51
|
Li W, Ding F, Zhang L, Liu Z, Wu Y, Luo A, Wu M, Wang M, Zhan Q, Liu Z. Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis. Clin Cancer Res 2006; 11:8753-62. [PMID: 16361563 DOI: 10.1158/1078-0432.ccr-05-0597] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Evidence is accumulating that an inverse correlation exists between stefin A level and malignant progression. The aim of this study is to investigate the role of stefin A in human esophageal squamous cell carcinoma cells and to evaluate the possibility of stefin A for cancer therapy. EXPERIMENTAL DESIGN We stably transfected stefin A cDNA into human EC9706 or KYSE150 esophageal squamous cell carcinoma cells. Subsequently, we evaluated the effect of stefin A overexpression on cell growth, cathepsin B activity, cell motility and invasion, tumor growth, and metastasis. Immunoanalysis was done to assess the expression of factor VIII and to support the localization of stefin A and cathepsin B. We also evaluated the effect of CA074Me, a selective membrane-permeant cathepsin B inhibitor. RESULTS Both transfection of stefin A and treatment with 10 micromol/L CA074Me significantly reduced cathepsin B activity and inhibited the Matrigel invasion. Combination of both further reduced cathepsin B activity and inhibited the Matrigel invasion. Overexpression of stefin A delayed the in vitro and in vivo growth of cells and significantly inhibited lung metastasis compared with 50% of lung metastasis in xenograft mice from EC9706 or empty vector cells. Transfection with stefin A showed a dramatic reduction of factor VIII staining in the tumors of xenograft mice. CONCLUSIONS Our data strongly indicate that stefin A plays an important role in the growth, angiogenesis, invasion, and metastasis of human esophageal squamous cell carcinoma cells and suggest that stefin A may be useful in cancer therapy.
Collapse
Affiliation(s)
- Wendong Li
- National Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Premzl A, Turk V, Kos J. Intracellular proteolytic activity of cathepsin B is associated with capillary-like tube formation by endothelial cells in vitro. J Cell Biochem 2006; 97:1230-40. [PMID: 16315320 DOI: 10.1002/jcb.20720] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lysosomal cysteine protease cathepsin B is implicated in degradation of extracellular matrix (ECM), a crucial step in a variety of physiological and pathological processes, including tumor dissemination and angiogenesis. In this study, we analyzed the contribution of extracellular and intracellular cathepsin B activity on the formation of capillary-like tubular structures by human umbilical vein endothelial cells (HUVECs) grown on Matrigel matrix, using general and specific cysteine protease inhibitors. We demonstrated, by confocal assay using quenched fluorescent protein substrate DQ-collagen IV, that endothelial cells degrade ECM both intracellularly and pericellularly. Intracellular cathepsin B activity detected by degradation of Z-Arg-Arg cresyl violet substrate was co-localized with the products of DQ-collagen IV degradation in the perinuclear region and in the capillary-like tubular structures. Treatment of cells with membrane-permeable CA-074 Me effectively abolished intracellular cathepsin B activity, and resulted in reduced tube length (32.3+/-9.4% at 10 microM), total tubule area (49.6+/-12.4% at 10 microM), and the number of branch points of tubules (47.5+/-7.7% at 10 microM) in a dose-dependent manner. In contrast, CA-074 (0.1-10 microM), a membrane-impermeable cathepsin B specific inhibitor, general cysteine protease inhibitors chicken cystatin (5 microM) and E-64 (10 microM), and the metalloprotease inhibitor Minocycline (10 microM) showed no significant inhibitory effect in our angiogenesis model. These results show that, besides multiple regulatory molecules, intracellular cathepsin B also contributes to the neovascularization process and should be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- Ales Premzl
- Department of Biochemistry and Molecular Biology, JoZef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
53
|
Abstract
Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.
Collapse
Affiliation(s)
- T Wirth
- A I Virtanen Institute, University of Kuopio, Finland
| | | |
Collapse
|
54
|
Tardy C, Codogno P, Autefage H, Levade T, Andrieu-Abadie N. Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochim Biophys Acta Rev Cancer 2005; 1765:101-25. [PMID: 16412578 DOI: 10.1016/j.bbcan.2005.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 12/19/2022]
Abstract
Death of cancer cells influences tumor development and progression, as well as the response to anticancer therapies. This can occur through different cell death programmes which have recently been shown to implicate components of the acidic organelles, lysosomes. The role of lysosomes and lysosomal enzymes, including cathepsins and some lipid hydrolases, in programmed cell death associated with apoptotic or autophagic phenotypes is presented, as evidenced from observations on cultured cells and living animals. The possible molecular mechanisms that underlie the action of lysosomes during cell death are also described. Finally, the contribution of lysosomal proteins and lysosomes to tumor initiation and progression is discussed. Elucidation of this role and the underlying mechanisms will shed a new light on these 'old' organelles and hopefully pave the way for the development of novel anticancer strategies.
Collapse
Affiliation(s)
- Claudine Tardy
- INSERM U466, Laboratoire de Biochimie, Institut Louis Bugnard, Centre Hospitalier Universitaire de Rangueil, BP 84225, 31432 Toulouse, France
| | | | | | | | | |
Collapse
|
55
|
Chigurupati S, Kulkarni T, Thomas S, Shah G. Calcitonin stimulates multiple stages of angiogenesis by directly acting on endothelial cells. Cancer Res 2005; 65:8519-29. [PMID: 16166333 DOI: 10.1158/0008-5472.can-05-0848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although a strong correlation between neuroendocrine differentiation and angiogenesis of prostate cancer has been reported, no mechanistic link between the two events has been established. Because neuropeptide calcitonin is secreted by prostate tumors and endothelial cells are known to express calcitonin receptor-like receptor, we examined the potential action of calcitonin on endothelial cells. The presence of calcitonin receptor, calcitonin receptor-like receptor, and receptor activity-modifying proteins in human microvessel endothelial-1 cells was tested by reverse transcriptase-PCR (RT-PCR). The proangiogenic action of calcitonin was examined in several in vitro models of angiogenesis using HMEC-1 cells and also in vivo using dorsal skinfold assays. Calcitonin expression of PC-3M cells was modulated, and its effect on angiogenesis was examined in in vitro as well as in vivo models. The results of RT-PCR and radioligand receptor assays showed the presence of functional calcitonin receptor in HMEC-1 cells. Calcitonin stimulated all phases of angiogenesis through the calcitonin receptor, but its effect on tube morphogenesis by endothelial cells occurred at the concentration of the Kd of calcitonin receptor. Silencing of calcitonin receptor expression in HMEC-1 cells abolished calcitonin-induced tube formation. Vascular endothelial growth factor antibodies attenuated but did not abolish calcitonin-induced tube morphogenesis. PC-3M prostate cancer cells induced angiogenesis in in vivo and in vitro models. Overexpression of calcitonin in PC-3M cells increased their angiogenic activity, whereas the silencing of calcitonin expression abolished it. These results show that prostate tumor-derived calcitonin may play an important role in prostate tumor growth by regulating intratumoral vascularization.
Collapse
Affiliation(s)
- Srinivasulu Chigurupati
- Department of Pharmacology, University of Louisiana School of Pharmacy, College of Health Sciences, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
56
|
Gagner J, Law M, Fischer I, Newcomb EW, Zagzag D. Angiogenesis in gliomas: imaging and experimental therapeutics. Brain Pathol 2005; 15:342-63. [PMID: 16389946 PMCID: PMC8095871 DOI: 10.1111/j.1750-3639.2005.tb00119.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Much of the interest in angiogenesis and hypoxia has led to investigating diagnostic imaging methodologies and developing efficacious agents against angiogenesis in gliomas. In many ways, because of the cytostatic effects of these agents on tumor growth and tumor-associated endothelial cells, the effects of therapy are not immediately evident. Hence finding clinically applicable imaging tools and pathologic surrogate markers is an important step in translating glioma biology to therapeutics. There are a variety of strategies in the approach to experimental therapeutics that target the hypoxia-inducible factor pathway, the endogenous antiangiogenic and proangiogenic factors and their receptors, adhesion molecules, matrix proteases and cytokines, and the existing vasculature. We discuss the rationale for antiangiogenesis as a treatment strategy, the preclinical and clinical assessment of antiangiogenic interventions and finally focus on the various treatment strategies, including combining antiangiogenic drugs with radiation and chemotherapy.
Collapse
Affiliation(s)
- Jean‐Pierre Gagner
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
| | - Meng Law
- Department of Radiology, New York University School of Medicine
- Department of Neurosurgery, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| | - Ingeborg Fischer
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
| | - Elizabeth W. Newcomb
- Department of Pathology, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| | - David Zagzag
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
- Department of Neurosurgery, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| |
Collapse
|
57
|
Shah K, Weissleder R. Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2005; 2:215-25. [PMID: 15897946 PMCID: PMC1064987 DOI: 10.1602/neurorx.2.2.215] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A number of advances in the molecular imaging field have led to the sensing of specific molecular targets and pathways in living animals. In the optical imaging field, these include the designing of biocompatible near-infrared fluorochromes, development of targeted and activatable "smart" imaging probes, and engineering of activatable fluorescent and bioluminescent proteins. The current advances in molecular optical imaging will help in early disease diagnoses, functioning of a number of pathways and finally help speed drug discovery. In this review, we will describe the near infrared fluorescent and bioluminescence imaging modalities and how these techniques have been employed in current research. Furthermore, we will also shed some light on the use of these imaging modalities in neurotherapeutics, for example imaging different parameters of vector-mediated gene expression in glioma tumors and stem cell tracking in vivo.
Collapse
Affiliation(s)
- Khalid Shah
- Center for Molecular Imaging Research, Massachusetts General Hospital, MA 02129, USA.
| | | |
Collapse
|
58
|
Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2005. [PMID: 15897946 DOI: 10.1007/bf03206667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
A number of advances in the molecular imaging field have led to the sensing of specific molecular targets and pathways in living animals. In the optical imaging field, these include the designing of biocompatible near-infrared fluorochromes, development of targeted and activatable "smart" imaging probes, and engineering of activatable fluorescent and bioluminescent proteins. The current advances in molecular optical imaging will help in early disease diagnoses, functioning of a number of pathways and finally help speed drug discovery. In this review, we will describe the near infrared fluorescent and bioluminescence imaging modalities and how these techniques have been employed in current research. Furthermore, we will also shed some light on the use of these imaging modalities in neurotherapeutics, for example imaging different parameters of vector-mediated gene expression in glioma tumors and stem cell tracking in vivo.
Collapse
|
59
|
Moldobaeva A, Wagner EM. Difference in proangiogenic potential of systemic and pulmonary endothelium: role of CXCR2. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1117-23. [PMID: 15722378 DOI: 10.1152/ajplung.00370.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The systemic vasculature in and surrounding the lung is proangiogenic, whereas the pulmonary vasculature rarely participates in neovascularization. We studied the effects of the proangiogenic ELR+ CXC chemokine MIP-2 (macrophage inflammatory protein-2) on endothelial cell proliferation and chemotaxis. Mouse aortic, pulmonary arterial, and lung microvascular endothelial cells were isolated and subcultured. Proliferation ([3H]thymidine uptake) and migration (Transwell chemotaxis) were evaluated in each cell type at baseline and upon exposure to MIP-2 (1–100 ng/ml) without and with exposure to hypoxia (24 h)-reoxygenation. Baseline proliferation did not vary among cell types, and all cells showed increased proliferation after MIP-2. Aortic cell chemotaxis increased markedly upon exposure to MIP-2; however, neither pulmonary artery nor lung microvascular endothelial cells responded to this chemokine. Assessment of CXCR2, the G protein-coupled receptor through which MIP-2 signals, displayed no baseline difference in mRNA, protein, or cell surface expression among cell types. Exposure to hypoxia increased expression of CXCR2 of aortic endothelial cells only. Additionally, aortic cells, compared with pulmonary cells, showed significantly greater protein and activity of cathepsin S, a proteolytic enzyme important for cell motility. Thus the combined effects of increased cathepsin S activity, providing increased motility and enhanced CXCR2 expression after hypoxia, both contribute to the proangiogenic phenotype of systemic arterial endothelial cells.
Collapse
Affiliation(s)
- Aigul Moldobaeva
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
60
|
Lefranc F, Mijatovic T, Mathieu V, Rorive S, Decaestecker C, Debeir O, Brotchi J, Van Ham P, Salmon I, Kiss R. Characterization of Gastrin-Induced Proangiogenic EffectsIn vivoin Orthotopic U373 Experimental Human Glioblastomas andIn vitroin Human Umbilical Vein Endothelial Cells. Clin Cancer Res 2004; 10:8250-65. [PMID: 15623601 DOI: 10.1158/1078-0432.ccr-04-0343] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study aims to investigate the role of gastrin-17 (G17) on angiogenesis features in gliomas both in vitro and in vivo. EXPERIMENTAL DESIGN The influences of G17 and G17 receptor antagonists were characterized in vitro in terms of angiogenesis on human umbilical vein endothelial cell (HUVEC) tubulogenesis processes on Matrigel and in vivo with respect to U373 orthotopic glioma xenografts. The influence of phosphatidylinositol 3'-kinase, protein kinase C, and nuclear factor-kappaB inhibitors was characterized in vitro on G17-mediated HUVEC tubulogenesis. G17-mediated release of interleukin (IL)-8 from HUVECs and G17-induced modifications in nuclear factor-kappaB DNA binding activity were characterized by means of specific enzyme-linked immunosorbent assays. The influence of G17 on E- and P-selectin expression was determined by means of computer-assisted microscopy, whereas the influence of E- and P-selectin on HUVEC migration was approached by means of antisense oligonucleotides. The chemotactic influence of G17 and IL-8 on HUVEC migration was characterized by means of computer-assisted videomicroscopy with Dunn chambers. RESULTS Messenger RNAs for cholecystokinin (CCK)A, CCKB, and CCKC receptors were present in HUVECs and microvessels dissected from a human glioblastoma. Whereas G17 significantly increased the levels of angiogenesis in vivo in the U373 experimental glioma model and in vitro in the HUVECs, the CCKB receptor antagonist L365,260 significantly counteracted the G17-mediated proangiogenic effects. G17 chemoattracted HUVECs, whereas IL-8 failed to do so. IL-8 receptor alpha (CXCR1) and IL-8 receptor beta (CXCR2) mRNAs were not detected in these endothelial cells. Gastrin significantly (but only transiently) decreased the level of expression of E-selectin, but not P-selectin, whereas IL-8 increased the expression of E-selectin. Specific antisense oligonucleotides against E- and P-selectin significantly decreased HUVEC tubulogenesis processes in vitro on Matrigel. CONCLUSIONS The present study shows that gastrin has marked proangiogenic effects in vivo on experimental gliomas and in vitro on HUVECs. This effect depends in part on the level of E-selectin activation, but not on IL-8 expression/release by HUVECs.
Collapse
MESH Headings
- Animals
- Benzodiazepinones/pharmacology
- Brain Neoplasms/blood supply
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- Cell Movement/drug effects
- Collagen/chemistry
- Drug Combinations
- E-Selectin/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Gastrins/pharmacology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Glioblastoma/blood supply
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- In Vitro Techniques
- Interleukin-8/metabolism
- Laminin/chemistry
- Mice
- Mice, Nude
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Neovascularization, Pathologic/drug therapy
- P-Selectin/metabolism
- Phenylurea Compounds/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Proteoglycans/chemistry
- Rats
- Rats, Nude
- Receptors, Cholecystokinin/antagonists & inhibitors
- Receptors, Cholecystokinin/metabolism
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/metabolism
- Transplantation, Heterologous
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/pathology
- Umbilical Veins/cytology
Collapse
|