leaf extract/fractions on administration to diabetic rats caused significant lowering of fasting blood glucose of the diabetic rats during single dose study and on repeated administration of the extract. The hydroethanolic leaf extracts also enhanced glucose utilization capacity of the diabetic rats and caused significant lowering of glycosylated hemoglobin levels and elevation of insulin levels in the serum. Furthermore, triglycerides, LDL-cholesterol, and VLDL-cholesterol levels were lowered significantly, while HDL-cholesterol levels were also elevated in the treated diabetic rats. There was absence or few pathological signs in the treated hyperglycaemic rat pancreas compared to that present in the pancreas of control group. Diosgenin, 25(R)-diosgenin-3-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside, uracil, thymine, 1-octacosanol, and octacosane were isolated and identified. Protein phosphatases along with secreted proteins are predicted to be the major targets of diosgenin and the diosgenin glycoside. These results suggest that the leaf extract/fractions of S. anomalum possess antidiabetic and antihyperlipidemic properties, offer protection to the pancreas and stimulate insulin secretion, which can be attributable to the activities of its phytochemical constituents.
Collapse
Affiliation(s)
- Jude E Okokon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria.
| | - Idongesit C Etuk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria
| | - Paul S Thomas
- Department of Pharmacognosy and Natural Medicine, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria
| | - Falko P Drijfhout
- Chemical Sciences Research Centre, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, United Kingdom.
| |
Collapse
|
52
|
Wang D, Wang X. Diosgenin and Its Analogs: Potential Protective Agents Against Atherosclerosis. Drug Des Devel Ther 2022; 16:2305-2323. [PMID: 35875677 PMCID: PMC9304635 DOI: 10.2147/dddt.s368836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall associated with lipid metabolism imbalance and maladaptive immune response, which mediates most cardiovascular events. First-line drugs such as statins and antiplatelet drug aspirin have shown good effects against atherosclerosis but may lead to certain side effects. Thus, the development of new, safer, and less toxic agents for atherosclerosis is urgently needed. Diosgenin and its analogs have gained importance for their efficacy against life-threatening diseases, including cardiovascular, endocrine, nervous system diseases, and cancer. Diosgenin and its analogs are widely found in the rhizomes of Dioscore, Solanum, and other species and share similar chemical structures and pharmacological effects. Recent data suggested diosgenin plays an anti-atherosclerosis role through its anti-inflammatory, antioxidant, plasma cholesterol-lowering, anti-proliferation, and anti-thrombotic effects. However, a review of the effects of diosgenin and its natural structure analogs on AS is still lacking. This review summarizes the effects of diosgenin and its analogs on vascular endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation, migration and calcification, lipid metabolism, and inflammation, and provides a new overview of its anti-atherosclerosis mechanism. Besides, the structures, sources, safety, pharmacokinetic characteristics, and biological availability are introduced to reveal the limitations and challenges of current studies, hoping to provide a theoretical basis for the clinical application of diosgenin and its analogs and provide a new idea for developing new agents for atherosclerosis.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
- Correspondence: Xiaolong Wang, Tel +86 13501991450, Fax +86 21 51322445, Email
| |
Collapse
|
53
|
Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, Mitra S, Emran TB, Sharifi-Rad J, Calina D, Cho WC. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1035441. [PMID: 35677108 PMCID: PMC9168095 DOI: 10.1155/2022/1035441] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Plants including Rhizoma polgonati , Smilax china , and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.
Collapse
Affiliation(s)
- Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain 64141, UAE
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar-23561, K.P .K, Pakistan
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230, India
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
54
|
Huang N, Yu D, Huo J, Wu J, Chen Y, Du X, Wang X. Study of Saponin Components after Biotransformation of Dioscorea nipponica by Endophytic Fungi C39. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2943177. [PMID: 35601820 PMCID: PMC9117070 DOI: 10.1155/2022/2943177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
This study conducted the solid fermentation process of Dioscorea nipponica using endophytic fungi C39 to determine the changes in the diosgenin concentration. The results revealed that endophytic fungi C39 could effectively biotransform the saponin components in D. nipponica. Moreover, the maximum increase in the diosgenin concentration reached 62.67% in 15 days of solid fermentation. MTT assay results demonstrated that the inhibitory effects of the fermentation drugs on four types of cancer cells (liver cancer cells (HepG2), stomach cancer cells (BGC823), cervical cancer cells (HeLa), and lung cancer cells (A549)) were better than those of the crude drugs obtained from D. nipponica. The chemical composition of the samples obtained before and after the biotransformation of D. nipponica was analyzed by UPLC-Q-TOF-MS. A total of 32 compounds were identified, 21 of which have been reported in Dioscorea saponins and the ChemSpider database and 11 compounds were identified for the first time in D. nipponica. The biotransformation process was inferred based on the variation trend of saponins, which included transformation pathways pertaining to glycolytic metabolism, ring closure reaction, dehydrogenation, and carbonylation. The cumulative findings provide the basis for the rapid qualitative analysis of the saponin components of D. nipponica before and after biotransformation. The 11 metabolites obtained from biotransformation are potential active ingredients obtained from D. nipponica, which can be used to further identify pharmacodynamically active substances.
Collapse
Affiliation(s)
- Nannan Huang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Dan Yu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, Heilongjiang 150036, China
| | - Junkai Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yiyang Chen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Xiaowei Du
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Xijun Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| |
Collapse
|
55
|
Tewari D, Priya A, Bishayee A, Bishayee A. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin Transl Med 2022; 12:e795. [PMID: 35384373 PMCID: PMC8982327 DOI: 10.1002/ctm2.795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the world's second leading cause of death, but a significant advancement in cancer treatment has been achieved within the last few decades. However, major adverse effects and drug resistance associated with standard chemotherapy have led towards targeted treatment options. OBJECTIVES Transforming growth factor-β (TGF-β) signaling plays a key role in cell proliferation, differentiation, morphogenesis, regeneration, and tissue homeostasis. The prime objective of this review is to decipher the role of TGF-β in oncogenesis and to evaluate the potential of various natural and synthetic agents to target this dysregulated pathway to confer cancer preventive and anticancer therapeutic effects. METHODS Various authentic and scholarly databases were explored to search and obtain primary literature for this study. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria was followed for the review. RESULTS Here we provide a comprehensive and critical review of recent advances on our understanding of the effect of various bioactive natural molecules on the TGF-β signaling pathway to evaluate their full potential for cancer prevention and therapy. CONCLUSION Based on emerging evidence as presented in this work, TGF-β-targeting bioactive compounds from natural sources can serve as potential therapeutic agents for prevention and treatment of various human malignancies.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of PharmacognosySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anu Priya
- Department of PharmacologySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | | | - Anupam Bishayee
- College of Osteopathic MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| |
Collapse
|
56
|
Slavova I, Tomova T, Kusovska S, Chukova Y, Argirova M. Phytochemical Constituents and Pharmacological Potential of Tamus communis Rhizomes. Molecules 2022; 27:molecules27061851. [PMID: 35335214 PMCID: PMC8949886 DOI: 10.3390/molecules27061851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Tamus communis L. is a plant distributed in a number of geographical areas whose rhizome has been used for centuries as an anti-inflammatory and analgesic remedy. This review aims to summarize the current knowledge of the chemical composition and biological activity of the extracts or individual compounds of the rhizome. The data for the principal secondary metabolites are systematized: sterols, steroidal saponins, phenanthrenes, dihydrophenanthrenes, etc. Results of biological tests for anti-inflammatory action, cytotoxicity, anticholinesterase effect, and xanthine oxidase inhibition are presented. Some open questions about the therapeutic properties of the plant are also addressed.
Collapse
|
57
|
Khan H, Nazir S, Farooq RK, Khan IN, Javed A. Fabrication and Assessment of Diosgenin Encapsulated Stearic Acid Solid Lipid Nanoparticles for Its Anticancer and Antidepressant Effects Using in vitro and in vivo Models. Front Neurosci 2022; 15:806713. [PMID: 35221890 PMCID: PMC8866708 DOI: 10.3389/fnins.2021.806713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory cascade plays a pivotal role in the onset and progression of major depressive disorder (MDD) and glioblastoma multiforme (GBM). Therefore, questing natural compounds with anti-inflammatory activity such as diosgenin can act as a double-edged sword targeting cancer and cancer-induced inflammation simultaneously. The blood–brain barrier limits the therapeutic efficiency of the drugs against intracranial pathologies including depression and brain cancers. Encapsulating a drug molecule in lipid nanoparticles can overcome this obstacle. The current study has thus investigated the anticancer and antidepressant effect of Tween 80 (P80) coated stearic acid solid lipid nanoparticles (SLNPs) encapsulating the diosgenin. Physio-chemical characterizations of SLNPs were performed to assess their stability, monodispersity, and entrapment efficiency. In vitro cytotoxic analysis of naked and drug encapsulated SLNPs on U-87 cell line indicated diosgenin IC50 value to be 194.4 μM, while diosgenin encapsulation in nanoparticles slightly decreases the toxicity. Antidepressant effects of encapsulated and non-encapsulated diosgenin were comprehensively evaluated in the concanavalin-A–induced sickness behavior mouse model. Behavior test results indicate that diosgenin and diosgenin encapsulated nanoparticles significantly alleviated anxiety-like and depressive behavior. Diosgenin incorporated SLNPs also improved grooming behavior and social interaction as well as showed normal levels of neutrophils and leukocytes with no toxicity indication. In conclusion, diosgenin and diosgenin encapsulated solid lipid nanoparticles proved successful in decreasing in vitro cancer cell proliferation and improving sickness behavioral phenotype and thus merit further exploration.
Collapse
Affiliation(s)
- Hina Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Nazir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ishaq N. Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Aneela Javed,
| |
Collapse
|
58
|
Passos FRS, Araújo-Filho HG, Monteiro BS, Shanmugam S, Araújo AADS, Almeida JRGDS, Thangaraj P, Júnior LJQ, Quintans JDSS. Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: A review of pre-clinical research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153842. [PMID: 34952766 DOI: 10.1016/j.phymed.2021.153842] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Saponins are glycosides which, after acid hydrolysis, liberate sugar(s) and an aglycone (sapogenin) which can be triterpenoid or steroidal in nature. Steroidal saponins and sapogenins have attracted significant attention as important natural anti-inflammatory compounds capable of acting on the activity of several inflammatory cytokines in various inflammatory models. PURPOSE The aim of this review is to collect preclinical in vivo studies on the anti-inflammatory activity of steroidal saponins through the modulation of inflammatory cytokines. STUDY DESIGN AND METHODS This review was carried out through a specialized search in three databases, that were accessed between September and October, 2021, and the publication period of the articles was not limited. Information about the name of the steroidal saponins, the animals used, the dose and route of administration, the model of pain or inflammation used, the tissue and experimental method used in the measurement of the cytokines, and the results observed on the levels of cytokines was retrieved. RESULTS Forty-five (45) articles met the inclusion criteria, involving the saponins cantalasaponin-1, α-chaconine, dioscin, DT-13, lycoperoside H, protodioscin, α-solanine, timosaponin AIII and BII, trillin, and the sapogenins diosgenin, hecogenin, and ruscogenin. The surveys were carried out in seven different countries and only articles between 2007 and 2021 were found. The studies included in the review showed that the saponins and sapogenins were anti-inflammatory, antinociceptive and antioxidant and they modulate inflammatory cytokines mainly through the Nf-κB, TLR4 and MAPKs pathways. CONCLUSION Steroidal saponins and sapogenins are promising compounds in handling of pain and inflammation for the development of natural product-derived drugs. However, it is necessary to increase the methodological quality of preclinical studies, mainly blinding and sample size calculation.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Heitor Gomes Araújo-Filho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | - Lucindo José Quintans Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil.
| |
Collapse
|
59
|
Song L, Li C, Wu F, Zhang S. Dietary intake of diosgenin delays aging of male fish Nothobranchius guentheri through modulation of multiple pathways that play prominent roles in ROS production. Biogerontology 2022; 23:201-213. [PMID: 35102470 DOI: 10.1007/s10522-022-09955-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/25/2022] [Indexed: 12/01/2022]
Abstract
Oxidative stress including DNA damage, increased lipid and protein oxidation, is an important feature of aging. Diosgenin (DG) has been shown to have diverse biological effects, including amelioration of aging-related cognition deficits, but the anti-aging activity of DG has not been tested before in animal models. In the present study, we clearly demonstrated that dietary intake of DG extended both mean and maximum lifespans of the male fish Nothobranchius guentheri by approximately 3.23 and 3.67 weeks, respectively, reduced the accumulation of lipofuscin (LF) in the gills and senescence-associated-β-galactosidase (SA-β-Gal) in the caudal fins, and lowered the levels of protein oxidation, lipid peroxidation and reactive oxygen species (ROS) in the muscles, indicating that DG possesses rejuvenation and anti-aging property. We also showed that DG enhanced the activity of antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase, promoted the proteolytic activity of the ubiquitin-proteasome pathway, and suppressed the phosphatidylinositol 3-kinase/protein kinase/molecular target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Altogether, this study highlights for the first time the rejuvenation and anti-aging property of the naturally occurring steroidal sapogenin DG. It also suggests that DG exerts its rejuvenation and anti-aging activity through modulation of multiple signaling pathways that play prominent roles in ROS production.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Fei Wu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
60
|
Ma L, Zhang C, Wu L, Qin L, Liu T. Diosgenin reduces phosphodiesterase 3B (PDE3B) through AMP-activated protein kinase/ mechanistic target of rapamycin (AMPK/mTOR) signaling pathway to ameliorate streptozotocin-induced pancreatic β-cell apoptosis and dysfunction. Bioengineered 2022; 13:2217-2225. [PMID: 35030973 PMCID: PMC8973619 DOI: 10.1080/21655979.2021.2023996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus is a metabolic disease caused by defective insulin secretion and/or insulin action. And insulin is the main hormone released by the pancreatic β-cells. Diosgenin (DG) is a phytochemical with pharmacological activity that increases insulin secretion in streptozotocin (STZ)-induced pancreatic β-cells of diabetic rats. In this paper, we investigated the effect and mechanism of DG on cell apoptosis and dysfunction in STZ-induced pancreatic β-cells. Cell viability was detected by CCK-8, apoptosis by flow cytometry, and apoptosis-related protein expression by Western blot. Western blot and RT-qPCR were performed to detect the expression of related genes. The results showed that in STZ-induced INS-1 cells, DG could improve cell viability, inhibit apoptosis, attenuate oxidative stress levels and increase insulin secretion. Notably, PDE3B was highly expressed in STZ-induced INS-1 cells, while DG could significantly inhibit PDE3B expression in a dose-dependent manner. More importantly, overexpression PDE3B remarkably reversed the effect of DG on STZ-induced INS-1 cells. It is thus clear that DG might inhibit STZ-treated pancreatic β-cell apoptosis and reduce dysfunction via downregulating PDE3B, which provided a more reliable theoretical basis for the treatment of diabetes mellitus with DG.
Collapse
Affiliation(s)
- Lijie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China.,School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, P.R. China
| | - Chengfei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Lili Wu
- Key Laboratory of Tcm Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Tonghua Liu
- Key Laboratory of Tcm Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
61
|
Singh S, Changkija S, Mudgal R, Ravichandiran V. Bioactive components to inhibit foam cell formation in atherosclerosis. Mol Biol Rep 2022; 49:2487-2501. [PMID: 35013861 DOI: 10.1007/s11033-021-07039-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The production of lipid-laden cells in macrophages after significant ingestion of oxidized low-density lipoprotein is considered the most critical phase in the creation of atherosclerotic lesions, which is known as foam cell formation. Targeting foam cell development to find a potential therapeutic strategy for the management of atherosclerosis has yielded numerous promising outcomes. Multiple variables influence foam cell growth, including scavenger receptor expression, cholesterol transporter expression acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. Plants used during herbal therapy have been shown to assist with a variety of ailments. RESULT In this study, we found medicinal plants and their bioactive components suppress foam cell formation in a variety of ways; some inhibit cholesterol transporter and lectin-like oxidized low-density lipoprotein receptor-1 upregulation, while others inhibit the function of acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. CONCLUSION Recent study findings related to the synthesis of the new active component from plant sources by focusing on the typical process involved in the generation of foam cells. We're also looking at using a cellular target-based therapeutic approach to generate novel plant-based medications for the cure of atherosclerosis.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India.
| | - Senti Changkija
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| |
Collapse
|
62
|
Lim HM, Park SH. Regulation of reactive oxygen species by phytochemicals for the management of cancer and diabetes. Crit Rev Food Sci Nutr 2022; 63:5911-5936. [PMID: 34996316 DOI: 10.1080/10408398.2022.2025574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer and diabetes mellitus are served as typical life-threatening diseases with common risk factors. Developing therapeutic measures in cancers and diabetes have aroused attention for a long time. However, the problems with conventional treatments are in challenge, including side effects, economic burdens, and patient compliance. It is essential to secure safe and efficient therapeutic methods to overcome these issues. As an alternative method, antioxidant and pro-oxidant properties of phytochemicals from edible plants have come to the fore. Phytochemicals are naturally occurring compounds, considered promising agent applicable in treatment of various diseases with beneficial effects. Either antioxidative or pro-oxidative activity of various phytochemicals were found to contribute to regulation of cell proliferation, differentiation, cell cycle arrest, and apoptosis, which can exert preventive and therapeutic effects against cancer and diabetes. In this article, the antioxidant or pro-oxidant effects and underlying mechanisms of flavonoids, alkaloids, and saponins in cancer or diabetic models demonstrated by the recent studies are summarized.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
63
|
Gutierrez-Gongora D, Geddes-McAlister J. Peptidases: promising antifungal targets of the human fungal pathogen, Cryptococcus neoformans. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is a globally important fungal pathogen, primarily inflicting disease on immunocompromised individuals. The widespread use of antifungal agents in medicine and agriculture supports the development of antifungal resistance through evolution, and the emergence of new strains with intrinsic resistance drives the need for new therapeutics. For C. neoformans, the production of virulence factors, including extracellular peptidases (e.g., CnMpr-1 and May1) with mechanistic roles in tissue invasion and fungal survival, constitute approximately 2% of the fungal proteome and cover five classes of enzymes. Given their role in fungal virulence, peptidases represent promising targets for anti-virulence discovery in the development of new approaches against C. neoformans. Additionally, intracellular peptidases, which are involved in resistance mechanisms against current treatment options (e.g., azole drugs), as well as capsule biosynthesis and elaboration of virulence factors, present additional opportunities to combat the pathogen. In this review, we highlight key cryptococcal peptidases with defined or predicted roles in fungal virulence and assess sequence alignments against their human homologs. With this information, we define the feasibility of the select peptidases as “druggable” targets for inhibition, representing prospective therapeutic options against the deadly fungus.
Collapse
Affiliation(s)
- Davier Gutierrez-Gongora
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Jennifer Geddes-McAlister
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian Proteomics and Artificial Intelligence Research and Training Consortium
| |
Collapse
|
64
|
Khateeb S, Albalawi A, Alkhedaide A. Diosgenin Modulates Oxidative Stress and Inflammation in High-Fat Diet-Induced Obesity in Mice. Diabetes Metab Syndr Obes 2022; 15:1589-1596. [PMID: 35637860 PMCID: PMC9147404 DOI: 10.2147/dmso.s355677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Obesity is a chronic metabolic disorder that results in excessive energy accumulated in adipose tissue causing dysfunction of adipocytes, inflammation, and oxidative stress. Diosgenin (DG), a steroidal saponin produced by several plants, has been reported to have antioxidant activity. This study aimed to evaluate the effects of diosgenin on oxidative stress and inflammation in mice fed with a high-fat diet (HFD). METHODS Thirty adult male mice were divided into three groups including the control group, mice fed with a normal diet; the HFD group, mice fed with a high-fat diet for 6 weeks; and the HFD+DG group, mice fed with a high-fat diet and diosgenin daily for 6 weeks. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), and total antioxidant capacity (TAC) activities were evaluated. Histopathological changes in the adipose tissues have been investigated. RESULTS Data showed that diosgenin increased TAC activities with a concomitant decrease in MDA levels. As well, DG reduces the TNF and IL-6 levels. The histopathological changes in the adipose tissues due to high-fat consumption were restored upon DG supplementation. CONCLUSION Our results suggested that diosgenin is a promising agent for regulating obesity by increasing the levels of antioxidants, modifying oxidative stress and pro-inflammatory cytokines, which might prevent the onset of many diseases.
Collapse
Affiliation(s)
- Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Aishah Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Adel Alkhedaide
- Department of Medical Laboratory, Turabah University College, Taif University, Taif, 21944, Saudi Arabia
- Correspondence: Adel Alkhedaide, Department of Medical Laboratory, Turabah University College, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia, Tel +966540490404, Fax +966128224366, Email
| |
Collapse
|
65
|
Mironov ME, Borisov SA, Rybalova TV, Baev DS, Tolstikova TG, Shults EE. Synthesis of Anti-Inflammatory Spirostene-Pyrazole Conjugates by a Consecutive Multicomponent Reaction of Diosgenin with Oxalyl Chloride, Arylalkynes and Hydrazines or Hydrazones. Molecules 2021; 27:molecules27010162. [PMID: 35011399 PMCID: PMC8746855 DOI: 10.3390/molecules27010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid sapogenin diosgenin is of significant interest due to its biological activity and synthetic application. A consecutive one-pot reaction of diosgenin, oxalyl chloride, arylacetylenes, and phenylhydrazine give rise to steroidal 1,3,5-trisubstituted pyrazoles (isolated yield 46–60%) when the Stephens–Castro reaction and heterocyclization steps were carried out by heating in benzene. When the cyclization step of alkyndione with phenylhydrazine was performed in 2-methoxyethanol at room temperature, steroidal α,β-alkynyl (E)- and (Z)-hydrazones were isolated along with 1,3,5-trisubstituted pyrazole and the isomeric 2,3,5-trisubstituted pyrazole. The consecutive reaction of diosgenin, oxalyl chloride, phenylacetylene and benzoic acid hydrazides efficiently forms steroidal 1-benzoyl-5-hydroxy-3-phenylpyrazolines. The structure of new compounds was unambiguously corroborated by comprehensive NMR spectroscopy, mass-spectrometry, and X-ray structure analyses. Performing the heterocyclization step of ynedione with hydrazine monohydrate in 2-methoxyethanol allowed the synthesis of 5-phenyl substituted steroidal pyrazole, which was found to exhibit high anti-inflammatory activity, comparable to that of diclofenac sodium, a commercial pain reliever. It was shown by molecular docking that the new derivatives are incorporated into the binding site of the protein Keap1 Kelch-domain by their alkynylhydrazone or pyrazole substituent with the formation of more non-covalent bonds and have higher affinity than the initial spirostene core.
Collapse
Affiliation(s)
- Maksim E. Mironov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Department of Natural Sciences, Novosibirsk State University, Piragova Str., 1, 630090 Novosibirsk, Russia
| | - Sergey A. Borisov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Tatyana V. Rybalova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Dmitry S. Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Tatyana G. Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Department of Natural Sciences, Novosibirsk State University, Piragova Str., 1, 630090 Novosibirsk, Russia
| | - Elvira E. Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Correspondence: ; Tel.: +7-(383)-3308-533
| |
Collapse
|
66
|
HUANG N, YU D, WU J, DU X. Diosgenin: an important natural pharmaceutical active ingredient. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.94521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nannan HUANG
- Heilongjiang University of Chinese Medicine, China
| | - Dan YU
- Heilongjiang University of Chinese Medicine, China
| | - Junkai WU
- Heilongjiang University of Chinese Medicine, China
| | - Xiaowei DU
- Heilongjiang University of Chinese Medicine, China
| |
Collapse
|
67
|
Assessment of behavioral changes and antitumor effects of silver nanoparticles synthesized using diosgenin in mice model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
68
|
Arya P, Kumar P. Diosgenin a steroidal compound: An emerging way to cancer management. J Food Biochem 2021; 45:e14005. [PMID: 34799857 DOI: 10.1111/jfbc.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
To endure respective research for cancer via common food ingredients has become more prominent with preferably minuscule toxicity. Spices are emerging as a new source of bioactive compounds which have the potential to cure cancer. Fenugreek is rich in diosgenin that has curative and preventive potency toward various cancers. Cancer is invading various cellular mechanisms by altering cellular receptors. Cancer falsifies healthy cells by altered cell receptors like p38, p53, mTOR, Akt, and PARP. Distinct stages of cancer development are triggered by various cellular mechanisms. Diosgenin helps in suppressing cancer mechanisms and induces programmed cell death. Diosgenin brought changes in treatment line of lung, breast, prostate, liver, and colon cancer. Apoptosis changes cytoplasmic different caspase pathways and triggers selected sequence for cancer cell line death. Cell death comprised of series of events carried out by metalloprotease caspase. The complex relationship among cancer, caspase, cell death, and cellular receptors is reviewed in this article in respect of diosgenin. The utilization of diosgenin in creating a bar for cancer, its triggering sites, and various ways to cause apoptosis of abnormal cells. This article focused on diosgenin, its role in the prevention of different cancer and cellular apoptosis throughout different pathways involved in complex interaction of bioactive compound-cellular mechanism cancer. PRACTICAL APPLICATIONS: The concept of curing diseases from daily routine food is quite old. Fenugreek is an excellent source of various bioactive compounds especially diosgenin. Diosgenin is steroidal sapogenin that cures various health issues including cancers. Cancer is one of the most life-threating disease which can affect any cell, tissue, and organ in living system. Diosgenin is proved to be beneficial in terms curing cancer of various types but majorly include lung, liver, colon breast, and prostate. Cancer cure with diosgenin is providing a new base to the pharmaceutical and medical researchers to commence new and more specific journey of diosgenin. Diosgenin could alter cellular pathways that modify cell mechanism in way toward treating cancer. Cell mechanism mainly affected by the interaction of cell signals and cell different receptors that cause triggered cell death. This review article focused over various cancer and diosgenin effect in controlling different cellular pathways which include cellular signaling and cell death mechanism.
Collapse
Affiliation(s)
- Prajya Arya
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Pradyuman Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| |
Collapse
|
69
|
Meena AK, Swathi KN, Ilavarasan R, Singh A, Bharthi V, Srikanth N. Qualitative and quantitative estimation of Diosgenin in coded ayurvedic formulation and its ingredient Trigonella foenum-graecum Linn. seeds used in diabetics. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Trigonella foenum-graecum (Methi) is a leguminous plant and botanically known as Trigonella foenum-graecum Linn, belong to the family Fabaceae. Trigonella foenum-graecum is used for a variety of health conditions, including digestive problems, bronchitis, tuberculosis, fevers, sore throats, wounds, arthritis, abscesses, swollen glands, skin irritations, diabetes, loss of appetite, ulcers, and menopausal symptoms, as well as in the treatment of cancer. Trigonella foenum-graecum seeds mainly contain Diosgenin [(3β,25R)-spirost-5-en3-ol], a plant-derived steroid sapogenin.
Results
The identification and quantification results by HPTLC and HPLC studies of Trigonella foenum-graecum seeds hydrolysed Trigonella foenum-graecum seeds, coded formulation, hydrolysed coded formulation extract with standard Diosgenin biomarker showed a significant highest peak in hydrolysed Trigonella foenum-graecum seeds and hydrolysed coded formulation. The standard Diosgenin is observed in the hydrolysed form of hydrolysed Trigonella foenum-graecum seeds and hydrolysed coded formulation. The literature on Trigonella foenum-graecum confirms its activity as antidiabetic, and the peak of standard biomarker Diosgenin is seen after derivatization with anisaldehyde sulphuric agent, which possesses medicinal phytoconstituents value. Further related to future scientific aspects, more studies on its potent antidiabetic activity and multipurpose action need to be carried out with medicinal composition and its effects on the human body.
Conclusion
This study aims to establish the qualitative and quantitative estimation of standard Diosgenin in reliable with coded ayurvedic formulation and Trigonella foenum-graecum seeds and its activity as antidiabetic by HPTLC and HPLC.
Collapse
|
70
|
Detection of Genetic Polymorphisms using Random Amplified Polymorphic DNA (RAPD)-PCR in Fenugreek (Trigonella foenum-graecum) Plants after Seed Treatment with Biotic and Abiotic Agents. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trigonella foenum-graecum L. is a widely used herb in traditional medicine. The aim of this study was to evaluate the genetic polymorphisms in fenugreek plants following the treatment of fenugreek seeds with different combinations of biotic and abiotic agents using the random amplified polymorphic DNA (RAPD)-PCR technique. We assessed the effects of two strains of the fungus Trichoderma harzianum (Th-1 and Th-2), methyl jasmonate (MeJA), and Aloe vera gel (AVG) on growth parameters of fenugreek plants. Combinations of Th-1, MeJA, AVG significantly increased fenugreek root length, shoot length, shoot fresh weight, number of true leaves, and chlorophyll content. The Th-2 isolate, on the other hand, markedly slowed plant development (except for root length which was not affected significantly). In contrast, the combination with MeJA had no considerable effect on all growth measures, whereas the combination with VAG resulted in a substantial drop in shoot height and chlorophyll content when compared to other growth parameters that were unaffected. The present study has shown that the PCR amplification of DNA, using five primers for RAPD analysis, produced 62 DNA fragments that could be scored in all genotypes. The total number of polymorphic bands was 26, and the average percentage of polymorphism was 54.21%. The RAPD-PCR results showed that the treatment of fenugreek seeds with Th-1 alone or in combination with MeJA and AVG induced polymorphisms in fenugreek leaves.
Collapse
|
71
|
Mishra P, Mandlik D, Arulmozhi S, Mahadik K. Nephroprotective role of diosgenin in gentamicin-induced renal toxicity: biochemical, antioxidant, immunological and histopathological approach. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00318-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Aminoglycoside antibiotics, gentamicin (GM) owns the utmost nephrotoxic potential than other antibiotics from the same category. To the other side, diosgenin (DG) showed the antioxidant and anti-inflammatory property.
Results
The present study was aimed to explore the nephroprotective effect of diosgenin on gentamicin-induced renal toxicity in Wistar rats. Wistar albino rats were divided into six groups (n = 6): Normal control (NC), Nephrotoxicity control (GM), DG (20 mg/kg), DG (40 mg/kg), DG (80 mg/kg), accordingly. After the treatment, the nephroprotective effects of DG were assessed by measuring serum levels of creatinine (Cr), blood urea nitrogen (BUN), total proteins (TP), albumin and urea levels. Urine volume, proteins, electrolyte levels, creatinine clearance were also evaluated in urine samples. Oxidative stress was evaluated through the measurement of antioxidant stress markers in the kidney tissue. Changes in body weight and kidney weight were also recorded along with a histopathological examination of kidney sections. For evaluation of inflammation, TNF-α and IL-1β levels were measured in the blood serum using ELISA kits. GM intoxication induced elevated serum creatinine, BUN, urea, albumin and TP levels, urine electrolytes levels, pro-inflammatory cytokines, antioxidant parameters which were found to be decreased significantly in a dose-dependent manner in rat groups received DG which was also evidenced by the histological observations.
Conclusion
DG showed a significant nephroprotective effect in a dose-dependent manner by ameliorating the GM induced nephrotoxicity in Wistar rats.
Collapse
|
72
|
Wonok W, Chaveerach A, Siripiyasing P, Sudmoon R, Tanee T. The Unique Substance, Lidocaine and Biological Activity of the Dioscorea Species for Potential Application as a Cancer Treatment, Natural Pesticide and Product. PLANTS 2021; 10:plants10081551. [PMID: 34451596 PMCID: PMC8399169 DOI: 10.3390/plants10081551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022]
Abstract
The six Dioscorea species, D. brevipetiolata, D. bulbifera, D. depauperata (Dd), D. glabra (Dg), D. pyrifolia and D. hamiltonii were analyzed for phytochemicals, toxicity in PBMCs, and biological activity in two cancer cell lines by MTT and comet assays, and pesticide efficiency. Via GC-MS, lidocaine was found to be the predominant compound in two of the studied species. To confirm the systematics, lidocaine was also found in lower amounts in 11 species. The MTT assay showed no toxicity in all six of the studied species. The comet assay showed the key result that the ethanol extracts of Dd and Dg violently broke DNA into pieces. Biological activity of these two species’ extracts showed toxicity on HepG2 and no effects on HCT-116. The water extracts of Dd and Dg, applied to Brassica chinensis showed high efficiency as a bioprotectant. In summary, lidocaine seems to be the predominant identifying compound of the genus Dioscorea in Thailand, which is useful in systematics. At least the two species, Dd and Dg, may be used for human hepatocyte cancer treatment and as an alternative pesticide for economically important vegetables. Dioscorea species containing lidocaine or extracted lidocaine have promise for natural product creation.
Collapse
Affiliation(s)
- Warin Wonok
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (W.W.); (A.C.)
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (W.W.); (A.C.)
| | - Pornnarong Siripiyasing
- Faculty of Science and Technology, Rajabhat Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham 44150, Thailand
- Correspondence:
| |
Collapse
|
73
|
Zhao H, Zhang X, Zhang B, Qu X. Gastroprotective effects of diosgenin against HCl/ethanol-induced gastric mucosal injury through suppression of NF-κβ and myeloperoxidase activities. Open Life Sci 2021; 16:719-727. [PMID: 34316512 PMCID: PMC8285990 DOI: 10.1515/biol-2021-0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023] Open
Abstract
Gastric mucosal injury is caused by an imbalance between the mucosal defense and gastro-irritants, leading to gastroenteritis. Diosgenin is a steroidal sapogenin found in the wild Yam plant that has been reported with several pharmacological properties. The aim of this study is to explore the gastroprotective role of diosgenin on gastric mucosal damage caused by HCl/ethanol in rats. Male Sprague-Dawley rats were intragastrically administered with diosgenin (20 mg/kg) before HCl/ethanol (0.15 M HCl in 98 % ethanol) administration. Omeprazole was used as a positive control. Diosgenin-attenuated oxidative stress by enhancing (p < 0.05) antioxidant enzymes, reducing lipid peroxidation (MDA), and modulating nitric oxide (NO) levels. Anti-inflammatory effects of diosgenin were observed by a reduction in pro-inflammatory cytokines (p < 0.05), decreased myeloperoxidase (MPO) activities (p < 0.05), and histopathological observation of gastric mucosal damage. Western blot analysis provided evidence on the downregulation of NF-κβ by diosgenin. The findings showed that diosgenin has a significant protective role on gastric injury caused by HCl/ethanol, through its antioxidant, anti-inflammatory role, and suppression of NF-κβ and MPO activities.
Collapse
Affiliation(s)
- Hengfang Zhao
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Xiaoyan Zhang
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Bojing Zhang
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Xiaoyuan Qu
- Department of Critical Care Medicine, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, 710003, China
| |
Collapse
|
74
|
Zeng X, Liu D, Huang L. Metabolome Profiling of Eight Chinese Yam ( Dioscorea polystachya Turcz.) Varieties Reveals Metabolite Diversity and Variety Specific Uses. Life (Basel) 2021; 11:687. [PMID: 34357058 PMCID: PMC8308037 DOI: 10.3390/life11070687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
The Chinese yam (Dioscorea polystachya Turcz.) is an underutilized orphan tuber crop. However, in China it has been used in traditional medicine and food for centuries due to the presence of high starch, protein, fiber, and biologically active compounds. Knowledge on the metabolomic profiles of Chinese yam varieties is needed to explore the underutilized metabolites and variety specific uses. Here, the metabolome of eight Chinese yam varieties that are cultivated in different Chinese regions was profiled. A total of 431 metabolites belonging to different biochemical classes was detected. The majority of detected metabolites were classified as amino acids and derivatives. The different yam varieties offer unique uses; e.g., Hebei Ma Yam, Henan Huai Yam, and Henan Wild Yam were the most metabolically enriched and suitable as food and medicine. Yams from Hubei region had comparable nutritional profiles, which is most probably due to their geographical origin. Specifically, Henan Wild Yam had the highest concentrations of diosgenin, vitamins, and polysaccharides. Overall, this study presents a metabolome reference for D. polystachya varieties.
Collapse
Affiliation(s)
- Xiaoxuan Zeng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (X.Z.); (D.L.)
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dahui Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (X.Z.); (D.L.)
| | - Luqi Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (X.Z.); (D.L.)
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
75
|
Zhang XS, Lu Y, Li W, Tao T, Wang WH, Gao S, Zhou Y, Guo YT, Liu C, Zhuang Z, Hang CH, Li W. Cerebroprotection by dioscin after experimental subarachnoid haemorrhage via inhibiting NLRP3 inflammasome through SIRT1-dependent pathway. Br J Pharmacol 2021; 178:3648-3666. [PMID: 33904167 DOI: 10.1111/bph.15507] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Dioscin has multiple biological activities and is beneficial for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of dioscin against subarachnoid haemorrhage and the molecular mechanisms involved. EXPERIMENTAL APPROACH Dioscin was administered after subarachnoid haemorrhage induced in rats. MCC950, a potent selective nod-like receptor pyrin domain-containing 3 (NLRP3) inhibitor, was used to suppress NLRP3 and EX527 (selisistat) was used to inhibit sirtuin 1 (SIRT1). KEY RESULTS In vivo, dioscin inhibited acute inflammatory response, oxidative damage, neurological impairment and neural cell degeneration after subarachnoid haemorrhage along with dramatically suppressing NLRP3 inflammasome activation. While pretreatment with MCC950 reduced the inflammatory response and improved neurological outcomes it did not lessen ROS production. However, giving dioscin after MCC950 reduced acute brain damage and ROS production. Dioscin increased SIRT1 expression after subarachnoid haemorrhage, whereas EX527 abolished the up-regulation of SIRT1 induced by dioscin and offset the inhibitory effects of dioscin on NLRP3 inflammasome activation. EX527 pretreatment also reversed the neuroprotective effects of dioscin against subarachnoid haemorrhage. Similarly, in vitro, dioscin dose-dependently suppressed inflammatory response, oxidative damage and neuronal degeneration and improved cell viability in neurons and microglia co-culture system. These effects were associated with inhibition of the NLRP3 inflammasome and stimulation of SIRT1 signalling, which could be inhibited by EX527 pretreatment. CONCLUSION AND IMPLICATIONS Dioscin provides protection against subarachnoid haemorrhage via the suppression of NLRP3 inflammasome activation through SIRT1-dependent pathway. Dioscin may be a new candidate to ameliorate early brain injury after subarachnoid haemorrhage.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Li
- Department of Pharmacy, Beijing Boai Hospital, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei-Han Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi-Ting Guo
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
76
|
Oxidative stress suppression contributes to antiseizure action of axitinib and rapamycin in pentylenetetrazol-induced kindling. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
77
|
Salunkhe R, Gadgoli C, Naik A, Patil N. Pharmacokinetic Profile and Oral Bioavailability of Diosgenin, Charantin, and Hydroxychalcone From a Polyherbal Formulation. Front Pharmacol 2021; 12:629272. [PMID: 33995027 PMCID: PMC8117003 DOI: 10.3389/fphar.2021.629272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Diosgenin, charantin, and hydroxychalcone are utilized for standardization of popular antidiabetic herbal drugs Trigonella foenum-graecum L. belonging to family Fabaceae, Momordica charantia L. belonging to family Cucurbitaceae, and Cinnamomum verum J. Presl belonging to family Lauraceae. However, no reports on the bioavailability of these markers were available. The present study was undertaken to determine the bioavailability and pharmacokinetic profile of the markers and formulations containing the herbs. Methods: The pharmacokinetic profile and absolute bioavailability of the pure active markers were determined in male Wistar rats by administrating individually the doses of 1.5 mg/kg i.v. and 15 mg/kg p.o., followed by estimation of serum levels of the markers at 0, 10, 30, 60, 120, and 240 mins till 24 h time points by a validated bioanalytical HPTLC method. Two standardized antidiabetic capsule formulations containing spray dried hydroalcoholic extracts of seeds of Trigonella foenum-graecum L. (42.8 mg equivalent to 0.95%w/w of diosgenin), fresh fruits of Momordica charantia L. (21.4 mg equivalent to 0.4% w/w of charantin), and bark of Cinnamomum verum J. Presl (10.71 mg equivalent to 0.079 %w/w hydroxychalcone) were prepared. In one formulation, piperine 1.5 mg was added along with the other herbal extracts mentioned. Bioavailability and pharmacokinetic profile of these two formulations were determined in male Wistar rats through estimating serum levels of active markers diosgenin, charantin, and hydroxychalcone at 0, 10, 30, 60, 120, and 240 mins till 24 h later oral administration of the formulations (Formulation without piperine F1 and formulation with Piperine F2). Results: Plasma concentrations were found to decline mono-exponentially following intravenous administration, and the mean elimination half-life (t1/2) was observed to be 7.93, 8.21, and 4.66 h, respectively. The absolute oral bioavailability of pure markers was observed to be 9.0 ± 0.2%, 8.18 ± 0.36%, and 10.54 ± 0.52% by the dose normalization method. The oral bioavailabilities of the formulations with respect to diosgenin, charantin, and hydroxychalcone were found to be 9.78, 10.743, and 8.07%, respectively. The formulation containing piperine indicated a significant (p < 0.01) increase in the bioavailabilities of all the marker compounds. Conclusion: In conclusion, diosgenin and charantin have low bioavailabilities as compared to hydroxychalcone. The bioavailabilities of all the three marker compounds can be increased exponentially with the addition of piperine.
Collapse
Affiliation(s)
| | - Chhaya Gadgoli
- Saraswathi Vidya Bhavan's College of Pharmacy, Dombivli, India
| | - Archana Naik
- Saraswathi Vidya Bhavan's College of Pharmacy, Dombivli, India
| | - Nikita Patil
- Saraswathi Vidya Bhavan's College of Pharmacy, Dombivli, India
| |
Collapse
|
78
|
Synthesis and Characterization of Diosgenin Encapsulated Poly-ε-Caprolactone-Pluronic Nanoparticles and Its Effect on Brain Cancer Cells. Polymers (Basel) 2021; 13:polym13081322. [PMID: 33919483 PMCID: PMC8073865 DOI: 10.3390/polym13081322] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023] Open
Abstract
Diosgenin encapsulated PCL-Pluronic nanoparticles (PCL-F68-D-NPs) were developed using the nanoprecipitation method to improve performance in brain cancer (glioblastoma) therapy. The nanoparticles were characterized by dynamic light scattering (DLS)/Zeta potential, Fourier-transform infrared (FTIR) spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission electron microscopy (TEM). The encapsulation efficiency, loading efficiency, and yield were calculated. The in vitro release rate was determined, and the kinetic model of diosgenin release was plotted and ascertained. The cytotoxicity was checked by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)assay against U87-MG cells (glioblastoma cell lines). The obtained nanoparticles demonstrated good size distribution, stability, morphology, chemical, and mechanical properties. The nanoparticles also possessed high encapsulation efficiency, loading efficiency, and yield. The release rate of Diosgenin was shown in a sustained manner. The in vitro cytotoxicity of PCL-F68-D-NPs showed higher toxicity against U87-MG cells than free Diosgenin.
Collapse
|
79
|
Kosari M, Noureddini M, Khamechi SP, Najafi A, Ghaderi A, Sehat M, Banafshe HR. The effect of propolis plus Hyoscyamus niger L. methanolic extract on clinical symptoms in patients with acute respiratory syndrome suspected to COVID-19: A clinical trial. Phytother Res 2021; 35:4000-4006. [PMID: 33860587 PMCID: PMC8251320 DOI: 10.1002/ptr.7116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/27/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
The outbreak of Coronavirus disease 2019 (COVID‐19) has caused a global health crisis. Nevertheless, no antiviral treatment has yet been proven effective for treating COVID‐19 and symptomatic supportive cares have been the most common treatment. Therefore, the present study was designed to evaluate the effects of propolis and Hyoscyamus niger L. extract in patients with COVID‐19. This randomized clinical trial was conducted on 50 cases referred to Akhavan and Sepehri Clinics, Kashan university of medical sciences, Iran. Subjects were divided into two groups (intervention and placebo). This syrup (containing 1.6 mg of methanolic extract along with 450 mg of propolis per 10 mL) was administered three times a day to each patient for 6 days. The clinical symptoms of COVID‐19 such as: dry cough, shortness of breath, sore throat, chest pain, fever, dizziness, headache, abdominal pain, and diarrhea were reduced with propolis plus Hyoscyamus niger L. extract than the placebo group. However, the administration of syrup was not effective in the control of nausea and vomiting. In conclusion, syrup containing propolis and Hyoscyamus niger L. extract had beneficial effects in ameliorating the signs and symptoms of COVID‐19 disease, in comparison with placebo groups.
Collapse
Affiliation(s)
- Morteza Kosari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Noureddini
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Peyman Khamechi
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Evidence Based Integrative Medicine Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Najafi
- Department of Internal Medicine, School of Medicine, Kashan University of Medical sciences, Kashan, Iran
| | - Amir Ghaderi
- Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran.,Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Sehat
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran.,Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
80
|
Liu W, Xiang H, Zhang T, Pang X, Su J, Liu H, Ma B, Yu L. Development of a New Bioprocess for Clean Diosgenin Production through Submerged Fermentation of an Endophytic Fungus. ACS OMEGA 2021; 6:9537-9548. [PMID: 33869934 PMCID: PMC8047649 DOI: 10.1021/acsomega.1c00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Diosgenin is used widely to synthesize steroidal hormone drugs in the pharmaceutical industry. The conventional diosgenin production process, direct acid hydrolysis of the root of Dioscorea zingiberensis C. H. Wright (DZW), causes large amounts of wastewater and severe environmental pollution. To develop a clean and effective method, the endophytic fungus Fusarium sp. CPCC 400226 was screened for the first time for the microbial biotransformation of DZW in submerged fermentation (SmF). Statistical design and response surface methodology (RSM) were implemented to develop the diosgenin production process using the Fusarium strains. The environmental variables that significantly affected diosgenin yield were determined by the two-level Plackett-Burman design (PBD) with nine factors. PBD indicates that the fermentation period, culture temperature, and antifoam reagent addition are the most influential variables. These three variables were further optimized using the response surface design (RSD). A quadratic model was then built by the central composite design (CCD) to study the impact of interaction and quadratic effect on diosgenin yield. The values of the coefficient of determination for the PBD and CCD models were all over 0.95. P-values for both models were 0.0024 and <0.001, with F-values of ∼414 and ∼2215, respectively. The predicted results showed that a maximum diosgenin yield of 2.22% could be obtained with a fermentation period of 11.89 days, a culture temperature of 30.17 °C, and an antifoam reagent addition of 0.20%. The experimental value was 2.24%, which was in great agreement with predicted value. As a result, over 80% of the steroidal saponins in DZW were converted into diosgenin, presenting a ∼3-fold increase in diosgenin yield. For the first time, we report the SmF of a Fusarium strain used to produce diosgenin through the microbial biotransformation of DZW. A practical diosgenin production process was established for the first time for Fusarium strains. This bioprocess is acid-free and wastewater-free, providing a promising environmentally friendly alternative to diosgenin production in industrial applications. The information provided in the current study may be applicable to produce diosgenin in SmF by other endophytic fungi and lays a solid foundation for endophytic fungi to produce natural products.
Collapse
Affiliation(s)
- Wancang Liu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Haibo Xiang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life
Sciences, Hubei University, 368 You Yi Road, Wuhan, Hubei 430062, P. R. China
| | - Tao Zhang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Xu Pang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Jing Su
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Hongyu Liu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Baiping Ma
- Institute
of Radiation Medicine, 27 Tai Ping Road, Beijing 100850, P. R. China
| | - Liyan Yu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| |
Collapse
|
81
|
A Multimodal Hair-Loss Treatment Strategy Using a New Topical Phytoactive Formulation: A Report of Five Cases. Case Rep Dermatol Med 2021; 2021:6659943. [PMID: 33614172 PMCID: PMC7878086 DOI: 10.1155/2021/6659943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction. Current approved medications for hair loss, such as topical minoxidil and oral finasteride, may have suboptimal efficacy or side effects precluding continued use in some patients. Thus, we report an evaluation of the efficacy, safety, and tolerability of a new topical botanical formulation -GASHEE containing over 12 phytoactive ingredients that affect multiple targets in the cascade of pathophysiologic events that cause hair loss. Five patients with various hair-loss conditions, including cases of previous treatment failures, are presented. Case Presentation. This is a case series of four women and one man with hair loss due to various causes, four of whom had failed minoxidil treatment for over a year. All patients used the topical treatment as a sole therapy for at least 3 months before the documentation of outcomes, which involved interval changes noted through each patient's account, direct observation, and photography. Discussion. In all patients, we observed significant improvements in hair regrowth in the nape, crown, vertex, and temple areas after 3-15 months of treatment. All patients were highly satisfied with their results and reported no adverse events. Although the use of botanicals in the treatment of hair loss is in an infant stage, the new formulation used in this study demonstrated a good efficacy related to hair growth, warranting further evaluation.
Collapse
|
82
|
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021; 9:197. [PMID: 33477910 PMCID: PMC7833388 DOI: 10.3390/microorganisms9010197] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharmacologically active compounds and the bottlenecks in the commercialization of this novel approach in the area of drug discovery. After recent updates in the field of 'omics' and 'one strain many compounds' (OSMAC) approach, fungal endophytes have emerged as strong unconventional source of such prized products.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dheeraj K. Singh
- Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India
| | - Ravindra N. Kharwar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Surendra K. Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
83
|
Cheng J, Chen J, Liu X, Li X, Zhang W, Dai Z, Lu L, Zhou X, Cai J, Zhang X, Jiang H, Ma Y. The origin and evolution of the diosgenin biosynthetic pathway in yam. PLANT COMMUNICATIONS 2021; 2:100079. [PMID: 33511341 PMCID: PMC7816074 DOI: 10.1016/j.xplc.2020.100079] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 05/21/2023]
Abstract
Diosgenin, mainly produced by Dioscorea species, is a traditional precursor of most hormonal drugs in the pharmaceutical industry. The mechanisms that underlie the origin and evolution of diosgenin biosynthesis in plants remain unclear. After sequencing the whole genome of Dioscorea zingiberensis, we revealed the evolutionary trajectory of the diosgenin biosynthetic pathway in Dioscorea and demonstrated the de novo biosynthesis of diosgenin in a yeast cell factory. First, we found that P450 gene duplication and neo-functionalization, driven by positive selection, played important roles in the origin of the diosgenin biosynthetic pathway. Subsequently, we found that the enrichment of diosgenin in the yam lineage was regulated by CpG islands, which evolved to regulate gene expression in the diosgenin pathway and balance the carbon flux between the biosynthesis of diosgenin and starch. Finally, by integrating genes from plants, animals, and yeast, we heterologously synthesized diosgenin to 10 mg/l in genetically-engineered yeast. Our study not only reveals the origin and evolutionary mechanisms of the diosgenin biosynthetic pathway in Dioscorea, but also introduces an alternative approach for the production of diosgenin through synthetic biology.
Collapse
Affiliation(s)
- Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jing Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiangchen Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixiong Zhang
- Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xian, China
| | - Zhubo Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lina Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiang Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jing Cai
- Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xian, China
- Corresponding author
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Corresponding author
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Corresponding author
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
84
|
Sharma N, Singhal M, Kumari RM, Gupta N, Manchanda R, Syed A, Bahkali AH, Nimesh S. Diosgenin Loaded Polymeric Nanoparticles with Potential Anticancer Efficacy. Biomolecules 2020; 10:E1679. [PMID: 33339083 PMCID: PMC7765552 DOI: 10.3390/biom10121679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
This study aims to determine the anticancer efficacy of diosgenin encapsulated poly-glycerol malate co-dodecanedioate (PGMD) nanoparticles. Diosgenin loaded PGMD nanoparticles (variants 7:3 and 6:4) were synthesized by the nanoprecipitation method. The synthesis of PGMD nanoparticles was systematically optimized employing the Box-Behnken design and taking into account the influence of various independent variables such as concentrations of each PGMD, diosgenin and PF-68 on the responses such as size and PDI of the particles. Mathematical modeling was done using the Quadratic second order modeling method and response surface analysis was undertaken to elucidate the factor-response relationship. The obtained size of PGMD 7:3 and PGMD 6:4 nanoparticles were 133.6 nm and 121.4 nm, respectively, as measured through dynamic light scattering (DLS). The entrapment efficiency was in the range of 77-83%. The in vitro drug release studies showed diffusion and dissolution controlled drug release pattern following Korsmeyer-Peppas kinetic model. Furthermore, in vitro morphological and cytotoxic studies were performed to evaluate the toxicity of synthesized drug loaded nanoparticles in model cell lines. The IC50 after 48 h was observed to be 27.14 µM, 15.15 µM and 13.91 µM for free diosgenin, PGMD 7:3 and PGMD 6:4 nanoparticles, respectively, when administered in A549 lung carcinoma cell lines.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Monisha Singhal
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - R. Mankamna Kumari
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Nidhi Gupta
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - Romila Manchanda
- School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| |
Collapse
|
85
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
86
|
Yang X, Nomoto K, Tohda C. Diosgenin content is a novel criterion to assess memory enhancement effect of yam extracts. J Nat Med 2020; 75:207-216. [PMID: 32979168 DOI: 10.1007/s11418-020-01451-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Several studies have suggested that some kind of Dioscorea species (yam) or yam-contained herbal medicines have cognitive enhancement effect. However, it has been unknown what is a crucial factor for cognitive enhancement in each Dioscorea species. In this study, we aimed to investigate whether one of the main and brain-penetrating components in yams, diosgenin, can be a novel criterion to assess memory enhancement effect of yam extracts. Although our previous studies showed that administration of diosgenin or diosgenin-rich yam extract enhanced cognitive function in normal mice and healthy humans, we have never evaluated whether the effect depends on diosgenin content or not. Therefore, we compared memory enhancement effects of low diosgenin-contained general yam water extract with diosgenin-rich yam extract on cognitive function in normal mice. We found that unlike diosgenin-rich yam, administration of general yam water extract did not enhance object recognition memory in normal mice. LC-MS/MS analyses revealed that after administration of general yam, diosgenin concentration in the brain did not reach to the effective dose because of the low diosgenin content in the original yam extract. On the other hand, when diosgenin was artificially added into general yam, the extract showed memory enhancement in normal mice and promoted neurite outgrowth in neurons. Our study suggests that diosgenin is actually an active compound in yams for memory enhancement, and diosgenin content can be a criterion for predicting cognitive enhancement effect of yam extracts.
Collapse
Affiliation(s)
- Ximeng Yang
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kaori Nomoto
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
87
|
Epping J, Laibach N. An underutilized orphan tuber crop-Chinese yam : a review. PLANTA 2020; 252:58. [PMID: 32959173 PMCID: PMC7505826 DOI: 10.1007/s00425-020-03458-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
MAIN CONCLUSION The diversification of food crops can improve our diets and address the effects of climate change, and in this context the orphan crop Chinese yam shows significant potential as a functional food. As the effects of climate change become increasingly visible even in temperate regions, there is an urgent need to diversify our crops in order to address hunger and malnutrition. This has led to the re-evaluation of neglected species such as Chinese yam (Dioscorea polystachya Turcz.), which has been cultivated for centuries in East Asia as a food crop and as a widely-used ingredient in traditional Chinese medicine. The tubers are rich in nutrients, but also contain bioactive metabolites such as resistant starches, steroidal sapogenins (like diosgenin), the storage protein dioscorin, and mucilage polysaccharides. These health-promoting products can help to prevent cardiovascular disease, diabetes, and disorders of the gut microbiome. Whereas most edible yams are tropical species, Chinese yam could be cultivated widely in Europe and other temperate regions to take advantage of its nutritional and bioactive properties. However, this is a laborious process and agronomic knowledge is fragmented. The underground tubers contain most of the starch, but are vulnerable to breaking and thus difficult to harvest. Breeding to improve tuber shape is complex given the dioecious nature of the species, the mostly vegetative reproduction via bulbils, and the presence of more than 100 chromosomes. Protocols have yet to be established for in vitro cultivation and genetic transformation, which limits the scope of research. This article summarizes the sparse research landscape and evaluates the nutritional and medical applications of Chinese yam. By highlighting the potential of Chinese yam tubers, we aim to encourage the adoption of this orphan crop as a novel functional food.
Collapse
Affiliation(s)
- Janina Epping
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany.
| | - Natalie Laibach
- Institute for Food and Resource Economics, University of Bonn, Meckenheimer Allee 174, 53115, Bonn, Germany
| |
Collapse
|
88
|
Obidiegwu JE, Lyons JB, Chilaka CA. The Dioscorea Genus (Yam)-An Appraisal of Nutritional and Therapeutic Potentials. Foods 2020; 9:E1304. [PMID: 32947880 PMCID: PMC7555206 DOI: 10.3390/foods9091304] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022] Open
Abstract
The quest for a food secure and safe world has led to continuous effort toward improvements of global food and health systems. While the developed countries seem to have these systems stabilized, some parts of the world still face enormous challenges. Yam (Dioscorea species) is an orphan crop, widely distributed globally; and has contributed enormously to food security especially in sub-Saharan Africa because of its role in providing nutritional benefits and income. Additionally, yam has non-nutritional components called bioactive compounds, which offer numerous health benefits ranging from prevention to treatment of degenerative diseases. Pharmaceutical application of diosgenin and dioscorin, among other compounds isolated from yam, has shown more prospects recently. Despite the benefits embedded in yam, reports on the nutritional and therapeutic potentials of yam have been fragmented and the diversity within the genus has led to much confusion. An overview of the nutritional and health importance of yam will harness the crop to meet its potential towards combating hunger and malnutrition, while improving global health. This review makes a conscious attempt to provide an overview regarding the nutritional, bioactive compositions and therapeutic potentials of yam diversity. Insights on how to increase its utilization for a greater impact are elucidated.
Collapse
Affiliation(s)
- Jude E. Obidiegwu
- National Root Crops Research Institute, Umudike, Km 8 Umuahia-Ikot Ekpene Road, P.M.B 7006 Umuahia, Abia State, Nigeria
| | - Jessica B. Lyons
- Department of Molecular and Cell Biology and Innovative Genomics Institute, University of California, Berkeley, 142 Weill Hall #3200, Berkeley, CA 94720-3200, USA;
| | - Cynthia A. Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Straβe 9, 97078 Würzburg, Germany; or
| |
Collapse
|
89
|
Mu C, Sheng Y, Wang Q, Amin A, Li X, Xie Y. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. J Funct Foods 2020; 77:104149. [PMID: 32837538 PMCID: PMC7427583 DOI: 10.1016/j.jff.2020.104149] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 01/18/2023] Open
Abstract
Rhizoma Polygonati (huangjing in Chinese, 黄精) is a medicine food homology herb used as a component of traditional Chinese medicine treating COVID-19 in the current pandemic emergency in China but the mechanisms remain elusive. Here using TCMSP and Swiss Target Prediction databases to sort out the potential targets of the main chemical components and GenCLiP3, NCBI, and GeneCard databases to search for COVID-19 related targets, the chemical compound-target-pathway network was analyzed. Each component was molecularly docked with host cell target angiotensin converting enzyme II, SARS-CoV-2 targets Spike protein, RNA-dependent RNA polymerase, or 3CL hydrolase. Our results showed a higher affinity of the compound diosgenin and (+)-Syringaresinol-O-beta-D-glucoside binding to the three SARS-CoV-2 proteins compared to the other compounds tested. Thus, our data suggest that potential compounds in Rhizoma Polygonati may act on different targets with viral and cancer related signaling and have a great potential in treatment of COVID-19.
Collapse
Key Words
- 3CL, 3C-like proteinase
- ACE2, angiotensin converting enzyme II
- COVID-19
- COVID-19, corona virus disease-2019
- E, envelope
- M, membrane
- Molecular docking
- N, nucleocapsid
- Network pharmacology
- New coronavirus pneumonia
- PPI, protein-protein interaction network
- RdRp, RNA dependent RNA polymerase
- Rhizoma polygonati
- S, spike protein
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
Collapse
Affiliation(s)
- Chenglin Mu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an 271018, China.,Sino-German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an 271018, China
| | - Yifan Sheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Wang
- Tai'an Xianlu Food Co. Ltd., Tai'an, China
| | - Amr Amin
- Biology Department, UAE University, Al Ain 15551, United Arab Emirates
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an 271018, China.,Sino-German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an 271018, China
| | - Yingqiu Xie
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
90
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
91
|
An Antivirulence Approach for Preventing Cryptococcus neoformans from Crossing the Blood-Brain Barrier via Novel Natural Product Inhibitors of a Fungal Metalloprotease. mBio 2020; 11:mBio.01249-20. [PMID: 32694141 PMCID: PMC7374060 DOI: 10.1128/mbio.01249-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungal infections like cryptococcal meningitis are difficult to resolve because of the limited therapies available. The small arsenal of antifungal drugs reflect the difficulty in finding available targets in fungi because like mammalian cells, fungi are eukaryotes. The limited efficacy, toxicity, and rising resistance of antifungals contribute to the high morbidity and mortality of fungal infections and further underscore the dire but unmet need for new antifungal drugs. The traditional approach in antifungal drug development has been to target fungal growth, but an attractive alternative is to target mechanisms of pathogenesis. An important attribute of Cryptococcus neoformans (Cn) pathogenesis is its ability to enter the central nervous system. Here, we describe a large-scale screen that identified three natural products that prevented Cn from crossing the blood-brain barrier by inhibiting the virulence factor Mpr1 without affecting the growth of Cn. We propose that compounds identified here could be further developed as antivirulence therapy that would be administered preemptively or serve as a prophylactic in patients at high risk for developing cryptococcal meningitis. Cryptococcus neoformans (Cn) is the leading cause of fungal meningitis, a deadly disease with limited therapeutic options. Dissemination to the central nervous system hinges on the ability of Cn to breach the blood-brain barrier (BBB) and is considered an attribute of Cn virulence. Targeting virulence instead of growth for antifungal drug development has not been fully exploited despite the benefits of this approach. Mpr1 is a secreted fungal metalloprotease not required for fungal growth, but rather, it functions as a virulence factor by facilitating Cn migration across the BBB. This central role for Mpr1, its extracellular location, and lack of expression in mammalian cells make Mpr1 a high-value target for an antivirulence approach aimed at developing therapeutics for cryptococcal meningitis. To test this notion, we devised a large-scale screen to identify compounds that prohibited Cn from crossing the BBB by selectively blocking Mpr1 proteolytic activity, without inhibiting the growth of Cn. A phytochemical natural product-derived library was screened to identify new molecular scaffolds of prototypes unique to a Cn microecosystem. Of the 240 pure natural products examined, 3 lead compounds, abietic acid, diosgenin, and lupinine inhibited Mpr1 proteolytic activity with 50% inhibitory concentration (IC50) values of <10 μM, displayed little to no mammalian cell toxicity, and did not affect Cn growth. Notably, the lead compounds blocked Cn from crossing the BBB, without damaging the barrier integrity, suggesting the bioactive molecules had no off-target effects. We propose that these new drug scaffolds are promising candidates for the development of antivirulence therapy against cryptococcal meningitis.
Collapse
|
92
|
Londzin P, Kisiel-Nawrot E, Kocik S, Janas A, Trawczyński M, Cegieła U, Folwarczna J. Effects of diosgenin on the skeletal system in rats with experimental type 1 diabetes. Biomed Pharmacother 2020; 129:110342. [PMID: 32554252 DOI: 10.1016/j.biopha.2020.110342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
There is a great interest in substances of plant origin, which may exert health-promoting activities in diabetes and its complications. Previous studies suggested that diosgenin may favorably affect both glucose metabolism and osteoporosis. The aim of the study was to investigate the effects of diosgenin on the skeletal disorders induced by experimental type 1 diabetes (T1D) in rats. The experiments were performed on 3-month-old female rats, divided into three groups: I - healthy control rats, II - streptozotocin-induced diabetic control rats, III - diabetic rats receiving diosgenin. T1D was induced by a single streptozotocin injection (60 mg/kg i.p.). Diosgenin administration (50 mg/kg/day p.o.) started two weeks later and lasted four weeks. Serum bone turnover markers and other biochemical parameters, bone mass and mineralization, mechanical properties and histomorphometric parameters were examined. Diabetes induced profound metabolic disturbances and disorders of cancellous bone microarchitecture and strength. Diosgenin did not favorably affect the serum bone turnover markers and other biochemical parameters, bone mass, mineralization and mechanical properties in the diabetic rats. However, it counteracted the effect of diabetes on the growth plate and cancellous bone microarchitecture in the distal femur, indicating some limited beneficial influence on the skeleton.
Collapse
Affiliation(s)
- Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Ewa Kisiel-Nawrot
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Sonia Kocik
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Aleksandra Janas
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Marcin Trawczyński
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Urszula Cegieła
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| |
Collapse
|
93
|
Bakar KA, Lam SD, Sidek HM, Feroz SR. Characterization of the interaction of diosgenin with human serum albumin and α1-acid glycoprotein using biophysical and bioinformatic tools. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
94
|
Gan Q, Wang J, Hu J, Lou G, Xiong H, Peng C, Zheng S, Huang Q. The role of diosgenin in diabetes and diabetic complications. J Steroid Biochem Mol Biol 2020; 198:105575. [PMID: 31899316 DOI: 10.1016/j.jsbmb.2019.105575] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus is a chronic and common metabolic disease that seriously endangers human health. Hyperglycemia and long-term metabolic disorders in diabetes will cause damage to the whole body tissues and organs, resulting in serious complications. Nowadays, drugs for treating diabetes on the market has strong side effects, new treatments thus are urgently needed. Natural therapy of natural ingredients is a promising avenue, this is because natural ingredients are safer and they also show strong activity in the treatment of diabetes. Diosgenin is such a very biologically active natural steroidal sapogenin. The research of diosgenin in the treatment of diabetes and its complications has been widely reported. This article reviews the effects of diosgenin through multiple targets and multiple pathways in diabetes and its complications which including diabetic nephropathy, diabetic liver disease, diabetic neuropathy, diabetic vascular disease, diabetic cardiomyopathy, diabetic reproductive dysfunction, and diabetic eye disease.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Guanhua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Haijun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Chengyi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Song Zheng
- Sichuan Kaimei Chinese Medicine Co., Ltd, No.155, Section 1, Fuxing Road, Longmatan District, Luzhou, 646000, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
95
|
Zhang Z, Xiang L, Wang Y, Jiang Y, Cheng Y, Xiao GG, Ju D, Chen Y. Effect of Diosgenin on the Circulating MicroRNA Profile of Ovariectomized Rats. Front Pharmacol 2020; 11:207. [PMID: 32210807 PMCID: PMC7069125 DOI: 10.3389/fphar.2020.00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to assess the changes in circulating microRNA (miRNA) expression profiles associated with the potential osteoprotective effect of diosgenin (DIO) in ovariectomized (OVX) rats. Wistar rats (female) were subjected to a sham operation (SHAM group) or ovariectomy. OVX rats were treated with DIO (DIO group) or vehicle (OVX group) for 12 weeks. Following treatment, the serum estradiol, bone turnover biomarker levels, and the microarchitecture of tibias were assayed. Based on miRNA microarray and qRT-PCR analyses, differentially expressed (DE) circulating miRNAs were identified between the OVX and SHAM groups (comparison A) and between the DIO and OVX groups (comparison B). Furthermore, putative target genes of shared DE miRNAs with opposite expression trends in the two comparisons were predicted by ingenuity pathway analysis (IPA). Finally, the expression levels of the putative target genes in serum and tibia were validated by qRT-PCR. The micro-CT results demonstrated that DIO had a substantial anti-osteopenic effect on the tibias of OVX rats. In total, we found 5 DE circulating miRNAs (four upregulated and one downregulated) in comparison A and 21 DE circulating miRNAs (15 upregulated and 6 downregulated) in comparison B. However, only one DE circulating miRNA (rno-miR-20a-5p) had opposite expression trends between the two comparisons. Including rno-miR-20a-5p, 7 of the 10 selected DE circulating miRNAs between the two comparisons passed qRT-PCR validation. Specifically, based on qRT-PCR validation, DIO upregulated the expression of rno-miR-20a-5p and downregulated that of three target genes (Tnf, Creb1, and Tgfbr2) of the "osteoclast differentiation" pathway in the tibias of OVX rats. Our results suggested that DIO could change the circulating miRNA profile of OVX rats and inhibited the downregulation of miR-20a-5p in serum and tibia. DIO might exert an anti-osteoclastogenic effect on OVX rats by upregulating the expression of miR-20a-5p in circulation and bone tissue.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lihua Xiang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhan Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanhua Jiang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Cheng
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science, Dalian University of Technology, Dalian, China.,Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE, United States
| | - Dahong Ju
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
96
|
Cai B, Zhang Y, Wang Z, Xu D, Jia Y, Guan Y, Liao A, Liu G, Chun C, Li J. Therapeutic Potential of Diosgenin and Its Major Derivatives against Neurological Diseases: Recent Advances. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3153082. [PMID: 32215172 PMCID: PMC7079249 DOI: 10.1155/2020/3153082] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Diosgenin (DG), a well-known steroidal sapogenin, is present abundantly in medicinal herbs such as Dioscorea rhizome, Dioscorea villosa, Trigonella foenum-graecum, Smilax China, and Rhizoma polgonati. DG is utilized as a major starting material for the production of steroidal drugs in the pharmaceutical industry. Due to its wide range of pharmacological activities and medicinal properties, it has been used in the treatment of cancers, hyperlipidemia, inflammation, and infections. Numerous studies have reported that DG is useful in the prevention and treatment of neurological diseases. Its therapeutic mechanisms are based on the mediation of different signaling pathways, and targeting these pathways might lead to the development of effective therapeutic agents for neurological diseases. The present review mainly summarizes recent progress using DG and its derivatives as therapeutic agents for multiple neurological disorders along with their various mechanisms in the central nervous system. In particular, those related to therapeutic efficacy for Parkinson's disease, Alzheimer's disease, brain injury, neuroinflammation, and ischemia are discussed. This review article also critically evaluates existing limitations associated with the solubility and bioavailability of DG and discusses imperatives for translational clinical research. It briefly recapitulates recent advances in structural modification and novel formulations to increase the therapeutic efficacy and brain levels of DG. In the present review, databases of PubMed, Web of Science, and Scopus were used for studies of DG and its derivatives in the treatment of central nervous system diseases published in English until December 10, 2019. Three independent researchers examined articles for eligibility. A total of 150 articles were screened from the above scientific literature databases. Finally, a total of 46 articles were extracted and included in this review. Keywords related to glioma, ischemia, memory, aging, cognitive impairment, Alzheimer, Parkinson, and neurodegenerative disorders were searched in the databases based on DG and its derivatives.
Collapse
Affiliation(s)
- Bangrong Cai
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ying Zhang
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Zengtao Wang
- Department of Medicinal Chemistry, College of Pharmacy JiangXi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dujuan Xu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongyan Jia
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanbin Guan
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Gaizhi Liu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - ChangJu Chun
- Research Institute of Drug Development, College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiansheng Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| |
Collapse
|
97
|
Boison D, Adinortey CA, Babanyinah GK, Quasie O, Agbeko R, Wiabo-Asabil GK, Adinortey MB. Costus afer: A Systematic Review of Evidence-Based Data in support of Its Medicinal Relevance. SCIENTIFICA 2019; 2019:3732687. [PMID: 32082693 PMCID: PMC7011497 DOI: 10.1155/2019/3732687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Costus afer (C. afer) is a plant commonly known as ginger lily, spiral ginger, or bush cane. It is reportedly used in traditional medicine practice (TMP) to treat and manage many ailments including diabetes mellitus, stomach ache, arthritis, inflammation, and gout. These purported ethnomedicinal uses have triggered many research studies on the plant to amass scientific evidence. However, these research reports are scattered, and thus, this systematic review seeks to provide a comprehensive update on it covering its traditional uses, phytochemical and nutritional constituents, pharmacological activities, and toxicological effects. An online search was done using search engines such as Google Scholar, PubMed, and ScienceDirect from the period 1970 to 2019. The online search included the use of keywords, "Costus afer Ker-Gawl" or "Costus afer." The search revealed that the stem and leaves of the plant contain substantial amounts of micronutrients and macronutrients. The leaves, stem, rhizomes, and roots of C. afer contain several steroidal sapogenins, aferosides, dioscin, and paryphyllin C and flavonoid glycoside kaempferol-3-O-α-L-rhamnopyranoside. Experimental studies on various parts of the plant showed bioactivities such as antihyperglycemic, hepatocellular protection, cardioprotection, nephroprotection, testicular protection, CNS depressant, analgesic, antiarthritis, antibacterial, and antioxidant. Based on these evident data, it is concluded that the plant could be used as an alternative and complementary therapy for many oxidative stress-related diseases, provided further scientific studies on the toxicological and pharmacological aspects are carried out.
Collapse
Affiliation(s)
- Daniel Boison
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Cynthia Ayefoumi Adinortey
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Godwin Kweku Babanyinah
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Olga Quasie
- Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Rosemary Agbeko
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Gilbert Kofi Wiabo-Asabil
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael Buenor Adinortey
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
98
|
Mir MA, Hamdani SS, Sheikh BA, Mehraj U. Recent Advances in Metabolites from Medicinal Plants in Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573395515666191102094330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer is the second leading cause of death and morbidity in the world among noncommunicable diseases after cardiovascular ailments. With the advancement in science and research, a number of therapies have been developed to treat cancer, including chemotherapy, radiotherapy and immunotherapy. Chemo and radiotherapy have been in use since the last two decades, however these are not devoid of their own intrinsic problems, such as myelotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity and immunosuppression. Hence, there is an urgent need to develop alternative methods for the treatment of cancer. An increase in the cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. In this review, fifteen medicinal plants alongside their products with anticancer effects will be introduced and discussed, as well as the most important plant compounds responsible for the anticancer activity of the plant. Several phenolic and alkaloid compounds have been demonstrated to have anticancer effects on various types of cancers. The most fundamental and efficient role exhibited by these secondary plant metabolites against cancer involves removing free radicals and antioxidant effects, induction of apoptosis, cell cycle arrest and inhibition of angiogenesis. Moreover, recent studies have shown that plants and their metabolites may provide an alternative to the existing approaches, including chemotherapies and radiotherapies, in the treatment of cancer. In this review, a brief overview of important secondary metabolites having anticancer activity will be given, along with the major molecular mechanisms involved in the disease. In addition to this, recent advances in secondary metabolites from various medicinal plants in the prevention and treatment of cancer will be explored.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Syed S. Hamdani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
99
|
Hu C, Wei M, Chen J, Liu H, Kou M. Comparative study of the adsorption/immobilization of Cu by turmeric residues after microbial and chemical extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1082-1088. [PMID: 31466190 DOI: 10.1016/j.scitotenv.2019.07.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The turmeric industry produces a huge amount of residues annually. After undergoing different extraction process, turmeric residue biomass may be transformed from waste to resource. Turmeric residues exhibit different characteristics suitable for various environmental applications. In this work, the adsorption of Cu(II) onto turmeric residues from microbial (TR-A) and chemical (TR-B) extraction was investigated. The characteristics of the residues were examined via Brunauer-Emmett-Teller analysis, thermogravimetric analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, and elemental analysis. Then, applications to Cu(II) immobilization were identified. Results suggested that although TR-B had better thermal stability, larger surface area, and more pores than TR-A, the adsorption capacity of Cu(II) onto TR-A was higher (13.12 mg/g) than that onto TR-B (7.37 mg/g) because TR-A had more microbial cell debris, metabolites, and S element than TR-B. In practice, TR-A-added soil achieved 40% more Cu immobilization than TR-B-added soil under continuous leaching of simulated acid rain. Consequently, the residues extracted using the microbial method prevented pollution after the traditional extraction process and transformed waste into a material for environmental remediation.
Collapse
Affiliation(s)
- Chao Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Mi Wei
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiamin Chen
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Huiying Liu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Meng Kou
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
100
|
Cai D, Qi J, Yang Y, Zhang W, Zhou F, Jia X, Guo W, Huang X, Gao F, Chen H, Li T, Li G, Wang P, Zhang Y, Lei H. Design, Synthesis and Biological Evaluation of Diosgenin-Amino Acid Derivatives with Dual Functions of Neuroprotection and Angiogenesis. Molecules 2019; 24:molecules24224025. [PMID: 31703284 PMCID: PMC6891328 DOI: 10.3390/molecules24224025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Diosgenin, a natural product with steroidal structure, has a wide range of clinical applications in China. It also shows great potential in the treatment of blood clots and nerve damage. To enhance the bioavailability as well as efficacy of diosgenin, eighteen diosgenin-amino acid derivatives were designed and synthesized. The neuroprotective effects of these compounds were evaluated by SH-SY5Y cell line and the biosafety was evaluated by H9c2 cell line. The results displayed that part of the derivatives' activities (EC50 < 20 μM) were higher than positive control edaravone (EC50 = 21.60 ± 3.04 μM), among which, DG-15 (EC50 = 6.86 ± 0.69 μM) exhibited the best neuroprotection. Meanwhile, biosafety evaluation showed that DG-15 had no cytotoxicity on H9c2 cell lines. Interestingly, combined neuroprotective and cytotoxic results, part of the derivatives without their protecting group were superior to compounds with protecting group. Subsequently, Giemsa staining and DAPI (4',6-diamidino-2-phenylindole) staining indicated that DG-15 had a protective effect on damaged SH-SY5Y cells by reducing apoptosis. Moreover, DG-15 showed a higher role in promoting angiogenesis at high concentrations (4 mg/mL) on the chorioallantoic membrane model. This finding displayed that DG-15 had dual functions of neuroprotection and angiogenesis, which provided further insight into designing agent for the application in treatment of ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yuzhong Zhang
- Correspondence: (Y.Z.); (H.L.); Tel.: +86-10-8473-8645 (H.L.)
| | - Haimin Lei
- Correspondence: (Y.Z.); (H.L.); Tel.: +86-10-8473-8645 (H.L.)
| |
Collapse
|